

นิพนธ์ต้นฉบับ

ประสิทธิภาพของน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ ต่อการเจริญเติบโตของถั่วเขียว

ประวัติ บัวศรี *, ประชุมพร เลาห์ประเสริฐ * และธีรยุทธ อุดมพร **

* คณะสาธารณสุขศาสตร์ มหาวิทยาลัยมหาสารคาม ** สำนักงานสาธารณสุขจังหวัดร้อยเอ็ด

บทคัดย่อ

การวิจัยนี้เป็นการวิจัยเชิงทดลอง แบบ factorial in CRD(4x5) มีวัตถุประสงค์เพื่อศึกษาอัตราส่วนและระยะเวลาที่เหมาะสมในการทำน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ และศึกษาประสิทธิภาพของน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ ใช้อัตราส่วนที่ต่างกัน 4 อัตราส่วน ได้แก่ อัตราส่วนหอยเชอร์รี่บดพร้อมเปลือก : กากน้ำตาล : พด.2 0 : 3 : 1 (control), 2 : 3 : 1, 3 : 3 : 1 และ 4 : 3 : 1 หมักที่ระยะเวลา 0, 1, 2, 3 และ 4 สัปดาห์ และทดสอบประสิทธิภาพของน้ำหมักชีวภาพด้วยการปลูกถั่วเขียว โดยแบ่งการทดลองออกเป็น 3 ชุด คือ 1. ไม่ใส่น้ำหมักชีวภาพ (control) 2. ใช้อัตราส่วน 1 : 1,000 และ 3. ใช้อัตราส่วน 1 : 2,000 ตรวจวัดการเจริญเติบโตของถั่วเขียวในด้านความสูงและน้ำหนักทุก 5 วัน สถิติที่ใช้คือ One-way ANOVA และ Two-way ANOVA

ผลการศึกษาพบว่า อัตราส่วน 3:3:1 หมักที่ระยะเวลา 2 สัปดาห์ให้ปริมาณธาตุอาหารหลักสูงสุดคือ ในตอรเจน 0.65 พอสฟอรัส 0.11 และโพแทสเซียม 2.09 ตามลำดับ เมื่อเปรียบเทียบค่าเฉลี่ยของธาตุอาหารหลักในแต่ละอัตราส่วนและระยะเวลาในการทำน้ำหมักชีวภาพด้วยสถิติ Two-way ANOVA พบว่า แตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p < 0.05$) ในด้านประสิทธิภาพของน้ำหมักชีวภาพที่ทำให้ถั่วเขียวเจริญดีที่สุด คือ ใช้น้ำหมักชีวภาพอัตราส่วน 1:1,000 รองลงมา คือ อัตราส่วน 1:2,000 และกลุ่มควบคุม ตามลำดับเมื่อเปรียบเทียบค่าเฉลี่ยของการเจริญเติบโตและอัตราส่วน ด้วยสถิติ One-way ANOVA พบว่า แตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p < 0.05$)

โดยสรุปน้ำหมักชีวภาพที่อัตราส่วน 3:3:1 และทำการหมักที่ระยะเวลา 2 สัปดาห์ให้ปริมาณธาตุอาหารหลักสูงที่สุด ส่วนการนำน้ำหมักชีวภาพไปใช้อัตราส่วนการเจือจาง 1:1,000 เป็นอัตราส่วนที่ดีที่สุดในการนำไปประยุกต์ใช้เพื่อทำให้ถั่วเขียวเจริญเติบโตสูงที่สุด

คำสำคัญ: หอยเชอร์รี่, น้ำหมักชีวภาพ, ถั่วเขียว

Original Article

Efficiency of Bio-compost Liquid Produced from Golden Apple Snail (*Pomacea canaliculata*) on Mung Bean Growth

Prawat Buasri *, Prachumporn Lauprasert * and Theerayut Udomporn **

* Faculty of Public Health, Mahasarakham University ** Roiet Province Health office

Abstract

This investigation was undertaken as an experimental study. The research objectives was to 1) study the appropriated ratio and retention time in producing bio-compost from golden apple snail; and 2) to study the efficiency of the bio-compost obtained from the snails. The research design was factorial. (4x5 using four different ratios (crushed golden apple snail: molasses :LDD.2) ; 0: 3: 1 (control), 2: 3: 1 ,3. : 3: 1, and 4: 3: 1 retention time ; 0, 1, 2, 3 after 4 weeks, and the efficiency of the compost was tested using the growth of mung bean plants. The experiment was divided into three treatments; Control ratio 1: 1000, and 1: 2000. The growth of mung bean plants in height and weight were examined every five days.

The ratio of 3:3:1with fermentation and a retention time of 2 weeks had the highest level of nutrients; nitrogen (6.25), phosphorous (0.11), and potassium (2.09), respectively. The average of main nutrients in each ratio and the retention time produced by the bio-compost was examined by a Two-way ANOVA and turned out to be statistically significant ($p < 0.05$). In addition an optimal growth of mung bean plants was related to a bio-ratio of 1:1,000, and of 1:2,000 in comparison to the control group. The average growth ratio was statistically significantly different ($p < 0.05$).

In conclusion: Bio-compost liquid produced at a ratio of 2: 3: 1 and the retention time of two weeks showed the highest level of primary nutrients. The application of bio-compost liquid in the ratio of 1: 1000 was the best method applied.

