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Aedes aegypti (Linnaeus) and Culex quinquefasciatus (Say)

collected from Bangkok, Thailand
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Abstract

Aedes aegypti and Culex quinquefasciatus are important mosquito vectors for many infectious diseases. A
number of factors affect the vector competence of these mosquitoes for a specific pathogen. The bacteria harbored in
the midgut are known to influence mosquito physiology and can alter the response to various pathogens. Bacteria from
the midgut of Ae. aegypti and Cx. quinquefasciatus were cultured and identified using bacteriological and molecular
techniques in this study in which two groups of mosquitoes were examined. The first group was laboratory-reared,
and the second group were field-collected mosquitoes from Bangkok. Twelve bacterial genera (i.e., Acinetobacter,
Agrobacterium, Bacillus, Cellulomonas, Chryseomicrobium, Dietzia, Enterobacter, Klebsiella, Microbacterium, Pantoea,
Pseudomonas, and Staphylococcus) were identified from laboratory-reared Ae. aegypti and eight bacterial genera (i.e.,
Bacillus, Cellulomonas, Microbacterium, Micrococcus, Moraxella, Neisseria, Staphylococcus, and Streptococcus) were
determined from field- collected Ae. aegypti. Five bacterial genera (i.e., Microbacterium, Micrococcus, Paenibacillus,
Pseudomonas, and Staphylococcus) were identified from laboratory-reared Cx. quinguefasciatus and 13 bacterial genera
(i.e., Acinetobacter, Actinomyces, Bacillus, Chryseobacterium, Kocuria, Microbacterium, Micrococcus, Novosphingobium,
Pantoea, Providencia, Pseudomonas, Rhodococcus, and Staphylococcus) were examined from field- collected Cx.
quinquefasciatus. The variation of these midgut microbiota may influence mosquito vector competence for a specific
pathogen. However, further studies need to be performed to indicate this relationship.
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Introduction

Aedes  aegypti  (Linnaeus) and  Culex
quinquefasciatus (Say) are important mosquitoes that
can be found worldwide and throughout Thailand.
They are nuisance insects and important vectors for
many infectious diseases. They feed on various animal
hosts and humans, and sometimes bite more than one
host or one person within each gonotrophic cycle
(Harrington et al., 2014). Ae. aegypti exclusively feed on
humans in a single host species and most of multiple-
host bloodmeals include at least one human host.
Humans, dogs and swine are preferred hosts but
bovines and chickens are avoided as hosts for Ae.
aegypti in Thailand (Ponlawat and Harrington, 2005).
Cx. quinquefasciatus is most frequently found in and
around human habitations and is most prevalent
during the rainy season. It prefers to feed on human
blood than that of other animals (Azmi et al., 2015).

Ae. aegypti play an important role as vectors
for many filarial nematodes and viruses particularly
the Zika and dengue virus (Watson and Kay, 1999;
Tiawsirisup and Nithiuthai, 2006; Diallo et al., 2008;
Ariani et al.,, 2015; da Moura et al., 2015; Monaghan et
al.,, 2016; Richard et al., 2016). Cx. quinquefasciatus are
also important vectors for filarial nematodes, protozoa,
and many viruses such as canine heartworm caused by
Dirofilaria immitis, avain malaria caused by Plasmodium
gallinaceum, West Nile virus and Rift Valley fever virus
(Vargas and Beltran, 1941; Ahid et al, 2000;
Tiawsirisup and Nithiuthai, 2006; Turell et al., 2007;
Sudeep et al., 2015; Yurayart et al., 2017).

