

## นิพนธ์ต้นฉบับ

ผลของน้ำหมักชีวภาพต่อการลดระยะเวลาการผลิตปุ๋ยหมักจากมูลฝอย  
เทศบาลเมืองยโสธรพิพิฒญา พลศักดิ์<sup>(1)</sup>, พฤกษ์ ตัญตรัยรัตน์<sup>(2)\*</sup> และฤทธิรงค์ จังโกก<sup>(3)</sup>

วันที่ได้รับต้นฉบับ: 15 พฤษภาคม 2559

วันที่ตอบรับการตีพิมพ์: 20 เมษายน 2560

## \* ผู้รับผิดชอบบทความ

- (1) นักศึกษาหลักสูตรสาธารณสุขศาสตร์ บัณฑิต คณะสาธารณสุขศาสตร์ มหาวิทยาลัยขอนแก่น
- (2) อาจารย์สาขาวิชาอนามัยสิ่งแวดล้อม อาชีวอนามัยและความปลอดภัย คณะสาธารณสุขศาสตร์ มหาวิทยาลัยขอนแก่น (โทรศัพท์: 086-6302977, E-mail: puek@live.com)
- (3) อาจารย์สาขาวิชาอนามัยสิ่งแวดล้อม อาชีวอนามัยและความปลอดภัย คณะสาธารณสุขศาสตร์ มหาวิทยาลัยขอนแก่น

## บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อลดระยะเวลาการผลิตปุ๋ยหมักจากมูลฝอย ประเภทมูลฝอยอินทรีย์ในเขตเทศบาลเมืองยโสธร โดยใช้น้ำหมักชีวภาพเป็นสารเร่งกระบวนการหมัก 2 ชนิดคือ น้ำหมักชีวภาพที่ผลิตขึ้นเอง และนำหมักชีวภาพจากหัวเชื้อจุลทรรศ์ของกรมพัฒนาที่ดิน (สารเร่งชูปเปอร์ พด.1) ในการทดลองได้กำหนดสัดส่วนการเรื่องจากสารเร่งต่อน้ำเท่ากัน 1:50 1:100 และ 1:200 และทดสอบโดยการใช้น้ำสะอาดเป็นตัวควบคุม ทำการทดลองโดยติดตามน้ำหมักชีวภาพลงในกองมูลฝอย ควบคุมความชื้นของกองมูลฝอยด้วยการพลิกกลับกองมูลฝอยทุกวัน ทำการติดตามตรวจสอบความชื้น อุณหภูมิ และค่าความเป็นกรด-ด่าง โดยทำการทดลองขั้น 3 ครั้ง จากผลการทดลองพบว่าอุณหภูมิ และความชื้นในกองมูลฝอยจะสูงขึ้นในช่วงแรก จากนั้นจะลดลงจนมีระดับคงที่เมื่อสิ้นสุดกระบวนการหมัก ค่าความเป็นกรด-ด่างพบว่ากองมูลฝอยมีความเป็นกรดในช่วงแรกและมีค่าเป็นต่ำเมื่อสิ้นสุดกระบวนการหมัก ส่วนระยะเวลาในการผลิตปุ๋ยหมักพบว่าเมื่อใช้สารเร่งน้ำหมักชีวภาพที่ผลิตขึ้นเองที่สัดส่วนเท่ากับ 1:50 และสารเร่งชูปเปอร์ พด.1 ที่สัดส่วนเท่ากับ 1:100 น้ำหมักชีวภาพทั้งสองชนิดใช้เวลาในการย่อยสลายเป็นปุ๋ยหมักน้อยที่สุดประมาณ 29 วัน ซึ่งเร็วกว่าน้ำสะอาดที่เป็นชุดควบคุมใช้เวลาในการย่อยสลาย 36 วัน เมื่อต่อจัดวัดค่าปริมาณแร่ธาตุได้แก่ ไนโตรเจน พอสฟอรัส และโพแทสเซียม ปุ๋ยหมักที่ได้มีค่าปริมาณแร่ธาตุทั้ง 3 ชนิดเป็นไปตามเกณฑ์มาตรฐานการทำปุ๋ยหมักของกรมวิชาการเกษตร ดังนั้นจึงสรุปผลการวิจัยได้ว่าการใช้น้ำหมักชีวภาพที่ผลิตขึ้นเอง และสารเร่งชูปเปอร์ พด.1 ที่อัตราส่วนเทือกสารเร่งต่อน้ำ 1:50 สามารถทำให้ผลิตปุ๋ยหมักจากมูลฝอยเร็วขึ้น 7 วัน และปุ๋ยหมักที่ได้มีปริมาณแร่ธาตุเป็นไปตามเกณฑ์มาตรฐานการมีค่าเหมาะสมในการนำไปใช้เป็นปุ๋ยหมักได้

**คำสำคัญ:** น้ำหมักชีวภาพ, ปุ๋ยหมัก, มูลฝอยเทศบาลเมืองยโสธร

## Original Article

### Effect Bio-Fermentation Extract on Reducing Time of Yasothon-Municipal Solid Waste Fertilization

Patitaya Ponrasak<sup>(1)</sup>, Puek Tantriratna<sup>(2)\*</sup> and Rittirong Junggoth<sup>(3)</sup>

Received Date: November 15, 2016

Accepted Date: April 20, 2017

\* Corresponding author

(1) Master of Public Health Student

In Environmental Health,

Faculty of Public Health,

Khon Kaen University

(2) Lecturer, Department of

Public Health In Environmental

Health, Faculty of Public Health,

Khon Kaen University

(Tel: 086-6302977

E-mail: puek@live.com)

(3) Lecturer, Department of

Public Health In Environmental

Health, Faculty of Public Health,

Khon Kaen University

#### Abstract

This research aims to shorten the time to produce compost from organic waste in Yasothon Municipality, using Effective Microorganisms (EM) and microorganisms from Land Development Department (PD1) with dilution ratio 1:50, 1:100, 1:200 and using clean water as a control. EM was watering into a pile of garbage. Humidity pile of garbage was controlled by a reversal heap. Daily monitor humidity, measure temperature, acidity and pH with 3 replicated experiments were performed. The results showed that temperature and humidity were increasing in the first period and steady decline at the end of composting. The organic waste was acidity at first and was alkaline at the end of fermentation process. The EM at dilution 1:50 and PD1 at dilution 1:100 took the time to decompose into compost least 29 days faster than water as a series control taking on the degradation 36 days. The measuring of Nitrogen, Phosphorus and Potassium showed that the bio-manufactured chemicals have Nitrogen, Phosphorus, and Potassium according to the standards of the Department of Agriculture. As a result, it is concluded that bio-manufactured chemicals and PD1 can be produced from waste compost 7-day faster.