Keyword: *golden apple snail, bio-compost liquid , mung bean*

บทนำ

หอยเชอร์ (Golden apple snail) เป็นศัตรูพืชที่สำคัญในนาข้าว เมื่อจากหอยเชอร์เป็นสัตว์ที่ชอบกัดกินพืชที่ขึ้นอยู่ในน้ำ โดยเฉพาะพืชที่มีลักษณะอ่อนนุ่ม และสามารถกัดกินได้ในปริมาณมาก โดยจะกัดกินต้นข้าวหลังปักชำจนถึงระยะแตกกอ (ชมพูนุท จรายาเพศ, 2539) มีรายงานการระบาดและสร้างความเสียหายในนาข้าวครั้งแรก เมื่อปี พ.ศ. 2531 (กนกวรรณ อนุกูลวรรณรักษ์ และคณะ, 2534) นอกรากนี้หอยเชอร์ยังเป็นพาหะนำโรคพยาธิ *Angiostrongylus cantonensis* มาสู่มนุษย์ (กันทรีรัตน์ ศรีพงศ์พันธุ์, 2545) การควบคุมกำจัดหอยเชอร์ทำได้หลายวิธี ได้แก่ วิธีทางกายภาพ ชีวภาพ และเคมี ซึ่งการใช้สารเคมีเป็นวิธีที่ได้รับความนิยมเป็นอย่างมาก แต่การใช้สารเคมีกำจัดหอยเชอร์ในนาข้าวส่งผลกระทบต่อระบบนิเวศ และสิ่งแวดล้อมโดยก่อให้เกิดการตอกด่างของสารเคมีที่ใช้ในการกำจัดหอยเชอร์ในนาข้าว เพราะสารเคมีเหล่านี้ต้องใช้ระยะเวลานานในการย่อยสลาย

การทำน้ำหมักชีวภาพเป็นการนำเศษวัสดุเหลือใช้ทางการเกษตร หรือครัวเรือนที่อาจจะก่อปัญหาด้านมลพิษกลับมาใช้ประโยชน์ โดยมีความสนใจที่จะกำจัดหอยเชอร์ซึ่งเป็นศัตรูที่สำคัญในนาข้าวที่มีการระบาดทำความเสียหายให้กับนาข้าวในพื้นที่จังหวัดบุรีรัมย์เป็นจำนวนมาก จึงได้มีแนวคิดที่จะกำจัดหอยเชอร์ด้วยการนำมาระบุรุษทำเป็นน้ำหมักชีวภาพเพื่อศึกษาถึงอัตราส่วนและระยะเวลาที่เหมาะสมในการทำน้ำหมักชีวภาพเพื่อให้ประชานสามารถนำไปปรับใช้ในพื้นที่ได้จริง เนื่องจากน้ำหมักชีวภาพมีธาตุอาหารหลักที่จำเป็นต่อการเจริญเติบโตของพืช และช่วยลดต้นทุนในการบวนการผลิตจากการซื้อสารเคมีกำจัดหอยเชอร์และปุ๋ยเคมีที่มีราคาแพงต้องดูดจุลส์ผลกระทบต่อระบบนิเวศในนาข้าว การกำจัดหอยเชอร์โดยการนำมาระบุรุษทำเป็นน้ำหมักชีวภาพ จึงเป็นทางเลือกใหม่ให้กับเกษตรกร เพราะเป็นแนวทางการกำจัดหอยเชอร์ที่เป็นมิตรกับสิ่งแวดล้อมและสามารถนำไปประยุกต์ใช้ให้เกิดประโยชน์และส่งผลดีต่อสุขภาพของเกษตรกรเองและสิ่งแวดล้อมอีกด้วยทางหนึ่ง

วัตถุประสงค์การวิจัย

เพื่อศึกษาอัตราส่วนและระยะเวลาในการทำน้ำหมักชีวภาพจากหอยเชอร์ที่ให้ปริมาณธาตุอาหารหลักสูงสุด และศึกษาประสิทธิภาพของน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์ต่อการเจริญเติบโตของถั่วเขียว

วิธีการดำเนินการวิจัย

รูปแบบการวิจัย

การวิจัยนี้เป็นการวิจัยเชิงทดลองแบบ factorial in CRD (4x5)

ขั้นตอนการทดลอง

แบ่งการทดลองออกเป็น 2 ขั้นตอน ดังนี้

ขั้นตอนที่ 1 การศึกษาอัตราส่วนและระยะเวลาที่เหมาะสมในการทำน้ำหมักชีวภาพจากหอยเชอร์ โดยนำหอยเชอร์ที่บดพร้อมเปลือกใส่ลงในภาชนะพลาสติกสีดำมีฝาปิด ใส่กากน้ำตาลและหัวเชื้อจุลินทรีย์ พด.2 ในอัตราส่วน พด.2 25 กรัมต่อน้ำ 10 ลิตร ผสมทุกส่วนให้เข้ากัน ปิดฝา แล้วนำไปไว้ในที่ร่ม ที่อุณหภูมิห้อง โดยทำการทดลองในอัตราส่วนที่ต่างกัน 4 อัตราส่วน ๆ ละ 3 ชั้้า โดยใช้อัตราส่วนของหอยเชอร์บดพร้อมเปลือก ต่อ กากน้ำตาล ต่อ พด.2 0 : 3 : 1 (control), 2 : 3 : 1 , 3 : 1 และ 4 : 3 : 1 โดยทุกอัตราส่วนทำการหมักที่ระยะเวลา 0 , 1 , 2 , 3 และ 4 สปดาห์ ทำการเก็บตัวอย่างน้ำหมักชีวภาพจากหอยเชอร์ตรวจในห้องปฏิบัติการทุกสปดาห์ เพื่อตรวจหาค่าความเป็นกรด – ด่าง (pH) ค่าการนำไฟฟ้า ปริมาณในต่อเจนฟอฟอรัส และโพแทสเซียม

ขั้นตอนที่ 2 การทดสอบประสิทธิภาพของน้ำหมักต่อการเจริญเติบโตของถั่วเขียวมี 3 สิ่งทดลอง (treatments) ผิ่งทดลองละ 10 ชุดการทดลองในแต่ละชุดการทดลองมี 3 ชั้้า ในแต่ละชั้าทำการปัลกถั่วเขียวพันธุ์ทอง 1 จำนวน 1 ตัน

1) ทำการปัลกถั่วเขียวในกระถางพลาสติก ขนาดกว้าง 10 เซนติเมตร สูง 15 เซนติเมตร ทับรากดินทรายกระถางละ 1 ตัน จำนวน 3 สิ่งทดลอง ๆ ละ 10 ชุดการทดลอง ๆ ละ 3 ชั้า จำนวนทั้งหมด 90 กระถาง