Vertebrate hosts, pathogens and mosquito
vector factors affect the vector competence of
mosquitoes for a specific pathogen. Pathogen infection
in mosquitoes can occur only in the mosquito midgut
since the structure and function of the midgut are
different from the foregut and hindgut (Houk et al,,
1981; Mercado-Curiel et al., 2008). The mosquito gut is
the first point of contact between ingested pathogens
and the mosquitos epithelial surface. The midgut is an
important location for host-pathogen interaction and
pathogen survival or elimination is thought to be an
outcome of this relation. The midgut of the mosquito
vector contains not only pathogens but also a diverse
microbiota (Dennison et al., 2014). Midgut microbiota
are bacteria that have co-evolved and developed
symbiotic relationships with mosquitoes or the
bacteria that are acquired from the mosquito’s
breeding water or nectar sources and they have
adapted to persist within the mosquitoes. These
bacteria influence the mosquitoes’ physiology, the
susceptibility of the mosquitoes to specific pathogens,
the response to various pathogens, and the ability to
transmit the pathogen. In the same vein, internal
factors of the mosquito might modulate the
composition of its midgut bacterial population. Midgut
structure, pH, digestive enzymes and ingested food are
factors shown to significantly influence the diversity of
the microbial community of the mosquito (Oliveira et
al.,, 2011; Ludvigsen et al., 2015). Midgut microbiota are
also diverse depending on species, sex, developmental
stage, ecological factors, and geographic location.
Mosquitoes are exposed to a variety of microbes
during their lifecycle, some of which are needed for
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their successful development into the adult stage.
However, a reduction in bacteria diversity can be
found during the metamorphosis (Kim et al., 2015).

The involvement of midgut microbiota in
various important functions in relation to host and
pathogen interaction has been reported. Studies on
midgut microbiota diversity and the ability to
modulate host-pathogen interaction have become a
focus of research (Boissiere et al., 2012; Ramirez et al.,
2012; Apte-Deshpande et al., 2014). Some studies have
suggested a potential role of microbiota in the biology
and vector competence of mosquitoes (Dennison et al.,
2014). The midgut microbiota can modulate the
mosquito’s immune response and affect vector
competence and can also manipulate mosquito
competence by impairing pathogen infection through
resource competition or antipathogen molecule
secretion (Dennison et al., 2015). Ramirez et al. (2012)
posited that field isolated bacteria from the mosquito
midgut exert a harmful effect on dengue virus
infection. The effect is demonstrated through the action
of the mosquito immune system, which is activated by
microbiota. On the other hand, dengue virus infection
induces immune responses in the mosquito midgut
tissue that act against the natural mosquito midgut
microbiota. These observations have encouraged the
recent development of new mosquito control methods
based on the use of symbiotically-modified mosquitoes
to interfere with pathogen transmission or reduce host
reproduction and life span (Minard et al., 2013).

Studying the diversity of the midgut
microbiota will address the basic knowledge for the
advance study of the relationship between midgut
microbiota and specific pathogen infection and
transmission in the mosquito vectors. Understanding
the role of microbiota in modulating infections with
pathogens is important. However, information on
midgut microbiota of mosquitoes from Thailand is
limited. This study was conducted to access the
diversity of midgut microbiota of Ae. aegypti and Cx.
quinquefasciatus from Thailand. This is basic and
important information for the advanced research on
mosquito vector competence and mosquito control in
Thailand.

Materials and Methods

Mosgquitoes: Laboratory-reared and field-collected Ae.
aegypti and Cx. quinquefasciatus were examined in this
study. The laboratory mosquitoes were reared and
maintained with 10% sucrose at the Parasitology Unit,
Department of Veterinary Pathology, Faculty of
Veterinary Science, Chulalongkorn University. They
were originally collected from Bangkok, Thailand and
maintained for more than ten generations. Field
mosquitoes were collected from Suanluang and Laksi
districts in Bangkok, Thailand in 2013 using a BG-
Sentinel mosquito trap (Biogents®, Germany). The
species, source and number of tested mosquitoes is
demonstrated in Table 1. The mosquitoes were then
kept at 4°C for 20 min and identified under a light
microscope. Only female mosquitoes were examined
in this study. The sampling mosquitoes were washed
in 70% ethanol for 5 min and rinsed with phosphate
buffer saline (PBS). The midgut was then dissected
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from each mosquito under a light microscope, kept in
300 pl of 60% glycerol in PBS, ground using a sterile
plastic pestle, and kept at -80°C until tested. This study
was conducted in 2013, then mosquitoes were not

Table 1 The species, source, and number of tested mosquitoes.
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included among the experimental animals that needed
approval from the Chulalongkorn University Animal
Care and Use Committee.

