

วารสารสมาคมรังสีรักษาแห่งประเทศไทย

มะเร็งวีัฒน์

ปีที่ 4 ฉบับที่ 3
Vol.4 No.3

กันยายน - ธันวาคม 2541
September - December 1998

ศาสตราจารย์คลินิก เกียรติคุณ
แพทย์หญิง สายสหวน อุณหนันทน์

Journal of the Society of Radiation Oncology of Thailand

ISSN 0859-2616

ນະພາບນີ້ແມ່ນຫຼັດທີ່ມີການກົດລົງທະບຽນຂອງສະໝັກສົດ

ນະເລີງວິວດັບ 1

ສາມາຄມຮັງລືຮັກຊາແຫ່ງປະເທດໄທ
The Society of Radiation Oncology of Thailand

ຮາຍື່ອຄະະກຮອມກາຮຸດ 2541

ຂອງສາມາຄມຮັງລືຮັກຊາແຫ່ງປະເທດໄທ

ຄະະກຮອມກາຮຸດທີ່ປະກາດຕິມຕັກດີ

1. ຄ.ພ.ຢູ່ພິສມຍ	ອະລາມສົມບີ
2. ຄ.ພ.ຢູ່ສາຍສົງວນ	ອຸ້ນແນ້ນທົນ
3. ນ.ພ.ສິຣີສັກດີ	ກົງລົມ
4. ພ.ສ.ພ.ຢູ່ສຸວິຍ	ຈິດຮຽນ
5. ຄ.ນ.ພ.ກວີ	ທັງສຸບຸດ

ຄະະກຮອມກາຮຸດທີ່ປະກາດ

1. ຄ.ນ.ພ.ໄພວັນ	ເທັມມົງຄລ
2. ຄ.ພ.ຢູ່ພວງທອງ	ໄກຣົມບູລ
3. ນ.ພ.ພິສີ່ງງົງ	ຕິຣີສຸ

ຄະະກຮອມກາຮອບອີຫາຮ

1. ຮ.ຄ.ນ.ພ.ວິ່ຈາຍ	ໜ່າຍກສາມາຄມ
2. ພ.ຄ.ພ.ຢູ່ປະກັບສົງ	ອຸປະນາຍົກ ດັນທີ 1
3. ນ.ອ.ເອກະພີ	ອຸປະນາຍົກ ດັນທີ 2
4. ນ.ພ.ບູງທຸກ	ເລົາທີກສາມາຄມ
5. ຄ.ພ.ຢູ່ລັກະພາ	ເຫັນ
6. ພ.ຢູ່ສົມໄຈ	ແດງປະເສົງ
7. ພ.ອ.ໜູ້ງົງພຣະວິ	ຄິດຫອບ
8. ພ.ຢູ່ສາຍພິນ	ຕັ້ງຄ້າໜົດ
9. ຄ.ພ.ຢູ່ວິມລ	ສຸຄະນາ
10. ຮ.ຄ.ນ.ພ.ປະເສົງ	ເລີສສົງວນສິນຫັບ
11. ພ.ທ.ປະມຸນ	ພຣະມົດນັກ
12. ຮ.ຄ.ພ.ຢູ່ສຸພັດວາ	ແສງຮູຈີ
13. ນ.ອ.ເກະຍນ	ຈົງຄິວັດນົດ

เนื่องจากปอก

ศาสตราจารย์คลินิก เกียรติคุณ แพทย์หญิงสายสูงวน อุณหนันหน์

ประวัติการศึกษาและการทำงาน

พ.ศ.2499 แพทยศาสตร์บัณฑิตจากคณะแพทยศาสตร์ ศิริราชพยาบาล

พ.ศ.2500 แพทย์ประจำบ้านปีที่ 1 แผนกศัลยศาสตร์ โรงพยาบาลศิริราช

พ.ศ.2501 แพทย์ประจำบ้านปีที่ 2 และอาจารย์แผนกสรีระวิทยา โรงพยาบาลศิริราช

พ.ศ.2502 แพทย์ประจำบ้าน และอาจารย์แผนกรังสีวิทยา โรงพยาบาลศิริราช

พ.ศ.2508 ได้ทุนพัฒนาปรามณเพื่อสันติ ไปศึกษาวิชารังสีรักษา ที่ประเทศอังกฤษ
ณ โรงพยาบาล Guy's และ The Royal Marsden London University
สอบได้ Diploma Medical Radiotherapy

พ.ศ.2515 ได้รับทุน WHO ไปศึกษาวิชารังสีรักษาที่ M.D.Anderson Hospital
ประเทศสหรัฐอเมริกา และทุนคุյงานที่ Princess Margaret Hospital Toronto
ประเทศแคนาดา

พ.ศ.2516 ได้รับแต่งตั้งเป็นผู้ช่วยศาสตราจารย์

พ.ศ.2519 ได้รับแต่งตั้งเป็นรองศาสตราจารย์ และหัวหน้าสาขาวิชารังสีรักษา โรงพยาบาลศิริราช

พ.ศ.2529 ได้รับแต่งตั้งเป็นศาสตราจารย์คลินิก ในวิชารังสีรักษา มหาวิทยาลัยมหิดล

พ.ศ.2533 ได้รับเลือกเป็นนายกสมาคมรังสีรักษา แห่งประเทศไทย

พ.ศ.2535 ได้รับแต่งตั้งเป็นศาสตราจารย์คลินิก เกียรติคุณ มหาวิทยาลัยมหิดล

ปัจจุบัน 2541 กรรมการที่ปรึกษาคิตติมศักดิ์ของสมาคมรังสีรักษา แห่งประเทศไทย

วารสารสมาคมรังสีรักษาแห่งประเทศไทย
Journal of the Society of Radiation Oncology of Thailand

ปีที่ 4 ฉบับที่ 3

กันยายน-ธันวาคม 2541

สารบัญ

4 บรรณานิการແດลง

5 สารสนเทศ

7 ประวัติสาขาวิชารังสีรักษา โรงพยาบาลศิริราช

12 Altered Fractionation Radiotherapy
in Locally Advanced Head and Neck Cancers; A Review

25 Late Rectal Complications in Patients with
Carcinoma of the Cervix Treated with Radiotherapy Alone

41 ค่า uniformity index ของ implantation ในการรักษามะเร็งแบบ
high dose rate brachytherapy

51 การศึกษาผลการเพาะเชื้อแบคทีเรียและความไวต่อยาปฏิชีวนะ
ในผู้ป่วยโรคมะเร็ง ที่มีภาวะติดเชื้อแบคทีเรีย¹
ของศูนย์ป้องกันและควบคุมโรคมะเร็ง เขต 7 จังหวัดอุบลราชธานี²

บรรณาธิการແດສັງ

การจัดทำวารสารมະเรืองวัฒน์ในขณะนี้ยังได้รับความร่วมมือจากท่านสมาชิกน้อยมาก ทำให้เกิดความขาดแคลนต้นฉบับ วารสารจะอยู่ไม่ได้ถ้าไม่ได้รับการสนับสนุนจากสมาชิกทุกท่าน ทางคณะกรรมการจัดทำจึงขอความเมตตาจากท่าน ได้โปรดสนับสนุนโดยการส่งบทความหรือผลงานวิจัย เพื่อนำมาตีพิมพ์ในวารสาร เพื่อวารสารของเราจะได้ออกได้ทันกำหนดเวลา

เพื่อเป็นเกียรติแด่ศาสตราจารย์คลินิก เกียรติคุณแพทย์หญิงสายสูง อุณหนันทน์ อดีตหัวหน้าสาขาวิชารังสีวิทยา โรงพยาบาลศิริราช รองศาสตราจารย์วิสุทธิ์ วุฒิพุกษ์ ได้เรียนรู้เรื่องบทความประวัติสาขาวิชารังสีวิทยา โรงพยาบาลศิริราช

ขอขอบพระคุณผู้เขียนบทความทุกท่าน ที่ได้ให้เกียรติส่งบทความมาตีพิมพ์ ทางผู้จัดหวังเป็นอย่างยิ่งว่าจะได้รับการสนับสนุนจากท่านตลอดไป

บรรณาธิการ

សារសេវាពេលវេលាអេរីយន

เรื่องที่จะตีพิมพ์

1. บทความนิตยสาร (Editorial) เป็นบทความแสดงความเห็นทางวิชาการ หรือแนวทางการรักษา ศึกษาค้นคว้า วิจัยทางวิชาการที่ยังใหม่
2. นิพนธ์ต้นฉบับ (Original articles) และรายงานผู้ป่วย (Case report) ซึ่งเป็นผลงานทางการศึกษาหรือ วิจัยของผู้เขียนเอง หรือรายงานผู้ป่วยที่น่าสนใจ
3. บทพื้นพูดวิชาการ (Review articles) เป็นการรวบรวมสรุปหรือวิจารณ์ความก้าวหน้าทางวิชาการในเรื่อง ใดเรื่องหนึ่ง
4. ภกิจนะ (Miscellany) เป็นบทความทั่วไปเกี่ยวกับการแสดงความคิดเห็น ซักถามปัญหา หรือการ รวบรวมบันทึกการอภิปราย บทความที่ยังไม่ได้รับการตีพิมพ์ แต่เป็นเรื่องที่น่าสนใจ (Letter to editor)

เงื่อนไข

1. ต้นฉบับที่ส่งให้พิจารณาจะต้องไม่มีเคยตีพิมพ์ หรืออยู่ในระหว่างการตีพิมพ์ในสารเล่มอื่น
2. บทความและนิพนธ์ต้นฉบับ รวมทั้งการแสดงความคิดเห็นทั้งหมดเป็นผู้เขียนเองทั้งสิ้น
3. คณะกรรมการต้องไม่เป็นผู้เขียนในต้นฉบับ

การเตรียมต้นฉบับ

1. ต้นฉบับควรพิมพ์หน้าเดียว อาจเป็นภาษาไทยหรืออังกฤษก็ได้ และขอให้สั่งແຜ່ນ Diskette ແນມາດ້ວຍ ໂດຍໃຫ້ໂປຣແກຣມ Microsoft word 95 ອີ່ 97 ໃນການພິມໆ ຂາດດ້ວຍໜັງສື່ວນ 15 ພອຍ໌ (ຈັດເປັນ 2 ຄອລັມນີ້ໃນ 1 ບັນດາ)
2. ບທຄວາມປະເກທນິພນົມດັ່ງນັ້ນແລ້ວແລ້ວມີການພິມໆ ຂັ້ນພົມປົງປ່າຍຈະຕ້ອງມີບທດດໍຍ່ອທັງພາສາໄທແລ້ວພາສາອັງກຸນ
3. ບທຄວາມປະເກທນິພນົມດັ່ງນັ້ນແລ້ວແລ້ວມີການພິມໆ ບທີ່ພື້ນພົມວິຊາການ ຈະຕ້ອງມີເອກສາຮ້າວ້າງອິງສໍາຮັບຂໍ້ມູນລື້ທີ່ອ້າງຄົງໃນບທຄວາມນັ້ນ
4. ການວິນິດສິນໃນບທຄວາມ ໃຫ້ໃຊ້ຮັບດ້ວຍກະດັບອຸ່່ເຫັນວ່າມີຄວາມທີ່ອ້າງອິງໃນເນື້ອເຮືອງແລ້ວເອກສາຮ້າວ້າງຄົງໃນບທຄວາມນັ້ນ

วารสาร

วารสารภาษาอังกฤษ รายชื่อผู้แต่ง ให้เริ่มจากนามสกุลเดิม ชื่อย่อ ในกรณีที่มีมากกว่า 6 คน ให้ใช้ชื่อ 3 คนแรกตามด้วย et al. ชื่งบพกความ ชื่อวารสาร ให้ใช้คำย่อตาม Index Medicus ปี; ปีที่: หน้า วารสารภาษาไทย รายชื่อผู้แต่งให้ใช้ชื่อ นามสกุลเดิม และชื่อวารสารเดิม หนังสือ

ชื่อผู้แต่ง ชื่อเรื่อง พิมพ์ครั้งที่ สถานที่พิมพ์ สำนักพิมพ์ วี หน้า

การอ้างเฉพาะบทใดบทหนึ่งในหนังสือ ให้เริ่มชื่อผู้แต่ง ชื่อเรื่อง In : ชื่อบรรณาธิการ ชื่อหนังสือ
สถานที่พิมพ์ สำนักพิมพ์ ปี พ.ศ.

5. ตารางหรือรูปภาพประกอบความควรซัดเจนและพิมพ์หรือติดบทกระดาษแยกต่างหาก พร้อมกับคำบรรยายไว้ข้างใต้ ส่วนในเนื้อเรื่องให้วางที่ว่าง และเขียนแจ้งกำหนดบริเวณที่ควรใส่ตารางหรือรูปที่ต้องการ

ประวัติ

สาขาวิชารังสีรักษा

โรงพยาบาลศิริราช

รศ.นพ.วิสุทธิ์ วุฒิพุกษ์
หน่วยรังสีวิทยา คณะแพทยศาสตร์ ศิริราชพยาบาล
มหาวิทยาลัยมหิดล

อาจารย์ (ศ.ดร.โจน์ สุวรรณสุทธิ) เล่าว่าในสมัยก่อน โรงพยาบาลศิริราช ยังไม่มีเครื่องเอกซ์เรย์ ในตอนนั้น หากมีผู้ป่วยที่จำเป็นจะต้องถ่ายภาพเอกซ์เรย์ ก็จะต้องขอนอกจากโรงพยาบาล ลงเรือข้ามฟาก ไปถ่ายที่โรงพยาบาลกลาง แล้ว จึงนำฟิล์มที่ถ่ายแล้ว พาไปล้างที่ร้านถ่ายรูป ซึ่งจะกินเวลา 2-3 วัน กว่าจะได้ฟิล์ม มาอ่านที่โรงพยาบาลศิริราช และแพทย์ที่ส่งตรวจจะต้องเป็นผู้อ่านเอง ทั้งนี้ก็เพราะ ขณะนั้นยังไม่มีรังสีแพทย์

ในปี พ.ศ.2469 ได้มีนักเรียนแพทย์ทุนเล่าเรียนหลวง ที่กำลังศึกษาอยู่ที่ ประเทศสหรัฐอเมริกา และได้รับปริญญาแพทยศาสตร์บัณฑิตจากเจฟเฟอร์สัน เมดิคอลเลจ ได้รับทุนมหิดลให้ไปศึกษาวิชารังสีต่อ ที่โรงพยาบาลปีเตอร์เบนทริกแอนด์ มหาวิทยาลัยสาราท ท่านผู้นี้เมื่อศึกษาวิชารังสีจบแล้ว ก็ได้กลับประเทศไทย และก่อตั้งแผนกเอกซ์เรย์ขึ้น ในโรงพยาบาลศิริราช ในปี พ.ศ.2471 และเริ่มดำเนินการเรียนการสอนวิชารังสีวิทยาขึ้นในประเทศไทยตั้งแต่นั้นเป็นต้นมา ท่านผู้นี้คือคุณหลวงพิณพากษ์พิทักษ์เกท บิดารังสีวิทยาแห่งประเทศไทย

กำเนิดแผนกเอกสารเรียนวิทยา

แผนกเอกสารเรียนวิทยาได้เกิดขึ้นด้วยความเอื้อเฟื้อของ พระยาอธิการประดิษฐ์ (อัลเฟรด คุณดิลก) ท่านได้ทำพินัยกรรม มอบเงินให้โรงพยาบาลศิริราชเป็นจำนวนหนึ่งหมื่นบาท ทางโรงพยาบาลได้นำเงินจำนวนนี้มาซื้อเครื่องเอกสารเรียน และส่วนประกอบโดยมอบให้คุณหลวงพิณพากย์พิทักษ์เพท ขณะที่กำลังศึกษาอยู่ ณ สาธารณรัฐอเมริกา เป็นผู้เลือก และจัดซื้อส่งเข้ามาทางเรือล่วงหน้า เมื่อต้นเดินทางกลับมาถึงประเทศไทย ในปี พ.ศ.2471 ทางโรงพยาบาลศิริราชได้มอบห้องชั้นบนของตึกผู้ดัดศัลยกรรม (ตึกผู้ดัดภาควิชาจักษุ โสต คอ ลาริงซ์ ซึ่งได้ถูกรื้อถอนออกไปเพื่อเอาเนื้อที่ไปสร้างเป็นตึกสยามมินทร์ในปัจจุบัน) ห้องที่ได้รับมอบนี้เป็นห้องโล่ง ๆ อาจารย์คุณหลวงพิณได้ลงมือประกอบชั้นส่วนต่าง ๆ ของเครื่องเอกสารเรียน ด้วยตนเอง ท่านทำได้ เพราะท่านได้เข้าศึกษาในโรงพยาบาลศิริราช เครื่องเอกสารเรียนของบริษัทเอกสารเรียนแห่งนี้มาก่อนแล้ว ขณะที่ท่านศึกษาอยู่ในสาธารณรัฐอเมริกา

ชั่วเวลาเพียงเดือนเศษ ท่านอาจารย์คุณหลวงพิณฯ ก็สามารถประกอบและติดตั้งเครื่องเอกสารเรียนเสร็จเรียบร้อย และสามารถลองเปิดเครื่องถ่าย มีแสงเอกสารเรียนออกมากได้เป็นวันแรก ในวันที่ 26 มกราคม 2571 เวลา 15.00 นาฬิกา นับจากวันนั้นเป็นต้นมา แผนกเอกสารเรียนวิทยา โรงพยาบาลศิริราชก็ได้เปิดบริการให้กับผู้ป่วยมาจนปัจจุบันนี้

กำเนิดสาขาวิชารังสีรักษา

ในปีแรกแผนกเอกสารเรียนวิทยามีเจ้าหน้าที่อยู่เพียงคนเดียว ทำหน้าที่ตรวจผู้ป่วย ถ่ายเอกสารเรียน ล้างฟิล์ม อ่านฟิล์ม เก็บฟิล์ม ผสมน้ำยา และทำความสะอาดเครื่อง ในปีต่อมา พ.ศ.2472 ได้มีแพทย์ปริญญา รุ่นแรกมาช่วยหนึ่งคน (ศาสตราจารย์ นพ.อำนวย เสมรสุต) ทำหน้าที่เป็นผู้ช่วยหัวหน้าแผนก พยาบาล 1 คน และพนักงานวิทยาศาสตร์หนึ่งคน กิจการของแผนกเจริญก้าวหน้าไปด้วยดี ตลอดระยะเวลา 5 ปี

