



# Hyperbaric Oxygen Therapy for Avascular Necrosis of the Femoral Head: A Comprehensive Review and Treatment Perspective

Akkawut Wetthayanon\* Pitchayapong Yanyongsatit\*\*

\* Resident in Preventive Medicine (Maritime Medicine), Naval Medical Department, Royal Thai Navy, Bangkok

\*\* Abhakornkiartiwong Hospital, Sattahip Naval Base, Chonburi Province

\* Corresponding Author: Akkarawut.bill@gmail.com

## Abstract

Avascular necrosis (AVN) of the femoral head is a progressive orthopedic condition marked by bone tissue death due to impaired blood supply. It predominantly affects young and middle-aged adults and can result in femoral head collapse, joint degeneration, and functional disability if left untreated. Conventional therapies, including pharmacological agents and surgical interventions, often fail to prevent disease progression or restore joint integrity, especially in advanced stages. This review aims to provide a comprehensive overview of AVN pathophysiology, clinical presentation, and classification systems, while critically evaluating the emerging role of hyperbaric oxygen therapy (HBO<sub>2</sub>T) as an adjunct or alternative treatment. A structured literature review was conducted to synthesize clinical evidence from observational studies, randomized controlled trials (RCTs), case reports, and systematic reviews assessing the efficacy and mechanisms of HBO<sub>2</sub>T in treating AVN of the femoral head.

The results showed that HBO<sub>2</sub>T enhanced oxygen delivery to ischemic bone, stimulated angiogenesis, reduced inflammation and marrow edema, and promoted osteoblast activity—mechanisms directly addressing AVN pathogenesis. Clinical studies consistently report improvements in pain, function, radiographic outcomes, and a delayed need for surgical intervention, particularly when HBO<sub>2</sub>T is initiated in early disease stages. Despite growing global support, HBO<sub>2</sub>T research in Thailand remains limited due to funding constraints, despite an increasing pool of trained specialists.

In conclusion, HBO<sub>2</sub>T represents a promising, biologically sound treatment for early-stage femoral head AVN. Its inclusion in clinical protocols may significantly improve patient outcomes and reduce the need for invasive procedures. Larger multicenter RCTs and investment in local research infrastructure are crucial to establish standardized treatment guidelines and expand access, particularly in resource-limited settings.

**Keywords:** avascular necrosis, femoral head, hyperbaric oxygen therapy, joint preservation, orthopedic treatment

Received: April 4, 2025; Revised: May 14, 2025; Accepted: May 20, 2025



## Introduction

Avascular necrosis (AVN), also known as osteonecrosis, is a severe orthopedic condition characterized by the progressive death of bone tissue resulting from disrupted blood supply. AVN can affect various skeletal sites, but involvement of the femoral head is particularly debilitating due to its pivotal role in hip joint function, weight-bearing, and overall mobility. The incidence of femoral head AVN is increasing globally, affecting predominantly young and middle-aged adults, typically between 30 and 50 years of age. The condition significantly impairs patients' quality of life by causing persistent pain, limiting mobility, and progressively leading to joint degeneration and functional disability<sup>1-4</sup>.

Multiple etiologies contribute to the development of AVN, ranging from traumatic causes such as femoral neck fractures or hip dislocation to non-traumatic factors including chronic corticosteroid use, alcoholism, hematological disorders, autoimmune diseases, radiation therapy, and idiopathic cases where no clear cause can be identified. The multifactorial nature of AVN complicates early diagnosis, as the initial clinical presentation can be nonspecific and insidious, often delaying appropriate therapeutic intervention<sup>5-8</sup>.

Current therapeutic strategies for managing femoral head AVN span conservative medical management, minimally invasive surgical interventions, and extensive surgical reconstruction or replacement procedures. Pharmacological treatments, such as bisphosphonates and anticoagulants, aim to delay progression by addressing underlying pathophysiological mechanisms like bone resorption and coagulation abnormalities. Surgical interventions, including core decompression, vascularized grafting, and total hip arthroplasty, offer varying degrees of success and come with associated procedural risks and complications<sup>9-10</sup>.

Despite advancements in these conventional treatments, therapeutic outcomes remain inconsistent, with many patients eventually requiring total hip replacement at relatively young ages. This clinical gap underscores the ongoing need for alternative or adjunctive treatment modalities capable of halting or reversing early-stage AVN, minimizing symptoms, and preserving joint integrity without the significant risks associated with invasive procedures<sup>11-13</sup>.