Mostuitolspecics SourcelGtinasquitoes Number of tested Number of mosquitoes
mosquitoes with midgut microbiota
Aedes aegypti Laboratory 16 13
Suanluang district 5 4
Laksi district 7 6
Culex quinquefasciatus Laboratory 11 10
Suanluang district 10 7
Laksi district 11 11

Bacterial isolation and identification: Bacteria from
the midguts of Ae. aegypti and Cx. quinquefasciatus were
cultured and identified using bacteriological and
molecular techniques.

Bacteriological technique: The ground midgut from
each mosquito was separated into three parts. For the
first part, 50 pl of the ground midgut was examined for
the total colonies using pour plate technique. The
sample was mixed with plate count agar (PCA) and
poured into a plastic petri dish. The petri dish was kept
at 37°C for 24-48 hr and assessed for bacterial colonies.
If the total colonies of bacteria were higher than 250
colonies, the ground midgut was diluted and the total
colonies were examined again using pour plate. For the
second and third part, 50 pl of the ground midgut was
examined for bacterial colonies by spread plate
technique using trypticase soy agar (TSA) with 5%
sheep blood and MacConkey agar (MAC) with 5%
sheep blood being used in this technique, respectively.
The midgut was streaked over an agar surface by the
four-way cross streak method and the streaked plate
was kept at 37°C for 24-48 hr and assessed for bacterial
colonies. The bacterial colonies were indicated as
colony forming units (CFU) per mosquito.

Each bacterial colony from the spread plate
technique was subcultured over TSA with 5% sheep
blood by four-way cross streak method and the
streaked plate was kept at 37°C for 24-48 hr. Pure
bacterial colonies were examined using gram staining
and molecular techniques. Before examination by
molecular technique, the pure bacterial colony was
cultured in Luria-Bertani (LB) broth and stock of the
pure colony was kept in stock media at 37°C for 24 hr
and transferred to room temperature. Duplicate
samples of each mosquito midgut were analyzed.

Molecular technique: Due to the various sizes and
shapes of the colony of each bacterial genus, the
molecular technique using DNA sequencing was
mainly used to indicate the bacterial genus. Bacterial
DNA was extracted using the boiling method. The
pure bacterial colony was cultured in two ml of LB
broth at 37°C for 24-48 hr. It was then centrifuged at
14,000 rpm for 15 min and the bacterial pellet was
washed one time in distilled water. A total of 40 ul of
distilled water was added into the bacterial pellet and
it was kept at 100°C for 10 min, cooled down in the ice
basket, and centrifuged at 14,000 rpm for 10 min. The
supernatant which was extracted DNA was kept at

-80°C until being tested using polymerase chain
reaction and sequencing.

Polymerase chain reaction technique: The extracted
bacterial DNA was examined using polymerase chain
reaction (PCR) technique. Two universal primers for
16S ribosomal RNA (165 rRNA) gene of bacteria were
used in this study. The first pair of primers were 165
Forward 5’-AGT TTG ATC CTG GCT CAG-3’ and 165
Reverse 5-GCT ACC TTG TTA CGA CIT C-3’
(Dinparast Djadid et al., 2011) and the second pair of
primer were 63F 5’-CAG GCC TAA CAC ATG CAA
GTC-3’ and 1387R 5’-GGG CGG WGT GTA CAA
GGC-3’ (Marchesi et al., 1998). PCRs were performed
in 25 pl-reaction. The PCR consisted of 1.5 pl of DNA
template, 0.2 ul of Tag DNA polymerase (Platinum Tag
DNA polymerase high fidelity, Invitrogen, USA), 2.5 pl
of 10X PCR buffer, 0.5 ul of 10mM dNTPs, 1 ul of 50
mM MgSOy, 10 pM of forward primer, 10 uM of reverse
primer and 173 pl of distilled water. DNA was
amplified using thermocycler (Perkin Elmer Cetus
9600, Perkin Elmer, Waltham, MA).