**Keywords:** Effective Microorganisms, Compost, Yasothon Municipal Solid Waste

## บทนำ

ปัญหาด้านมูลฝอยเป็นปัญหาที่มีความสำคัญและเร่งด่วนที่จะต้องแก้ไขทั้งในระดับท้องถิ่นและระดับประเทศ โดยรัฐบาลได้กำหนดปัญหามูลฝอยเป็นภาระแห่งชาติที่ต้องแก้ไขเร่งด่วน โดยมีมติเห็นชอบแผนแม่บทการจัดการมูลฝอยและของเสียอันตรายเมื่อวันที่ 26 สิงหาคม 2557

ซึ่งในปัจจุบันสถานการณ์มูลฝอยของประเทศไทยมีสถานที่กำจัดมูลฝอยรวม 2,490 แห่ง แต่เป็นสถานที่กำจัดมูลฝอยแบบถูกต้องเพียง 466 แห่ง คิดเป็นร้อยละ 19 ส่วนที่เหลือเป็นสถานที่กำจัดแบบไม่ถูกต้อง เช่น เทกองกลางแจ้ง เผาในที่โล่ง และลักษณะทั้ง 3 แห่งที่เป็นต้น ในการศึกษาในปี พ.ศ. 2556 ประเทศไทยมีมูลฝอยสะสมมากถึง 26.77 ล้านตัน ซึ่งปัญหาดังกล่าวก่อให้เกิดผลกระทบต่อสิ่งแวดล้อม และสุขอนามัยของประชาชน (กรมควบคุมมลพิษ, 2556)

จากปัญหาดังกล่าวข้างต้น ได้มีความพยายามในการดำเนินการแก้ไขปัญหามูลฝอย ซึ่งปัจจุบันกรมวิชาการเกษตร กระทรวงเกษตรและสหกรณ์ ได้มีการสนับสนุนและเผยแพร่การทำปุ๋ยหมักโดยการใช้วัสดุเหลือใช้จากการเกษตร ทั้งที่ผลิตจากพืชและสัตว์ ซึ่งการทำปุ๋ยหมักเป็นวิธีการหนึ่งในการกำจัดมูลฝอยแล้วนำผลผลิตที่ได้มามาใช้ให้เกิดประโยชน์ สามารถผลิตเพื่อใช้ในครัวเรือน หรือเพื่อจำหน่ายซึ่งจะช่วยลดปริมาณมูลฝอย ประเภทเศษผัก ผลไม้และลูกค้าใช้จ่ายในการกำจัดมูลฝอย ปุ๋ยหมักเป็นปุ๋ยอินทรีย์ชนิดหนึ่งในสภาพของแข็ง ที่ได้หรือทำจากวัสดุอินทรีย์แล้วผ่านการย่อยสลายเสร็จสมบูรณ์ จนแปรสภาพจากรูปเดิม เมื่อนำมาปีกให้พืชจะให้รัตภาระที่จำเป็นแก่พืช (สำนักงานมาตรฐานสินค้าเกษตรและอาหารแห่งชาติ, 2548) รวมทั้งอาจเป็นการหารายได้เสริมอีกทางหนึ่งด้วย ทั้งนี้ข้อดีของการทำปุ๋ยหมักสามารถเป็นอินทรีย์วัตถุที่ดีต่อต้นไม้

ช่วยปรับปรุงดินให้ดีขึ้น เช่น ความโปร่ง ความร่วนซุย ความสามารถในการอุ้มน้ำและรัตภาระ พืชของดินดีขึ้น ซึ่งปุ๋ยเคมีไม่สามารถทำได้ รัตภาระอยู่ในดินได้นาน และค่อยๆ ปลดปล่อยรัตภาระที่ซ่อนอยู่ เมื่อใช้ร่วมกับปุ๋ยเคมี จะส่งเสริมปุ๋ยเคมีให้เป็นประโยชน์แก่พืชอย่างมีประสิทธิภาพยิ่งขึ้น

จากข้อมูลการสำรวจของกองข่างสุขาภิบาล เทศบาลเมืองโถสธร จังหวัดยโสธร ในปี พ.ศ. 2557 พบมูลฝอยในเขตจังหวัดยโสธรมีปริมาณรวม ประมาณ 51.14 ตัน/วัน จากหน่วยงานองค์การปกครองส่วนท้องถิ่น 21 แห่งที่ใช้สถานที่กำจัดมูลฝอยร่วมกัน โดยแบ่งปริมาณมูลฝอยทั้งหมดเป็น ปริมาณขยะรวมในเขตเทศบาลเมืองโถสธร 23.60 ตัน/วัน และปริมาณมูลฝอยจากองค์การปกครองส่วนท้องถิ่นอื่นๆ 27.54 ตัน/วัน (ข้อมูล ณ เดือน สิงหาคม พ.ศ. 2557) องค์ประกอบมูลฝอยเป็นเศษอาหารและอินทรียสาร ร้อยละ 47.23 ซึ่งมีสัดส่วนมากที่สุด (เทศบาลเมืองโถสธร, 2554) เมื่อพิจารณาองค์ประกอบของมูลฝอยที่เกิดขึ้นพบว่ามีมูลฝอยอินทรีย์ในปริมาณที่สูงจึงมีความเป็นไปได้ที่จะสามารถนำมหัคทำปุ๋ยหมัก ดังนั้น การจัดการมูลฝอยโดยการทำปุ๋ยหมักจึงเป็นอีกทางเลือกหนึ่งในการแก้ปัญหามูลฝอยของจังหวัดยโสธรให้มีปริมาณมูลฝอยต่ำลง อย่างไรก็ตามในการทำปุ๋ยหมักของเทศบาลเมืองโถสธรที่พบคือใช้ระยะเวลาในการทำปุ๋ยหมัก 30-45 วัน ซึ่งใช้ระยะเวลานานจนไม่มีพื้นที่ร่องรับในการหมักปุ๋ย ส่งผลให้ไม่สามารถกำจัดมูลฝอยในแต่ละวันได้หมดทำให้มีมูลฝอยต่ำค้างเป็นจำนวนมาก