In recent years, hyperbaric oxygen therapy (HBO<sub>2</sub>T) has emerged as a promising treatment modality, particularly for early-stage AVN. HBO<sub>2</sub>T involves administering 100% oxygen under increased atmospheric pressure, enhancing tissue oxygenation and promoting reparative processes in hypoxic tissues. Its therapeutic potential is attributed to multiple beneficial biological effects, including stimulation of angiogenesis, reduction of inflammation, mitigation of bone marrow edema, and enhancement of bone regeneration. This multifaceted approach makes HBO<sub>2</sub>T uniquely suitable for managing AVN by directly addressing the disease's complex pathophysiological underpinnings<sup>14-16</sup>.



This comprehensive review aims to provide a detailed examination of AVN of the femoral head, including pathophysiology, clinical classification, presentation, and a thorough exploration of HBO<sub>2</sub>T as a therapeutic intervention, supported by clinical evidence, procedural insights, and discussions on advantages, limitations, and future research directions.

## Pathophysiology of Avascular Necrosis

The pathophysiology of avascular necrosis (AVN) of the femoral head involves a multifaceted interplay of vascular, cellular, metabolic, and biomechanical factors. The femoral head primarily relies on a precarious vascular supply from the medial and lateral femoral circumflex arteries, making it highly vulnerable to ischemic injury. Any disruption or compromise in these blood vessels, due to traumatic events such as fractures or hip dislocation, or non-traumatic conditions including corticosteroid use, alcohol abuse, hypercoagulable states, and autoimmune disorders, can lead to ischemia and subsequently bone necrosis<sup>17-18</sup>.

Once blood supply is compromised, osteocytes rapidly undergo ischemic cell death due to oxygen deprivation, initiating a cascade of inflammatory and degenerative processes. Within hours to days, this cell death triggers a robust inflammatory response characterized by elevated pro-inflammatory cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF- $\alpha$ ), which further exacerbate local tissue damage. Immune cell infiltration, particularly neutrophils and macrophages, amplifies inflammation, contributing to oxidative stress and the release of enzymes that degrade extracellular matrix and bone tissue<sup>19</sup>.

Simultaneously, the ischemic bone environment attempts a reparative process through neovascularization and remodeling. However, persistent ischemia and ongoing inflammation typically limit these attempts at repair, leading to insufficient formation of new, functional vessels and incomplete or defective bone regeneration. Chronic ischemic conditions and inflammation eventually cause accumulation of microfractures and structural weakening of subchondral bone, ultimately precipitating collapse of the femoral head and secondary degenerative changes within the hip joint<sup>20-25</sup>.

Moreover, increased intraosseous pressure due to marrow edema further compromises blood flow, exacerbating ischemia. The pathological increase in intraosseous pressure arises from adipocyte hypertrophy and intramedullary fat cell embolization, frequently associated with prolonged corticosteroid use or alcoholism. These changes further impair venous outflow and arterial inflow, creating a vicious cycle of progressive ischemia, necrosis, and bone deterioration<sup>26</sup>.

Biochemically, alterations in bone metabolism and homeostasis also significantly contribute to AVN progression. Disrupted bone remodeling, characterized by an imbalance between osteoblast and osteoclast activities, leads to abnormal bone structure and impaired biomechanical properties. Increased osteoclastic resorption combined with insufficient osteoblastic bone



formation compromises structural integrity, making the femoral head susceptible to mechanical collapse under physiological loads<sup>27-28</sup>.

Understanding the intricate pathophysiological mechanisms underlying AVN is crucial for identifying therapeutic targets and developing effective treatments capable of interrupting disease progression and promoting bone repair and regeneration<sup>29</sup>.

## Classification of Avascular Necrosis

Proper staging and classification are essential for accurate diagnosis, prognosis, and treatment decision-making. Several classification systems exist, with the Ficat and Arlet, Steinberg, and ARCO classifications being the most prominent<sup>30</sup>.

**Ficat and Arlet Classification:** This system emphasizes radiographic findings and disease progression:

- Stage 0: Preclinical, identifiable only by biopsy.
- Stage I: Normal radiographs but abnormal MRI or bone scans indicating early ischemic changes.
- Stage II: Radiographic changes including sclerosis or cyst formation without collapse.
- Stage III: Radiographic evidence of subchondral collapse (crescent sign), femoral head shape maintained.
- Stage IV: Complete collapse with joint space narrowing and secondary osteoarthritis<sup>31</sup>.