Reaction for the first primer consisted of the
initial denaturation at 94°C for 2 min, the amplification
was carried out for 35 cycles with the following
temperature cycling parameters: 94°C for 30 s of
denaturation, 55°C for 30 s of annealing, and 68°C for
1 min 30 s of extension. The final amplification cycle
included an addition of 10 min extension at 72°C.
Reaction for the second primer consisted of the initial
denaturation at 94°C for 2 min, the amplification was
carried out for 30 cycles with the following
temperature cycling parameters: 95°C for 1 min of
denaturation, 55°C for 1 min of annealing, and 72°C for
1 min 30 s of extension. The final amplification cycle
included an addition of 5 min extension at 72°C. The
PCR product was mixed with loading buffer
(BlueJuice™ Gel Loading Buffer, Invitrogen, USA) and
analyzed in 1.5% agarose gel (UltraPure™, Invitrogen,
Carlsbad, CA) with an expected 1.5 and 1.3 kilobase
pair band, respectively.

Bacterial DNA sequencing: After DNA amplification,
the PCR product in agarose gel was purified using
Gel/PCR DNA Fragments Extraction Kit (Geneaid,
Taiwan)  according to the  manufacturer’s
recommendation. The purified DNA was sequenced
(First BASE Laboratories, Singapore), analysed using
Molecular Evolution Genetics Analysis (MEGA) 5.1,
and blasted with the data in GenBank.
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Results

This study was conducted to examine the
genera and diversity of bacteria in the midguts of Ae.
aegypti  and  Cx. quinquefasciatus  mosquitoes.
Laboratory-reared and field-collected mosquitoes
were examined in this study. The field mosquitoes
were collected from Bangkok, Thailand using BG-
Sentinel mosquito traps. Bacteria in the mosquito
midguts were cultured and identified by using
bacteriological and molecular techniques. A total of 22
genera were identified, belonging to 4 phyla:
Actionobacteria, Bacteroidetes, Firmicutes, and
Proteobacteria. Proteobacteria was the dominant
bacterial phylum followed by Actinobacteria,
Firmicutes, and Bacteroidetes, respectively. Found in
this study by using the bacteriological technique, some
bacterial colonies could not be identified using
molecular technique. This was due to the limitation of
the boiling method that was used for bacterial DNA
extraction.

Bacterial isolates from the midgut of Ae. Aegypti:
Sixteen laboratory-reared Ae. aegypti were examined
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and 12 bacterial genera (ie., Acinetobacter,
Agrobacterium, Bacillus, Cellulomonas, Chryseomicrobium,
Dietzia, Enterobacter, Klebsiella, Microbacterium, Pantoea,
Pseudomonas, and Staphylococcus) were identified from
this mosquito group (13/16). The number of bacterial
colonies ranged from 1-142 CFU/mosquito. Three
mosquitoes were free from the culturable bacteria in
the midguts (3/16). The most common bacteria found
in this mosquito group were Microbacterium (4/16).
Proteobacteria was the dominant bacterial phylum
followed by Actinobacteria and Firmicutes,
respectively.

Twelve field-collected Ae. aegypti from
Bangkok were examined and eight bacterial genera
(i.e., Bacillus, Cellulomonas, Microbacterium, Micrococcus,
Moraxella, Neisseria, Staphylococcus, and Streptococcus)
were identified from this mosquito group (10/12). The
number of bacterial colonies ranged from 1-2,900
CFU/mosquito. Two mosquitoes were free from the
culturable bacteria in the midgut (2/12). The most
common bacteria found in this mosquito group were
Staphylococcus (6/12). Actinobacteria and Firmicutes
were the dominant bacterial phyla followed by
Proteobacteria (Table 2 and 4).