ทั้งนี้เมื่อพิจารณาแนวทางปรับปรุงประสิทธิภาพในกระบวนการการทำปุ๋ยหมักเพื่อลดระยะเวลาในการใช้หมักปุ๋ยแล้ว ผู้วิจัยจึงมีความสนใจศึกษาการใช้น้ำหมักชีวภาพเพื่อช่วยเร่งกระบวนการหมักของมูลฝอยเทศบาลเมืองโถสธร

ซึ่งการศึกษาครั้งนี้จะศึกษาการเปลี่ยนแปลง ลักษณะสมบัติทางกายภาพและเคมีของมูลฝอยที่ใช้เป็นสัดหมัก ของอัตราส่วนการเจือจางน้ำหมัก ชีวภาพที่เหมาะสม ผลของชนิดของน้ำหมัก ชีวภาพ และระยะเวลาที่ลดลงในกระบวนการ หมัก ตลอดจนวิเคราะห์ปริมาณธาตุอาหารที่จำเป็นสำหรับพืชในปุ๋ยหมักที่ผลิตได้ เพื่อเป็นข้อมูลพื้นฐานหรือทางเลือกในการกำจัดมูลฝอย เทศบาลเมืองยโสธรต่อไป

### วัตถุประสงค์การวิจัย

เพื่อศึกษาการใช้น้ำหมักชีวภาพ 2 ชนิด ในการช่วยลดระยะเวลาการผลิตปุ๋ยหมักจากมูลฝอยเทศบาลเมืองยโสธร โดยทำการเปรียบเทียบ ระยะเวลาในกระบวนการทำปุ๋ยหมัก หาอัตราส่วน การเจือจางที่เหมาะสมของน้ำหมักชีวภาพที่ใช้ ระยะเวลาการย่อยสลายสัնที่สุด และวิเคราะห์เปรียบเทียบธาตุอาหารของปุ๋ยหมักโดยใช้น้ำหมักชีวภาพที่ผลิตขึ้นเองและสารเร่งชุปเปอร์ พด.1

### วิธีดำเนินการวิจัย

รูปแบบการวิจัยเป็นการศึกษาเชิงทดลอง (Experimental Research) เพื่อศึกษาการใช้น้ำหมักชีวภาพในการช่วยลดระยะเวลาการผลิตปุ๋ยหมักจากมูลฝอยเทศบาลเมืองยโสธรเปรียบเทียบประสิทธิภาพในกระบวนการทำปุ๋ยหมักของน้ำหมักชีวภาพทั้ง 2 ชนิด หาอัตราส่วนการเจือจางที่เหมาะสมของน้ำหมักชีวภาพที่ใช้ระยะเวลาการย่อยสลายสัնที่สุด และเพื่อวิเคราะห์ที่และเปรียบเทียบธาตุอาหารของปุ๋ยหมักจากการหมักมูลฝอยเทศบาลเมืองยโสธรด้วยการใช้มูลฝอยจากตลาดสดเทศบาลเมืองยโสธร ในช่วงเดือนเมษายน พ.ศ. 2559

ประชาชนและกลุ่มตัวอย่างได้แก่ มูลฝอยจากตลาดสดเทศบาลเมืองยโสธร โดยคัดเลือกมูล

ฝอยที่ย่อยสลายประเภทพืชผักใบไม้แห้ง การวิจัยครั้งนี้มีการวางแผนการทดลองดังนี้ กำหนดชนิดของน้ำหมักชีวภาพที่ใช้ 2 ชนิดได้แก่ น้ำหมักชีวภาพที่ผลิตขึ้นเองและสารเร่งชุปเปอร์ พด.1 โดยใช้น้ำสะอาดเป็นชุดควบคุมการทดลอง และกำหนดอัตราส่วนการเจือจางความเข้มข้นของน้ำหมักชีวภาพ 3 ความเข้มข้นคือ 1:50 1:100 และ 1:200 (อัตราส่วนโดยปริมาณสารเร่งต่อน้ำสะอาด) โดยปริมาณน้ำที่เจือจางแล้วใช้ 10 ลิตรต่อกองหมัก 1 กอง ทำการทดลองbatch 3 ครั้ง โดยสามารถคำนวณหาขนาดตัวอย่างทั้งหมดที่ใช้ในการวิจัยเท่ากับ 21 ตัวอย่าง กำหนดรูปแบบการหมักแบบคลุกเคล้า และออกแบบกองปุ๋ยหมัก สูง 1 เมตร ยาว 1 เมตร และกว้าง 1 เมตร ซึ่งจะใช้เศษผักใบไม้แห้งกองละประมาณ 500 กิโลกรัม