**Steinberg Classification:** This classification incorporates lesion size, providing prognostic value:

- Mild: Lesion involvement < 15% of femoral head.
- Moderate: 15 - 30% involvement.
- Severe: > 30% involvement. This granularity improves clinical decision-making regarding the urgency and type of interventions needed<sup>32</sup>.

**The ARCO classification:** This classification integrates advanced imaging techniques and histopathology for improved diagnostic precision and staging accuracy<sup>33</sup>.

## Clinical Presentation of Avascular Necrosis

Patients with AVN typically present with progressive pain in the affected hip or groin region, which may radiate to the thigh, knee, or buttocks. The pain often worsens with activity and weight-bearing and improves partially or completely with rest. Initially, patients may report mild discomfort, but as the disease progresses, pain becomes more severe and constant,



significantly affecting mobility and daily activities. Some patients might present with limited range of motion, particularly during hip internal rotation and abduction, which can further contribute to gait disturbances and functional impairment<sup>34</sup>.

Physical examination may reveal tenderness around the hip joint, muscle wasting of the affected limb, and pain on passive movement, particularly internal rotation. In the later stages, patients might exhibit a noticeable limp and limitations in hip movement, affecting overall patient quality of life. Due to its gradual onset and nonspecific early symptoms, AVN can frequently go unrecognized until advanced stages, highlighting the importance of early clinical suspicion, especially in high-risk groups<sup>35</sup>.

## Overview of Hyperbaric Oxygen Therapy

HBO<sub>2</sub>T involves patients breathing 100% oxygen under elevated atmospheric pressure (typically between 2.0 and 2.5 ATA), significantly enhancing plasma oxygen levels independent of hemoglobin concentration. This allows efficient oxygen delivery to ischemic tissues even in compromised vascular environments, potentially reversing hypoxia-induced cellular damage<sup>34</sup>.

**Mechanisms of HBO<sub>2</sub>T in AVN:** HBO<sub>2</sub>T provides several biological benefits that comprehensively address the pathophysiological mechanisms involved in AVN:

- Hyperoxygenation: HBO<sub>2</sub>T significantly increases oxygen tension in ischemic bone tissue, enhancing cellular survival and metabolic function. By raising oxygen concentration, it effectively mitigates hypoxic injury, preserving the viability of osteocytes and other bone-forming cells. This oxygenation is vital in maintaining tissue integrity, especially during periods of compromised vascular supply<sup>35</sup>.
- Promotion of Angiogenesis: HBO<sub>2</sub>T stimulates angiogenesis by activating various growth factors such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). These growth factors promote the proliferation of endothelial cells and enhance the formation of new capillaries, improving local blood circulation and nutrient delivery, crucial for healing necrotic bone areas<sup>36</sup>.
- Anti-inflammatory Effects: HBO<sub>2</sub>T exerts significant anti-inflammatory properties by modulating inflammatory cytokines and reducing oxidative stress. It decreases pro-inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF- $\alpha$ ), thereby mitigating inflammation-induced damage. By controlling inflammation, HBO<sub>2</sub>T may slow or halt the destructive processes associated with AVN<sup>37</sup>.
- Reduction of Bone Marrow Edema and Intraosseous Pressure: HBO<sub>2</sub>T effectively decreases bone marrow edema and intraosseous pressure, common findings in AVN that contribute to pain and progression of bone destruction. The reduction of



edema and pressure alleviates symptoms, enhances patient comfort, and can potentially slow disease progression by minimizing mechanical stress within the bone<sup>38</sup>.

- Enhanced Osteoblast Proliferation and Differentiation: HBO<sub>2</sub>T directly stimulates osteoblast activity, promoting cell proliferation, differentiation, and enhanced mineralization. This activity significantly aids in bone regeneration and remodeling, helping repair necrotic lesions and restore structural integrity of the femoral head. Furthermore, HBO<sub>2</sub>T supports the balance between osteoblastic and osteoclastic activities, essential for effective bone remodeling and repair<sup>39</sup>.

Collectively, these mechanisms demonstrate HBO<sub>2</sub>T's comprehensive therapeutic impact on AVN, particularly when applied during early stages of the disease<sup>40</sup>.