Table2  Number of bacterial colonies found in laboratory-reared and field-collected Aedes aegypti from Bangkok, Thailand.

D Source No. of bacterial colonies per mosquito (CFU) Closest related
Pour plate MAC plate TSA plate bacterial genera
1 Laboratory 7 0 8 Microbacterium
2 Laboratory 19 0 1 Enterobacter
3 Laboratory 8 0 2 Pantoea
0 3 Klebsiella
0 2 Acinetobacter
0 2 Agrobacterium
4 Laboratory 4 0 1 -
5 Laboratory 2 0 4 Bacillus
6 Laboratory 3 0 4 Microbacterium
7 Laboratory 1 0 1 Dietzia cinnamea
8 Laboratory 20 0 14 Microbacterium
0 5 Pseudomonas
0 1 Chryseomicrobium
9 Laboratory 1 0 5 -
10 Laboratory 0 0 3 Bacillus
11 Laboratory 11 0 12 Cellulomonas
12 Laboratory 3 0 30 -
13 Laboratory 0 0 19 Staphylococcus
0 1 Pseudomonas
14 Laboratory 1 0 142 Microbacterium
15 Laboratory 5 0 18 Staphylococcus
16 Laboratory 4 0 13 Staphylococcus
17 Field (Suanluang) 0 0 1 -
18 Field (Suanluang) 1 0 1 Staphylococcus
19 Field (Suanluang) 5 0 1 Staphylococcus
0 2 Micrococcus
20 Field (Suanluang) 4 0 33 Bacillus
21 Field (Suanluang) 3 0 1 Micrococcus
22 Field (Laksi) 0 0 5 Micrococcus
0 11 Moraxella
23 Field (Laksi) 1 0 1 Microbacterium
0 2 Staphylococcus
24 Field (Laksi) 1 0 1 Cellulomonas
25 Field (Laksi) 4 0 2 Staphylococcus
26 Field (Laksi) 470 0 2,500 Staphylococcus
0 700 Neisseria
0 2,900 Streptococcus
27 Field (Laksi) 1 0 1 -
28 Field (Laksi) 1 0 41 Staphylococcus
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Bacterial isolates from the midgut of Cx.
quinquefasciatus: Eleven laboratory-reared Cx.
quinquefasciatus were examined and five bacterial
genera (i.e., Microbacterium, Micrococcus, Paenibacillus,
Pseudomonas, and Staphylococcus) were identified from
this mosquito group (10/11). The number of bacterial
colonies ranged from 1-140 CFU/mosquito. One
mosquito was free from the culturable bacteria in the
midgut (1/11). The most common bacteria found in this
mosquito  group were  Staphylococcus  (6/11).
Actinobacteria was the dominant bacterial phylum
followed by Bacteroidetes, Firmicutes, and
Proteobacteria.
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Twenty-one field-collected Cx.
quinquefasciatus from Bangkok were examined and 13
bacterial genera (ie., Acinetobacter, Actinomyces,
Bacillus, Chryseobacterium, Kocuria, Microbacterium,
Micrococcus, Novosphingobium, Pantoea, Providencia,
Pseudomonas, Rhodococcus, and Staphylococcus) were
identified from this mosquito group (18/21). The
number of bacterial colonies ranged from 1-18,800
CFU/mosquito. Three mosquitoes were free from the
culturable bacteria in the midgut (3/21). The most
common bacteria found in this mosquito group were
Micrococcus (5/21). Proteobacteria was the dominant
bacterial phylum followed by Actinobacteria and
Firmicutes, respectively (Table 3 and 4).