น้ำหมักชีวภาพที่ใช้ในการทดลอง 2 ชนิดคือ 1) น้ำหมักชีวภาพที่ผลิตขึ้นเอง โดยการเอาเศษพืชผักมาหมักร่วมกับกากน้ำตาลและน้ำ มีอัตราส่วนการหมัก ได้แก่ เศษพืชผักหันเป็นชิ้นเล็กๆ 40 กิโลกรัม กากน้ำตาล 10 กิโลกรัม และน้ำ 10 ลิตร ผสมให้เข้ากันแล้วปิดฝาตั้งทิ้งไว้ในที่ร่ม คนหรือกวนและรักษาอุณหภูมิของหมักไม่สูงกว่า 40 องศาเซลเซียส 2) น้ำหมักชีวภาพที่หมักสมบูรณ์แล้วโดยการสังเกตฟองก้าชาร์บอนไดออกไซด์จากที่มีจะหายไปกลิ่นและออกอุณหภูมิลดลง นั้นแสดงว่ากระบวนการหมักสิ้นสุดลง ซึ่งกระบวนการหมักจะใช้เวลาประมาณ 15 วัน ทั้งนี้น้ำหมักที่หมักขึ้นสามารถนำมาใช้ได้เลย คุณสมบัติของน้ำหมักชีวภาพที่ผลิตขึ้นเองนี้จะมีจุลทรรศน์ที่ช่วยในการย่อยสลายหลักหลายชนิด ซึ่งมีประโยชน์ต่อการย่อยสลายของเศษพืชผักที่จะแปรสภาพเป็นปุ๋ยหมักต่อไป 2) นำหมักชีวภาพจากหัวเชือจุลทรรศน์ของกรมพัฒนาที่ดิน (สารเร่งชุปเปอร์ พด.1) ทำการผสมสารเร่งพด. 1 ชนิดลงปริมาณ 1 ช่อง ในน้ำ 50 ลิตร (ได้อัตราส่วนความเข้มข้น 1:50) จากนั้นทำการเจือจาง

ต่อให้ได้สัดส่วนการเจือจาง 1:100 และ 1:200 โดยใช้สารเร่งในแต่ละอัตราความเข้มข้นละ 10 ลิตร ต่อปุ๋ยหมัก 1 กอง

กำหนดจุดยุติการหมักที่อุณหภูมิเฉลี่ยของกองปุ๋ยลดเท่ากับอุณหภูมิรอบๆ กองปุ๋ยนาน เป็นระยะเวลาติดต่อกัน 7 วัน และปล่อยทิ้งไว้จนเนื้อปุ๋ยเปื่อยยุ่ย ไม่มีกลิ่นฉุนของก้าช มีสีน้ำตาลเข้มถึงสีดำ (คุณภาพการพัฒนาที่ดินสำหรับหมอดินอาสาและเกษตรกร กรมพัฒนาที่ดิน, 2557)

เครื่องมือและอุปกรณ์ที่ใช้ในการวิจัย ได้แก่ เครื่องตัดมูลฝอย คัดขนาดมูลฝอย ขนาดความยาว 5 เซนติเมตร เครื่องซั่งน้ำหนักขนาด 60 กิโลกรัม สายวัดชนิดลับเมตร ปุ๋ย เงิน สำหรับใส่มูลฝอย พลั่ว คราด ถุงมือยาง หน้ากากปิดจมูก รองเท้าบูท จอบ รดน้ำ ถังน้ำ เครื่องวัดอุณหภูมิ เครื่องวัดความชื้น เครื่องวัดความเป็นกรด-ด่าง ถุงพลาสติก เพื่อใส่ตัวอย่างมูลฝอยส่งตรวจวิเคราะห์ทางห้องปฏิบัติการ

การเก็บข้อมูล ทำการวัดความชื้น อุณหภูมิ กรด-ด่าง ที่กองปุ๋ยหมักทุกวันฯ ละ 1 ครั้ง ในเวลา 16.30 น. และหากตรวจพบอุณหภูมิมีค่าใกล้เคียงกันเป็นเวลา 7 วัน จะถือว่าเป็นจุดยุติของกระบวนการ การทำปุ๋ยหมัก และบันทึกข้อมูลลงในโปรแกรม และนำมารวเคราะห์ โดยใช้โปรแกรม STATA version 10 ลิขสิทธิ์ของมหาวิทยาลัยขอนแก่น การวิเคราะห์ข้อมูลใช้สถิติเชิงพรรณนา หาค่าร้อยละ ค่าเฉลี่ย ส่วนเบี่ยงเบนมาตรฐาน มัธยฐาน ค่าต่ำสุด ค่าสูงสุด ใช้สถิติหาความแตกต่างของตัวแปร 3 กลุ่ม โดย Kruskal-Wallis One-way ANOVA และใช้สถิติหาความแตกต่างของตัวแปร 2 กลุ่ม โดย Mann-Whitney U test พร้อมหาสัมประสิทธิ์ของความแปรผัน (Coefficient of Variance)

## ผลการวิจัย

เมื่อเปรียบเทียบอุณหภูมิของปุ๋ยหมัก

การทำปุ๋ยหมัก และหาอัตราส่วนการเจือจางที่เหมาะสมของน้ำหมักชีวภาพที่ใช้ระยะเวลาการย่อยสลายสั้นที่สุด ผลการทดลองคือน้ำหมักชีวภาพที่ผลิตขึ้นเองที่อัตราการเจือจาง 1:50 ใช้ระยะเวลาในกระบวนการการทำปุ๋ยหมักสั้นที่สุดโดยใช้เวลาประมาณ 29 วัน ส่วนสารเร่งชูปเปอร์ พด.1 ที่อัตราการเจือจาง 1:100 ใช้ระยะเวลาในกระบวนการการทำปุ๋ยหมักสั้นที่สุดโดยใช้เวลาประมาณ 29 วัน เช่นเดียวกัน ดังแสดงในภาพที่ 2

