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Abstract

Logistic regression has been applied to medical and public health included health
education and health behaviors researches. The estimation of model parameter needs the
asymptotic theory which required large sample size. However, the small sample size,
spare, skew and completely separation cause the bias or the model cannot converse.
Exact logistic regression has been implemented in those situations. There are many
procedures for exact method, R language use Markov Chain Monte Carlo for estimating
exact logistic regression. This academic article presented data analysis and comparison of

results between exact and conventional logistic regression.
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Hrlusunsusuteyato exact.csv 1ng
Wsunsuenslu data frame 3o d
>d=read.csW("setwd("C:/Documents and
Settings/Natnaree/Desktop/exact.csv')

# R lUsunsuLansiawUsaualy
data frarme %o d
> 1s(d)
[1] "major' "SEX" "Use" # NadnsAIdwuanssi
wdsiavuely data frame 30 d  Tunsdldiisn
wUs 3 flauA major SEX wag Use

# MIPEinsanneeladafndneis
WRTTN Y Xt 118 X UAE X,y
Dusudsdangu Tagliiunanisiiaseily
Yoyaiie model
>Model = glm(Use~factor(SEX)+factor(major),
data=d, family=binomial("logit"))
> summary(model) # LanNaNITIATIZA

# asignarsilatininieisves
Hosmer and Lemanshow
> library(ResourceSelection)
> hoslem.test( modelSy fitted(model))

# syaunnulinyaurps UL (ack

of fit) BeaudinsAmnnteyamudungual

>tabl=as.dataframe(table(dSmajor,d$SSEX,dS$
Use))

>colnames(tab1)[1] <- 'major
>colnames(tab1)[2] <- 'sex
>colnames(tab1)[3] <- 'use’
>model2=glm(use~factor(sex)+factor(major),
data=tab1, weight= Freq, family="binomial")

# asansmszaumuldivinzanveiuy
$8 pearson residual Ly deviance residual
>plot(1:12, residualsimodel2,type="pearson")
>plot(1:12, residuals(model2,type="deviance")
#NTIATIZRALNISOAnREE NuTnladaRng
>install.packages(“elrm”)

>library(elrm)

>tab2 = xtabs(~Use + interaction(sex, major),
data = d)

>xdat = data.frame(sex = rep(0:2, 2), major =
rep(0:1, each = 3), Use = x[2, ], ntrials =
colSums(tab2))
#’QJLﬂi’]%ﬁLLa%LLﬂﬂﬂNa“Uf’Nﬁ’JLL‘UiLWﬂ YGHIGONAR]
>s = elrm(formula = Use/ntrials ~ factor(sex),
interest = ~factor(sex), iter = 500000,

dataset = xdat, burnin = 50000)

summary(s)

HFPEN UanTETRS T RNT S AR TE
m < elrm(formula = Use/ntrials ~ major,
interest = ~major, iter = 500000,

dataset = xdat, burnin = 50000)

summary(m)
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