ต่อมาจำนวนผู้ป่วยที่มารับการตรวจเพิ่มมากขึ้น จากเดือนละ 20 คนในตอนแรก เป็นเดือนละ 400 คน สถานที่เริ่มคับแคบไปเสียแล้ว ประกอบกับเครื่องเอกสารเรียนรักษา เครื่องใหญ่ที่ส่งเข้ามาภายใต้มาถึงแล้ว แต่ยังไม่มีสถานที่จะจัดตั้ง จึงจำเป็นต้องเสนอคณะกรรมการ ขอสร้างตึกเฉพาะเอกสารเรียนนั้นที่หลัง ตามแบบแปลนที่เสนอไว้ ในราคากลางหมื่นบาทสร้างด้วยเงินทุนของโรงพยาบาลศิริราช ตึกสร้างใหม่นี้สร้างเสร็จเปิดทำการได้เมื่อเดือนสิงหาคม 2478 เป็นตึกชั้นเดียว เล็ก ๆ ให้ชื่อว่า ตึกวิศวกรรมวิทยา ตามชื่อแผนกวิชาที่เปลี่ยนใหม่ ในตอนนี้แผนกรักษาวิทยามีเอกสารเรียน 1 เครื่อง เครื่องเอกสารเรียนสำหรับฟลูออโรสโคป 1 เครื่อง เครื่องเอกสารเรียนรักษาด้วยรังสี 1 เครื่อง และเครื่องเอกสารเรียนรักษาลึกขนาด 230 กิโลโวัลท์ ซึ่งชื่อ ด้วยเงินพระราชทานของ พระองค์เจ้าจุลจักรพงษ์ ราคา 16,000 บาท 1 เครื่อง ซึ่งนับเป็นเครื่องเอกสารเรียนรักษาเครื่องแรกในประเทศไทย และได้เปิดศักราชการรักษามะเร็งด้วยรังสีเอกสารเรียนแต่นั้นเป็นต้นมา และแผนกได้แพทย์เพิ่มมาอีก 1 คน คือ นายแพทย์เจริญ สักย์วนิช ทำหน้าที่ดูแลทางรังสีรักษา รวมเป็นแพทย์ 3 คน พยาบาล 2 คน และพนักงานวิทยาศาสตร์ 1 คน

กำเนิดหน่วยรักษาด้วยเรเดียม

ในระยะเวลาต่อมา งานด้านการตรวจและวินิจฉัยด้วยเอกสารเรียนธรรมชาติ และการตรวจพิเศษสามารถทำได้ทุกชนิด เช่นการตรวจพิเศษ สามารถทำได้ทุกชนิด เช่นการตรวจกระเพาะอาหารและลำไส้ การตรวจถุงน้ำดีและไตโดยวิธีฉีดสารทึบสี การทำบอร์โงกราฟฟี่ การทำมัยอีโลกราฟฟี่ การทำเวนทริคูลอกราฟฟี่ และการทำญูดิโรัชลพิงโกราฟฟี่ ที่ทำได้หมด มีผู้ป่วยเข้ารับการตรวจ และรักษาในห้าปีแรก (พ.ศ.2471-2475) จำนวน 8,466 ราย ในห้าปีที่สอง (พ.ศ.2476-2480) จำนวนผู้ป่วยที่มารับการตรวจและรักษาได้เพิ่มขึ้นเป็น 38,223 ราย ในปี พ.ศ.2481 นายแพทย์อำนวย เสมรสุต ได้รับทุน

นพิดล ไบศึกษาวิชารังสีวิทยาที่ประเทศไทยอังกฤษ และได้ไปคุยงานด้านการใช้เรเดียมรักษาที่ประเทศไทยอังกฤษ และท่านเรียนสำเร็จกลับมาถึงประเทศไทย ในปี พ.ศ.2483 ท่านก็ได้เข้าดำเนินงานรักษาโรคด้วยเรเดียม ตั้งแต่นั้นมา

กำหนดแผนกรังสีวิทยา

นับแต่แผนกได้เพิ่มการรักษาผู้ป่วยด้วยเรเดียมเพิ่มขึ้นอีกหน่วยหนึ่ง ประกอบกับจำนวนผู้ป่วยที่เข้ามารับการตรวจวินิจฉัย และรักษาด้วยเอกซ์เรย์ เพิ่มมากขึ้นอีกด้วยประการหนึ่ง ทำให้ต้องรักษาด้วยวิทยา เริ่มคับแควบลง เครื่องเอกซ์เรย์ที่ส่งเพิ่มเข้ามาอีก 2 เครื่อง ก็ไม่มีห้องที่จะติดตั้ง ผู้ป่วยที่รักษาด้วยแร่เรเดียมก็ต้องฝากไปอยู่ตามตึกต่างๆ ไม่สะดวกแก่การควบคุมดูแล การป้องกันอันตรายจากงานเรเดียมก็ทำไม่ได้ แร่เรเดียมซึ่งมีราคาแพงก็เกิดมีการสูญหาย กันบ่อย ท่านหัวหน้าแผนกวิชาจึงได้คิดแบบแปลนตึกของแผนกให้ใหญ่โตกว้างขวางขึ้น คณะแพทยศาสตร์ ได้อนุมัติเงินงบประมาณให้ก่อสร้างได้ เป็นเงิน 111,948 บาท เป็นตึกสำหรับวิชารัคสมีวิทยาโดยเฉพาะเป็นตึก รัคสมีวิทยาที่ใหญ่ที่สุดในภาคตะวันออกที่เดียว ตึกนี้ สร้างเสร็จ และเปิดตึกสำหรับวิชารัคสมีวิทยาโดยเฉพาะ เป็นตึกรัคสมีวิทยาที่ใหญ่ที่สุดในตะวันออกที่เดียว ตึกนี้ สร้างเสร็จ และเปิดใช้เมื่อวันที่ 24 มีนาคม 2482 เรียกชื่อว่า ตึกรังสีวิทยา ตามชื่อของแผนกวิชาที่เปลี่ยนไป

การปฏิบัติงานระหว่างเกิดสังคมร มหาเออเชียบูรพา

แผนกรังสีวิทยา เปิดทำงานได้เพียงหนึ่งปี ก็เกิดสังคมมหาเออเชียบูรพา โรงพยาบาลศิริราช ต้องย้ายแผนกผู้ป่วยนอก ไปอยู่ที่ศาลากลางจังหวัดนนทบุรี (ที่ทำการหอทะเบียนที่คินจังหวัดนนทบุรี) แผนกรังสีวิทยา ก็ต้องขนเครื่องเอกซ์เรย์สำหรับตรวจวินิจฉัยและรักษาด้วยตามไปด้วยคงเหลือเครื่องเอกซ์เรย์

ขนาดเล็กทึ้งเอาไว้ เพราะหนักมาก แพทย์และพยาบาล บางส่วนต้องลงเรือยนต์ไปทำงานที่จังหวัดนนทบุรี เช้าไปเย็นกลับ เป็นเวลาสี่ปี อาคารของโรงพยาบาลศิริราช ถูกระเบิดทำลาย และระเบิดเพลิงเสียหาย หลายหลัง เช่น ตึกกายวิภาคเสียหายเป็นบางส่วน ตึกรังสีวิทยา และตึกกุมารถูกระเบิดเพลิงเสียหาย เล็กน้อย

ในปี พ.ศ.2485 ได้เกิดน้ำท่วมใหญ่ น้ำท่วม กรุงเทพและนนทบุรีของไปหมด ที่โรงพยาบาลศิริราช น้ำท่วมสูงถึง 80 เซนติเมตร จากพื้นสนามหญ้า ผู้ป่วย แพทย์ พยาบาลและเจ้าหน้าที่ของโรงพยาบาล ต้องลงเรือมาโรงพยาบาล เรือจ้างเข้าไปได้ถึงหน้าตึก รังสีวิทยา

ในปี พ.ศ.2488 ญี่ปุ่นยื่นแพ้ส่งคราม โดยปราศจากเงื่อนไขใดๆ เพราะถูกอเมริกาทึ้ง ระเบิดปรมาณู ที่เมืองฮิโรชิมา และเมืองนาคาชิกะ ประชาชนล้มตายและสูญหายด้วยแรงระเบิดไปเกือบ ส่องแสงคน ทำให้คนทั่วโลกตระหนักรถึงภัยของ ระเบิดปรมาณูและอันตรายจากการรังสีมากยิ่งขึ้น

ผลแห่งสังคมร นอกจากจะทำให้การศึกษา แพทย์ได้ช่วยกันแล้ว แผนกรังสีวิทยาก็ได้รับผล กระทบอยู่มากเช่นกัน เครื่องเอกซ์เรย์มีอยู่อย่างเดียว ใช้กันอย่างนั้น มีแต่ชำรุดและเสียหาย เพราะเก่าลง และขาดแคลนอาหาลัยที่ใช้ซ่อมแซม

กำหนดสถาบันมะเร็ง โรงพยาบาลศิริราช

ในปี พ.ศ.2489 เดือนกุมภาพันธ์ คณะแพทยศาสตร์ และศิริราชพยาบาล ได้ก่อตั้งองค์กร มะเร็งขึ้นตามข้อเสนอของหัวหน้าแผนกรังสีวิทยา เพื่อ เป็นศูนย์กลางของการตรวจรักษา ป้องกันและศึกษา ค้นคว้าเกี่ยวกับโรคมะเร็ง กิจกรรมขององค์การนี้ได้หยุด ชะงักไปเพราสภากาชาดสังคมร องค์การนี้ได้รับการ รื้อฟื้นขึ้นมาใหม่ เมื่อนายแพทย์สังค กาญจนกุลชร เสียนรายงานการคุ้งงานเพิ่มเติมในต่างประเทศ และ ได้ท้าวความถึงการจัดตั้งองค์กรการมะเร็ง เมื่อ พ.ศ.2496

ในเดือนกุมภาพันธ์ พ.ศ.2500 คณะแพทยศาสตร์ และศิริราชพยาบาล ได้มีประกาศแต่งตั้งคณะกรรมการ สำหรับค้าเงินงาน ขององค์การนี้ขึ้นมาใหม่ โดยมี ศาสตราจารย์นายแพทย์อำนวย เสมรสุต เป็นประธาน กรรมการฝ่ายวิชาการ คนแรก ต่อมาองค์การมะเร็ง ได้เปลี่ยนชื่อเป็นสถาบันมะเร็งโรงพยาบาลศิริราช และทางคณะแพทยศาสตร์และศิริราชพยาบาล ได้ให้ สังกัดอยู่ในภาควิชาโรงพยาบาลศิริราชเมื่อ พ.ศ.2514

กำเนิดสาขาวิชา สาขาวิชาธุรกิจและสาขาวิชาเวชศาสตร์นิเวศวิทย์

หลังส่งความโกรธลง รังสีแพทย์ของ
แผนกรังสีวิทยาได้รับทุนไปศึกษา และคุณงาน
ต่างประเทศหลายท่าน อาทิ เช่น พ.ศ.2494
นายแพทย์โจน์ สุวรรณลิทธิ์ สอบชิงทุนอินสติวตู
อพฟอินเตอร์เนชั่นแนนเด็ดดูเกชั่น ไปศึกษาวิชาธารังสี
รักษา ต่อที่โรงพยาบาลเมมโมเรียล นิวยอร์กและ
ที่โรงพยาบาลปีเตอร์เบิร์นทริกแอน มหาวิทยาลัยยาวาท
เป็นเวลา 1 ปี 4 เดือน และสอบได้อเมริกันอร์ด妨
รังสีวิทยาเป็นคนแรกของประเทศไทย ในปี พ.ศ.2495
นายแพทย์สันวน บุรณภวังค์ ได้รับทุน เอ็ม เอส เอ
ไปคุณงานทางรังสีวินิจฉัย ณ สถาบันรังสีวิทยามัลลินกรด
โรงพยาบาลรัตน์ มหาวิทยาลัยเชียงใหม่ แล้ว
มารัฐดิตถ์ 8 แห่ง พ.ศ.2496 นายแพทย์รัมไทร
สุวรรณิก ได้รับทุนฟูลไบร์ท ไปศึกษาวิชาธารังสีที่
เกรดยูเออสคูล ออฟเมดิซิน มหาวิทยาลัยเพนซิลเวเนีย
ไปศึกษาวิชาเวชศาสตร์นิวเคลียร์ เป็นเวลา 3 ปี และ
สอบได้ เอ็ม เอส ซี ทางการแพทย์ เมื่อต่างคนกลับมา
ก็ได้รับมอบภาระกิจให้ปฏิบัติตามวิชาที่ได้เรียนมา คือ
นายแพทย์โจน์ สุวรรณลิทธิ์ เป็นหัวหน้าสาขาวิชาธารังสีรักษา¹
นายแพทย์สันวน บุรณภวังค์ เป็นหัวหน้าสาขาวิชาธารังสี
วินิจฉัย นายแพทย์รัมไทร สุวรรณิก เป็นหัวหน้าสาขาวิชา
วิชาเวชศาสตร์นิวเคลียร์ โดยมีศาสตราจารย์นายแพทย์
อำนวย เสมรสุต เป็นหัวหน้าแผนกรังสีวิทยา (2501-
2510) สืบแทนอาจารย์ คณห挥งพิมาย ซึ่งได้อ่อนไป

ดำเนินการโดย คณะแพทยศาสตร์และศิริราช
พยาบาล และอธิการบดี มหาวิทยาลัยแพทยศาสตร์
ตามลำดับ

นับตั้งแต่แผนกรังสีวิทยา ได้มีการเจริญ
ขยายตัวอย่างรวดเร็ว ตีกรังสีวิทยาที่เคยภาคภูมิว่า เป็น
ตีกรังสีที่ใหญ่ที่สุดในภาคพื้นเอเชียนั้น กลับเป็นตีกที่
คับแคบ ไม่มีที่พอที่จะบรรจุเครื่องมือเครื่องใช้ของ
สาขาวิชา ที่มีเพิ่มมากขึ้นอย่างรวดเร็ว สาขาวิชารังสีรักษา
ได้รับเครื่องໂຄນอลท์ 60 (ฟิกเกอ 1500 คิวรี่) เป็น
ของขวัญจากรัฐบาลสหราชอาณาจักร ที่ไม่มีที่จะติดตั้ง คณะกรรมการ
ได้ใช้เงินบริจาคของ นางทองอยู่ ถ้าชما สร้างเป็นตึก
ขึ้นเดียวกัน ก็ขึ้น ใช้ติดตั้งและใช้งานไปร่วมกับก่อน
คณะกรรมการแพทยศาสตร์และศิริราชพยาบาล ได้ตัดสินใจรื้อ
ตีกรังสีวิทยาลงในเดือนกรกฎาคม 2508 เพื่อเอาเนื้อที่
สร้างเป็นตึก 72 ปี ซึ่งเป็นตึกอนกประสงค์ทันสมัยสูง
10 ชั้น ใช้เงินค่าก่อสร้าง 31,928,078 บาท 31 ล้านบาท
โดยให้ชั้นล่างใช้เป็นที่ทำงานของสาขาวิชารังสีรักษาชั้นที่ 2
ใช้เป็นที่ทำงานของสาขาวิชาเรขาคณิตนิวเคลียร์ และ
ชั้นที่ 6 ใช้เป็นห้องผู้ป่วยที่รับการรักษาด้วยรังสี นับแต่
นั้นเป็นต้นมา จนถึงปัจจุบัน ส่วนชั้นอื่นๆ ที่เหลือ
คณะกรรมการจัดสรรให้กับภาควิชาอื่นๆ

ในระหว่างที่ศิริกรังสีวิทยาถูกกรรช์และตีก 72 ปี กำลังก่อสร้างนั้น แผนกรังสีวิทยาได้ข้ายกที่ทำการไปอยู่ที่ตีกโถสตกรรมชั้นล่าง และสาขาเวชศาสตร์นิวนิวเคลียร์ ข้ายกไปอยู่ที่ตีกอำนวยการ ชั้นล่างในปี พ.ศ.2511 ชั้นล่างของตีก 72 ปีสร้างเสร็จ สาขาวังสีรักษา กึ่งนำเครื่องโคมอลท์ 60 เข้าทำงานก่อน พอดีก็เดือน พฤษภาคม 2512 ก็ข้ายกหน่วยต่างๆ เข้าที่ สาขาวิชา รังสีวินิจฉัยเข้าอยู่ชั้นที่ 2 สาขาเวชศาสตร์นิวนิวเคลียร์ ข้ายกเข้าชั้น 3 ครึ่งด้านทิศตะวันออก และหน่วยเรเดียม และหอผู้ป่วยกี้ข้ายกเข้าไปอยู่ชั้น 6 ตีก 72 ปี สร้างเสร็จ และเปิดเป็นทางการ เมื่อวันที่ 29 มิถุนายน 2514 พระบาทสมเด็จพระเจ้าอยู่หัวภูมิพลอดุลยเดช เสด็จมาเปิดเป็นทางการ

แผนกรังสีวิทยา นับได้ว่าเป็นแผนกที่มีความเจริญและมีวิวัฒนาการอย่างรวดเร็ว อย่างน่าภาคภูมิแผนกนี้ดังจะเห็นได้จากจำนวนเจ้าหน้าที่เริ่มต้นจากหนึ่งคน เครื่องเอกซ์เรย์หนึ่งเครื่องในวันที่ 26 มกราคม 2471 มาเป็นเจ้าหน้าที่ทั้งหมด 320 คน เครื่องเอกซ์เรย์วินิจฉัย 40 เครื่อง เครื่องมือรักษา 7 เครื่อง และเครื่องมือเครื่องใช้ทางรังสีเวชศาสตร์ นิวเคลียร์วินิจฉัย 40 เครื่อง เครื่องมือรักษา 7 เครื่อง และเครื่องมือเครื่องใช้ทางรังสีเวชศาสตร์นิวเคลียร์อีก เป็นจำนวนมากจนปัจจุบันนี้ปี 2535 พื้นที่ที่ได้รับ จัดสรรไว้ที่ตึก 72 ปี นั้นคับแคบไปเสียแล้ว สาขาวิชา รังสีรักษาได้รับเครื่องเร่งอนุญาตมาแล้วไม่มีที่จะติดตั้ง

จำเป็นต้องขุดพื้นที่ใต้ทางเดินข้างตึกทางทิศเหนือ เพื่อทำเป็นห้องได้ดินติดตั้งดังกล่าวเพื่อบริการแก่ผู้ป่วย สาขาวิชารังสีรักษา กีประสพปัญหา เช่นเดียวกัน ได้รับ เครื่องเอ็ม อาร์ ไอ เข้ามาแล้ว ไม่มีที่จะติดตั้ง ต้องดัดแปลงห้องได้กุนติกผู้ป่วยนอกเพื่อนำเครื่องนี้ เข้าไปติดตั้ง สาขาวิชาเวชศาสตร์นิวเคลียร์กี เช่นเดียวกัน ไม่มีพื้นที่ที่จะทำการติดตั้งเครื่องมือใหม่ๆ ที่ได้มา จำเป็นต้องไปสร้างตึกเล็กๆ อยู่ริมรั้วชายน้ำด้าน สถานี รถไฟบางกอกน้อย เพื่อติดตั้งเครื่องมือ เครื่องใช้ ที่จำเป็นในการบริการแก่โรงพยาบาลและผู้ป่วย ที่มีเพิ่มขึ้นทุกปีๆ

ALTERED FRACTIONATION RADIOTHERAPY IN LOCALLY ADVANCED HEAD AND NECK CANCERS; A REVIEW

Thiti Swangsilpa, M.D.*,
Pramook Phromratanapongse, M.D.*,
Ketkamol Punkosol, B.Sc.*

Abstract

Altered fractionation radiotherapy has been used to treat locally advanced head and neck cancers for many years. There are 3 types of altered fractionation; a) hyperfractionation b) accelerated fractionation, which is divided into 4 subtypes, and c) chemoacceleration. This paper is a review of the results of phase I, II, III clinical trials in each type of altered fractionation radiotherapy in locally advanced head and neck cancers. The ongoing protocol study of current EORTC and RTOG trials are also shown.