2) ดูแลรักษารักษาด้วยการให้น้ำในปริมาณที่เท่ากันใน 3 ชุดการทดลอง โดยให้น้ำวันละ 2 ครั้ง ๆ ละ 100

มิลลิติตร ในเวลา 07.00 น. และ 17.00 น. กำจัดวัชพืช และศัตรูพืชตามสมควร

3) ทำการให้ปุ๋ยตามดูดการทดลอง ดังนี้

3.1 เป็นดูดควบคุม (control) ไม่ใส่ปุ๋ย

3.2 ใช้น้ำมักชีวภาพที่หมักจากหอยเชอร์ในอัตราส่วนต่อเนื้า (1 : 1,000) ให้ทุก 5 วัน โดยทำการให้ปุ๋ยในขนาดที่เท่ากันทุกครั้ง ในปริมาณ 100 มิลลิติตร ต่อ 1 หน่วยทดลอง และให้ปุ๋ยในเวลาเดียวกันทุกครั้ง คือ 07.00 น.

3.3 ใช้น้ำมักชีวภาพที่หมักจากหอยเชอร์ในอัตราส่วนต่อเนื้า (1 : 2,000) ให้ทุก 5 วัน โดยทำการให้ปุ๋ยในขนาดที่เท่ากันทุกครั้ง ในปริมาณ 100 มิลลิติตรต่อ 1 หน่วยทดลอง และให้ปุ๋ยในเวลาเดียวกันทุกครั้ง คือ 07.00 น.

4) บันทึกการเจริญเติบโตของต้นถั่วเขียวทุก 5 วัน

4.1 ทำการบันทึกความสูงของต้นเขียว โดยการ量ต้นถั่วเขียวออกจากกระถางปูกระถาง และวัดความยาวตั้งแต่ปลายรากถึงปลายใบที่芽ที่สุด

4.2 เปรียบเทียบน้ำหนักสด และน้ำหนักแห้งของต้นถั่วเขียว ด้วยวิธี Bio-mass (% yield) โดยการซึ่งน้ำหนักต้นถั่วเขียวสดพร้อมรากและซึ่งน้ำหนักต้นถั่วเขียวอบแห้งพร้อมราก โดยอบแห้งด้วยการใช้เครื่องอบลมร้อนที่อุณหภูมิ 50 องศาเซลเซียส เป็นระยะเวลา 12 ชั่วโมง แล้วนำมาซึ่งด้วยเครื่องซั่งน้ำหนักขนาดทศนิยม 3 ตำแหน่ง แล้วนำค่าน้ำหนักของต้นถั่วเขียวสดพร้อมรากและต้นถั่วเขียวอบแห้งมาคำนวณหาการเจริญเติบโตของต้นถั่วเขียว

การวิเคราะห์ข้อมูล

1) สถิติเชิงพรรณนา ได้แก่ ค่าเฉลี่ย และส่วนเบี่ยงเบนมาตรฐานในการอธิบายค่าเฉลี่ยความเป็นกรด-ด่าง (pH) การนำไฟฟ้า (EC) ในตอรเจน (N) พอสฟอรัส (P) โพแทสเซียม (K) ในอัตราส่วนกับระยะเวลาต่างๆ และการเจริญเติบโตของถั่วเขียวด้านน้ำหนักและความสูงกับอัตราส่วนการใช้น้ำมักชีวภาพที่ผลิตจากหอยเชอร์

2) สถิติทดสอบสมมติฐาน ได้แก่

2.1 One-Way ANOVA เพื่ออธิบายความแปรปรวนค่าเฉลี่ยการเจริญเติบโตของถั่วเขียวด้านความสูง

และค่าเฉลี่ยการเจริญเติบโตด้านน้ำหนักของถั่วเขียวกับอัตราส่วนในการใช้น้ำมักชีวภาพที่ผลิตจากหอยเชอร์

2.2 Two-Way ANOVA อธิบายความแปรปรวน

ค่าเฉลี่ยความเป็นกรด-ด่างการนำไฟฟ้า ในตอรเจน พอสฟอรัส และโพแทสเซียม ในอัตราส่วนและระยะเวลาในการทำน้ำมักชีวภาพที่ต่างกัน

2.3 เปรียบเทียบความแตกต่างของค่าเฉลี่ยเป็นรายคู่โดยใช้วิธี Sheffe' Method

2.4 กำหนดระดับความเชื่อมั่นที่ 95 %

ผลการวิจัย

1) การศึกษาอัตราส่วนและระยะเวลาที่เหมาะสมในการทำน้ำมักชีวภาพที่ผลิตจากหอยเชอร์ที่ให้ปริมาณธาตุอาหารหลักของพืชสูงสุดโดยการทำน้ำมักชีวภาพจากหอยเชอร์ในอัตราส่วนที่แตกต่างกัน 4 อัตราส่วน คือ อัตราส่วนของหอยเชอร์รับพรวมเปลือก ต่อ กากน้ำตาล ต่อ พด.2 ดังนี้ (1) 0 : 3 : 1 (control) (2) 2 : 3 : 1 (3) 3 : 3 : 1 และ (4) 4 : 3 : 1 โดยทุกอัตราส่วนทำการหมักที่ระยะเวลา 0, 1, 2, 3 และ 4 สัปดาห์ ทำการเก็บตัวอย่างน้ำมักชีวภาพจากหอยเชอร์ตراجในห้องปฏิบัติการทุก สัปดาห์ เพื่อตรวจหาความเป็นกรด-ด่าง (pH) ทำการนำไฟฟ้า ปริมาณในตอรเจน พอสฟอรัส และโพแทสเซียม พบร่วมอัตราส่วนที่ทำให้น้ำมักชีวภาพจากหอยเชอร์ให้ปริมาณธาตุอาหารหลักสูงที่สุด คือ อัตราส่วน 3 (3 : 3 : 1) และทำการหมักที่ระยะเวลา 2 สัปดาห์