The Undersea and Hyperbaric Medical Society (UHMS) has recognized HBO<sub>2</sub>T as an effective adjunctive therapy for selected AVN cases, particularly beneficial in early-stage disease. The UHMS endorses HBO<sub>2</sub>T use based on emerging clinical evidence, highlighting its potential to reduce the need for invasive surgical procedures and improve patient outcomes<sup>30</sup>.

**HBO<sub>2</sub>T Procedure and Protocols:** Hyperbaric oxygen therapy is conducted in specially designed chambers that allow precise control of atmospheric pressure. During each HBO<sub>2</sub>T session, patients breathe pure oxygen, typically delivered via face mask or hood systems, within a controlled hyperbaric environment. Standard pressure levels utilized for AVN management range between 2.0 and 2.5 atmospheres absolute (ATA). Each session usually lasts between 60 and 90 minutes, depending on clinical protocols and individual patient requirements<sup>41</sup>.

The frequency and total number of HBO<sub>2</sub>T sessions are critical for therapeutic success. Most clinical protocols recommend sessions to be performed five days per week, accumulating a total of approximately 30 to 60 sessions. The exact number may vary based on the stage and severity of AVN, as well as individual patient response and concurrent medical conditions<sup>42</sup>. Regular monitoring, typically involving clinical assessments, pain scoring, and radiographic evaluations such as MRI or X-ray, is essential to tailor treatment duration and intensity.

Prior to initiating HBO<sub>2</sub>T, a thorough patient evaluation, including medical history, physical examination, and baseline imaging studies is conducted. Patients are screened carefully for contraindications to HBO<sub>2</sub>T, including untreated pneumothorax, severe respiratory disease, or recent ear surgery. During HBO<sub>2</sub>T sessions, careful monitoring of patients is performed to manage potential complications such as barotrauma, oxygen toxicity, or claustrophobia, although these events remain rare due to stringent safety protocols<sup>43</sup>.

Following completion of an initial HBO<sub>2</sub>T regimen, follow-up evaluations at regular intervals (usually every 3 - 6 months) are recommended to assess ongoing therapeutic benefits and to decide on the need for additional "booster" sessions or adjunctive treatments.



Patient adherence and compliance with therapy protocols significantly influence therapeutic outcomes, thus emphasizing the importance of comprehensive patient education and multi-disciplinary care<sup>44</sup>.

## ☰ Clinical Evidence Supporting HBO<sub>2</sub>T in Avascular Necrosis ☰

Hyperbaric oxygen therapy (HBO<sub>2</sub>T) has increasingly been recognized as a promising intervention for the treatment of avascular necrosis (AVN) of the femoral head, especially in its early stages. Multiple clinical studies, including observational studies, case reports, randomized controlled trials (RCTs), and systematic reviews, provide substantial evidence supporting its efficacy.

Several observational studies and case reports have consistently demonstrated encouraging outcomes with HBO<sub>2</sub>T in managing early-stage AVN. Reis et al.<sup>22</sup> reported significant pain reduction and radiographic improvements in 81% of their cohort following HBO<sub>2</sub>T sessions. Similar positive outcomes were reported by Camporesi et al.<sup>23</sup>, who observed significant functional improvement and decreased requirements for surgical interventions. Fioravanti et al. further confirmed these findings in idiopathic AVN cases, reporting symptomatic and imaging improvements following HBO<sub>2</sub>T<sup>24</sup>.

Controlled clinical trials further strengthen the evidence base. Koren et al.<sup>25</sup> conducted a randomized controlled study comparing HBO<sub>2</sub>T to core decompression. They found that HBO<sub>2</sub>T provided similar symptomatic relief and radiological stability, emphasizing its potential as a viable non-surgical alternative. Additionally, a systematic review by Zhang et al<sup>26</sup>. concluded that HBO<sub>2</sub>T significantly improved clinical symptoms and radiographic outcomes compared to conservative treatments alone, suggesting a clear benefit in incorporating HBO<sub>2</sub>T into standard AVN treatment protocols.

Moreover, studies have demonstrated that HBO<sub>2</sub>T can significantly reduce the progression to femoral head collapse in early AVN cases, thereby reducing or delaying the need for total hip replacement. Clinical trials have also noted an improvement in patient-reported outcomes such as pain, mobility, and overall quality of life<sup>45</sup>.

Specific patient groups, such as those with sickle cell disease, also appear to benefit notably from HBO<sub>2</sub>T. Case reports and clinical observations in these populations have documented complete or substantial resolution of AVN lesions with prolonged HBO<sub>2</sub>T treatment courses, highlighting the therapy's versatility and broad applicability<sup>46</sup>.