* Department of Radiation Oncology, Phramongkutklao Hospital

ຮັງສີຮັກໝາແບບ Altered fractionation ໃນມະເຮົງຕີຮະແລະລຳຄອຮະຍະລຸກລາມ ເຂົາພາະທີ ; ກົບທວນທຄວາມ

ອິດີ ສວ່າງຄືລົ່ມ, ພ.ບ.*
ປະມຸນ ພຣມຮັດນັພງຄີ, ພ.ບ.*
ເກສກມລ ພັນອຸງໂກສລ, ວ.ບ.*

ນທຄັດຍ່ອ

ຮັງສີຮັກໝາແບບ altered fractionation ໄດ້ຖືກນຳມາໃຊ້ຮັກໝາມະເຮົງຕີຮະແລະລຳຄອຮະຍະລຸກລາມເຂົາພາະທີມາເປັນເວລານາໜ່າຍປີ ຮັງສີຮັກໝາແບບ altered fractionation ແມ່ງອອກໄດ້ເປັນ 3 ຊົນດ
ຄືວ 1) hyperfractionation 2) accelerated fractionation ຂຶ່ງແນ່ງໄດ້ເປັນ 4 ຊົນດຍ່ອຍ ແລະ
3) chemoacceleration ຮາຍງານນີ້ແສດງผลການຄຶກໝາທາງຄລິນິກຂອງ phase I,II,III ໃນແຕ່ລະຫິດຂອງ
ຮັງສີຮັກໝາແບບ altered fractionation ໃນການຮັກໝາມະເຮົງຕີຮະແລະລຳຄອໃນຮະຍະລຸກລາມເຂົາພາະທີ
ການຄຶກໝາທາງຄລິນິກທີ່ກຳລັງດໍາເນີນອູ່ຂອງ EORTC ແລະ RTOG ໄດ້ຖືກນຳມາເສນອໄວ້ໃນຮາຍງານນີ້ດ້ວຍ
ເຊັ່ນກັນ

* ແພນກຮັງສີຮັກໝາ ກອງຮັງສີກຣມ ໂຮງພຍານາລພຣມງຸງເກລົ້າ

The clinical trials in altered fractionation radiotherapy in locally advanced head and neck cancers have been studied for many years. From the year 1970's to early 1980's, the studies of altered fractionation radiotherapy were phase I,II clinical trials focusing on hyperfractionation with a limit in the number of cases and no long term follow up reported. Accelerated fractionation has been studied after 1980. Clinical phase III trials were begun in late 1980's to compare the results between altered and standard treatment regimen. After 1990, the use of concomitant chemotherapy and altered fractionation radiotherapy has been reported. By now, the clinical trials are still ongoing and getting close to draw a conclusion of the proper altered fractionation treatment regimen for locally advanced head and neck cancers.

The altered fractionation radiotherapy schedules can be divided into 3 types

- 1) Hyperfractionation
- 2) Accelerated fractionation
 - A) Continuous hyperfractionated accelerated radiotherapy (CHART)
 - B) Split course accelerated treatment
 - C) Concomitant boost
 - D) Escalating dose
- 3) Chemoacceleration

Hyperfractionation radiotherapy

The basic rationale of hyperfractionation regimen is to use a small dose per fraction to allow higher total dose within the tolerance of late responding tissue that can be translated into higher biological effective dose of tumor.⁽¹⁾

Phase I,II clinical trials

The earlier clinical trials in phase I,II

hyperfractionated radiotherapy in locally advanced head and neck cancers were limited in the number of patients and no long term follow - up reported.^(2,3,4) Horiot et al.⁽⁵⁾ collected 103 cases of locally advanced head and neck cancers treated by twice a day regimen using a dose per fraction of 1.15 Gy to 1.25 Gy up to 70 to 80.5 Gy. The acute side effects were accepted. The result showed an improvement in 5-year locoregional control rate when using a total dose of 80.5 Gy compared with less than 80 Gy (P= 0.05). However, there was no firm conclusion from this study. Meoz et al. ⁽⁶⁾ used a bid regimen of 1.1-1.2 Gy per fraction to a total dose of 60-75 Gy in 5-6.5 weeks. They found 1-year local control rate at primary site, and nodal areas being 41% and 54% respectively, and 3-year disease free survival being 40%. Parsons et al.^(7,8,9) reported higher 5-year local control rate when using bid regimen of 1.2 Gy per fraction to a total dose of 74.5-76.8 Gy compared to historical control by conventional regimen in the treatment of locally advanced head and neck cancers, especially in hypopharyngeal and T2-3 laryngeal carcinoma. The most famous study of hyperfractionation phase I,II clinical trial was the RTOG protocol 83-13.⁽¹⁰⁾ This study used a bid regimen of 1.2 Gy per fraction with a total dose of 67.2, 72, and 76.8 Gy. The data showed 2-year locoregional control rate 25%, 37%, and 42% respectively with no significant difference in major late side effect and survival between 3 arms. The locoregional control rate using the bid regimen with a total of 67.2 Gy was comparable to 66-74 Gy of conventional fractionation. After continuing the study for the period of time, the arm with a total dose of 81.6 Gy was added. The final conclusion

showed no significant difference in acute side effect and survival rate at 1 or 2 years between 4 arms. However, 2-year locoregional control rate from the 67.2 Gy arm was significantly lower than the other three arms (25% vs 43-45%, P= 0.01) and more significant side effect noted when using the interval between fraction less than 4.5 hours.⁽¹¹⁾

Phase III clinical trials

Many phase III clinical trials were studied to compare the results of treatment between hyperfractionation and conventional radiotherapy in locally advanced head and neck cancers. The RTOG protocol 79-13⁽¹²⁾ showed no significant difference in 2-year locoregional control and survival rate between two treatment arms, using 1.2 Gy per fraction, bid, to a total of 60 Gy in 5 weeks versus conventional fraction to a total dose of 66-73.8 Gy in 7-8 weeks. For severe acute mucositis and major late side effect, no significant difference noted either. However, there was a significant difference in acute and late side effect when compared the interval between fraction more than 4.5 hours to lesser. From the reports of Horiot⁽¹³⁾ and Datta⁽¹⁴⁾, the locoregional control rate was better in the hyperfractionation than conventional fractionation. Sanchiz et al.⁽¹⁵⁾ noted that the median duration of response to treatment or survival rate using hyperfractionation or concurrent chemoradiotherapy was better than conventional radiotherapy alone. Pinto et al.⁽¹⁶⁾, found the subset of patients with oropharyngeal carcinoma stage III - IV who had a better trend to increase survival when treated by hyperfractionated regimen. This group was those who had Karnofsky performance status more than 70, nodal status N₀₋₁, and

non base of tongue carcinoma. The trend to increase survival was noted in patient with stage III, not in stage IV. From EORTC Protocol 22791,⁽¹⁷⁾ Horiot et al. noted that 5 - year local control rate was better for oropharyngeal carcinoma (which excluded base of tongue lesion) stage T₃, N₀₋₁ (not for T₂), treated by hyperfractionated radiotherapy. Although the survival rate was not significantly different, increasing in locoregional control showed a trend to increase survival in the patient treated by hyperfractionated regimen. From those reported above, severe acute mucosal reaction was noted when using hyperfractionated regimen, but no significant difference in major late side effect from conventional fractionation.

Accelerated fractionation

The basic rationale for accelerated fractionation is that the reduction in overall treatment time will decrease the opportunity for tumor cell regeneration during treatment therefore increase in the probability of tumor control for a given total dose. This can be translated into the gain in therapeutic ratio, while the acute side effect remains tolerable and no change in late side effect.⁽¹⁾

Accelerated fractionation is divided into 4 types:

Type A Continuous hyperfractionated accelerated radiotherapy (CHART)

Type B Split - course accelerated fractionation schedules

Type C Concomitant boost regimen

Type D Escalating dose regimen

Type A CHART

Phase I,II clinical trials

From the reports of Penacchia⁽¹⁸⁾, Svoboda⁽¹⁹⁾, Olmi⁽²⁰⁾ and Lamb⁽²¹⁾, using a regimen of 1.7-2.3 Gy per fraction, tid, with an interval between fraction ranging from 3 to 6 hours, to a total dose of 48-55 Gy in 9-12 days, the results of treatment were not better than that of the previous one from conventional fractionation, except more severe mucositis was detected. Sanders et al.⁽²²⁾, using a 1.4 -1.5 Gy per fraction, tid, 6 hours interval, to a total dose of 50.4 - 54 Gy in 12 days, found complete response rate at primaries and nodes 90% , and 3 - year locoregional control rate around 49%, both of which were significantly better than previous data of conventional fractionation. Although severe mucositis was still detected, decreasing in late xerostomia was also noted.

Phase III clinical trials

Awwad et al⁽²³⁾ found no significant difference in 3 - year disease free survival between accelerated fractionation by using a dose 1.4 Gy per fraction, tid, 6 days/ week, to a total dose of 42 Gy in 30 fractions in 11 days and conventional fractionation of 50 Gy in 5 weeks for postoperative radiation treatment in locally advanced $T_3, T_4; N_{0-2}$ head and neck cancers. Concerning about tumor labelling index (TLI) of more than 10.4%, the higher survival probability was noted in accelerated fractionation. The MRC trial⁽²⁴⁾ reported no difference in locoregional control , disease free interval and survival between accelerated and conventional fractionation, but the margin of primary control was favored in the accelerated fractionation arm. The subgroup which showed a greater response in the accelerated fractionation treatment was a younger case and more advanced primary lesion of laryngeal carcinoma (as shown in table 1). A decreasing in severe late morbidity was also noted in the accelerated fractionation arm.

Table 1 Larynx, % local control

CHART	Conventional fraction	P value
$T_{1,2}$	72	no significant
T_3	32	0.001
T_4	22	0.011

The Princess Margaret trial⁽²⁵⁾ showed the result of treatment comparing between 1.45 Gy, bid, to a total dose of 58 Gy/ 4 weeks (arm A) versus 2.55 Gy once a day to a total dose of 51 Gy/ 4 weeks (arm B) as in table 2.

The significant improvement of local control in arm A was noted when tumor size was less than 4 cm. and the best improvement was shown in hypopharyngeal carcinoma.

Table 2 % local control

	arm A	arm B	P value
tumors < 4 cm.	54	42	0.04
tumors > 4 cm.	38	41	
all sized	45	40	0.16

Type B split course accelerated treatment

The rationale for split course regimen is that resting period during the course of radiotherapy will allow normal tissue to recover to decrease side effect from treatment.

Wang⁽²⁶⁾ reported an improvement in 3-year locoregional control rate of T₃, T₄ with node positive oral cavity, oropharyngeal and laryngeal carcinoma using a bid regimen of 1.6 Gy per fraction, with a resting period of

2 weeks at 38 Gy, to a total dose of 64-67.2 Gy (compared to historical control by conventional treatment).

In 1988⁽²⁸⁾, he showed the result of 3-year locoregional control using split period during twice daily fractionation compared with a twice daily, split period, followed by once a day treatment. The improvement of locoregional control in bid-bid regimen was shown in table 3

Table 3 % locoregional control (LRC)

	bid-bid	bid-qd	P value
3-year LRC	85	56	0.0013
T _{1,2}	97	81	0.53
T _{3,4}	77	47	0.017
N ₀	93	46	0.00043

In proceeding ASTRO 1995, Wang reported the factors which adversely affected the local control when using split course regimen for treated T₃ oropharyngeal and laryngeal carcinoma. Those factors were; prolong gap period for more than 14 days, overall treatment time more than 45 days, total tumor dose below 67 Gy, and male gender.^(28,29) The EORTC protocol 22851 designed a phase III

trial⁽³⁰⁾ and compared the result treatment between conventional fractionation of 70 Gy in 7-8 weeks (arm A), versus split course regimen using 1.6 Gy per fraction, tid, with a 12-14 days rest at 28.8 Gy, to a total dose of 72 Gy in 45 fractions in 5 weeks (arm B). When excluded hypopharyngeal carcinoma, the complete response rate at 4 weeks was 59% in arm A versus 46% in arm B (P=0.032) which

referred to a 22% decreasing in locoregional failure, and a gain of 13% in 5-years survival rate over conventional fractionation. The benefit was shown in the tumor of $N_{2,3}$ with any T and T_4 with any N. This study was concluded that the specific survival had a trend to favor in arm B ($P= 0.06$), however, the acute and late effects were increased in accelerated fractionation treatment.

Type C Concomitant boost regimen

The concomitant boost regimen is to use a shrinking field radiation treatment added

into large conventional field during the last 2-3 weeks of the treatment schedule.

Most of the phase I,II trials about concomitant boost regimen showed the acceptable result of locoregional control rate while severe mucositis was striking. ^(31,32,33,34) Ang et al⁽³⁵⁾ found that, a concomitant boost regimen had a benefit in 2-year actuarial survival rate when a booster dose was added during the last 2 weeks of conventional fractionation, not during the first 2 weeks or during the treatment course (table 4).

Table 4 2-year actuarial locoregional control

Arm	Primary		neck	
	RT(%)	+Surgery(%)	RT(%)	+Surgery(%)
1+2	66	73	76	80
3	79	86	75	89

2-year actuarial survival rate in arm 3 ~ 75%, arm 1+2 ~ 55% ($P=0.11$)

arm 1 = boost during 5-6 weeks

arm 2 = boost during first 2 weeks

arm 3 = boost during last 2 weeks

This concomitant boost regimen was used to treat the $T_{2,3}$ oropharyngeal carcinoma later⁽³⁶⁾, which resulted in 72 % 4-year locoregional control rate (increased to 81% with a surgical salvage). However, the side effect from the treatment was striking (severe mucositis longer than 6 weeks 7%, need tube feeding 10%, and moderate to severe late effect 5%). A phase III studied by Schmidth- Ulrich⁽³⁷⁾ showed a 3-year actuarial local control rate of 67% in concomitant boost regimen versus only

40% in conventional fractionation ($P= 0.03$). This increase in actuarial local control rate was also translated into the gain in actuarial disease free survival (64% vs 40%, $P=0.04$). Johnson et al. ⁽³⁸⁾ found the improvement in actuarial local control rate using concomitant boost regimen in the tumor which had a volume more than 30 cm^3 . The RTOG protocol 88-09⁽³⁹⁾ compared the result of treatment between split course accelerated hyperfractionation and concomitant boost accelerated fractionation.

No significant difference in locoregional control, disease free survival and survival noted between 2 treatment regimens (2-year locoregional failure 50%, survival 50% and disease free survival 40%).

Type D Escalating dose

This type of accelerated fractionation is the regimen which increase the radiation dose progressively in each week during the treatment course. This method is assumed that normal mucosal cells can tolerate radiation treatment better than intensive treatment during the course of treatment progress, that is, the overall treatment time can be reduced whereas the total tumor dose is still the same.

Few studies with a limited number of cases were reported about this type of accelerated treatment.^(40,41) The results only

showed the high complete response rate in each trial. Long term followed-up was noted in one study⁽⁴²⁾ which found 3-year local control rate 60% and 3-year survival rate 73%.

Chemoacceleration

Chemotherapy was used concurrently with altered fractionation to enhance the radiation effect and improve the results of treatment. Many trials⁽⁴³⁻⁴⁸⁾ used cisplatin based regimen as a base line chemotherapy, which resulted in complete response rate more than 90%. Some authors reported about high morbidity rate which referred to poor treatment outcome.^(45,48) Brizel et al.⁽⁴⁹⁾ compared the 3-year result of treatment between hyperfractionation with and without concurrent chemotherapy as shown in table 5.

Table 5 Result of treatment between HF_x + C vs HF_x

	HF _x + C	HF _x	P value
3-year LRC	70%	40%	0.01
3-year RFS	61%	41%	0.08
3-year OS	55%	34%	0.07
Confluent mucositis	77%	75%	

* HF_x = hyperfractionation 1.25 Gy bid, total dose 75 Gy/ 6 weeks

HF_x + C = hyperfractionation 1.25 Gy bid, total dose 70 Gy/ 6 weeks with Cisplatin 12 mg/ m² + 5 FU 600 mg/ m² on week 1,6 and 2 cycles after complete radiotherapy

LCR = locoregional control

RFS = recurrence free survival

OS = overall survival

Ongoing protocol

The current EORTC trial ⁽⁵⁰⁾ designed 4 arms treatment of locally advanced head and neck cancer to compare between standard and hyperfractionated arms with and without concomitant chemotherapy, with 5 fluorouracil and cisplatin being the commonest. The 4 study arms are shown below.

- Arm 1 70 Gy/ 35 fx/ 7 weeks
- Arm 2 80.5 Gy/ 70 fx/ 7 weeks
- Arm 3 Arm 1 + CDDP x 3
- Arm 4 Arm 2 + CDDP x 3

The RTOG protocol 90-03⁽⁵¹⁾ was begun in 1990, comparing the result of treatment of locally advanced head and neck cancer between 4 arms study of

- a) standard fractionation 70 Gy/ 35 fx/ 7 weeks
- b) hyperfractionation 81.6 Gy/ 68 fx/ 7 weeks (1.2 Gy, bid)
- c) split accelerated fractionation 1.6 Gy, bid; total dose 67.2 Gy/ 42 fx/ 6 weeks (2 weeks rest at 38.4 Gy)
- d) concomitant boost regimen 1.8 Gy/ day + 1.5 Gy boost in last 12 days; total dose 72 Gy / 42 fx/ 6 weeks.

The goal of this trial was 1080 patients.

The final results from these 2 study protocols have not been reported yet. We hope that the results from these trials will determine the direction of treatment of locally head and neck cancer in the future.

References

- 1) Ang KK, Thames HD, Peter LJ. Altered fractionation schedules. In : Perez CA, Brady LW. eds Principles and Practice of Radiation Oncology 3rd Ed. Philadelphia: Lippincott Raven 1997; 119-42.
- 2) Shukovsky LJ, Fletcher GH, Montaque ED, Whithers HR. Experience with twice-a-day fractionation in clinical radiotherapy. Am J Roentgenol 1976; 126: 155-61.
- 3) Jampolis S, Pipard G, Hariot JC, Bolla M, Le-Dorze C. Preliminary results using twice-a-day fractionation in the radiotherapeutic management of advanced cancers of the head and neck.
- 4) Median E, Rao Y, Kim T, Levitt SH. 'Radiation therapy for advanced head and neck squamous cell carcinoma using twice-a-day fractionation, a long term follow-up. Am J Clin Oncol 1985; 8:65-8.
- 5) Horiot JC, Nabid A, Chaplain G et al. Clinical experience with multiple daily fractionation in the radiotherapy of head and neck carcinoma. Cancer Bull 1982; 34 :230-3.
- 6) Meoz RT, Fletcher GH, Peters LJ, Barkley HT, Thames HD. Twice-daily fractionation schemes for advanced head and neck cancer. Int J Radiat

Oncol Biol Phys 1984; 10: 831-6.

7) Parsons JT, Cassisi NJ, Million RR. Results of twice-a-day irradiation of squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys 1984; 10: 2041-51.

8) Parsons JT, Mendenhall WM, Cassisi NJ, Isaacs JH Jr, Million RR. Hyperfractionation for head and neck cancer. Int J Radiat Oncol Biol Phys 1988; 14:649-58.

9) Parsons JT, Mendenhall WM, Stringer SP, et al: Twice-a-day radiotherapy for squamous cell carcinoma of the head and neck: The University of Florida experience. Head neck 1993; 87-96.