2) จากการศึกษาประสิทธิภาพของน้ำมักชีวภาพที่ผลิตจากหอยเชอร์ต่อการเจริญเติบโตของถั่วเขียว ทำการปูกลูกที่ระยะเวลา 50 วัน โดยการปูกลูกถั่วเขียวพันธุ์อุ่ง 1 ในกระถางพลาสติกขนาดความกว้าง 10 ซม. และสูง 15 ซม. ทำการทดลอง 3 ดูดการทดลอง ประกอบด้วย

ดูดที่ 1 ไม่ใส่น้ำมักชีวภาพที่ผลิตจากหอยเชอร์ (control)

ดูดที่ 2 ดูดด้วยน้ำมักชีวภาพที่ผลิตจากหอยเชอร์ ความเข้มข้น น้ำมัก ต่อ น้ำเปล่า เท่ากับ 1 : 1,000

ดูดที่ 3 ดูดด้วยน้ำมักชีวภาพที่ผลิตจากหอยเชอร์ ความเข้มข้น น้ำมัก ต่อ น้ำเปล่า เท่ากับ 1 : 2,000

รดน้ำหมักชีวภาพทุก 5 วัน และตรวจวัดการเจริญเติบโตของถั่วในด้านของความสูงของต้นถั่วเขียว และการหา % yield ของต้นถั่วเขียวพร้อมรากรทุก 5 วัน ผลการทดลองพบว่า ต้นถั่วในชุดที่ 2 ที่ได้รับน้ำหมักในอัตราส่วน 1 : 1,000 มีการเจริญเติบโตทั้งทางด้านความสูง และ % yield สูงที่สุด รองลงมาคือ ชุดที่ 3 ที่ได้รับน้ำหมักชีวภาพในอัตราส่วน 1 : 2,000 และชุดที่ 1 ไม่ได้รับน้ำหมักชีวภาพ (control) ตามลำดับ

บทสรุปและอภิปรายผล

1) การศึกษาอัตราส่วนและระยะเวลาในการทำน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ที่ให้ปริมาณธาตุอาหารหลักของพืชสูงสุด พบว่า จากการศึกษาอัตราส่วนและระยะเวลาที่เหมาะสมในการทำน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ที่ให้ปริมาณธาตุอาหารหลักของพืชสูงสุด โดยทำการผลิตน้ำหมักชีวภาพจากหอยเชอร์รี่ในอัตราส่วนที่แตกต่างกัน 4 อัตราส่วน คือ อัตราส่วนของ หอยเชอร์รี่บดพร้อมเปลือก ต่อ กากน้ำตาล ต่อ พด.2 ดังนี้ อัตราส่วนที่ 1 คือ 0 : 3 : 1 (control) อัตราส่วนที่ 2 คือ 2 : 3 : 1 อัตราส่วนที่ 3 คือ 3 : 3 : 1 และ อัตราส่วนที่ 4 คือ 4 : 3 : 1 โดยทุกอัตราส่วนทำการหมักที่ระยะเวลา 0, 1, 2, 3 และ 4 สัปดาห์ ทำการเก็บตัวอย่าง น้ำหมักชีวภาพจากหอยเชอร์รี่ตรวจในห้องปฏิบัติการทุก ๆ สัปดาห์ เพื่อตรวจหาความเป็นกรด – ด่าง (pH) ค่ากรด – ไฟฟ้า(EC) ปริมาณในตอรเจน(N) ปริมาณฟอสฟอรัส(P) และ ปริมาณโพแทสเซียม(K) พบว่า อัตราส่วนที่ทำให้กระบวนการหมักน้ำหมักชีวภาพจากหอยเชอร์รี่ให้ปริมาณธาตุอาหารหลักสูงที่สุด คือ อัตราส่วนการหมักที่ 3 (3 : 3 : 1) และทำการหมักที่ระยะเวลา 2 สัปดาห์ ดังนั้นควรเลือกระยะเวลาการหมักที่ 2 สัปดาห์ เพราะเป็นระยะเวลาการหมักที่เร็วกว่าและให้ธาตุอาหารสูงที่สุด ซึ่งจากการศึกษาปริมาณธาตุอาหารในน้ำหมักชีวภาพที่ผลิตโดยวัสดุต่างๆ ของอนันธ์ ตันโซ (2549) ปริมาณธาตุอาหารหลัก (N, P, K) ในน้ำหมักชีวภาพเกิดจากการนำเข้าเศษวัสดุอินทรีย์ เช่น พืช หรือสัตว์ที่มีลักษณะสด หรืออบน้ำไปหมักกับกากน้ำตาลเข้มข้น ซึ่งเป็นตัวการทำให้น้ำและสารประกอบอินทรีย์ที่อยู่ในเซลล์พืช (Cell Sap) หรือเซลล์สัตว์แตกออกมาระบายน้ำตาลเข้มข้นและน้ำในติก