Table3  Number of bacterial colonies found in laboratory-reared and field-collected Culex quinquefasciatus from Bangkok,

Thailand.
ID Source No. of bacterial colonies per mosquito (CFU) Closest related
Pour plate MAC plate TSA plate bacterial genera
1 Laboratory 1 0 70 -
2 Laboratory 4 0 35 Micrococcus
3 Laboratory 4 0 11 Staphylococcus
0 1 Micrococcus
0 40 Microbacterium
4 Laboratory 20 0 9 Microbacterium
0 1 Staphylococcus
5 Laboratory 1 0 1 Staphylococcus
6 Laboratory 96 0 2 Paenibacillus
0 140 Microbacterium
7 Laboratory 0 0 1 Microbacterium
8 Laboratory 14 0 3 Paenibacillus
0 62 Microbacterium
9 Laboratory 3 0 5 Staphylococcus
1 0 Pseudomonas
10 Laboratory 26 0 2 Staphylococcus
11 Laboratory 3 0 3 Staphylococcus
12 Field (Suanluang) 608 1,400 18,800 Providencia
240 0 Pantoea
13 Field (Suanluang) 28 0 7 Micrococcus
14 Field (Suanluang) 52 0 56 -
18 0 -
15 Field (Suanluang) 0 0 1 Chryseobacterium
16 Field (Suanluang) 288 86 1,420 -
17 Field (Suanluang) 224,000 394 0 Pantoea
18 Field (Suanluang) 20 0 1 Micrococcus
19 Field (Suanluang) 4 0 1 Staphylococcus
0 1 Microbacterium
20 Field (Suanluang) 5 0 1 Micrococcus
5 0 1 Microbacterium
21 Field (Suanluang) 0 0 1 -
22 Field (Laksi) 0 0 1 Pseudomonas
23 Field (Laksi) 3 0 2 Acinetobacter
0 9 Staphylococcus
0 1 Pseudomonas
24 Field (Laksi) 1 0 1 Actinomyces
25 Field (Laksi) 12 0 17 Staphylococcus
26 Field (Laksi) 5 0 2 Novosphingobium
27 Field (Laksi) 91 0 82 Pantoea
28 Field (Laksi) 4 0 1 Staphylococcus
0 1 Kocuria
0 4 Micrococcus
29 Field (Laksi) 3 0 1 Bacillus
30 Field (Laksi) 1 0 9 Kocuria
0 8 Pantoea
31 Field (Laksi) 6 0 1 Microbacterium
0 1 Bacillus
32 Field (Laksi) 5 0 1 Rhodococcus
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Table 4 Comparison of the occurrence of different bacterial genera in laboratory-reared and field-collected Aedes aegypti and Culex
quinquefasciatus from Bangkok, Thailand.
Closest related Percentage of occurrence
Phylum b . R Laboratory-reared Field-collected Laboratory-reared Field-collected
acterial genera A . ) . . . .
e. aegypti Ae. aegypti Cx. quinquefasciatus Cx. quinquefasciatus

Actinobacteria Actinomyces 0 0 0 4.8 (1/21)
Cellulomonas 6.3 (1/16) 8.3 (1/12) 0 0
Dietzia 6.3 (1/16) 0 0 0
Kocuria 0 0 0 9.5 (2/21)
Microbacterium 25.0 (4/16) 8.3 (1/12) 45.5 (5/11) 14.3 (3/21)
Micrococcus 0 25.0 (3/12) 18.2 (2/11) 23.8 (5/21)
Rhodococcus 0 0 0 4.8 (1/21)

Bacteroidetes Paenibacillus 0 0 18.2 (2/11) 0

Firmicutes Bacillus 12.5 (2/16) 8.3 (1/12) 0 9.5(2/21)
Staphylococcus 18.8 (3/16) 50.0 (6/12) 54.5 (6/11) 19.0 (4/21)
Streptococcus 0 8.3 (1/12) 0 0