10) Cox JD, Pajak TF, Marcial VA, et al. Dose-response For local control with hyperfractionated radiotherapy in advanced carcinomas of the upper aerodigestive tracts: preliminary report of Radiation Therapy Oncology Group protocol 8313. Int J Radiat Oncol Biol Phys 1991; 20:1191-5.

11) Cox JD, Pajak TF, Marical VA, et al. ASTRO plenary: interfraction interval is a major determinant of late effects, with hyperfractionated radiation therapy of carcinomas of upper respiratory and digestive tracts : results from Radiation Therapy Oncology Group protocol 8313. Int J Radiat Oncol Biol Phys 1991; 20 : 1191-5.

12) Marcial VA, Pajak TF, Chang C, Tupchong L, Stetz J. Hyperfractionated proton radiation therapy in the treatment of advanced squamous cell carcinoma of the oral cavity, pharynx, larynx, and sinuses, using radiation therapy as the only planned modality: (preliminary report) by the Radiation Therapy Oncology Group (RTOG). Int J Radiat Oncol Biol Phys; 13:41-7.

13) Harriot JC, Van Den Bogaert , Ang KK et al. European Organization For Research on Treatment of Cancer trials using radiotherapy with multiple fractions per day: a 1978-1987 survey. Front Radiat Ther Oncol 1988; 22: 149-61.

14) Datta NR, Choudhry AD, Gupta S. Twice a day versus once a day radiation therapy in head and neck cancer. Int J Radiat Oncol Biol Phys 1989; 17:132-3.

15) Sanchi'z F, Milla' A, Torner J, et al. Single fraction per day versus two fractions per day versus radiochemotherapy in the treatment of head and neck cancer. Int J Radiat Oncol Biol Phys. 1990; 1347-50.

16) Pinto L, Canary P, Aranjo C, et al: Prospective randomized trial comparing hyperfractionated versus conventional radiotherapy in stage II and IV oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 1991; 21: 557-62.

17) Horiot JC, Le Fun R, N' Guyen T, et al. Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma: final analysis of a randomized trial of the EORTC cooperative group of radiotherapy. *Radiother Oncol* 1992; 25: 231-41.

18) Peracchia G, Salti C. Radiotherapy with twice-a-day fractionation in a short overall time: Clinical experiences. *Int J Radiat Oncol Biol Phys* 1981; 7:99.

19) Svoboda V. Accelerated fractionation. The Portsmouth experience 1971-1984. In Proceeding of Varian's Fourth European (Linac Users Meeting) Malta, May 25-26, 1984. Zug, Switzerland, Varian, 1984:70.

20) Olmi P, Cellai E, Chiavacci A Fallai C. Accelerated fractionation in advanced head and neck cancer: Results and analysis of late sequelae. *Radiother Oncol*; 17 : 199-207.

21) Lamb Ds, Spry NA, Gray AJ, Johnson AD, Alexander SR, Dally MJ. Accelerated fractionated radiotherapy for advanced head and neck cancer. *Radiation Oncol* 1990; 18: 107-116.

22) Saunders MI, Dische S, Grosch EJ, et al. Experience with CHART. *Int J Radiat Oncol Biol Phys* 1991; 21: 871-8.

23) Awwad HK, Khafagy, Barsoum M, et al. Accelerated versus convention in the postoperative radiation of locally advanced head and neck cancer: influence of tumor proliferation. *Radiother Oncol* 1992; 25: 261-6.

24) Dische S, Saunders M, Barrett A, et al. A randomized multicentre trial of CHART versus conventional radiotherapy in head and neck cancer. *Radiother Oncol* 1997; 44 : 123-36.

25) Withers RH. Overview of fractionation schedules for cancer of the head and neck. Proceeding ASTRO 39th 1997; 12.

26) Wang CC, Blitzer PH, Suit HD. Twice-a-day radiation therapy for cancer of the head and neck. *Cancer* 1985; 55: 2100-4.

27) Wang CC. Local control of oropharyngeal carcinoma after two accelerated hyperfractionation radiation therapy schemes. *Int J Radiat Oncol Biol Phys* 1988; 14: 1143-6.

28) Wang CC, Efird J, Nakfoor B, Martins P. Local control of T₃ carcinomas after accelerated fractionation: A look at the "gap". *Int J Radiat Oncol Phys* 1995; 32 (Suppl 1): 162.

29) Wang CC, Efird J, Nakfoor B, Martins P. Local control of T₃ carcinomas after accelerated fractionation: A look at the "gap". *Int J Radiat Oncol Phys* 1996; 35: 439-41.

30) Horiot JC, Bontemps P, van den Bogaert W, et al. Accelerated fractionation compared to conventional fractionation improves loco-regional control in the radiotherapy of advanced head and neck cancers: results of the EORTC 22851 randomized trial. *Radiother Oncol* 1997; 44: 111-21.

31) Knee R, Fields RS, Peters LJ. Concomitant boost radiotherapy for advanced squamous cell of the head and neck. *Radiother Oncol* 1985; 4:1-7.

32) Kaanders J, van Daal WJ, Hoogenraad W, et al. Accelerated fractionation radiotherapy for laryngeal cancer, acute, and late toxicity. *Int J Radiat Oncol Biol Phys* 1992; 24: 497-503.

33) Mak AC, Morrison WH, Garden AS, et al. Base-of-tonque carcinoma: treatment results using concomitant boost radiotherapy. *Int J Radiat Oncol Biol Phys* 1995; 33: 289-96.

34) Gwozdz JT, Morrison WH, Garden AS, et al. Concomitant boost radiotherapy for squamous carcinoma of the tonsillar fossa. *Int J Radiat Oncol Biol Phys* 1997; 39: 127-35.

35) Ang KK, Peters LJ, Weber RS, et al. Concomitant boost radiotherapy schedules in the treatment of carcinoma of the oropharynx and nasopharynx. *Int J Radiat Oncol Biol Phys* 1990; 19: 1339-45.

36) Ang KK, Peters LJ. Concomitant boost radiotherapy in the treatment of head and neck cancer. *Semin Radiat Oncol* 1992; 2:31.

37) Schmidt-Ullrich RK, Johnson CR, Wazen DE, et al. Accelerated superfractionated irradiation for advanced carcinoma of the head and neck : concomitant boost technique. *Int J Radiat Oncol Biol Phys* 1991; 21: 563-8.

38) Johnson CR, Schmidt-Ullrich RK, Arther DW, et al. Standard once-daily versus twice-daily concomitant boost accelerated superfractionated irradiation for advanced squamous cell carcinoma of the head and neck: preliminary results of a prospective randomized trial. *Int J Radiat Oncol Biol Phys* 1995; 32(Suppl 1): 162.

39) Fu KK, Clery M, Ang KK et al. Randomized phase I, II trial of two variants of accerated fractionated radiotherapy regimens for advanced head and neck cancer: results of RTOG 88-09. *Int J Radiat Oncol Biol Phys* 1995; 32: 589-97.

40) Schwade J, Morhoe A, Abitbol A. Accelerating hyperfractionation for carcinoma of the head and neck. *Semin Radiat Oncol*, 1992; 2:51.

41) Harari PM. Adding dose escalation to

accelerated hyperfractionation for head and neck cancer. *Semin Radiat Oncol* 1992, 2:58.

42) Kajanti M, Blomqvist C, Lehtonen H, Kouri M, Wiklund T, Holsti LR. Biweekly dose escalation in curative accelerated hyperfractionation for advanced head and neck cancer: a feasibility study. *Int J Rad Oncol Biol Phys* 1997, 39: 837-40.

43) Harrison LB, Pfister DG, Fars DE, et al. Concomitant chemotherapy-radiation therapy followed by hyperfractionated radiation therapy for advanced unresectable head and neck cancer. *Int J Radiat Oncol Biol Phys* 1991, 21; 703-8.

44) Frontanesi J, Beck for NS, Lester EP, et al. Concomitant cisplatin and hyperfractionated external beam irradiation for advanced malignancy of the head and neck. *Am J Surg* 1991, 162: 393-6.

45) Abitbol AA, Schwade JG, Lewin AA et al. Hyperfractionated radiation therapy and concurrent 5-fluorouracil, cisplatin and mitomycin-C in head and neck carcinoma. *Am J Clin Oncol* 1992, 15: 250-5.

46) Brizel DM, Leopold KA, Fisher SR, et al. A phase I,II trial of twice daily irradiation and concurrent chemotherapy for locally advanced squamous cell carcinoma of the head and neck. *Int J Radiat Oncol Biol Phys* 1994, 28; 213-20.

47) Arias F, Dominguez MA, Illarramendi Jj, et al. Split hyperfractionated accelerated radiation therapy and concomitant cisplatin for locally advanced head and neck carcinomas: a preliminary report. *Int J Radiat Oncol Biol Phys* 1995, 33:675-82.

48) Glicksman AS, Wanebo HJ, Slotman G, et al. Concurrent platinum-based chemotherapy and hyperfractionated radiotherapy with late intensification in advanced head and neck cancer. *Int J Radiat Oncol Biol Phys* 1997, 39: 721-9.

49) Brizel DM, Albers ME, Fisher SR, et al. Hyperfractionated irradiation with or without concurrent chemotherapy for locally advanced head and neck cancer. *N Engl J Med* 1998, 338: 1798-804.

50) Withers RH. Overview of fractionation schedules for cancer of the head and neck. *Proceeding ASTRO 39th* 1997; 8.

51) Fu KK, Cooper Js, Marcial VA, et al. Evolution of the Radiation Therapy Oncology Group clinical trials for head and neck cancer. *Int J Radiat Oncol Biol Phys* 1996, 35: 425-38.

ABSTRACT

LATE RECTAL COMPLICATIONS IN PATIENTS WITH CARCINOMA OF THE CERVIX TREATED WITH RADIOTHERAPY ALONE

*I Chitapanarux,
V Lorvidhaya,
S Thongsawat*,
T Chitapanarux*,
S Wanwilairat.*

Purpose: To evaluate the frequency and severity of late rectal complications in cervical cancer patients treated with radiotherapy alone, combination of external beam irradiation and high dose rate intracavitary radiation, at Section of Radiation Oncology, Faculty of Medicine, Chiang Mai University and to assess the correlation between the biological effective dose (BED) to the rectum and the development of late rectal complications.

Materials and Methods: Between January 1995 and June 1997, 76 patients with cervical cancer stage IB to IIIB treated with radiotherapy alone were included. Radiotherapy consisted of 40-60 Gy external beam radiation plus 4-6 high dose rate intracavitary to a total dose of approximately 30 Gy to point A, defined as 2 cm. above the external os and 2 cm. lateral to the axis of the intrauterine tube. Patient characteristics, radiation parameters and symptoms of late rectal complications were collected from the medical records. Severity of late rectal complications were clinically graded according to RTOG late morbidity grading scheme and endoscopically graded according to Gilinsky classification. Correlation between clinical and endoscopic grading, biological effective dose and late rectal complications were assessed.

Results: With a median follow up time of 13 months, the overall rate of late rectal complications (RTOG grade 1-4) was 34% (26 of 76 patients). The median time for development of complications was 9 months after completion of treatment. Twelve percent of patients had high grade late rectal complications (RTOG grade 3, 4). All patients who were selected for sigmoidoscopy had histologically proven for radiation proctitis. Clinical RTOG grading significantly correlated with endoscopically grading. The correlation between the biological effective dose delivered to the rectal reference point and the development of late rectal complications shows a strong dose-response with a threshold for complications occurring at approximately 100 Gy³ and a complication probability of 30%.

Conclusion: This investigation revealed a significant correlation between the biological effective dose and the development of late rectal complications in patients with carcinoma of the cervix undergoing radiotherapy alone. Using the linear-quadratic model applied for our clinical results, we have established a threshold for the incidence of late rectal complication. The threshold is consistent with other studies.

บทคัดย่อ

อิมใจ ชิตาพนารักษ์,
วิชาญ หล่อวิทยา,
ศตวรรษ ทองสวัสดิ์*,
ธเนศ ชิตาพนารักษ์*,
สมศักดิ์ วรรณวิไลรัตน์

วัตถุประสงค์ที่สำคัญของการศึกษาครั้งนี้ เพื่อศึกษาถึงอุบัติการและความรุนแรงของการเกิดผลข้างเคียงระยะยาวต่อลำไส้ใหญ่ส่วนปลาย และหาความสัมพันธ์ระหว่างค่า Biological effective dose (BED) กับผลข้างเคียงระยะยาวต่อลำไส้ใหญ่ส่วนปลาย ในผู้ป่วยมะเร็งปากมดลูกที่ได้รับการรักษาโดยฉายรังสีเพียงอย่างเดียวในหน่วยรังสีรักษา คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่

ระหว่างเดือน มกราคม 2538 ถึง เดือนมิถุนายน 2540 ผู้วิจัยได้ศึกษาผู้ป่วยมะเร็งปากมดลูกระยะ IB ถึง ระยะ IIIB จำนวนทั้งสิ้น 76 คน การรักษาประกอบด้วยการฉายรังสีจากระยะไกลต่ออุ้งเชิงกราน 40-60 Gy ร่วมกับการสอดไส้เร็วโคมอลต์ 60 ชนิดอัตรารังสีสูง ประมาณ 4-6 ครั้ง โดยให้ปริมาณรังสีโดยรวมที่จุด A ประมาณ 30 Gy

ได้แบ่งความรุนแรงของการผลข้างเคียงระยะยาวต่อลำไส้ใหญ่ส่วนปลาย ตาม RTOG late morbidity grading scheme, ประเมินพยาธิสภาพด้วยการตรวจลำไส้ใหญ่ส่วนปลายด้วยกล้อง endoscope เนพะในผู้ป่วยที่มีอาการของผลข้างเคียงและแบ่งความรุนแรงตามพยาธิสภาพตาม Gilinsky classification, หาความสัมพันธ์ระหว่างอาการกับผลที่ได้จากการส่องกล้อง endoscope, หลังจากนั้นได้คำนวณหาค่า biological effective dose (BED) และหาความสัมพันธ์ต่อการเกิดผลข้างเคียงระยะยาวต่อลำไส้ใหญ่ส่วนปลาย

ผลการศึกษาพบว่า ที่ระยะเวลา 13 เดือนของการติดตามผลการรักษา มีผู้ป่วยเกิดผลข้างเคียงระยะยาวทั้งสิ้น (RTOG grade 1-4) เท่ากับ 34 เปอร์เซ็นต์ โดยมีระยะเวลากลางของการเกิดผลข้างเคียงเท่ากับ 9 เดือน มีผู้ป่วยที่เกิดผลข้างเคียงขั้นปานกลางถึงรุนแรง (RTOG grade 3,4) ประมาณ 12 เปอร์เซ็นต์ และพบว่าอาการทางคลินิกตาม RTOG grading เป็นไปในทิศทางเดียวกันกับความรุนแรงของพยาธิสภาพจากการส่องกล้อง endoscope จากการคำนวณหาค่า BED พบว่ามีความสัมพันธ์กับการเกิดผลข้างเคียงระยะยาวต่อลำไส้ใหญ่ส่วนปลาย โดยมีค่าต่ำสุด ที่ทำให้เกิดประมาณ 100 Gy³

จากการศึกษาครั้งนี้ สรุปได้ว่ามีความสัมพันธ์กันอย่างมั่นยำสำคัญระหว่างค่า BED กับ อุบัติการณ์ การเกิดผลข้างเคียงระยะยาวต่อลำไส้ใหญ่ส่วนปลายในผู้ป่วยมะเร็งปากมดลูกที่ได้รับการรักษาด้วยการฉายรังสีเพียงอย่างเดียว

INTRODUCTION

Cervical carcinoma is not only the most common cancer occurring among women in Thailand but also a leading cause of death. In 1994, this cancer ranked second for females cancer and ranked third for cancer related deaths in Maharaj Nakorn Chiang Mai Hospital⁶ , Chiang Mai, Thailand.

The standard management of patients with early cervical carcinoma (Stage I-early IIA) is surgery. The role of curative surgery diminishes once cervical cancer has spread beyond the cervix and vaginal fornices (Stage IIB-IV). Intracavitary radiation for central pelvic disease, and external-beam radiation therapy for lateral parametrial and pelvic nodal disease, are typically combined to encompass the known patterns of disease spread with an appropriate dose, while sparing the bladder and rectum from receiving full radiation doses.¹⁴

Radiation enteritis which was first described in 1897 is one of the most dread complications of radiotherapy because it is so difficult to treat.¹⁹ It can occur in two forms. First, acute injury is seen in up to one half of patients during, or shortly following radiotherapy treatment. It is primarily a direct injury to the gastrointestinal mucosal cells. Symptoms include pain, cramping and diarrhea but these will usually resolve themselves over a 2-6 month period.² Second, chronic injury becomes manifest after a latent period of several months to several years in 2-5% of patients receiving

radiotherapy.^{2,13,15} The extent of gastrointestinal injury depends on the physical characteristics of radiation exposure. The characteristics include dose rate, fractionation of therapeutic dose over days or weeks, field size, type of radiation and corresponding linear transfer. The rectum and rectosigmoid colon are most commonly involved, due to their proximity to the pelvic organ and their relative immobility. Chronic radiation damage to the rectum and rectosigmoid colon is presented as proctocolitis with bloody diarrhea, tenesmus or cramping pain, or it may be presented as an ulcer, stricture formation, obstruction, or fistula formation into the bladder or vagina. It occurs most commonly following radiation treatment of gynecologic or prostatic malignant neoplasm.

Radiation proctitis is a clinical syndrome occurring beyond the sixth month after completion of the treatment which is characterized by rectal irritation or tenesmus, presence of mucus or blood in the stool and frequent bowel movement. To distinguish proctitis from acute transient radiation injury, these symptoms should occur after 6 months. It is graded according to Radiation Therapy Oncology Group (RTOG) late morbidity scoring scheme as follows.³

grade 0 None

grade 1 Mild diarrhea, mild cramping,
bowel movement 5 times
daily, slight rectal discharge
or bleeding.

- grade 2 Moderate diarrhea, colic , bowel movement >5 times daily, excessive rectal mucus or intermittent bleeding
- grade 3 Obstruction or Bleeding requiring blood transfusion or nonsurgical hospitalization
- grade 4 Necrosis, Perforation, fistula requiring surgical intervention
- grade 5 Death directly related to radiation late effect

The severity of radiation proctitis also can be graded endoscopically according to Gilinsky (12) et al. as follows.

- grade 1 erythema \pm telangiectasia, edema, thickening, pallor
- grade 2 above plus friability
- grade 3 ulceration \pm necrosis

Biological effective dose models have been shown to be of special interest in gynecological radiotherapy due to four factors⁽⁸⁾

- the combination of teletherapy with brachytherapy
- the significant risks of normal tissue injury
- the highly inhomogeneous dose distributions
- the use of either low dose-rate or high dose-rate brachytherapy

Currently, the most commonly used model is the linear quadratic, which reproduces

the main features of cell survival curves using a minimum number of adjustable parameters, and has the advantage of being able to distinguish between early and late responding tissues.

OBJECTIVE

- 1) To evaluate the frequency and severity of late rectal complications, in cervical cancer patients treated with radiotherapy alone.
- 2) To assess the correlation between the biological effective dose (BED) delivered to the rectum and the development of late rectal complications.