เมื่อนำปุ๋ยหมักที่ได้จากการเติมน้ำหมักชีวภาพทั้งสองชนิดพบว่า ปุ๋ยหมักที่ได้มีรัตุอาหารหลัก ในโตรเจน (N) ฟอสฟอรัส (P) และโพแทสเซียม (K) ปริมาณที่ใกล้เคียงกัน โดยอัตราส่วนธาตุในโตรเจนของปุ๋ยหมักที่ใช้น้ำหมักชีวภาพที่ผลิตขึ้นเองกับสารเร่งชูปเปอร์ พด.1 เท่ากับ 1.00:1.02 อัตราส่วนธาตุฟอสฟอรัสของปุ๋ยหมักที่ใช้น้ำหมักชีวภาพที่ผลิตขึ้นเองกับสารเร่งชูปเปอร์ พด.1 เท่ากับ 1.13:1.00 และอัตราส่วนธาตุโพแทสเซียมของปุ๋ยหมักที่ใช้น้ำหมักชีวภาพที่ผลิตขึ้นเองกับสารเร่งชูปเปอร์ พด.1 เท่ากับ 1.00:1.06 ดังนั้นจากการศึกษาพบว่ามีรัตุอาหารหลักอยู่ในระดับที่ได้มาตรฐาน คือ อัตราส่วนในโตรเจน: ฟอสฟอรัส: โพแทสเซียม ไม่น้อยกว่าร้อยละ 1.0:0.5:0.5 (กรมพัฒนาที่ดิน, 2557) ดังแสดงในภาพที่ 3

เมื่อเปรียบเทียบอุณหภูมิของปุ๋ยหมักพบว่า น้ำหมักชีวภาพที่ผลิตขึ้นเอง และสารเร่งชูปเปอร์ พด.1 ที่อัตราการเจือจาง 1:50 และ 1:100 ตามลำดับ จะมีอุณหภูมิสูงสุดในวันที่ 7 ของการหมัก ประมาณ 68.9 องศาเซลเซียส ส่วนน้ำสะอาดจะมีอุณหภูมิสูงสุดในวันที่ 5 ของการหมัก และมีอุณหภูมิเฉลี่ย 56.4 องศาเซลเซียส ดังแสดงในภาพที่ 4

เมื่อคุณภาพของน้ำหมักชีวภาพที่ผลิตขึ้นเอง

อัตราการเจือจาง 1:50 สารเร่งชุปเปอร์ พด.1 อัตราการเจือจาง 1:100 จะพบว่าในช่วง 5-15 วัน แรกของการหมัก ความชื้นจะอยู่ในระดับสูง คือ ร้อยละ 40-70 หลังจากนั้นความชื้นจะลดลง และ มีความชื้นอยู่ระหว่างร้อยละ 30-35 ดังภาพที่ 5

ค่า pH จากการหมักปุ๋ยหมักของการศึกษานี้ ทั้งการหมักด้วยน้ำหมักชีวภาพที่ผลิตเอง สารเร่งชุปเปอร์ พด.1 และน้ำสะอาด ท่ออัตราการเจือจาง 1:50 1:100 และ 1:200 ในช่วงเริ่มต้นค่า pH อยู่ระหว่าง 5.0-6.5 เมื่อสิ้นสุดกระบวนการหมักพบว่า ค่าความเป็นกรดด่างอยู่ระหว่าง 7.5-8.0 ซึ่งอยู่ในระดับที่เหมาะสม ลดคลอลงกับค่ามาตรฐานการทำปุ๋ยหมักของกรมพัฒนาที่ดินที่เหมาะสมคืออยู่ระหว่าง 5.5-8.5 และตลอดระยะเวลาการหมักค่า pH ไม่ควรเกิน 8.5 เพราะจะทำให้สูญเสียธาตุอาหารบางอย่าง เช่น ในโตรเจน (กรมพัฒนาที่ดิน, 2557) ดังภาพที่ 6

### บทสรุปและอภิปรายผล

การศึกษาครั้งนี้เป็นการศึกษาวิจัยเชิงทดลอง ผลการวิจัยทั้งหมดสรุปได้ดังนี้ ระยะเวลาสิ้นสุดของการหมักเมื่อนำน้ำหมักชีวภาพที่ผลิตขึ้นเองมาเบรี่ยบเทียบกับสารเร่งชุปเปอร์ พด.1 จะเห็นได้ว่าน้ำหมักชีวภาพที่ผลิตขึ้นเองใช้เวลาในการหมักสั้นที่สุด คือ 29 วัน ท่ากับสารเร่งชุปเปอร์ พด.1 เร็วขึ้นกว่าการหมักโดยปกติที่ไม่ใช้สารเร่ง 7 วัน ลดคลอลงกับสภาวะรดตัน แดงมันยับ (2548) ที่ได้ศึกษาผลการใช้สารเร่งประเภทน้ำสกัดชีวภาพต่อการทำปุ๋ยหมักจากมูลฝอยในชุมชน ซึ่งผลการใช้สารเร่งน้ำหมักชีวภาพจะใช้ระยะเวลาในการหมักสั้นกว่าแบบไม่ใช้สารเร่งน้ำหมักชีวภาพ แสดงให้เห็นว่าน้ำหมักชีวภาพมีจุลทรรศน์ที่ช่วยในการย่อยสลายหลักหลายชนิด ทั้งพอกเชื้อร่า เขี้ยวแบบที่เรียกว่าล้วนแล้วมีประโยชน์ต่อการย่อยสลายของเชื้อพืชพืช ที่จะแปรสภาพเป็นปุ๋ยหมัก

ต่อไป ส่วนสารเร่งชุปเปอร์ พด.1 อาจมีจุลทรรศน์ไม่หลักหลายชนิด และถูกบรรจุอยู่ในรูปของสปอร์ แต่เป็นจุลทรรศน์ที่มีการตัดเลือกสายพันธุ์ที่มีประสิทธิภาพทำให้ใช้เวลาในการหมักมูลฝอยเท่ากับน้ำหมักชีวภาพที่ผลิตขึ้นเองแต่มีสัดส่วนเจือจางที่เหมาะสมที่ 1:100 ซึ่งเจือจางกว่าน้ำหมักชีวภาพที่ผลิตขึ้นเอง ทั้งนี้การใช้น้ำหมักชีวภาพที่มีจุลทรรศน์จะช่วยลดระยะเวลาในการผลิตปุ๋ยหมักได้ เนื่องจากจะช่วยลดขั้นตอนในช่วงระยะการปรับตัวของจุลทรรศน์ (Lag Phase) ซึ่งเป็นช่วงเริ่มต้นที่จุลทรรศน์ใช้ระยะเวลาสั้นๆ ใน การปรับตัวกับสภาพแวดล้อมใหม่ในวัสดุหมัก ทำให้สามารถลดระยะเวลาโดยรวมของการหมักปุ๋ยได้