Proteobacteria Acinetobacter 6.3 (1/16)° 0 0 4.8 (1/21)
Agrobacterium 6.3 (1/16) 0 0 0
Chryseobacterium 6.3 (1/16) 0 0 4.8 (1/21)
Enterobacter 6.3 (1/16) 0 0 0
Klebsiella 6.3 (1/16) 0 0 0
Moraxella 0 8.3 (1/12) 0 0
Neisseria 0 8.3 (1/12) 0 0
Novosphingobium 0 0 0 4.8 (1/21)
Pantoea 6.3 (1/16) 0 0 19.0 (4/21)
Providencia 0 0 0 4.8 (1/21)
Pseudomonas 12.5 (2/16) 0 9.1 (1/11) 9.5 (2/21)

2 All bacterial genera were identified on the basis of a percent identity higher than 99%

bPercentage of occurrence (no. occurred/tested)

Discussion

The mosquito midgut is a site of complex
interactions among mosquitoes, pathogens, and
resident microbiota. The variation of these bacteria
may influence mosquito biology and vector
competence for a specific pathogen (Chandel et al.,
2013; Minard et al.,, 2013). It is one of the factors
responsible for the difference in disease transmission
rate or vector competence within the mosquito
population. Previous studies indicate the role and
relationship between mosquito midgut microbiota and
vector competence for specific pathogens (Dennison et
al, 2014). However, the information about midgut
microbiota and the relationship between these bacteria
and pathogens from Thailand is limited. This study
was performed to initiate basic information about
midgut microbiota from Thailand’s mosquitoes.
Laboratory mosquitoes were originally collected from
Bangkok, Thailand and maintained for more than ten
generations and field mosquitoes were also collected
from Bangkok to indicate the effect of environmental
conditions on the variation of midgut microbiota.
Molecular analysis of the 16S ribosomal RNA gene of
bacteria was used for bacterial identification in this
study. Individual mosquitoes harbor extremely
diverse gut bacteria in their gut. All of the laboratory-
reared mosquitoes in this study were raised and fed in
the same manner. However, the midgut microbiota
identified from these mosquitoes was different. The
microbiota in each generation of mosquitoes was likely
to become more diverse during the course of the
experiment in laboratory condition.

Twelve bacterial genera were identified from
laboratory-reared female Ae. aegypti and eight bacterial
genera were determined from field-collected female
Ae. aegypti. Five bacterial genera were identified from

laboratory-reared female Cx. quinquefasciatus and 13
bacterial genera were examined from field-collected
female Cx. quinquefasciatus. The most common bacteria
found in laboratory-reared and field-collected Ae.
aegypti were Microbacterium and  Staphylococcus,
respectively and the most common bacteria found in
laboratory-reared and field-collected Cx.
quinquefasciatus were Staphylococcus and Micrococcus,
respectively. The difference in bacterial genera
identified from each field-collected mosquito might be
attributable to environmental conditions.

Chandel et al. (2013) studied the midgut
microbiota of female Cx. quinquefasciatus mosquitoes
collected from India. The 16S ribosomal DNA from
culturable microflora were examined and revealed the
presence of 83 bacterial species belonging to 31 genera.
Proteobacteria was the most dominant phylum,
followed by Firmicutes and Actinobacteria.
Staphylococcus was the largest genus represented by 11
species whereas Enterobacter was the most prevalent
genus and recovered from most field stations.
However, only 13 bacterial genera were identified
from field-collected Cx. quinquefasciatus from Thailand
in this study. Chandel et al. (2015) also isolated
Vagococcus fluvialis from Cx. quinquefasciatus mosquito
midgut collected from India where these bacteria were
known from domestic animal and human sources only.
This finding might confirm the hypothesis that
microbiota is acquired from food sources of the
mosquito (Ludvigsen et al., 2015). However, no
Vagococcus was isolated from our present study from
Thailand.