MATERIALS AND METHODS

Patients entry criteria and evaluation

All medical records of survived cervical cancer patients, treated in Section of Radiation Oncology, Maharaj Nakorn Chiang Mai Hospital from January 1995 to June 1997 were reviewed.

Eligible patients were those with stages IB to IIIB disease (International Federation of Gynecology and Obstetrics, FIGO) and histologically proven cervical cancer. All patients had completed radiotherapy for at least 6 months before included for the study. Patients with incomplete treatments, or who received previous abdominal and pelvis irradiation or surgery, and who also received chemotherapy were excluded. All data from the records and radiographs were available and completed for the study. Patient's

characteristics, radiation factors, and radiation proctitis symptoms were collected from the medical records. Patients and tumor characteristics of the eligible 76 patients are listed in Table 1.

Treatment

Radiation treatment was delivered with a combination of external beam and high dose rate intracavitary radiation.

External radiation

All patients started treatment with external beam irradiation delivered by a cobalt unit or 4-10 MV linear accelerator through anterior-posterior opposed fields or a four-fields box technique. The anteroposterior fields extended superiorly to the L4-5 interspace level and inferiorly to the lower margin of obturator foramen. Laterally, the field extended 1.5-2 cm. outside of the true pelvis. The daily fractionation was 2 Gy at the midplane, 5 fractions per week. The mean total dose given by the external radiation was 52.8 Gy (range 44-60 Gy). A 4 cm width midline shield for the bladder and rectosigmoid after 40-50 Gy of whole pelvis irradiation was usually practice. A mean dose of 49.8 Gy (range 40-60 Gy) was administered to the whole pelvis.

Intracavitary radiation

Intracavitary treatment was delivered by Cobalt sources from a High Dose Rate remote control afterloading unit (Ralstron 20B).

The applicator was Henschke's type, consisting of intrauterine tandem and two nonshielded ovoids. (Figure 1). Usually, 4-6 intracavitary insertions were carried out. The first intracavitary insertion was performed in the third or fourth week of external beam radiotherapy, once or twice a week. On the days designated for intracavitary treatment, this treatment replaced the external beam radiation. The dose per fraction planned at point A was 5 to 7.8 Gy. Point A was defined as 2 cm above the external os and 2 cm lateral to the axis of the intrauterine tube.

A flexible rectal lead tube was inserted in the rectum in every insertions to indicate the anterior rectal wall and identify points of measurements. Before start of radiation, placement of the applicator was verified by two orthogonal fluoroscopic images. Treatment planning, using a personal computer planning program, was carried out and individualized for each patient according to disease extent, source geometry, and the rectal dose. A total of four to six intracavitary treatments were planned for each patient.

After the insertion, two orthogonal films were reviewed and the points of dose were calculated. The rectal reference point dose was obtained on the lateral radiograph from a transverse line drawn from the center of the intravaginal source to the anterior rectal wall (Figure 2). On the anterior-posterior (AP) radiograph, these rectal reference points were

centered between intravaginal sources at midline. The calculated doses at reference points were delivered by a treatment planning system (Computed Medical System-CMS).

In patients treated with a line source (tandem and cylinder) the rectal dose was not calculated since, with this arrangement, the rectal point of reference was not defined uniquely. Treatment characteristics of 76 patients are listed in Table 2.

Grading of severity

The medical records of eligible patients were reviewed for the symptoms of radiation proctitis. All eligible patients had completed radiotherapy for at least 6 months before enrolled for the study. Symptoms of radiation proctitis defined as

1. Rectal irritation including tenesmus
2. Frequent loose bowel movements.
3. Presence of mucus or blood in the stool.

The eligible patients who have no symptom of radiation proctitis as described above will be assumed to be grade 0 by RTOG and will not be sent for sigmoidoscopy, patients who have symptoms of radiation proctitis will be contacted by letter for follow up, clinically grading according to RTOG late morbidity scoring, patients with grade 1-4 were selected for sigmoidoscopy for grading and biopsy. Recorded video were reviewed and grading according to Gilinsky score by double-blind endoscopist who was blinded to the patients' status.

Biological Effective Dose (BED) calculation

The linear quadratic model was originally applied to fractionated radiotherapy by Fowler and Stern⁽¹¹⁾, has been refined and expanded by Barendsen⁽¹⁾, and its use has been reviewed by Fowler⁽¹⁰⁾. The basic equation defines the amount of radiation damage (E), resulting from number of fraction (n) of size (d) each as.

$$E = n (\alpha d + \beta d^2) \dots \dots \dots (1)$$

where the two coefficients, α and β are constant and their ratio, α/β , is an inverse measure of fractionation sensitivity or recovery capacity, characteristic of a particular tissue. The BED is defined by the equation

$$BED = \frac{E}{\alpha} = n d (\alpha d + \frac{d}{\alpha/\beta}) \dots \dots \dots (2)$$

For early responding tissues, including many types of tumor, the ratio α/β is equal to 10 Gy or higher, reflecting the small shoulder of the dose response curve. For late responding tissues with larger shoulders and more repair between fractions, the ratio α/β is low, between 1.5 Gy and about 5 Gy. ⁽¹⁰⁾ In this study, we assume α/β ratio is 3Gy for late reactions.

In the determination of total BED, the external irradiation (XRT) and high dose-rate brachytherapy (HDRB) components have been summed with all calculations using the same value of the ratio α/β .

STATISTICAL ANALYSIS

Complications were counted as one event in each patient, independently of the number of complication. The complication score was the largest score. The starting point of follow up was taken as the date of beginning of radiotherapy. Comparisons between two sets of calculated data were made with the t-test. Correlation of RTOG grading and endoscopically grading was tested using Spearman's rank correlation.

RESULTS

All eligible patients were evaluated for toxicity. As for January 1998, the median follow up duration is 13 months (range 6-36 months). The median time for development of late rectal complications was 9 months after completion of therapy.

Table 3 shows the frequency of late rectal complications according to grade and the number of patients. Overall 26 patients (26 of 76, 34%) developed radiation proctitis. Of these, 17 (22%) were mild late rectal complication (RTOG grade 1-2), whereas 9 (12%) were moderate to severe late rectal complications (RTOG grade 3-4).

Sigmoidoscopy and rectal biopsies were performed in 25 patients who had grade 1-4 late rectal complications (25 of 26, 96%), histopathologic exam revealed only fibrotic changes and no malignancy in all 25 patients, Table 4. Of these, 48% (12 of 25) were grade 1, 40% (10 of 25) were grade 2 and 12% (3 of 25) were grade 3 according to endoscopically

grading (Gilinsky score). The other patient (1 of 26) had surgical intervention performed before starting this analysis, January 1998.

Only four patients underwent a surgical procedure as a result of complication, two patients for recto-vaginal fistula, one patient for perforated bowel, and one patient for bowel obstruction.

Distribution of endoscopically grading and RTOG grading is shown in Table 5. Twelve patients who had RTOG grade 1 also had Gilinsky score grade 1. Fifty percent of patients in Gilinsky score 2 had mild late rectal complications (RTOG grade 1-2) and fifty percent had moderate late rectal complication (RTOG grade 3). For the most severe endoscopically grading, Gilinsky score 3, we found only one patient had moderate late rectal complication (RTOG grade 3) and the other two patients had severe late rectal complication (RTOG grade 4). We found a significantly correlated between the Gilinsky score and RTOG grading. (Spearman's rank correlation coefficient, $rs = 0.229$, $P = 0.03$)

The calculated values of total rectal BED, shown as a histogram in Figure 3, range from 95.3 Gy3 to 141.3 Gy3 with mean values of 102.0 Gy3 for all patients, 101.2 Gy3 for the patients who did not develop complication and 103.4 Gy3 for the patients who subsequently developed complications. A summary of calculated rectal BED statistics is given in Table 6.

When converted to a graph of late rectal complication probability, (Figure 4)

although the numbers are small, the data show a very definite dose-response. The curve demonstrates a complication probability of 30% at the rectal BED 100 Gy₃ and 100% when the rectal BED > 120 Gy₃.

In addition, it can be seen from Figure 5 that the severity of complication increase with the calculated rectal BED. The data can be fitted to a sigmoid curve show a dose-response especially between moderate to severe and mild degree complication.

DISCUSSION

In our series, 12% of patients developed late rectal complications, which were judged to be moderate to severe grade (RTOG-grade 3-4). This compares favorably to results reported by other researchers ^(5,17,18), the incidence of moderate to severe late toxicity with HDR brachytherapy is in the range of 5-30%. Carlos A. Perez et. al ⁽⁴⁾ reported major (grade 3) sequele in approximately 5% of the patients with stage I and about 10% with stage II-IVA cervical cancer treated with low dose rate system. Wang et. al. ⁽²⁰⁾ reported the 5-year actuarial risk of rectal complication in patients treated with HDR intracavitary treatment was 38%. Our overall late rectal complication, 34%, is consistent with their analysis.

Although there are many reports regarding the late rectal complication rate following radiation therapy in cancer of the uterine cervix, the grading system used for late rectal complication is not clearly described.

We selected RTOG late morbidity scoring scheme for our patients. The grades in RTOG system were statistically correlated with the BED values, especially in those with grade 3-4 complications. Patients who had late rectal complication (RTOG grade 1-4), also were confirmed with endoscopic examination and proved by histopathology from rectal biopsies. We also found the significant correlation between RTOG grading for late rectal complications and endoscopically grading.

The occurrence of late rectal complication is influenced by many determinants. These include individual patient radiosensitivity, treatment-related factors, and rectal reference point dose. The purpose of this paper is to describe clinical data showing a very clear dose response for rectal tissues. We are able to significantly relate the total rectal BED and late rectal complication. The difference in intracavitary BED between the patients who developed moderate to severe complications and those who did not, given in Table 6, shows no significance ($p = 0.95$), whereas there is a significant difference between the rectal BED from external beam therapy ($p = 0.03$). This is possibly because of pre-calculation by a personal computer planning program before starting the intracavitary treatment, and the rectal dose were limited to less than 40% of dose to point A. These patients received a nearly uniform rectal dose from the intracavitary treatment, mean of calculated of rectal dose to point A is $41.1 \pm 6.9\%$ compare to $55 \pm 25\%$ in

other study⁽⁷⁾.

The standard deviation (SD) of the intracavitary rectal BED was lower than the SD of external beam BED (Table 2), demonstrated that almost all the patients received a uniform dose from intracavitary treatment and the variation in dose was almost entirely due to external beam treatment. According to the significant difference ($p=0.03$) of rectal BED from external irradiation between the patients who developed moderate to severe late rectal complication and those who did not, the rectal dose from external irradiation should be evaluated carefully concerning an isodose distribution in each patient.

Using the linear quadratic model applied to our clinical results, we found a tolerance value of approximately 100 Gy₃. This could correspond, for example, to a tumor dose prescription of 46 Gy external beam irradiation delivered in 23 fractions, with 4 fractions of 7.25 Gy of each HDR brachytherapy. The rectal reference point dose is not more than 40% of point A dose.

Clark et. al.⁽⁸⁾ have reported a threshold for complications at 125 Gy₃. In terms of dose, it correspond to a tumor dose prescription of 46 Gy external beam treatment in 23 fractions and HDR brachytherapy fractions of 8 Gy each intracavitary delivered in 3 fractions, the rectal reference point dose is 70 % of point A dose. The biological effective dose of their analysis were calculated by using the rectal reference point

defined by the International Commission of Radiation Units and Measurements (ICRU), Report 38. In addition of their first analysis⁽⁹⁾, the rectal dose was calculated at the ICRU defined point 5 mm behind the posterior vaginal wall, which, in approximately 90% of patients, does not coincide with the rectal wall as visualized with the contrast agent in the rectum. So the rectal dose at reference point of ICRU is higher than our study because it is closer to intracavitary applicator.

Ogino et. al.⁽¹⁶⁾ reported that the cumulative ICRU rectal dose, calculated as the biological effective dose (BED), was significantly correlated with the incidence of late rectal complication. They recommended BED of lower than 146 Gy for healthy tissues in patients with advanced disease to keep rectal complication rate less than 10%.

Our tolerance value may also be compared with clinical results in treatment of the head and neck region. For example, the BED threshold for late effects with external beam irradiation in the head and neck region has been found to be 100 Gy₃ for 30 fractions of 2 Gy and 117 Gy₃ for 35 fractions of 2 Gy.⁽¹⁰⁾

As a result of this analysis, our fractionation schedule may be reduced below the threshold value of 100 Gy₃ by ensuring that the dose to the rectal reference point is 40% or less than the prescribed dose, bringing the risk of late complication down to an acceptable level.

Table 1. Baseline characteristics of patients included in this study.

Age (years)		
Range	28-83	
Mean \pm SD	53.8 ± 2.8	
Pathology		
Squamous Cell Carcinoma	68	89.5%
Adenocarcinoma	8	10.5%
Stage		
IB	2	2.6%
IIA	3	4.0%
IIB	41	54.0%
IIIA	1	1.3%
IIIB	29	38.1%

Table 2. Treatment characteristics.

		No of patients	Percent
1. External beam irradiation			
1.1 Energy			
10MV	X-ray	1	1.3%
6MV	X-ray	32	42.1%
4MV	X-ray	21	27.6%
Co-60		22	29.0%
1.2 Technique			
AP/PA		46	60.5%
4 fields box technique		30	39.5%
1.3 External BED			
Range		66.7 - 100.0	
Mean \pm SD		75.1 \pm 18.9	
2. Intracavitary brachytherapy			
Intracavitary BED			
Range		14.3 - 46.6	
Mean \pm SD		27.0 \pm 8.7	
3. Total Rectal BED			
Range		95.3 - 141.3	
Mean \pm SD		102.0 \pm 27.5	
4. Percent of rectal dose to point A			
Mean \pm SD		41.1 \pm 6.9	

Table 3. Late Rectal Complications (RTOG).

Grade	No.	Percent
0	50	65.8
1	13	17.1
2	4	5.2
3	5	6.6
4	4	5.3
Total	76	100

Table 4. Endoscopically Grading of Radiation Proctitis (Gilinsky Score).

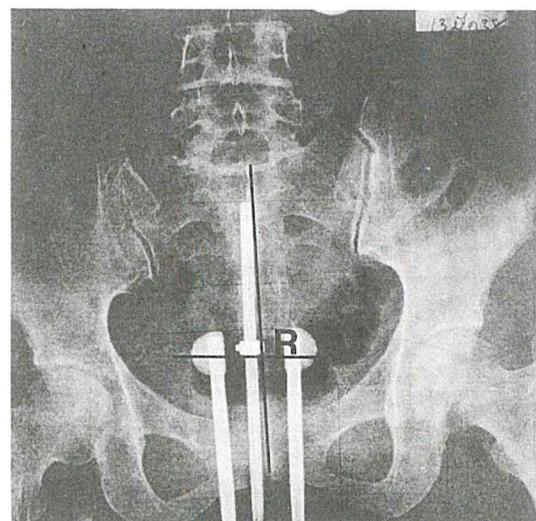
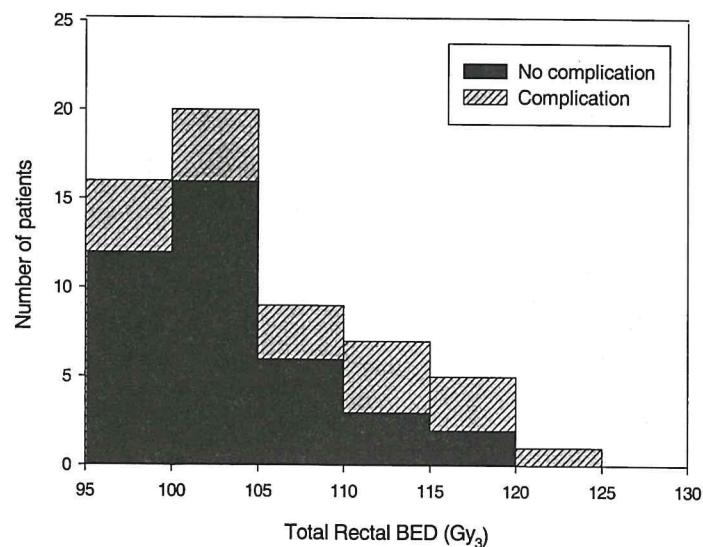
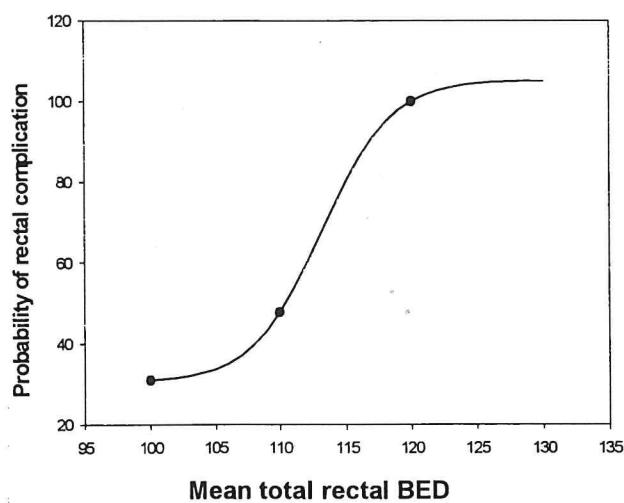

Grade	No.	Percent
1	12	48
2	10	40
3	3	12
Total	25	100

Table 5. Gilinsky score and RTOG grading.

Gilinsky Score	RTOG			
	Grade 1 (No.)	Grade 2 (No.)	Grade 3 (No.)	Grade 4 (No.)
Grade 1 (n=12)	12	-	-	-
Grade 2 (n=10)	1	4	5	-
Grade 3 (n=3)	-	-	1	2

Table 6. Analysis of mean rectal BED.


BED	Complications	No complications	P-value	Moderate to severe complication	P-value
External beam	75.8 ± 6.5	74.7 ± 4.8	0.90	78.8 ± 7.6	0.03*
Brachytherapy	27.9 ± 9.0	26.5 ± 6.3	0.91	26.4 ± 9.5	0.95
Total	103.4 ± 11.5	101.2 ± 6.8	0.90	104.3 ± 15.5	0.31


Figure 1. Anterior-Posterior brachytherapy treatment radiograph

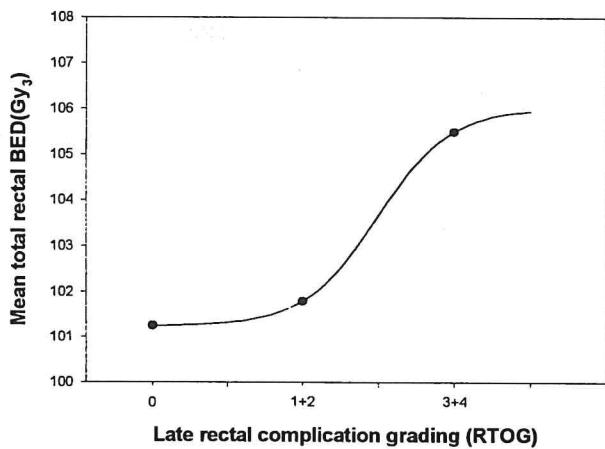

Figure 2. Lateral brachytherapy treatment radiograph

Figure. 3 The distribution of late rectal complication with respect to the calculated total rectal BED

Figure. 4 Probability of late rectal complications with respect to mean total rectal BED (Gy_3).

Figure. 5 The correlation between mean calculated total rectal BED and late rectal complication grading.