เมื่อวิเคราะห์ปริมาณธาตุอาหารในปุ๋ยหมักพบว่า ปริมาณธาตุอาหารหลักอยู่ในระดับที่สูงกว่ามาตรฐาน คือ อัตราส่วนในโตรเจน: ฟอฟอรัส: โพแทสเซียม ไม่น้อยกว่าร้อยละ 1.0:0.5:0.5 ตามลำดับ (กรมพัฒนาที่ดิน, 2557) ลดคลอลงกับสภาวะรดตัน แดงมันยับ (2548) ศึกษาผลของการใช้สารเร่งประเภทน้ำสกัดชีวภาพต่อการทำปุ๋ยหมักจากมูลฝอยชุมชน เมื่อวิเคราะห์ธาตุอาหารหลักปรากฏว่าทั้งใช้และไม่ใช้สารเร่งไม่มีผลต่อปริมาณธาตุอาหารหลัก เนื่องจากมีธาตุอาหารหลักในปริมาณใกล้เคียงกันและอยู่ในเกณฑ์มาตรฐานสูงการทดลองได้ว่า วัสดุที่นำมาทดลองนั้นใช้เศษผักและใบไม้แห้งเหมือนกัน สัดส่วนเท่ากันทุกกอง จึงทำให้มีปริมาณธาตุอาหารหลักไม่แตกต่างกันมาก

ในการตรวจวัดอุณหภูมิพบว่า อุณหภูมิสูงสุดในกระบวนการหมักของปุ๋ยหมักทั้ง 21 กองสามารถควบคุมให้อยู่ในระดับมาตรฐานคือ สูงสุดไม่เกิน 70 องศาเซลเซียส หากพิจารณาถึงประสิทธิภาพของการย่อยสลายจากอุณหภูมิในกองปุ๋ยหมักพบว่ากองปุ๋ยหมักที่ใช้น้ำหมักชีวภาพ 1:50 จะมีกระบวนการย่อยสลายดีที่สุด เพราะกองปุ๋ยหมักมีอุณหภูมิระดับสูงอยู่ในช่วงเวลา 5 วัน ซึ่งสั้นกว่า

กองปุ่ยหมักอื่นที่มีอุณหภูมิระดับสูงอยู่ในช่วง 10-11 วัน นั้นแสดงให้เห็นว่า น้ำหมักชีวภาพที่ผลิตขึ้นเองมีจำนวนและชนิดของจุลินทรีย์มากจนทำให้สามารถย่อยสลายวัตถุที่หมักในอุณหภูมิที่เหมาะสมในเวลาอันสั้นนั้นเอง

ในการพิจารณาค่าความชื้นซึ่งเป็นปัจจัยที่สำคัญต่อการเจริญเติบโตของจุลินทรีย์และกระบวนการย่อยสลายของสารอินทรีย์ ซึ่งในการทดลองมีการควบคุมความชื้นที่ร้อยละ 50-70 เพื่อให้เหมาะสมต่อกระบวนการหมัก ถ้าความชื้นเกิน ร้อยละ 70 ประสิทธิภาพการย่อยสลายของปุ่ยหมักจะลดลง และเมื่อสิ้นสุดกระบวนการหมัก ความชื้นไม่ควรเกินร้อยละ 35-40 ซึ่งสามารถควบคุมความชื้นได้ตามมาตรฐาน คือ ในช่วงเริ่มต้นของการหมักความชื้นจะอยู่ที่ร้อยละ 40-70 เมื่อสิ้นสุดความชื้นจะอยู่ที่ร้อยละ 30-35 ถึงแม้ความชื้นจะดูเริ่มต้นและจุดติดจะแตกต่างกันอย่างมีนัยสำคัญทางสถิติ แต่การศึกษานี้สามารถควบคุมความชื้นให้อยู่ในระดับค่ามาตรฐานได้ เมื่อถูดูแนวโน้มของความชื้นของกองปุ่ยหมัก ที่ใช้สารเร่งน้ำหมักชีวภาพ สารเร่งชุปเปอร์ พด.1 และน้ำเปล่า จะพบว่าในช่วง 5-15 วันแรกของการหมัก ความชื้นจะอยู่ในระดับสูงคือร้อยละ 40-70 หลังจากนั้นความชื้นจะลดลง และมีความชื้นอยู่ที่ร้อยละ 30-35

เมื่อพิจารณาค่าความเป็นกรด-ด่างพบว่า หั้งการหมักด้วยสารเร่งน้ำหมักชีวภาพ สารเร่งชุปเปอร์ พด.1 และน้ำเปล่า เมื่อสิ้นสุดกระบวนการ

### เอกสารอ้างอิง

กรมควบคุมมลพิษ. (2556). รายงานสถานการณ์มลพิษของประเทศไทย ปี 2555. กรุงเทพฯ: กรมควบคุมมลพิษ

กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม.