(Osmotic Pressure) ซึ่งจุลินทรีย์ในธรรมชาติที่ติดมากับวัสดุที่นำมาหมักจะเจริญเติบโตและเพิ่มจำนวนโดยใช้น้ำตาลเป็นแหล่งอาหารและพลังงาน จุลินทรีย์เหล่านี้จะย่อยสลายวัสดุอินทรีย์ให้มีโมเลกุลเล็กลงอยู่ในรูปสารประกอบ อิวมิกกรดอะมิโน ธาตุอาหารในรูปที่พืชสามารถนำไปใช้ประโยชน์ได้จากการทดลองพบว่า น้ำหมักที่ผลิตจากหอยเชอร์รี่ในอัตราส่วนที่ 3 (3 : 3 : 1) และทำการหมักที่ระยะเวลา 2 สัปดาห์นั้น มีปริมาณในตอรเจน เท่ากับ 0.65 ฟอสฟอรัส เท่ากับ 0.11 และ โพแทสเซียมเท่ากับ 2.09 สอดคล้องกับประกาศกรมวิชาการเกษตร (2552) ที่กำหนดให้ปริมาณของธาตุอาหารในตอรเจนไม่น้อยกว่า 0.5 เปอร์เซ็นต์โดยปริมาตร ฟอสฟอรัสไม่น้อยกว่า 0.5 เปอร์เซ็นต์โดยปริมาตร และ โพแทสเซียมไม่น้อยกว่า 0.5 เปอร์เซ็นต์โดยปริมาตร หรือปริมาณธาตุอาหารหลักรวมกันจะต้องไม่น้อยกว่า 1.5 เปอร์เซ็นต์โดยปริมาตร และสอดคล้องกับผลการตรวจวิเคราะห์น้ำหมักชีวภาพจากหอยเชอร์รี่ทั้งตัวพร้อมเปลือกของปรัชญา รัศมีธรรมวงศ์(2537) พบว่า ปริมาณในตอรเจนเท่ากับ 0.84 ฟอสฟอรัสเท่ากับ 0 และ โพแทสเซียมเท่ากับ 1.67 และการศึกษาปริมาณธาตุอาหารหลักในน้ำหมักชีวภาพที่ผลิตโดยใช้วัสดุต่าง ๆ ของอนันธ์ ตันโซ (2549) พบว่า น้ำหมักชีวภาพที่ผลิตจากหอยมีปริมาณธาตุอาหารหลักในตอรเจนเท่ากับ 0.06–1.82 ฟอสฟอรัสเท่ากับ 0.01– 3.41 และ โพแทสเซียมเท่ากับ 0.02–4.93 โดยเป็นธาตุอาหารหลักที่พืชมีความต้องการ และสอดคล้องกับการศึกษาอิทธิผลของน้ำสกัดชีวภาพจากหอยเชอร์รี่ต่อการเจริญเติบโตของผักกาดเขียว 皱纹菜 (2547) ทำการตรวจวิเคราะห์หาปริมาณธาตุอาหารหลักในน้ำหมักชีวภาพจากหอยเชอร์รี่ทั้งตัวพร้อมเปลือก พบว่าปริมาณในตอรเจนเท่ากับ 0.2717 ฟอสฟอรัสเท่ากับ 0.0297 และ โพแทสเซียมเท่ากับ 0.7456 ความเป็นกรด – ด่าง (pH) ของน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่เกิดจากกิจกรรมของจุลินทรีย์พากเพียรผลิตกรดอะซิติก หรือกรดแลคติกโดยจะปลดปล่อยกรดอินทรีย์พากเพียรผลิตกรดอะซิติก และกรดแลคติกของมันในกระบวนการหมัก(อนันธ์ ตันโซ, 2549) โดยความเป็นกรด – ด่างของน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ อัตราส่วน 3:3:1 หมักที่ระยะเวลา 2 สัปดาห์ เท่ากับ

4.47 ชีงไปตามเกณฑ์มาตรฐานของน้ำหมักชีวภาพ (กรมวิชาการเกษตร, 2549) และสอดคล้องกับการศึกษาของปรัชญา รัศมีธรรมวงศ์ (2537) ที่ทำการตรวจสอบความน้ำหมักชีวภาพที่หมักจากหอยเชอร์รี่และพืชอื่น ๆ พบว่าน้ำหมักจากหอยเชอร์รี่พร้อมเปลือกมีค่าความเป็นกรด – ด่าง เท่ากับ 4.9 เพราะเปลือกหอยเชอร์รี่มีส่วนประกอบของแคลเซียมเป็นองค์ประกอบ และยังสอดคล้องกับการศึกษาของ (อนันต์ ตันโซ, 2549) ได้ทำการศึกษาคุณสมบัติของน้ำหมักชีวภาพโดยใช้วัสดุหลักต่าง ๆ พบว่าน้ำหมักที่ใช้หอยเป็นวัสดุการหมักมีค่าความเป็นกรด-ด่าง เท่ากับ 3.48 – 8.4 และสอดคล้องกับการศึกษาอิทธิผลของน้ำสกัดชีวภาพจากหอยเชอร์รี่ต่อการเจริญเติบโตของผักกาดเขียวหวานตุ้ง ของ วนิดา เกิดมณี (2547) ทำการตรวจสอบความน้ำหมักชีวภาพที่หมักชีวภาพที่ผลิตจากหอยเชอร์รี่ เป็นค่าที่แสดงถึงปริมาณความเข้มข้นของธาตุอาหารและสารประกอบอินทรีย์ต่าง ๆ แต่เป็นการแสดงโดยรวมจึงไม่สามารถบอกปริมาณของธาตุอาหารชนิดใดชนิดหนึ่งได้แน่นอน เพียงแต่บอกให้ทราบได้ว่าถ้าการนำไฟฟ้าในน้ำหมักมีค่าการนำไฟฟ้าสูงแสดงว่ามีปริมาณธาตุอาหารสูงค่าการนำไฟฟ้าในน้ำหมักจะมีค่าเพิ่มสูงขึ้นตามระยะเวลาการหมัก(อนันต์ ตันโซ, 2549) โดยค่าการนำไฟฟ้าของน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ ที่อัตราส่วน 3 : 3 : 1 หมักที่ระยะเวลา 2 สัปดาห์ เท่ากับ 13.82 ds/m ชีงไปตามเกณฑ์มาตรฐานของน้ำหมักชีวภาพ (กรมวิชาการเกษตร, 2549) และสอดคล้องกับการศึกษาอิทธิผลของน้ำสกัดชีวภาพจากหอยเชอร์รี่ต่อการเจริญเติบโตของผักกาดเขียวหวานตุ้งของวนิดา เกิดมณี (2547) ทำการตรวจสอบความน้ำหมักชีวภาพที่หมักชีวภาพที่ผลิตในน้ำหมักชีวภาพที่หมักชีวภาพที่ผลิตโดยใช้วัสดุหลักต่าง ๆ ของ อนันต์ ตันโซ (2549) ได้ทำการนำไฟฟ้าเท่ากับ 37.1 Ms/cm และสอดคล้องกับผลการวิเคราะห์น้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่และพืช ของปรัชญา รัศมีธรรมวงศ์ (2537) พบว่ามีค่าการนำไฟฟ้าเท่ากับ 17.350 และสอดคล้องกับการศึกษาคุณสมบัติที่ว่าไปของน้ำหมักชีวภาพที่ผลิตโดยใช้วัสดุหลักต่าง ๆ ของ อนันต์