REFERENCES

1. Barendsen, G.W. *Dose fractionation, dose rate and iso-effect relationships for normal tissue responses*, Int. J. Radiat. Oncol. Biol. Phys. 8: 1981-1997;1982.
2. Bloomer WD. *Human normal tissue response to radiation therapy*. N. Eng. J. Med.; 293:80-83; 1975.
3. Carlos A. Perez. Overview : Principal and Practical of radiation Oncology 53-55; New York 1992.
4. Carlos A. Perez; Perry w. Grigsby ; Herman Castro-Vita; Mary Ann Lodcett. *Carcinoma of the Uterine cervix II: Lack of Impact of Prolongation of overall treatment time on Morbidity of Radiation Therapy*. Int. J. Radiat. Oncol. Biol. Phys. 34 (1) : 3-11 ; 1996.
5. Chen, M.S.; Lin, F.J.; Hong, C.H.; Tu, C.P.; Lan, J.H.; Tang, S.G.; Leung, W.M.; Wang, T.R. *High dose rate afterloading technique in the radiation treatment of uterine cervical cancer: 399 cases and 9 years experience in Taiwan*. Int. J. Radiat. Oncol. Biol. Phys. 20: 915-919; 1991.
6. ChiangMai Cancer Registry, *Annual Report 1994 Vol. 17* Cancer Unit MMaharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
7. Chong, J.W.; Stephen W.L.; Hui, C.C.; Li, M.S.; Fu, M.F.; Eng. Y.H.; Ching, Y.H.; Chan, C.C. *The correlation of acute toxicity and late rectal injury in radiotherapy*

for cervical carcinoma: Evidence suggestive of consequential late effect (CQLE). *Int. J. Radiat. Oncol. Biol. Phys.* 40 (1): 85-91, 1998.

8. Clark, B.G.; Souhami, L.; Roman, T.N.; Evans, M.D.; Chappell, R.; Fowler, J.F. The prediction of late rectal complications in patients treated with high dose-rate brachytherapy for carcinoma of the cervix. *Int. J. Radiat. Oncol. Biol. Phys.* 38 (5) 989-993; 1997.
9. Clark, B.G.; Souhami, L.; Roman, T.N.; Evans, M.D; Pla, C. Rectal Complication in Patients with carcinoma of the cervix treated with concomitant cisplatin and external beam irradiation with High Dose Rate brachytherapy: A dosimetric analysis. *Int. J. Radiat. Oncol. Biol. Phys.* 28 (5) 1243-1250; 1994.
10. Fowler ,J.F. Brief summary of radiobiological principles in fractionated radiotherapy. *Semin. Radiat. Oncol.* 2:16-21; 1992.
11. Fowler, J.F. ; stern, B.E. Dose-time relationships in radiotherapy and the validity of cell survival models. *Br.J. Radiol*, 36:163-173; 1963.
12. Gilinsky N.H.; Burns D.G. The natural history of radiation induced proctosigmoiditis. *QJ Med*; 205:40-53; 1983.
13. Goldstein F. , Khoury J, Thornton J.T. Treatment of chronic radiation enteritis and colitis with salicylazosulfapyridine and systemic corticosteroid. *Am. Gastroenterol.*; 65: 201-208 1976.
14. John Curtin; Rachelle M.L.; Andrzej P.K.: *Cancer Management: A multidisciplinary Approach.* p 142-163; New York ; 1996.
15. Novak J.M, Collins JT, Donowitz M, et al. Effects of radiation on the human gastrointestinal tract. *J. Clin. Gastroenterol.*; 1:9-39 ;1979.
16. Ogino, I.; Kitamura, T.; okamoto, N.; Yamasita, K.; Aikawa, Y.; Okajima, H.; Matsubara, S. Late rectal complication following high dose rate intracavitary brachytherapy in cancer of the cervix. *Int. J. Radiat. Oncol. Biol. Phys.* 31: 725-734; 1995.
17. Roman, T.N.; Souhami, L.; Freeman, C.R.; Pla, C.; Evans, M.D.C.; Podgorsak, E.B.; Mendelew, K. High dose rate afterloading intracavitary therapy in carcinoma of the cervix. *Int. J. Radiat. Oncol. Biol. Phys.* 20: 921-926; 1991.
18. Shu-Mo, C.; Xiang-E.W.; Qi, W. High dose rate afterloading- in the treatment of cervical cancer of the uterus. *Int. J. Radiat. Oncol. Biol. Phys.* 16: 335-338; 1989.
19. Walsh D. Deep tissue trauma from Roentgen Ray exposure. *Br. Med. J.* ; 2: 272-273; 1897.
20. Wang, C.J. ; Leung, S.W.; Chen H.C.; Sun, LM.; Fang, F.M.; Changchien, C.C.; Huang, E.Y.; Wu, J.M.; Chen, C.C. High dose rate intracavitary brachytherapy (HDR-IC) in treatment of cervical cancer: 5-year results and implication of increased low-grade rectal complicatin of initiation an HDR-IC fractionation scheme. *Int. J. Radiat. Oncol. Biol. Phys.* 38: 391-398; 1997.

ค่า uniformity index ของ implantation ในการรักษามะเร็งแบบ high dose rate brachytherapy

โชคดิกร จำปาเงิน วท.ม.(พิสิกส์การแพทย์)

วรรณภา เมธาริกาช วท.บ.(รังสีเทคนิค)

จง Jintr ภัทรมนตรี วท.ม. (นิวเคลียร์พิสิกส์)

สาขาวิชารังสีรักษา แผนกวิชารังสีวิทยา โรงพยาบาลจุฬาลงกรณ์ สภากาชาดไทย

The uniformity index of implantation in high dose rate brachytherapy

C. Jumpangern, J. Pataramontree

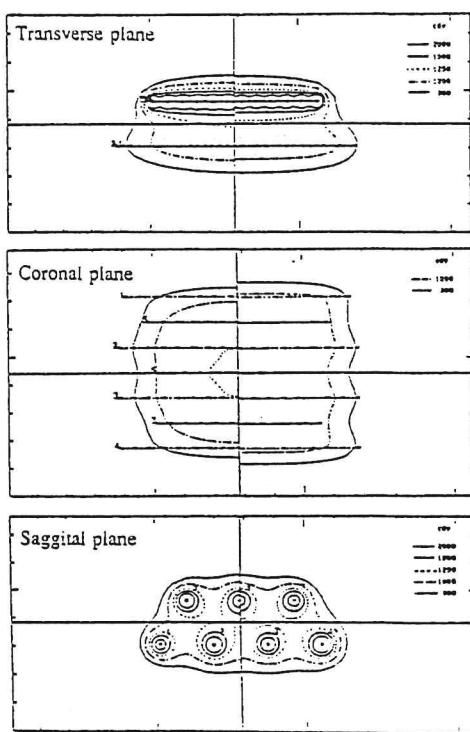
**Radiotherapy Section, The King Chulalongkorn Memorial Hospital, Thai Red Cross Society,
Bangkok 10330**

Abstract

The planning score of an implantation in high dose rate brachytherapy can be evaluated by the dose volume histogram. It is a mean to evaluate the overall dose distribution within a specified volume showing degree of dose uniformity of that treatment planning. The uniformity indexes are about 3.0 for double plane, 1.5 for single plane, 1.0 for single line source. The study shows that the degree of uniformity index depends on geometry of source, the method of calculation: optimization or non optimization as well as the reference level of prescribed treatment dose.

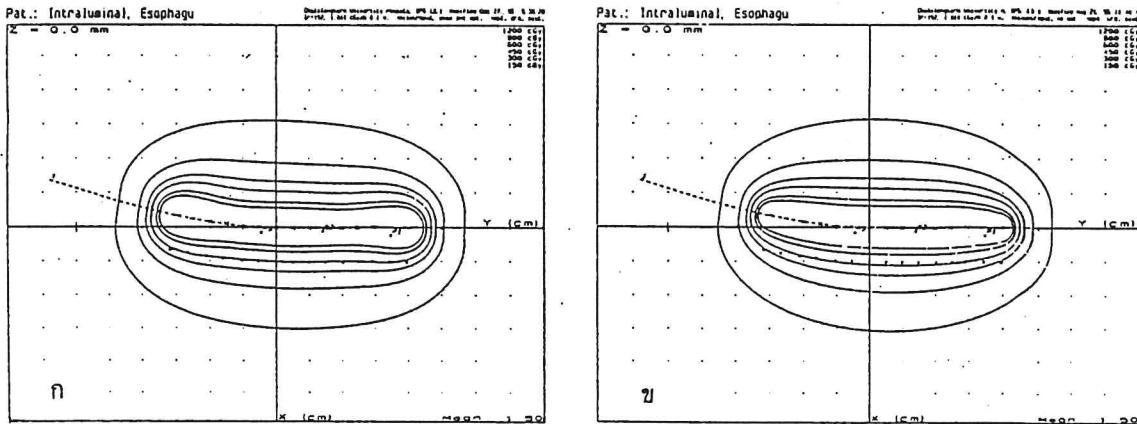
บทคัดย่อ

Dose volume histogram เป็นเครื่องมือใช้ประเมินความสม่ำเสมอของปริมาณรังสีใน implantation โดยอาศัยค่า uniformity index ของการกระจายปริมาณรังสีในปริมาตรที่กำหนด การรักษาที่ดีควรมีค่า uniformity index ประมาณ 3.0, 1.5, 1.0 ใน double plane implantation, single plane implantation และ single line source ตามลำดับ จากการศึกษาพบว่า ค่า uniformity index ขึ้นกับตำแหน่งของ source ในแต่ละเข็ม รูปแบบการคำนวณปริมาณรังสี (optimization หรือ non optimization) และการกำหนด reference level ของปริมาณรังสีที่ใช้รักษา


บทนำ

การทำ interstitial implant ในผู้ป่วยโรคมะเร็ง ลิ่งสำคัญที่ควรคำนึงถึงคือ ความสม่ำเสมอของปริมาณรังสีภายในปริมาตรเนื้อเยื่อที่แพทย์ต้องการรักษา เนื้อเยื่อปกติไม่ควรได้รับปริมาณรังสีมากเกินไป ในปัจจุบันนิยมใช้เรเก็มมันตรังสี Ir-192 ชนิด pellet ซึ่งมีเส้นผ่าศูนย์กลาง 1.1 มิลลิเมตร ยาว 3.5 มิลลิเมตร และให้ dose rate สูงเพื่อความสามารถเดือดกว่างเร่ง กัมมันตรังสีได้ตามตำแหน่งที่ต้องการอย่างแม่นยำ⁽¹⁾ และปรับตำแหน่งเพื่อให้การกระจายของปริมาณรังสี มีความสม่ำเสมอได้ดี ซึ่งจะสม่ำเสมอเท่าไนน์พีนกับการเรียงเข็ม (geometry of needle) ของ implant นั้นๆด้วย การรักษาแบบนี้ผู้ป่วยไม่จำเป็นต้องพักในห้อง เนื่องจากใช้เวลาสั้นผู้ป่วยสามารถกลับบ้านได้อย่างปลอดภัย

การกระจายปริมาณรังสีจะสม่ำเสมอ (uniformity) ดี ทำได้โดยการวางแผน source ในระบบที่ห่างสม่ำเสมอ กัน โดยเฉพาะใน plane ของ source ที่ไม่ขนานกัน หรือเป็นแผ่นโถกีบังคงต้องรักษา symmetry ของตำแหน่ง source อีกด้วย ลักษณะการวางแผน source เช่นนี้ถือว่าเป็น standard treatment planning


การรักษาโดยใช้ source เพียงเม็ดเดียว เคลื่อนที่ไปตามตำแหน่งที่กำหนดให้เร็วกว่า stepping source system ซึ่ง source จะหยุดอยู่ที่ตำแหน่งต่างๆ ในเวลาที่เท่ากัน (constant dwell time)

การกระจายของปริมาณรังสีจะสม่ำเสมอได้ถึงขั้นถ้าใช้การคำนวณแบบ optimization เข้ามาร่วมด้วย ซึ่งการคำนวณแบบนี้จะปรับ dwell time ของแต่ละตำแหน่ง source ใหม่ เพื่อให้ปริมาณรังสีที่ขอบของปริมาตรมีค่าสม่ำเสมอที่สุด ดังรูปที่ 1

รูปที่ 1 เปรียบเทียบเส้น isodose เมื่อคำนวณแบบ non optimization (ซ้าย) และคำนวณแบบ optimization (ขวา)

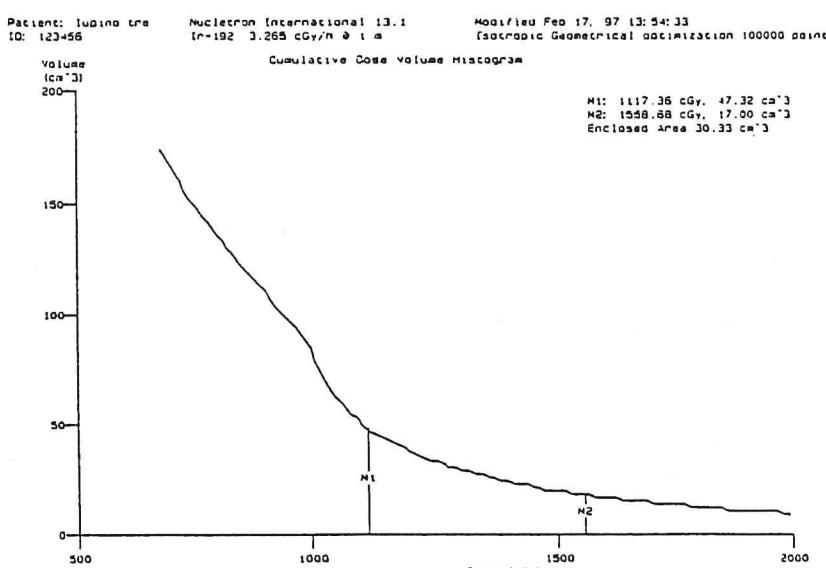
ິ້ອຄວະວັງໃນການຄໍານວນແບບ optimization ຄື້ອ ອາຈທຳໃຫ້ປະມາດໃນການຮັກຍາ (treatment volume) ໃຫຍ່ງກ່າວການຄໍານວນແບບຮຽມດາໄດ້ ຄວາມສັງເກດຮູ່ປ່າງຂອງເສັ້ນ isodose ຄວາມຍາວຂອງກາວາງ source (active length) ໄທຍາວພອດືກັນເປົ້າໝາຍ (target) ດັ່ງຮູບທີ 2

ຮູບທີ 2 ຈຸດສີດຳເນັ້ນແສດງຕຳແໜ່ງທີ່ແພຍ່ຕ້ອງການໃຫ້ໄດ້ປະມານຮັງສີ 600 cGy ຈາກ single line source

- ก. ແສດງ isodose distribution ທີ່ຄໍານວນແບບ optimization
- ຂ. ແສດງ isodose distribution ຂອງ non optimization ທີ່ຈະສັງເກດເຫັນວ່າ dose point ທີ່ສ່ວນປລາຍທີ່ສອງໄດ້ປະມານຮັງສີດຳກ່າວ່າ 600 cGy ແລະ ທີ່ປລາຍ line source ມີເສັ້ນ isodose ນານແນ່ນກວ່າແສດງຄືງປະມານຮັງສີທີ່ຕໍ່ກ່າວ່າ

ການຈັດເຮືອງ source ແບບ high dose rate (HDR) ກວາຍືດໜັກຂອງ stepping source dosimetry system⁽²⁾ ທີ່ຈຶ່ງຄຳລັກກັນ Paris system⁽³⁾

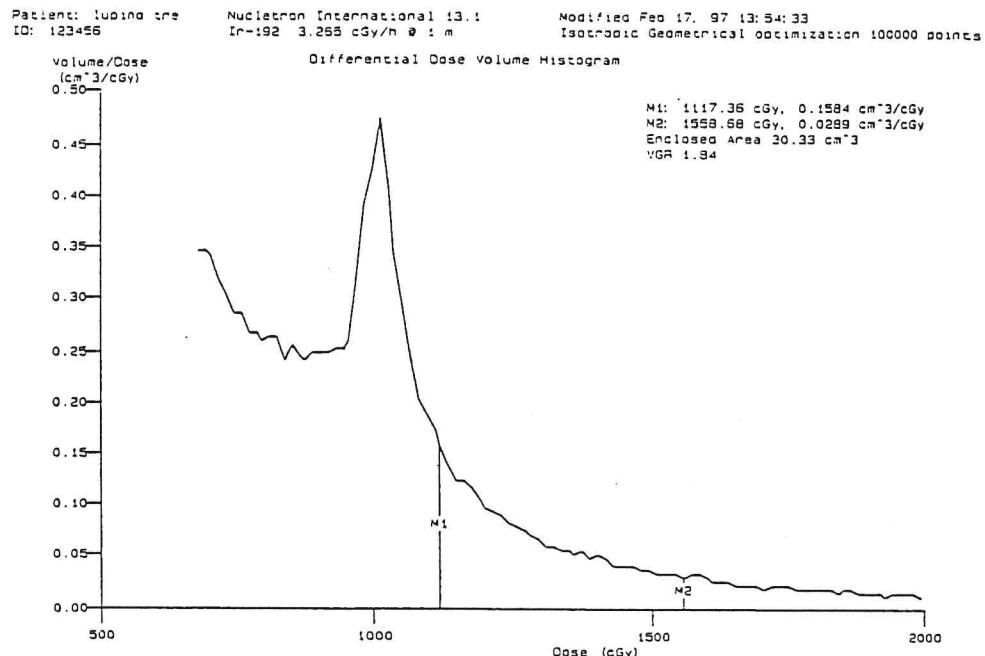
ທີ່ໃຫ້ໃນ low dose rate (LDR) ພັກການຈັດເຮືອງ source ຮະຫວ່າງ HDR ແລະ LDR ໄດ້ແສດງໄວ້ໃນ ດາරາງທີ 1


ตารางที่ 1 เกณฑ์การวางแผนແຫັງແຮ່ແນວວິມາຜົນຮັງສືແບນ stepping source dosimetry system ຂອງ HDR implantation ແລະແບນ Paris dosimetry system ຂອງ LDR implantation

SSDS(HDR)	PDS(LDR)
1. ความຍາວຂອງ line source ເສມອກັນ tumor volume	1. ความຍາວຂອງ line source ອວຣຄຸມ tumor volume
2. ຈຳນວນ dwell position ໃນແຕ່ລະ catheter ≥ 3 position	2. ເໜື້ອນກັນ SSDS
3. ຈຸດທີ່ຄຳນວນວິມາຜົນຮັງສືຢູ່ກາງຮະຫວ່າງ catheter ດີວ່າເປັນ reference dose point	3. ເໜື້ອນກັນ SSDS
4. ກຳນົດ prescribed dose ທີ່ 85 % ຂອງ reference dose ແລະ ນົບເວລາທີ່ dose > 170 % ດີວ່າ over dose	4. ເໜື້ອນກັນ SSDS
5. ການ optimization ທຳໄໝ uniformity ກາຍໃນ reference dose volume ສູງເພື່ອ	5. uniformity ດຳເນື່ອງຈາກໄຟ້ສາມາດ optimization ໄດ້