กรมควบคุมมลพิษ กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม. (2558). แผนแม่บทการบริหารจัดการมูลฝอยของประเทศไทย. คันเมื่อ 16 มีนาคม 2560, จาก <http://infot rash.deqp.go.th/book-detail/423>

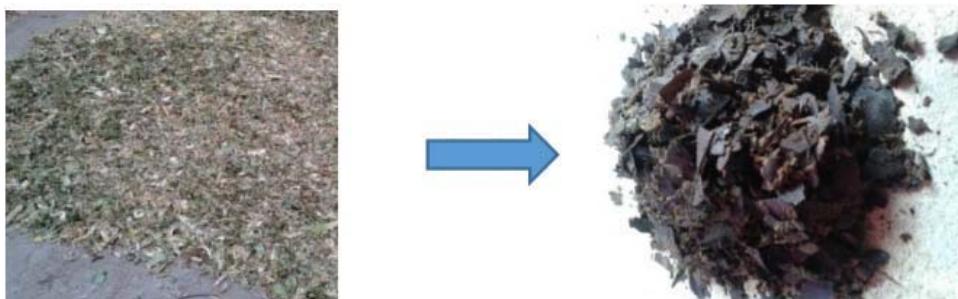
กรมพัฒนาที่ดิน กระทรวงเกษตรและสหกรณ์. (2557). คู่มือการพัฒนาที่ดินสำหรับหมอดินอาสาและเกษตร (พิมพ์ครั้งที่ 2). [ม.ป.ท.: ม.ป.พ.]

การหมักพบว่า ค่าความเป็นกรดด่างอยู่ระหว่าง 7.5-8.0 ซึ่งอยู่ในระดับที่เหมาะสม สอดคล้องกับค่ามาตรฐานการทำปุ่ยหมักของกรมพัฒนาที่ดิน ที่แนะนำว่า คุณสมบัติของปุ่ยหมักด้านความเป็นกรดด่าง ที่เหมาะสมคืออยู่ระหว่าง 5.5-8.5 และต่อด้วยระยะเวลาการหมักค่า pH ไม่ควรเกิน 8.5 เพราะจะทำให้สูญเสียธาตุอาหารบางอย่าง เช่น ในไตรเจน (กรมพัฒนาที่ดิน, 2557) ทั้งนี้ สรุปได้ว่า สารเร่งทั้ง 2 ชนิด ไม่มีผลต่อสภาพความเป็นกรดด่าง สอดคล้องกับสภาวะรัตน์ แดงบันชับ (2548) ศึกษาผลของการใช้สารเร่งประเภทน้ำสกัดชีวภาพต่อการทำปุ่ยหมักจากมูลฝอยชุมชนสรุปว่า ชนิดสารเร่งไม่มีผลต่อการเปลี่ยนแปลงความเป็นกรดด่าง

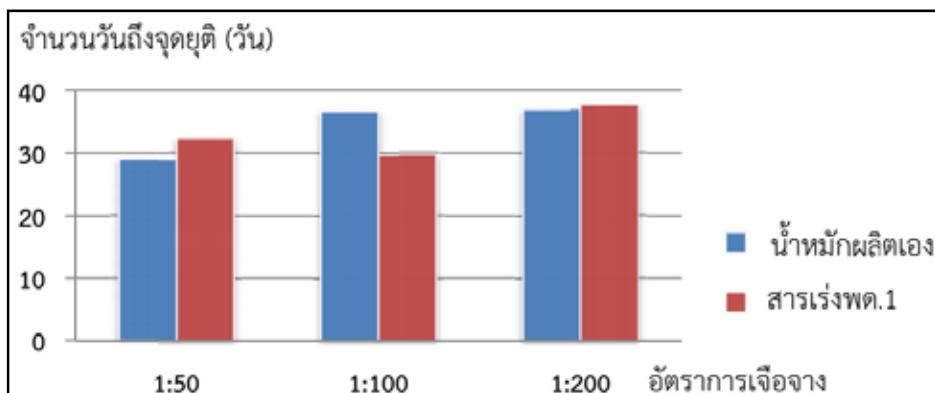
จากการศึกษาข้างต้น กระบวนการศึกษา อาจยังมีข้อจำกัดบางประการ ผู้วิจัยเสนอแนะให้ ความมีการนำวัสดุในการผลิตปุ่ยหมักที่หลากหลาย เพื่อให้สอดคล้องกับบริบทในสถานการณ์จริง และ ความมีการศึกษาน้ำหมักที่หลากหลายชนิดว่า มีประสิทธิภาพที่แตกต่างกันมากน้อยเพียงใด เนื่องจากน้ำหมักที่ใช้สัดส่วนแตกต่างกันจะมีปริมาณจุลินทรีย์ แตกต่างกันด้วย

### กิตติกรรมประกาศ

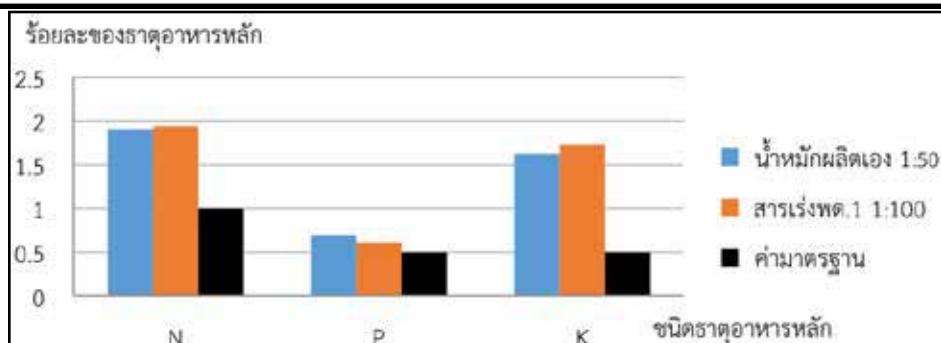
ขอขอบคุณกองช่างสุขาภิบาล เทศบาลเมืองยโสธร และองค์การบริหารส่วนตำบลดู่ทุ่ง อำเภอเมือง จังหวัดยโสธร ในการใช้สถานที่และสนับสนุนข้อมูลการวิจัยในครั้งนี้


กองแผนงานและประเมินผล กรมควบคุมมลพิษ. (2559). สถานการณ์มลพิษของประเทศไทย. ค้นเมื่อ 18 มีนาคม