ตันโซ (2549) พบว่า ค่าการนำไฟฟ้าของน้ำหมักชีวภาพที่ผลิตจากหอยมีค่า เท่ากับ 0.24 – 10.92 ds/m

2) การศึกษาประสิทธิภาพของน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ต่อการเจริญเติบโตของถั่วเขียว จากการศึกษาประสิทธิภาพของน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ต่อการเจริญเติบโตของถั่วเขียว ที่ทำการปลูกที่ระยะเวลา 50 วัน นับแต่วันปลูกจนถึงการเก็บเกี่ยว พบร่วมกัน พบว่า การใช้น้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่บดพร้อมเปลือกทำให้ต้นถั่วเขียวมีการเจริญเติบโตดีกว่าการปลูกโดยไม่ใช้น้ำหมักชีวภาพ เพราะน้ำหมักชีวภาพจากหอยเชอร์รี่มีปริมาณธาตุอาหารในต่อเจน พอกฟอรัส โพแทสเซียม และกรดอิฐมิก ที่สามารถนำไปใช้กับพืชได้เป็นอย่างดี (อนันต์ ตันโซ, 2549) ชีงสอดคล้องกับการศึกษาของวนิดา เกิดมณี (2547) ที่ทำการศึกษาอิทธิผลของน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ต่อการเจริญเติบโตของผักกาดเขียวหวานตุ้งที่ปัลูกในถุงดำ พบว่า ผักกาดเขียวหวานตุ้งที่ได้รับน้ำหมักชีวภาพจากหอยเชอร์รี่ มีผลทำให้น้ำหนักสดของผักกาดเขียวหวานตุ้งมีการเจริญเติบโตในด้านน้ำหนัก ความสูง ความกว้างและความยาวของใบตีนสูด เนื่องจาก จุลินทรีย์ที่พบในน้ำหมักชีวภาพเป็นตัวสำคัญ เพราะจะทำให้เกิดการย่อยสลายในกระบวนการหมักของวัสดุที่นำมาใช้ในกระบวนการหมัก และในรายละเอียดเช่นวัสดุต่าง ๆ ที่นำมาใช้ในกระบวนการหมักจุลินทรีย์จะช่วยให้วัสดุที่นำมาหมักย่อยสลายและจะได้ธาตุอาหารอุดมจากกระบวนการดังกล่าว ชีงธาตุอาหารดังกล่าวมีความจำเป็นอย่างยิ่งต่อการเจริญเติบโตของพืช และในส่วนของการนำน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ไปใช้นั้นต้องคำนึงความเข้มข้นในการใช้ เพราะน้ำหมักชีวภาพมีความเข้มข้นสูง (อนันต์ ตันโซ, 2547) หากนำไปใช้อาจทำให้เป็นพิษต่อพืชได้ ชีงพบว่า การเจริญเติบโตของถั่วเขียวที่ได้รับน้ำหมักชีวภาพในอัตรา 1 : 1,000 มีการเจริญเติบโตทางด้านความสูงและน้ำหนักมากที่สุด ชีงสอดคล้องกับงานวิจัยของสุรชัย พัฒนพิบูล และคณะ (สุรชัย พัฒนพิบูล และคณะ, 2547) ใช้อัตราส่วนน้ำหมักชีวภาพ 1 : 1,000 ในการปลูกผักกาดหวานตุ้ง ผักกาดหอม และพริกยักษ์ แล้วสังผลให้มีการเจริญเติบโตมากที่สุด และยังสอดคล้องกับงานวิจัยของ อรุณหทัย ศิริรวมเจริญ (2549) ที่

ศึกษาอัตราส่วนความเข้มข้นของน้ำหมักชีวภาพที่มีผลต่อการเจริญเติบโตของผักกวางตุ้งย่องเตี้ย พบร่วมกับอัตราส่วนความเข้มข้นที่ 1 : 1,000 สงผลให้ผักกวางตุ้งย่องเตี้ยเจริญเติบโตในด้านน้ำหนักและความสูงมากที่สุด ประยุกต์ใช้ในเกษตรกรรมจะได้รับจากการกำจัดหอยเชอร์รี่โดยการนำมาผลิตเป็นน้ำหมักชีวภาพเป็นแนวทางที่ช่วยให้เกษตรกรลดปริมาณการใช้สารเคมีกำจัดศัตรูพืช และช่วยลดการตากดักของสารเคมีกำจัดศัตรูพืชในสิ่งแวดล้อมช่วยรักษาทรัพยากรธรรมชาติให้สมดุล เพิ่มศักยภาพในการผลิต ลดความเสื่อมโกร穆ของดินที่ทำการเพาะปลูกต่อเนื่องกันเป็นเวลานานและเป็นการเพิ่มรายได้ให้กับเกษตรกร เพราะช่วยลดต้นทุนในการผลิตจากการซื้อสารเคมีกำจัดหอยเชอร์รี่และปุ๋ยเคมีที่มีราคาแพงและลดผลกระทบต่อระบบนิเวศในนาข้าวจากการใช้สารเคมีกำจัดศัตรูพืช นอกจากนี้ การกำจัดหอยเชอร์รี่โดยการทำเป็นน้ำหมักชีวภาพจะเป็นทางเลือกใหม่ให้กับเกษตรกร เพราะเป็นวิธีการกำจัดหอยเชอร์รี่ที่เป็นมิตรกับสิ่งแวดล้อม อีกทั้งยังสามารถนำไปประยุกต์ใช้ให้เกิดประโยชน์และสงผลดีต่อสุขภาพของเกษตรกรผู้ใช้น้ำหมักชีวภาพและสงผลให้ผู้บริโภคได้รับความปลอดภัยจากสารเคมีตกค้างในอาหารและสิ่งแวดล้อม

ข้อเสนอแนะจากการวิจัย

จากการวิจัยประสิทธิภาพของน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์ต่อการเจริญเติบโตของตัวเชี่ยว นับเป็นการกำจัดหอยเชอร์ที่เป็นศัตรูที่สำคัญในนาข้าวที่เป็นมิตรกับสิ่งแวดล้อม และเป็นแนวทางที่เกษตรกรสามารถนำไป

เอกสารอ้างอิง

กานกวรรณ อนุกูลวรรณ แลคณะ, (2534). การระบาดของหอยเชอรี่. วารสารข่าวสารการเกษตร. 36(3), 43-52.