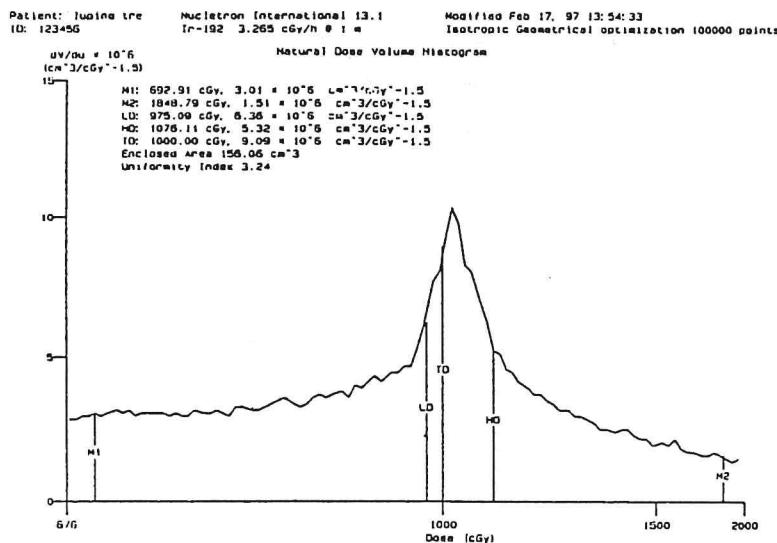
Uniformity Index (UI) ເປັນເຄື່ອງນື່ອໃນການປະເມີນກາງກະຈາຍຂອງວິມາຜົນຮັງສືໃນວິມາຕຣເປົ້າຫາຍາໄດ້ຈາກ dose volume histogram (DVH)

Dose volume histogram ມີ 3 ຊົນດີ ໄດ້ແກ່


1. Cumulative DVH ເປັນ linear plot ຂອງຄ່າປົມາຜົນຮັງສື(D)ກັບປົມາຕຣ(v)ດັ່ງຮູບທີ່ 3 M ແລະ M₂ ເປັນ margin slider ເພື່ອຄຳນວນປົມາຕຣທີ່ໄດ້ຮັບຄ່າປົມາຜົນຮັງສືທີ່ຕ້ອງການ ຈາກຮູບທີ່ 3 ແສດງວ່າປົມາຕຣຂອງເນື້ອເບື້ອທີ່ໄດ້ຮັບຮັງສືຮ່ວ່າງ 1117.36-1558.68 cGy ມີບັນດາ 30.33 cm³

ຮູບທີ່ 3 Cumulative dose volume histogram

2. Differential DVH เป็นกราฟ plot ระหว่างค่า dv/dD หรือ (ปริมาตร/ปริมาณรังสี) กับค่า


ปริมาณรังสี ดังรูปที่ 4 ได้แสดงว่าปริมาณ 1000 cGy มีค่า volume gradient ratio 1.84

รูปที่ 4 Differential dose volume histogram

3. Natural DVH เนื่องจาก Cumulative DVH และ Differential DVH ขึ้นกับ inverse square law และค่าปริมาณรังสีสูงมากในบริเวณที่ใกล้ๆ กับ source (high dose gradient) Natural DVH จึงเป็นทางออกในการ plot ค่าปริมาตรที่ไม่มีผลของ inverse square law แสดงอยู่ นั่นคือการ plot ระหว่างค่าปริมาณรังสีและ dv/dD โดย v เป็น function ของปริมาณรังสี (D) มีค่าดังนี้คือ

$U(D) = -D^{-1.5} + \text{constant}$. Natural DVH จะแสดง uniformity index (UI) ค่า UI คือค่าแสดงการกระจายปริมาณรังสีภายในปริมาตรเป้าหมาย จากรูปที่ 5 ค่าปริมาณรังสี 676 cGy เป็นค่าบน surface ของ volume ที่กำหนดขึ้น ค่า UI สามารถช่วยในการประเมินแผนการรักษาได้ โดยค่าปริมาตรของเนื้อเยื่อมีค่ามากในปริมาณรังสีช่วงใด ก็จะปรากฏ peak ขึ้นมาให้เห็นเด่นชัด UI จะมีค่าสูง ดังนั้นแผนการรักษาที่ดีควรจะมี peak ของ Natural DVH เด่นชัด

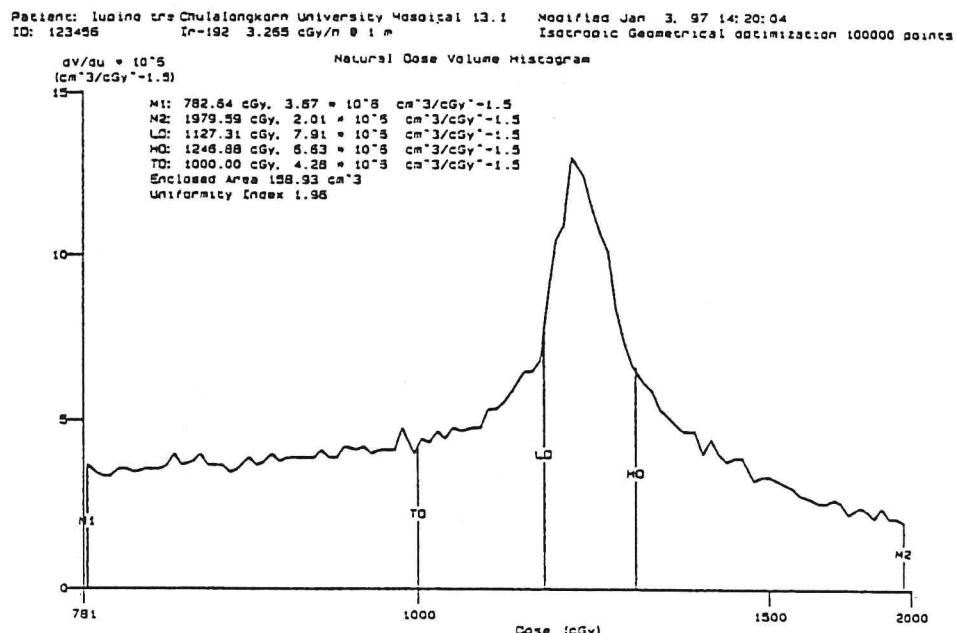
รูปที่ 5 Natural dose volume histogram

TD=prescribed dose หรือ treatment dose

LD=half maximum ของความสูงของเส้นกราฟทางด้าน low dose

HD= half maximum ของความสูงของเส้นกราฟทางด้าน high dose

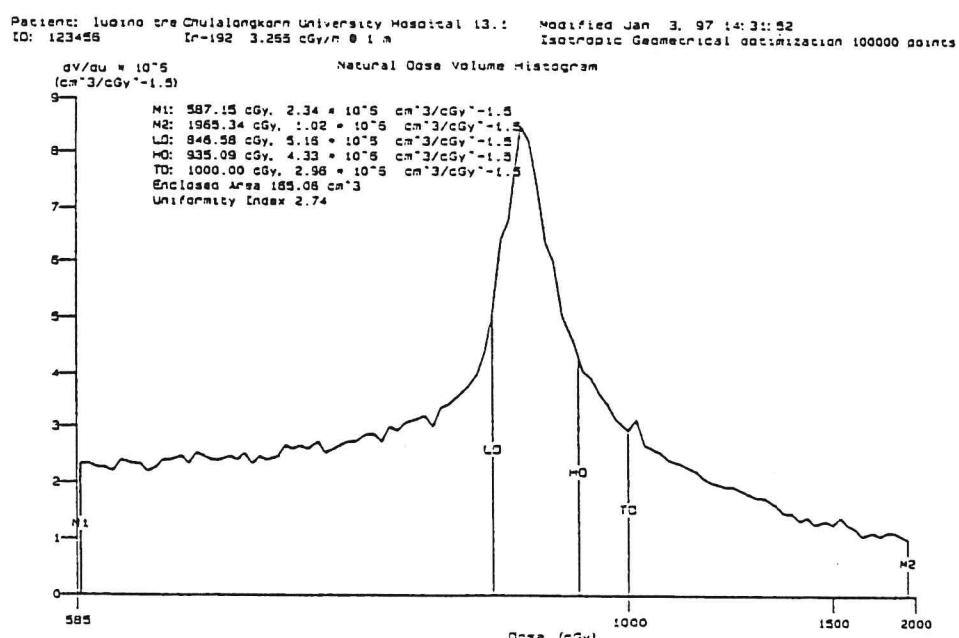
M_1, M_2 =margin slider ซึ่งสามารถเลื่อนมาวัดปริมาตรในช่วงที่สนใจได้
ตามด้องการ


วัสดุและวิธีการ

- ศึกษา implant case แบบ double plane, single plane และ single line source
- ใช้ planning computer และ software ชื่อ Plato คำนวณปริมาณรังสีอันเนื่องจาก implant ในข้อ 1. โดยคำนวณทั้งแบบ optimization และ non optimization
- เลือกการวางแผน source จนกระทั่งได้การกระจายของปริมาณรังสีดีที่สุด
- ประเมินแผนการรักษาด้วย DVH ถ้าแผนการรักษาบังไม่ดีพอ ก็จะทำการข้อ 2-4 จนกระทั่งได้แผนการรักษาที่ดี

ผลและวิจารณ์

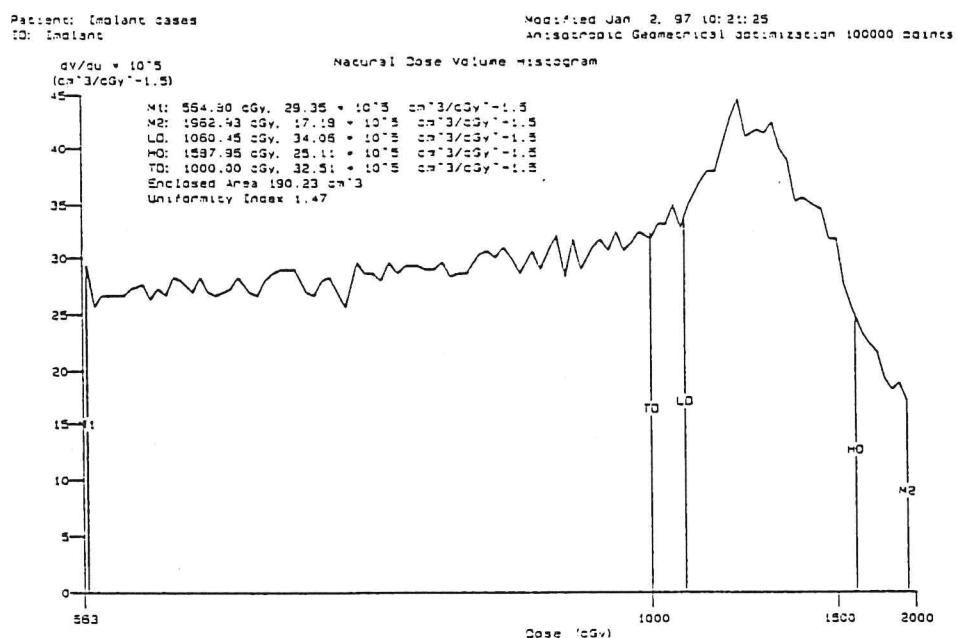
● Double plane implant


นิยมใช้ในการรักษามะเร็งเต้านม จากรุปที่ 1 นำมาทำ natural DVH จะได้ดังรูปที่ 5 ซึ่งมี peak สูง แสดงว่ามีปริมาตรจำนวนหนึ่งได้รับปริมาณรังสีสูงๆ เสมอ ค่า treatment dose(TD)=1000 cGy เป็นบริเวณที่อยู่ใน peak ลักษณะของ peak แอบและสูงในบริเวณ treatment dose ค่า UI =3.24 ตำแหน่งของ low dose(LD)อยู่ทางซ้ายมือของ TD และแสดงว่าปริมาตรส่วนหนึ่งได้รับปริมาณรังสีสูงกว่า TD ในขณะที่ ค่าปริมาณรังสีสูงสุด =2000 cGy ซึ่งไม่เกิน 2 เท่าของ reference dose มีปริมาตรน้อย จากลักษณะดังกล่าวทำให้แผนการรักษานี้มีคุณภาพดีพอสมควร

ຮູບທີ 6 Natural dose volume histogram ຂອງ double plane implant(high dose plan)

ຈາກຮູບທີ 6 ຈະເຫັນວ່າ peak ເຄືອນນາທາງ high dose ແລະ LD ສູງກວ່າ TD ດັ່ງນັ້ນປົມາຕົວ ສ່ວນໃໝ່ໄດ້ຮັບປົມານີ້ມີຄວາມຮັບປົມານີ້ທີ່ແພທຍີຕ້ອງການ

ແຜນການຮັກຢານີ້ທຳໃໝ່ປົມາຕົວສ່ວນໃໝ່ໄດ້ຮັບປົມານີ້ທີ່ແພທຍີຕ້ອງການ

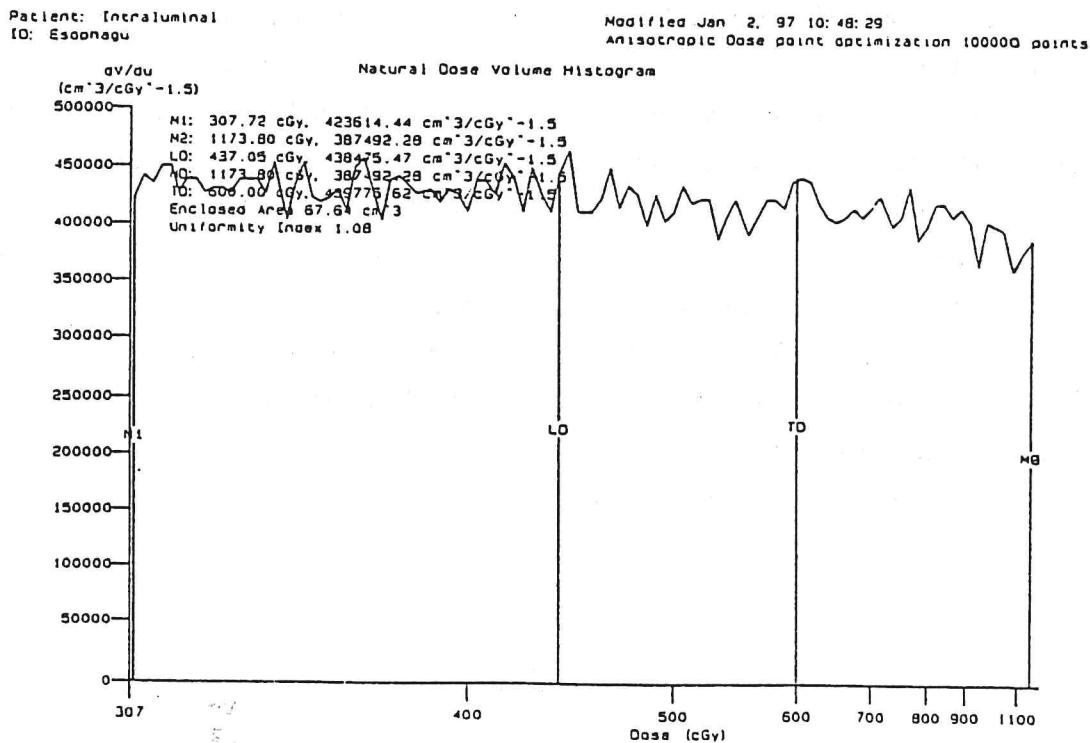

ຮູບທີ 7 Natural dose volume histogram ຂອງ double plane implant(low dose plan)

จากรูป 7 จะเห็นว่า peak เลื่อนมาทาง low dose ซึ่งต่ำกว่า treatment dose ดังนั้นปริมาตรส่วนใหญ่ได้รับปริมาณรังสีในจำนวนที่น้อยกว่า

treatment dose นั่นคือแผนการรักษาที่ทำให้ปริมาตรส่วนใหญ่ได้รับปริมาณรังสีน้อยกว่าที่แพทย์ต้องการ

- Single plane implant

นิยมใช้ในการรักษา มะเร็งกระเพุ่งแก้ม เป็นต้น


รูปที่ 8 Natural dose volume histogram of single plane

จากรูปที่ 8 จะเห็นว่า peak มีลักษณะกว้าง ไม่สูงเด่นชัดเหมือนกับใน double plane ดังนั้นใน single plane จึงมีปริมาตรไม่มากเท่าไนก็ที่มีการกระจายของปริมาณรังสีสม่ำเสมอตี ทราบได้จากค่า

UI=1.47 ซึ่งน้อยกว่าของ double plane นอกจากนี้ปริมาตรของเนื้อเยื่อที่มีค่าปริมาณรังสี 2 เท่าของ reference dose มีค่าสูง เพราะฉะนั้นแผนการรักษาที่มีคุณภาพพอใช้

- Single line source

ນີ້ມີໃຫ້ໃນການຮັກຢາ ມະເຮົງຫລອດອາຫານ

ຮູບທີ 9 Natural dose volume histogram of single line source

ຈາກຮູບທີ 9 ໄນມີ peak ປົກກູ ຖຣ ອຸ່ນ່ວ່າວ່າ
LD ແລະ HD ເພຣະຈະນັ້ນແສດງວ່າຄວາມສໍາເສນອ
ຂອງປຣິມາຜົວສື່ນີ້ນີ້ຍໍ່ ຜົ່ງຄ່າ UI=1.08

ໃນ Paris system ໄດ້ແນະນຳວ່າ useful length
treated=0.7ເທົ່າຂອງ radioactive length ແລະ limiting
width ຂອງ treated volume ແສດງໃນຕາງໆທີ 2⁽³⁾

ຕາງໆທີ 2 The width of treated volume for active length

Active length(mm)	0	30	60	90
Width of treated volume(mm)	9	13	15	16

ສຽງ

ໃນການຄໍານວນປຣິມາຜົນຮັງສື່ອງ brachytherapy ຈະໄດ້ dose ທີ່ uniform ທີ່ຈຶ່ນເນື່ອໃຈ້ optimization ປັບ dwell time ທີ່ຕໍ່ແໜ່ງຂອນ ຖອງ implant ແຕ່ຄ້າຈັດ source position ໃຫ້ເໜາະສົມກີ່ຈະໄດ້ dose distribution ຕີ່ໄດ້ເຊັ່ນກັນ

ໃນການຕັດສິນໃຈວ່າ ແຜນການຮັກຍາຂອງ implant ນັ້ນມີການກະຈາຍຂອງປຣິມາຜົນຮັງສື່ສໍາເສນອດີຫຼືໄນ່ ດູຈາກລັກຍະນະດ່ວຍໄປນີ້

1. ດ່າວ UI ໃນ

double plane ຄວາມີ່ຄ່າປະມານ 3.0

single plane ຄວາມີ່ຄ່າປະມານ 1.5

single line source ຄວາມີ່ຄ່າປະມານ 1.0
ແຕ່ຄ້າໄດ້ດ່າວ UI ມາກກວ່າທີ່ກ່າວມາຈະດີຢືນຈຶ່ນ ດ່າວ UI
ນັ້ນຈຶ່ນກັບ geometry ຂອງ implant source

loading pattern ແຜນການຮັກຍານີ້ໃຊ້ການຄໍານວນແບບ optimization ທີ່ອີ້ນ non optimization ແລະ prescribed treatment dose ທີ່ level ໄດ້

2. ໃນ differential dose volume histogram ແລະ natural dose volume histogram ຄວາມີ່ peak ສູງແລະແຄນ ປ.ບຣິເວັນ TD