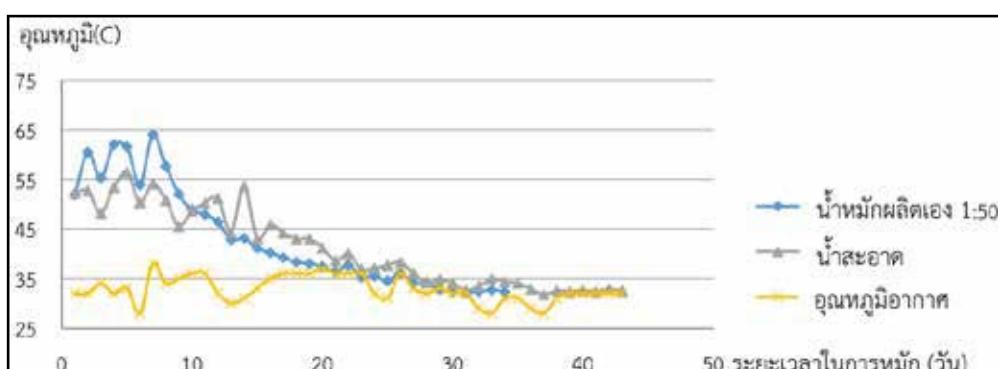
2559, จาก <http://www.pcd.go.th/public/News/GetNewsThai.cfm?task=lt2014&id=17119>


เทศบาลเมืองยโสธร. (2554). โครงการสนับสนุนและเสริมสร้างสมรรถนะให้กับองค์กรปกครองส่วนท้องถิ่นในการบริหารจัดการมูลฝอยและของเสียอันตรายจากชุมชนประจำปี งบประมาณ พ.ศ.2554. เอกสารประกอบการสัมมนาเรื่องการจัดการมูลฝอยและของเสียอันตรายจากชุมชน, สำนักงานทรัพยากรธรรมชาติและสิ่งแวดล้อมจังหวัดยโสธร.

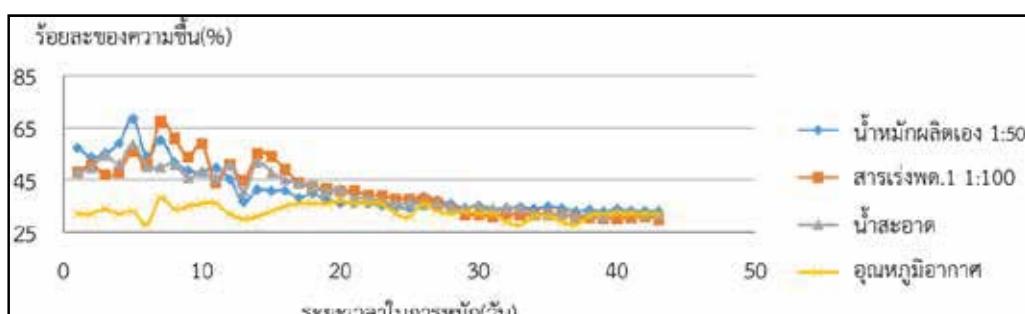
สภาฯรัตน์ แดงมันขับ. (2548). ผลของการใช้สารเร่งประเทน้ำสกัดชีวภาพต่อการทำปุ๋ยหมักจากมูลฝอยชุมชน. วิทยานิพนธ์ปริญญาสารานุสุขศาสตร์มหาบัณฑิต สาขาวิชาอนามัยสิ่งแวดล้อม บัณฑิตวิทยาลัยมหาวิทยาลัยขอนแก่น.


สำนักงานมาตรฐานสินค้าเกษตรและอาหารแห่งชาติ.(2548). การเกษตรแบบผสมผสาน แก้ปัญหา-สร้างรายได้-เพิ่มผลผลิต. ค้นเมื่อ 18 มีนาคม 2559, จาก [http://www.acfs.go.th/read\\_news.php?id=13442&type=09](http://www.acfs.go.th/read_news.php?id=13442&type=09)

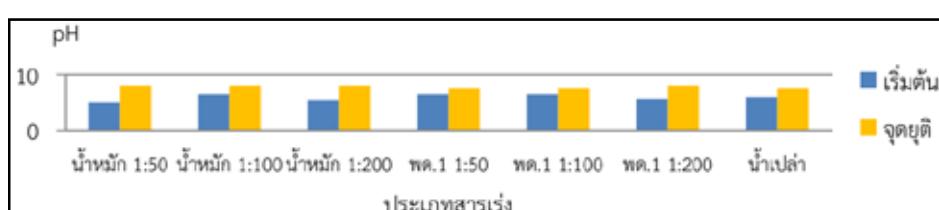



ภาพที่ 1 ลักษณะทางกายภาพของมูลฝอยที่หมักแล้วเปลี่ยนสภาพเป็นปุ๋ยหมัก




ภาพที่ 2 ผลของอัตราส่วนของน้ำหมักผลิตเองและสารเร่งพด.1 ต่อจำนวนวันถึงจุดยุติกระบวนการหมักของกองปุ๋ยหมัก




ภาพที่ 3 ร้อยละธาตุอาหารหลักของปุ๋ยหมักที่ใช้น้ำหมักผลิตเองอัตราการเจือจาง 1:50 และสารเร่ง พด.1 1:100 เปรียบเทียบกับค่ามาตรฐานการทำปุ๋ยหมักของกรมวิชาการเกษตร



ภาพที่ 4 การเปลี่ยนแปลงอุณหภูมิตลอดระยะเวลาการหมักด้วยน้ำหมักผลิตเองอัตราการเจือจาง 1:50 และสารเร่ง พด.1 อัตราการเจือจาง 1:100 เปรียบเทียบกับอุณหภูมิอากาศ



ภาพที่ 5 การเปลี่ยนแปลงความชื้นตلوดระยะเวลาการหมักด้วยน้ำหมักผลิตเอง อัตราการเจือจาง 1:50 และสารเร่ง พด.1 อัตราการเจือจาง 1:100 เปรียบเทียบกับน้ำเสwادและอุณหภูมิอากาศ



ภาพที่ 6 การเปรียบเทียบที่ความเป็นกรดด่างเริ่มต้นและจุดยุติ