กรมวิชาการเกษตร. ประกาศกรมวิชาการเกษตร เรื่อง การขออนุญาตเปลี่ยน การออกใบสำคัญการขึ้นทะเบียน การขอแก้ไขรายการทะเบียนและการแก้ไขรายการทะเบียนปุ๋ยอินทรีย์ พ.ศ. 2552. ลงวันที่ 5 พฤษภาคม 2552.

กรมวิชาการเกษตร. ปุ๋ยน้ำชีวภาพ เทคโนโลยี ภูมิปัญญาท้องถิ่น. 20 พฤษภาคม 2549. <<http://www.grenag.org>> 30 กันยายน 2552.

กันทรีย์ ศรีพงศ์พันธ์, (2545). การใช้สารสกัดจากพืชเป็นสารชั่วคราว. วารสารมหาวิทยาลัยศิลปากร. 21-22(1), 192-215.

ชมพูนุช จราญาเพศ, (2539). เรื่องน่ารู้เกี่ยวกับหอยเชอรี่. การประชุมสัมมนาทางวิชาการแมลงและศัตรูพืช. กรุงเทพ. ม.ป.ท.

ปรัชญา รัศมีธรรมวงศ์, (2537). 108 ศูนย์การผลิตปุ๋ยชีวภาพ. กรุงเทพ : สำนักพิมพ์เพชรภรรัต.

วนิดา เกิดผล, (2547). อิทธิพลของน้ำสกัดชีวภาพจากหอยเชอรี่ต่อการเจริญเติบโตของผักกาดเขียวหวานตั้ง. รายงานการวิจัยปริญญาในพนธุ์พืชฯ ศาสตรมหาบัณฑิต สาขาวิชาเกษตรศาสตร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏวไลยอลงกรณ์.

ประยุกต์ใช้ได้จริงในพื้นที่ และมีข้อเสนอแนะสำหรับผู้สนใจดังนี้

- 1) อัตราส่วนที่ดีที่สุดในการผลิตน้ำหมักชีวภาพจากหอยเชอร์รี่ คือ อัตราส่วน 3:3:1 เพราะเป็นอัตราส่วนการหมักที่ให้ปริมาณธาตุอาหารหลักในต่อเจน ฟอสฟอรัส และโพแทสเซียมสูงที่สุด
- 2) ระยะเวลาที่ดีที่สุดในการผลิตน้ำหมักชีวภาพจากหอยเชอร์รี่ คือ ระยะเวลาการหมักที่ 2 สัปดาห์ เพราะเป็นระยะเวลาการหมักที่ให้ปริมาณธาตุอาหารหลักในต่อเจน ฟอสฟอรัส และโพแทสเซียมสูงที่สุด
- 3) อัตราส่วนการนำน้ำหมักชีวภาพที่ผลิตจากหอยเชอร์รี่ไปใช้ คือ อัตราส่วน 1:1,000 เพราะเป็นอัตราส่วนที่ทำให้ถูกต้องและมีประสิทธิภาพ
- 4) ในการวิจัยครั้งต่อไปควรมีการศึกษาหอยเชอร์รี่ต่างสายพันธุ์มาผลิตน้ำหมักชีวภาพ และควรมีการศึกษาขนาดและอายุของหอยเชอร์รี่ที่นำมาผลิตน้ำหมักชีวภาพ ขณะเดียวกันก็ควรมีการศึกษาประสิทธิภาพของน้ำหมักชีวภาพต่อพืชชนิดอื่น และมีการคิดคำนวณต้นทุนการผลิตเพื่อศึกษาความคุ้มทุนทางเศรษฐกิจศาสตร์

กิตติกรรมประกาศ

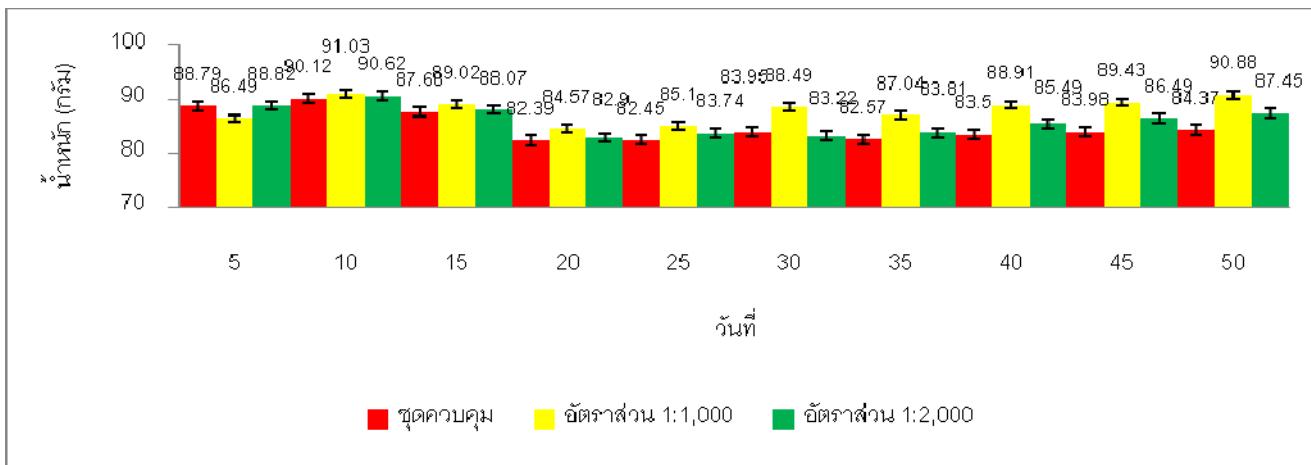
ขอขอบคุณบุคลากรภาควิชาเทคโนโลยีการเกษตร
คณะเทคโนโลยีการเกษตร รวมมหาวิทยาลัยราชภัฏบุรีรัมย์ที่ให้
คำแนะนำและความอนุเคราะห์สถานที่ อุปกรณ์และเครื่องมือ
ในการวิจัย