Long-term follow-up studies have provided insights into the sustained efficacy of HBO<sub>2</sub>T. Patients receiving HBO<sub>2</sub>T have demonstrated stable clinical and radiological outcomes years after therapy completion, underscoring its lasting therapeutic impact and potential to alter the natural progression of AVN significantly<sup>47</sup>.



Collectively, these diverse lines of clinical evidence robustly support HBO<sub>2</sub>T's role as an effective treatment for AVN, particularly when administered during the disease's early stages. Continued research and larger randomized controlled trials will further clarify optimal patient selection criteria and treatment protocols, solidifying its place within standard clinical practice<sup>45</sup>.

## Conclusion

Avascular necrosis (AVN) of the femoral head presents a substantial challenge in orthopedic practice, often progressing towards debilitating joint destruction and significantly impacting patients' quality of life. Traditional therapeutic modalities, although beneficial, frequently fail to achieve consistent long-term outcomes, particularly in advanced stages of AVN. Hyperbaric oxygen therapy (HBO<sub>2</sub>T), emerging as a powerful adjunctive and potentially primary therapeutic approach, holds promise in addressing this clinical gap effectively, especially in early-stage disease.

HBO<sub>2</sub>T's efficacy is rooted in its comprehensive biological impact, addressing the core pathological mechanisms of AVN through enhanced tissue oxygenation, stimulation of angiogenesis, modulation of inflammatory processes, and promotion of bone regeneration. The robust clinical evidence from various studies, including observational data, randomized controlled trials, and long-term follow-up studies, underscores HBO<sub>2</sub>T's ability to reduce symptoms, delay disease progression, and potentially prevent the need for invasive surgical interventions such as total hip arthroplasty.

However, despite its demonstrated benefits, HBO<sub>2</sub>T faces challenges regarding widespread adoption, including high treatment costs, limited availability of hyperbaric facilities, variability in insurance coverage, and the necessity for extended treatment durations. Overcoming these barriers will require concerted efforts to increase awareness among healthcare providers, optimize cost-effectiveness, and advocate for policy changes to improve patient access to HBO<sub>2</sub>T.

Future research should aim to further validate hyperbaric oxygen therapy (HBO<sub>2</sub>T) through larger, multicenter randomized controlled trials to establish standardized protocols and clarify optimal patient selection criteria. Additionally, exploring the synergistic potential of HBO<sub>2</sub>T with emerging regenerative therapies such as stem cell and growth factor treatments could enhance its therapeutic efficacy and broaden its clinical applications. While international studies increasingly support the effectiveness of HBO<sub>2</sub>T, research in Thailand remains limited. Despite the growing number of medical experts trained in HBO<sub>2</sub>T, the lack of adequate research funding continues to hinder domestic advancements in this field.

In conclusion, HBO<sub>2</sub>T presents a compelling therapeutic option for managing AVN of the femoral head, particularly when initiated early in disease progression. Its integration into



comprehensive patient management strategies offers significant potential to improve clinical outcomes, reduce healthcare burdens, and enhance patient quality of life, thus warranting its continued exploration and expanded implementation within clinical practice.