The study by Valiente Moro et al. (2013)
showed the bacterial isolates from female Ae. albopictus
mosquitoes were mostly Proteobacteria followed by
Firmicutes and Actinobacteria phylum. On the other
hand, Actinobacteria was the most abundant phylum
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in male Ae. albopictus followed by Proteobacteria and
Firmicutes. Pantoea was the most common genus in
both females and males from all sampling sites. In our
present study, Pantoea was isolated from laboratory-
reared female Ae. aeQypti and field-collected female Cx.
quinquefasciatus from Thailand. The study of midgut
microbiota of Ae. albopictus and Ae. aegypti collected
from India by Yadav et al. (2015) found 24 bacterial
species from 13 genera of four major phyla using 16S
rRNA gene sequence analysis. Phylum Proteobacteria
was dominant followed by Firmicutes, Bacteroidetes,
and Actinobacteria. The bacteria belonging to the
phylum Proteobacteria and Firmicutes were identified
from both Ae. albopictus and Ae. aegypti, while, bacteria
belonging to phylum Bacteroidetes and Actinobacteria
were isolated only from Ae. albopictus and Ae. aegypti,
respectively. Enterobacter was the dominant bacterial
genus in both Ae. albopictus and Ae. aeqypti. The same
result was found in this present study where bacteria
in phylum Bacteroidetes was only found in laboratory-
reared female Cx. quinquefasciatus.

For the midgut microbiota of Anopheles
mosquitoes, the majority of the identified bacteria from
An. stephensi and An. maculipennis from Iran belonged
to proteobacteria phylum, including Pseudomonas and
Aeromonas. The other Dbacteria found in these
mosquitoes were Pantoea, Acinetobacter, Brevundimonas,
Bacillus, Sphingomonas, Lysinibacillus, and Rahnella
(Dinparast Djadid et al., 2011). Pantoea agglomerans has
anti-Plasmodium effector proteins that reduce mosquito
refractoriness to malaria infection and engineered P.
agglomerans strains are able to inhibit Plasmodium
falciparum development (Wang et al., 2012). Other
studies showed mosquitoes with an important
microbiota seem more resistant to infections and
certain bacteria, such as Enterobacter partially or totally
and inhibit ookinete, oocyst, and sporozoite formation
(Cirimotich et al., 2011). Co-infection between Serratia
marcescens and Plasmodium vivax in An. albimanus
resulted in only 1% of mosquitoes being infected with
oocysts (Gonzalez-Ceron et al., 2003). Acinetobacter,
Bacillus, Enterobacter, and Pseudomonas are also found
in the mosquitoes from Thailand which was indicated
by the present observation.

Another important bacterial endosymbiont in
mosquitoes is Wolbachia (Tiawsirisup et al., 2008).
These bacteria block the transmission of arbovirus by
Aedes mosquitoes and this is currently being evaluated
for the control of the disease outbreak (Mousson et al.,
2010; van den Hurk et al., 2012; Hussain et al., 2013;
Raquin et al., 2015). Wolbachia induces cytoplasmic
incompatibility that results in the developmental
failure of offspring (Segoli et al., 2014). However, only
agar-culturable bacteria were examined in this study.
Wolbachia  infection in Ae. aegypti and Cx.
quinquefasciatus  cannot be indicated by the
methodology used in this study. In addition, the
presence of antibiotics in the blood of infected people
presents a new risk of disease transmission increasing.
Antibiotics in malaria-infected people enhances the
susceptibility of An. gambiae to malaria infection by
disturbing their midgut microbiota. Antibiotics
exposure also increases mosquito survival and
fecundity, which are known to increase vector
competency (Gendrin et al., 2015). Diverse bacterial
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genera identified from different mosquito species and
locations were caused by both external factors (e.g.,
environmental conditions) and internal factors. This
microbiota diversity could indicate the differences in
vector competence among mosquito species and
strains. Future studies of the role of culturable bacteria
in the biological role in the invasiveness of Ae. aegypti
and Cx. quinquefasciatus need to be performed. Isolated
bacteria should be characterized to better understand
its genetic contents and any possible to influence on Ae.
aegypti and Cx. quinquefasciatus vector competence.
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