สุรชัย พัฒนพิญล และคณะ, (2547). ประสิทธิภาพของน้ำหมักชีวภาพพีชต่อการเจริญเติบโตของผักกาดกร่างตั้ง ผักกาดหอม และพริกยักษ์ในระบบการปลูกพีชแบบไม่ใช้ดิน. วารสารดินและปุ๋ย. 26(3), 107-116.

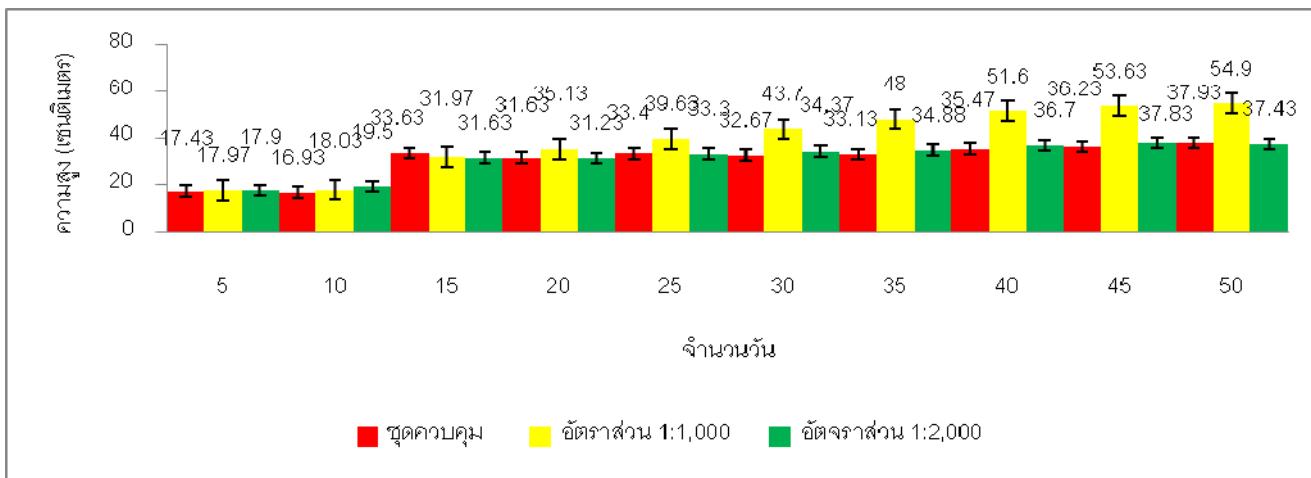
อรุณทัย ศิริธรรมเจริญ, (2549). การศึกษาอัตราส่วนความเข้มข้นของน้ำสกัดชีวภาพที่มีผลต่อการเจริญเติบโตของผักกาดกร่างตั้งของเต้า. ปริญญา นิพนธ์วิทยาศาสตรมหาบัณฑิต สาขาวิชาชีววิทยาศาสตรลิ้งแวดล้อม มหาวิทยาลัยราชภัฏนครปฐม.

อาณัฐ ตันโพธ, (2549). เกษตรธรรมชาติประยุกต์ หลักการ แนวคิด เทคนิคปฏิบัติในประเทศไทย. กรุงเทพ : สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ.

ตารางที่ 1 การเปรียบการเจริญเติบโตของตัวเขียวด้านความสูง (cm) ที่ระยะเวลาการปลูกที่ 50 วัน ที่ใช้อัตราส่วนการเจือจางน้ำหมักชีวภาพต่างกัน


ชุดการทดลอง	N	Mean	S.D.	F	p-value
ไม่ใส่น้ำหมักชีวภาพ (control)	30	30.65	7.48	7.363	0.001*
ใส่น้ำหมักชีวภาพอัตราส่วน 1 : 1,000	30	39.39	13.31		
ใส่น้ำหมักชีวภาพอัตราส่วน 1 : 2,000	30	31.26	7.62		

* มีนัยสำคัญทางสถิติที่ระดับ 0.05


ตารางที่ 2 การเปรียบเทียบการเจริญเติบโตของตัวเขียวด้านน้ำหนัก (g) ที่ระยะเวลาการปลูกที่ 50 วัน ที่ใช้อัตราส่วนการเจือจางน้ำหมักชีวภาพต่างกัน

ชุดการทดลอง	N	Mean	S.D.	F	p-value
ไม่ใส่น้ำหมักชีวภาพ (control)	30	85.26	3.12	12.916	0.001*
ใส่น้ำหมักชีวภาพอัตราส่วน 1 : 1,000	30	88.56	1.92		
ใส่น้ำหมักชีวภาพอัตราส่วน 1 : 2,000	30	86.26	2.69		

* มีนัยสำคัญทางสถิติที่ระดับ 0.05

รูปที่ 1 แผนภูมิแท่งแสดงการเจริญเติบโตของถั่วเขียวด้านน้ำหนัก (กรัม) ที่ระยะเวลาการปลูกที่ 50 วัน

รูปที่ 2 แผนภูมิแท่งแสดงการเจริญเติบโตของถั่วเขียวด้านความสูง (เซนติเมตร) ที่ระยะเวลาการปลูกที่ 50 วัน