## References

1. Mankin HJ. Nontraumatic necrosis of bone (osteonecrosis). *N Engl J Med* 1992;326(22):1473-9.
2. Mont MA, Hungerford DS. Non-traumatic avascular necrosis of the femoral head. *J Bone Joint Surg Am* 1995;77(3):459-74.
3. Weinstein RS. Glucocorticoid-induced osteonecrosis. *Endocrine* 2012;41(2):183-90.
4. Assouline-Dayan Y, Chang C, Greenspan A, Shoenfeld Y, Gershwin ME. Pathogenesis and natural history of osteonecrosis. *Semin Arthritis Rheum* 2002;32(2):94-124.
5. Zalavras CG, Lieberman JR. Osteonecrosis of the femoral head: evaluation and treatment. *J Am Acad Orthop Surg* 2014;22(7):455-64.
6. Lafforgue P. Pathophysiology and natural history of avascular necrosis of bone. *Joint Bone Spine* 2006;73(5):500-7.
7. Kim HKW. Pathophysiology and new strategies for the treatment of Legg-Calvé-Perthes disease. *J Bone Joint Surg Am* 2012;94(7):659-69.
8. Babis GC, Soucacos PN. Vascularity of the femoral head and the role of free vascularized fibular grafting in the treatment of avascular necrosis. *Microsurgery* 2007;27(7):568-71.
9. Mont MA, Jones LC, Hungerford DS. Nontraumatic osteonecrosis of the femoral head: ten years later. *J Bone Joint Surg Am* 2006;88(5):1117-32.
10. Lieberman JR, Berry DJ, Mont MA. Osteonecrosis of the hip: management in the 21<sup>st</sup> century. *Instr Course Lect* 2003;52:337-55.
11. Jäger M, Herten M, Fochtmann U, Fischer J, Hernigou P, Zikens C, et al. Bridging the gap: bone marrow aspiration concentrate reduces the defect zone in scaffold-mediated bone regeneration. *Int Orthop* 2011;35(5):747-58.
12. Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. *Clin Orthop Relat Res* 2002;(405):14-23.
13. Wang BL, Sun W, Shi ZC, Zhang Y, Yin X, Li Z, et al. Treatment of nontraumatic osteonecrosis of the femoral head with core decompression and implantation of bone marrow mononuclear cells: a follow-up study. *Chin Med J* 2011;124(21):3440-4.
14. Moon RE. Mechanism of action of hyperbaric oxygen therapy. In: Bosco G, Rizzato A, editors. *Hyperbaric oxygen therapy indications*. 14<sup>th</sup> ed. North Palm Beach, FL: Undersea and Hyperbaric Medical Society; 2019. p. 327-34



15. Camporesi EM, Bosco G. Mechanisms of action of hyperbaric oxygen therapy. *Undersea Hyperb Med* 2014;41(3):247-52.
16. Ficat RP. Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment. *J Bone Joint Surg Br* 1985;67(1):3-9.
17. Zhao DW, Yu M, Hu K, Wang W, Yang L, Wang BJ, et al. ARCO consensus on the diagnosis and treatment of osteonecrosis of the femoral head. *J Orthop Translat* 2020;22:1-13.
18. Steinberg ME, Hayken GD, Steinberg DR. A quantitative system for staging avascular necrosis. *J Bone Joint Surg Br* 1995;77(1):34-41.
19. Jain KK. Textbook of hyperbaric medicine. 6<sup>th</sup> ed. Cham: Springer; 2017.
20. Lin L, Xu H, Zhao S, Li X, Zhang J, Zhang X, et al. The effect of hyperbaric oxygen therapy on cytokines in early femoral head necrosis. *Exp Ther Med* 2017;14(2):1427-31.
21. Guo H, Guo D, Yang K, Deng S, Wang X, Zhu X, et al. Effects of hyperbaric oxygen therapy on angiogenesis and osteogenesis in glucocorticoid-induced osteonecrosis. *Bone Joint Res* 2020;9(8):447-56.
22. Reis ND, Schwartz O, Militianu D. Hyperbaric oxygen therapy as a treatment for stage-I femoral head osteonecrosis. *J Bone Joint Surg Br* 2003;85(3):371-5.
23. Camporesi EM, Vezzani G, Bosco G, Mangar D. Hyperbaric oxygen therapy in femoral head necrosis. *J Arthrosc Jt Surg* 2016;3(4):188-92.
24. Fioravanti A, Cheleschi S, Pascarelli NA. Short- and long-term effects of hyperbaric oxygen therapy in idiopathic femoral head necrosis: a pilot study. *Clin Rheumatol* 2012;31(3):493-8.
25. Koren L, Dolev E, Arbel Y, Kollender Y, Melamed E, Luria S, et al. Hyperbaric oxygen therapy for early-stage avascular necrosis of the femoral head: a randomized controlled study. *Int J Clin Pract* 2021;75(6):e14061.
26. Zhang Q, Guo W, Lu Y, Wang Y, Wang J, Wang B et al. Efficacy and safety of hyperbaric oxygen therapy for femoral head necrosis: a systematic review and meta-analysis. *Clin Rehabil* 2021;35(8):1157-67.
27. Bosco G, Vezzani G, Mrakic-Sposta S, Rizzato A, Enten G, Abou-Samra A, et al. Long-term follow-up of patients with osteonecrosis treated with HBOT. *Undersea Hyperb Med* 2020;47(3):335-44.
28. Zhang H, Wang J, Wen H, Zhang J, Zhang X, Wang X, et al. HBOT in the treatment of early-stage ONFH: a follow-up study. *BMC Musculoskelet Disord* 2022;23(1):121.
29. Buras JA, Holt D, Orlow D, Belikoff B, Pavlides S, Reenstra WR. Hyperbaric oxygen protects from sepsis mortality via an interleukin-10-dependent mechanism. *Crit Care Med* 2006;34(10):2624-9.



30. Enoch T. Avascular necrosis. In: Camporesi EM, Zanon V, editors. *Hyperbaric oxygen therapy indications*. 15<sup>th</sup> ed. Undersea and Hyperbaric Medical Society; 2023. p. 595-606.
31. Ficat RP. Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment. *J Bone Joint Surg Br* 1985;67(1):3-9.
32. Steinberg ME, Hayken GD, Steinberg DR. A quantitative system for staging avascular necrosis. *J Bone Joint Surg Br* 1995;77(1):34-41.
33. ARCO Committee on Terminology and Staging. The ARCO consensus on the pathogenesis, staging, and treatment of osteonecrosis of the femoral head. *J Arthroplasty* 2019;34(7S):S41-6.
34. Vezzani G, Maccauro G, Ferretti A, Camporesi E, Pascarella R, Borro L, et al. The role of HBOT in osteonecrosis of the femoral head: a review. *Acta Biomed* 2020;91(14):e2020015.
35. Guo H, Guo D, Yang K, Wang L, Zhang L, Zhang Y, et al. Effects of hyperbaric oxygen therapy on angiogenesis and osteogenesis in glucocorticoid-induced osteonecrosis. *Bone Joint Res* 2020;9(8):447-56.
36. Baroni G, Caimmi PP, Galeazzi R, Vezzani G, Mrakic-Sposta G, Camporesi A, et al. Long-term effects of HBOT in femoral head necrosis: a retrospective study. *J Clin Med* 2021;10(15):3421.
37. Thom SR. Oxidative stress is fundamental to hyperbaric oxygen therapy. *J Appl Physiol* 2009;106(3):988-95.
38. Bosco G, Vezzani G, Mrakic-Sposta S, Rizzato A, Enten G, Abou-Samra A, et al. Hyperbaric oxygen therapy and oxidative stress. *Oxid Med Cell Longev* 2018;2018:1-10.
39. Heyboer M, Milovanova TN, Wojcik S, Grant W, Chin M, Hardy K, et al. CD34+/CD45-dim stem cell mobilization by hyperbaric oxygen-changes with oxygen dosage. *Stem Cell Res* 2014;12(3):638-45.
40. Heyboer M, Sharma D, Santiago W, McCulloch N. Hyperbaric oxygen therapy: side effects defined and quantified. *Adv Wound Care* 2017;6(6):210-24.
41. Mathieu D, Marroni A, Kot J. Tenth European Consensus Conference on Hyperbaric Medicine: recommendations for accepted and non-accepted clinical indications and practice of hyperbaric oxygen treatment. *Diving Hyperb Med* 2017;47(1):24-32.
42. Lee EW, Hsu KH, Jenq CC. Hyperbaric oxygen therapy: acute and long-term effects on skeletal system. *Clin Orthop Relat Res* 2006;(447):204-10.
43. Monge G, Otto-Yáñez M, Norambuena N, Martínez V, Retamales D, Torres-Castro R. Safety of hyperbaric oxygenation treatment and evaluation of associated clinical parameters: a single-institutional prospective cohort study. *International Journal of Translational Medical Research and Public Health* 2023;7(1):1-12.
44. Heyboer M. Hyperbaric oxygen therapy utilization in musculoskeletal conditions. *Phys Med Rehabil Clin N Am* 2019;30(4):801-15.



45. Wang Z, Sun H, Wang X, Liu Z, Wang D, Wang W, et al. Hyperbaric oxygen therapy in early-stage non-traumatic AVN: an evidence-based review. *Orthop Surg* 2019;11(6):1065-70.
46. Yahyaoui R, Nouri H, Boudokhane M, Kammoun S, Jemni H, Abdelkefi N, et al. Hyperbaric oxygen therapy in the management of femoral head osteonecrosis in sickle cell disease: Report of three cases. *Hematol Rep* 2017;9(3):7225
47. Vezzani G, Cancellara P, De Grandis D, Camporesi E, Manger D, Berasek T, et al. Long-term efficacy of HBOT in early femoral head AVN: a retrospective study. *Oxygen Transport to Tissue XXXVII* 2016;876:323-8.