3. ໃນ natural dose volume histogram ດໍາແໜ່ງ LD ຄວາມທັບກັນ TD ທີ່ອີ້ນວ່າມີຂອງ TD ນັ້ນຄືວ່າມີ low dose

4. ດ່າວປຣິມາຜົນຮັງສື່ສູງສຸດໄໝ່ຄວາມາກກວ່າ 2 ເທົ່າ
ຂອງ reference dose

5. ປຣິມາຕຣາຈາດໍາແໜ່ງ HD ຈຶ່ນໄປໄໝ່ຄວາມເກີນ
50% ຂອງປຣິມາຕຣາກ TD ຈຶ່ນໄປ ນັ້ນຄືວ່າ ໄນມີ over
dose

ເອກສາຣອ້າງອີງ

1. Kolkman-Deurloo IKK, Visser AG, Niel CGJH, Driver N., Levendag PC. Optimization of interstitial volume implants. Radiother. Oncol. 1994; 31: 229-239
2. Laarse RV The stepping source dosimetry system as an extention of the Paris system.
3. Godden TJ. Interstitial therapy.In:Physical aspects of brachytherapy. Medical physics handbooks 19:Adam Hilger, Bristol, England 1988: 148-158
4. Yeung F,Gurtler M, Mould RF. Introduction to dose-volume histograms. In:Radiotherapy treatment planning workshop. 1996: 61-71
5. Anderson LL. A “natural” volume-dose histogram for brachytherapy. Med. Phys. 1986; 13: 898-90

การศึกษาผลการเพาะเชื้อแบคทีเรียและความไวต่อยาปฏิชีวนะ
ในผู้ป่วยโรคมะเร็ง ที่มีภาวะติดเชื้อแบคทีเรีย¹
ของศูนย์ป้องกันและควบคุมโรคมะเร็ง เขต 7 จังหวัดอุบลราชธานี²

นพ. พงศธร ศุภอรรถก
หัวหน้ากลุ่มงานรังสีวิทยา³
ศูนย์ป้องกันและควบคุมโรคมะเร็ง เขต 7
จังหวัดอุบลราชธานี⁴

บทคัดย่อ

เป็นการศึกษาข้อนหลัง (retrospective study) ผลการเพาะเชื้อแบคทีเรียและความไวต่อยาปฏิชีวนะของหนอง (pus culture) ในผู้ป่วยโรคมะเร็งที่ได้รับการรักษาที่ศูนย์ป้องกันและควบคุมโรคมะเร็ง เขต 7 จังหวัดอุบลราชธานี ระหว่างเดือนมิถุนายน 2540 ถึงเดือนสิงหาคม 2541 จำนวน 58 ราย พนว่า เชื้อแบคทีเรียที่พบมากอันดับ 1-5 คือ *Pseudomonas aeruginosa* , *Proteus spp.*, *Klebsiella spp.*, *Staphylococcus aureus* , *Streptococcus Spp* โดยพบร้อยละ 25.9 , 23.4 , 13.5 , 11.1 , 8.6 ตามลำดับ

ผู้ป่วยร้อยละ 38 (21 ราย) พนเชื้อแบคทีเรียตั้งแต่ 2 ชนิดขึ้นไป ส่วนใหญ่เป็นเชื้อในกลุ่ม gram negative rod จากผลการตรวจความไวต่อยาปฏิชีวนะ พนว่าเชื้อแบคทีเรียที่พบบ่อย 1-3 ยังตอบสนองดีต่อยาในกลุ่ม Aminoglycoside

บทนำ

ภาวะติดเชื้อเป็นปัญหาที่สำคัญในการดูแลรักษาผู้ป่วยโรคมะเร็ง จากการศึกษาผ่าศพ (autopsy) พบว่า เป็นสาเหตุการตายถึง 75% ของผู้ป่วย leukemia, 50% ผู้ป่วย lymphoma รวมทั้งส่วนใหญ่ของผู้ป่วย metastatic carcinoma (1)

จากการศึกษาภาวะติดเชื้อแบคทีเรียในผู้ป่วยมะเร็งที่เกิดภาวะ “ febrile-neutropenia” จำนวน 2,252 ราย ในกรณีที่ทราบผลเพาะเชื้อทางแบคทีเรียสามารถแยกแยะชนิดของเชื้อแบคทีเรียดังนี้

ชนิดของเชื้อแบคทีเรีย	ช่วงปี 1975-1977 (%)	ช่วงปี 1980 - 1989 (%)
gram - positive	65 (31)	170 (51)
gram - negative	201 (63)	110 (33)
polymicrobial	42 (13)	52 (16)
anaerobes	10 (3)	-

ตารางที่ 1 แสดงการติดเชื้อแบคทีเรียในผู้ป่วยโรคมะเร็งที่เกิดภาวะ “febrile neutropenia” จำนวน 2,252 ราย (2)

ช่วงปี 1975 - 1977 แบคทีเรียในกลุ่ม gram - negative bacilli เป็นเชื้อ ก่อเหตุที่พบบ่อยที่สุด (ประมาณ 65 %) และบังพบรการติดเชื้อมากกว่า 1 ชนิด 10-15 %

ส่วนในปี 1986 - 1989 ปรากฏว่า เชื้อในกลุ่ม gram - positive กลับเป็นสาเหตุที่พบบ่อยที่สุด ถึงกว่า 50% รวมทั้งอุบัติการณ์ของการติดเชื้อในกลุ่ม gram - negative ได้ลดลงอย่างเห็นได้ชัด จาก 63% เหลือเพียง 33% สาเหตุของปراภัยการณ์ ครั้งนี้ยังไม่ทราบแน่ชัด แต่ได้มีผู้พยายามอธิบายว่า เกิดจากมีการสอดใส่สาย catheter ต่าง ๆ เช่น central venous, arterial, peripheral catheter เข้าไปในตัวผู้ป่วยมากขึ้น

ปอยครั้งที่แพทย์ผู้รักษาจำเป็นต้องให้การรักษาภาวะติดเชื้อด้วยยาปฏิชีวนะ โดย “empirical treatment” จนกว่าจะได้ผลเพาะเชื้อจากสิ่งส่งตรวจดังนั้น อุบัติการณ์ของภาวะติดเชื้อแบคทีเรียแต่ละชนิด ในแต่ละห้องถีน หรือแต่ละโรงพยาบาล จะเป็นประโยชน์ในการเลือกยาปฏิชีวนะ

การศึกษานี้เป็นการรวบรวมรายงานผลเพาะเชื้อแบคทีเรีย และความไวต่อยาปฏิชีวนะ ในการติดเชื้อของผู้ป่วยโรคมะเร็ง โดยนำมาศึกษาเฉพาะที่สิ่งส่งตรวจคือ หนอง (pus) หรือ สิ่งคัดหลัง (discharge) จากก้อนมะเร็งหรือแพลงผ่าตัด โรคมะเร็ง

วัตถุประสงค์ของการศึกษาเพื่อทราบอุบัติการณ์ของการติดเชื้อแบคทีเรียชนิดต่าง ๆ รวมทั้งความไวต่อยาปฏิชีวนะ ของเชื้อแบคทีเรียในผู้ป่วยโรคมะเร็งที่มีภาวะติดเชื้อ

วัสดุและวิธีการ

เป็นการศึกษาขอนหลัง (retrospective Study) ด้วยการรวบรวมผลเพาะเชื้อแบคทีเรีย และความไวต่อยาปฏิชีวนะ (cultured and sensitivity) จากแฟ้มข้อมูลของกลุ่มงานพยาธิวิทยา และ แฟ้มประวัติผู้ป่วย (OPD.Card) ของศูนย์ป้องกันและควบคุมโรคระดับ 7 จ.อุบลราชธานี

ข้อมูลที่นำมามีศึกษาจะคัดเลือกเฉพาะในรายที่สิ่งส่งตรวจ คือ หนอง (pus) หรือสิ่งคัดหลัง

(discharge) ที่ได้จากการอยโรคมะเร็ง รวมทั้งแพลผ่าตัด โรคมะเร็ง โดยไม่รวมสิ่งส่งตรวจ ที่เป็นปั๊สสาวะ, เสmen, เลือด, อุจจาระ, เนื้องจากสิ่งส่งตรวจเหล่านี้มีปริมาณน้อย

ผลการคึกษา

ได้รับรวมข้อมูล ผลการเพาะเชื้อแบคทีเรีย และความไวต่อยาปฏิชีวนะตั้งแต่เดือน มิถุนายน 2540-สิงหาคม 2541 รวมทั้งสิ้น จำนวน 58 ราย โดยมีรายละเอียดค่า ฯ ดังนี้

- ผลเพาะเชื้อแบคทีเรียในผู้ป่วย 58 ราย แจกแจงเรียงตามลำดับมากไปหน้าอย ได้ดังนี้ (ผู้ป่วยบางราย พนเชื้อแบคทีเรีย มากกว่า 1 ชนิด)

เชื้อ	จำนวน (%)
1. <i>Pseudomonas aeruginosa</i>	21 (25.9%)
2. <i>Proteus spp.</i>	19 (23.4%)
3. <i>Klebsiella spp.</i>	11 (13.5%)
4. <i>Staph aureus</i>	9 (11.1%)
5. <i>Streptococcus spp.</i>	7 (8.6%)
6. <i>E.coli</i>	7 (8.0%)
7. <i>Enterobacter spp.</i>	5 (6.1%)
8. <i>Acinatobacter spp.</i>	1 (1.2%)
9. <i>Providencia spp.</i>	1 (1.2%)

ตารางที่ 2 แสดงการแจกแจงผลการเพาะเชื้อแบคทีเรีย

- ผลการเพาะเชื้อแบคทีเรียในผู้ป่วยที่พนแบคทีเรียมากกว่า 1 ชนิด

ในจำนวนผู้ป่วยทั้งหมด 58 ราย มีผู้ป่วย 22 ราย ที่มีผลการเพาะเชื้อ พนเชื้อแบคทีเรียมากกว่า 1 ชนิด คิดเป็น 38% ของผู้ป่วยทั้งหมด รายละเอียดของเชื้อที่พบร่วมกัน ได้แสดงดังตารางที่ 3

เชื้อ	จำนวนผู้ป่วย
Ps+proteus	7
Klebsiella+proteus	5
Ps+Klebsiella	1
Ps+Enterobacter	1
E.coli+proteus	1
Ps+Streptococcus	1
E.coli+Klebsiella	2
Ps+providencia	1
Klebsiella+Acinatobactor	1
streptococcus+staphylococcus spp.	1
Ps.+klebsiella+Enterobaetor	1

ตารางที่ 3 แสดงจำนวนผู้ป่วยที่พบร่วมกันเชื้อแบคทีเรียมากกว่า 1 ชนิด ในสิ่งส่งตรวจเดียวกัน
(Ps=*Pseudomonas aeruginosa*)

3. ผลการเพาะเชื้อแยกตามชนิดของโพรคามะเร็ง

เนื่องจากสิ่งส่งตรวจที่ได้จากผู้ป่วยโพรคามะเร็งบริเวณศีรษะและคอ พนเป็นจำนวนมาก จึงได้แบ่งเป็นสิ่งส่งตรวจจากผู้ป่วยโพรคามะเร็งศีรษะและคอ และผู้ป่วยโพรคามะเร็งอื่น ๆ

3.1 ผลเพาะเชื้อจากมะเร็งศีรษะและคอ (ทั้งที่มีมะเร็งปัตรูมภูมิหรือต่อมน้ำเหลือง)

เชื้อ	จำนวน(ราย)
Pseudomonas aeruginosa	9
Proteus spp.	8
Klebsiella spp.	7
E.coli	5
Streptococcus spp.	5
Staphylococcus spp.	3
Enterobacter	2
Acinatobacter	1
รวม	40

ตารางที่ 4 แสดงการแยกแยะผลการเพาะเชื้อแบคทีเรีย จากผู้ป่วยมะเร็งบริเวณศีรษะและคอ

3.2 ผลการเพาะเชื้อจากมะเร็งบริเวณ อื่น ๆ

เชื้อ	จำนวน(ราย)
Pseudomonas aerugirosa	12
Proteus	11
Klebsiella	4
Staphylococcus aureus	6
Streptococcus spp.	2
E. coli	2
Enterobacter spp.	3
Providencia	1
รวม	41

ตารางที่ 5 แสดงการแยกแยะผลการเพาะเชื้อแบคทีเรีย จากผู้ป่วยมะเร็งบริเวณอื่น ๆ

4.5 *Streptococcus* spp (รวมທັງໝົດ 7 ຮາຍ)

ຢາ	ຈຳນວນຜູ້ປ່ວຍທີໄວດ່ອຍາ
Ampicillin	6 (85.7%)
Lincomycin	6 (85.7%)
Meticillin	6 (85.7%)
Chloramphenical	5 (71.4%)
Erythromycin	5 (71.4%)
Penicillin	4 (57.1%)
Cefazolin	4 (57.1%)
Co-trimoxazole	1 (14.2%)
Norfloxacin	1 (14.2%)

ຕາຮາງທີ 10 ແສດງຄວາມໄວດ່ອຍາປົງປັງຂົນນະຂອງເຊື້ອ *Streptococcus* spp.

(ໜາຍເຫດຸ) ກາຣາຍງານພົດຄວາມໄວດ່ອຍາປົງປັງຂົນນະຂອງເຊື້ອແບກທີ່ເຮີຍທາງໜ້ອງປົງປັງຕິກາຣ ໄນໄດ້
ທົດສອນຄວາມໄວສໍາຫັນຢາທຸກດ້ວຍໃນສິ່ງສ່າງຕ່ອງຈົງຂອງຜູ້ປ່ວຍແຕ່ລະຮາຍ

ວິຈາຮົນ ແລະສຽບ

ຈາກພົດກາຮົນສຶກນາ ພນວ່າ ເຊື້ອແບກທີ່ເຮີຍ
ທີ່ພົນນ່ອຍໄດ້ແກ່ກຸ່ມ gram negative rod ທັງ
Enterobacteriaceae ແລະ Pseudomonas
aeruginosa ໂດຍພົນຮມກັນ ຄື່ງ 80.3 % ສ່ວນທີ່
ເໜີ້ອໄດ້ແກ່ ເຊື້ອໃນກຸ່ມ *Streptococcus* spp. (8.6%)
ແລະ *Staphylococcus arureus* (11.1 %)

ເຊື້ອແບກທີ່ເຮີຍທີ່ພົນໄດ້ 5 ອັນດັບແຮກ ໄດ້ແກ່
Ps. aeruginosa (25.9%) *Proteus* spp. (23.4 %)
Klebsiella spp. (13.5%) *Staphylococcus aureus*
(11.1%) , ແລະ *Streptococcus* spp. (8.0%)
ເນື່ອແຍກຜູ້ປ່ວຍອອກເປັນກຸ່ມນະເຮັງສີຮະະ
ແລະຄອ ແລະກຸ່ມອື່ນໆ ພນວ່າ ເຊື້ອແບກທີ່ເຮີຍທີ່ພົນເປັນ
ຂັ້ນດັບ 1 ຄື່ງ 3 ຍັງຄົງເປັນ *Ps.aeruginosa*, *Proteus*
spp., *Klebsiella* spp ດາມລຳດັບ

ຈາກພົດກາຮົນພົດຕຽນຄວາມໄວຂອງເຊື້ອ
ແບກທີ່ເຮີຍທີ່ພົນໄດ້ຢາໃນກຸ່ມ
Aminoglycoside ທຸກດ້ວຍບັນດອນສອນດີໃນກາຣັກນາ
ເຊື້ອກຸ່ມ Enterobacteriaceae ແລະ Pseudomonas.
aeruginosa

ສ່ວນຄວາມໄວດ່ອຍາປົງປັງຂົນນະ ຂອງເຊື້ອກຸ່ມ
gram positive cocci ໃນກາຮົນສຶກນາຄວັງນີ້ຍັງໄໝສາມາດ
ສຽບໄດ້ເນື່ອຈຳຈຳນວນຜູ້ປ່ວຍບັນດອນຂ້າງນ້ອຍ

ອ່າຍ່າງໄຮກ້ດາມ ໃນກາຍງານພົດທະສອນຄວາມໄວດ່ອ
ຍາປົງປັງຂົນນະໜ້ອງປົງປັງຕິກາຣໄຝໄດ້ທຳກາຣທົດສອນຢາປົງປັງຂົນນະ
ທຸກດ້ວຍແຕ່ເລືອກທະສອນໃນຢາທີ່ມີໂຄກສະດອນສອນໄດ້ດີ
ດັ່ງນັ້ນ ຍັງໄໝສາມາດສຽບປິດຄວາມໄວຂອງຢາປົງປັງຂົນນະ
ໄດ້ທຸກດ້ວຍ

4. ผลการตรวจความไวต่อยาปฏิชีวนะของเชื้อแบคทีเรียที่พบในผู้ป่วยใน อันดับ 1 ถึง 5

4.5 *Pseudomonas aeruginosa* (รวมทั้งหมด 21 ราย)

ยา	จำนวนผู้ป่วยที่ไวต่อยา
Amikacin	19 (90.4%)
Gentamycin	17 (80.9%)
Netilmycin	17 (80.9%)
Ceftazidime	13 (61.9%)
Cefuroxime	6 (28.5%)
Ciprofloxacin	5 (23.8%)
Sulpyrazone	4 (19%)
Ceftriaxone	2 (9.5%)
Cefotaxime	2 (9.5%)
Cefazoline	1 (4.7%)
Cefoxitin	1 (4.7%)

ตารางที่ 6 แสดงความไวต่อยาปฏิชีวนะของเชื้อ *Pseudomonas aeruginosa*4.2 *Proteus spp.* (รวมทั้งหมด 19 ราย)

ยา	จำนวนผู้ป่วยที่ไวต่อยา
Gentamycin	18 (94.7%)
Amikacin	15 (78.9%)
Kanamycin	14 (73.6%)
Ampicillin	13 (68.4%)
Chloramphenical	13 (68.4%)
Cotrimoxazole	13 (68.4%)
Ceftriaxone	11 (57.8%)
Cefoxitin	9 (47.3%)
Cefotaxime	6 (31.5%)
Netilmycin	4 (21%)
Cefuroxime	4 (21%)
Tetracycline	2 (10.5%)
Cefamandole	1 (5.2%)
Ciprofloxacin	1 (5.2%)
Cefsulodine	1 (5.2%)

ตารางที่ 7 แสดงความไวต่อยาปฏิชีวนะ ของเชื้อ *Proteus spp.*

4.3 *Klebsiella spp* (รวมทั้งหมด 11 ราย)

ยา	จำนวนผู้ป่วยที่ไวต่อยา
Gentamycin	11 (100%)
Chloramphenical	10 (90.9%)
Kanamycin	9 (81.8%)
Co-trimoxazole	9 (81.8%)
Netilmycin	5 (45.4%)
Cefuroxime	5 (45.4%)
Ceftriaxone	5 (45.4%)
Tetracycline	5 (45.4%)
Cefotaxime	4 (36.3%)
Amikacin	4 (36.3%)
Cefoxitin	2 (18.1%)
Cefazoline	1 (9%)
Cefamandole	1 (9%)

ตารางที่ 8 แสดงความไวต่อยาปฏิชีวนะของเชื้อ *Klebsiella spp.*

4.4 *Staphylococcus aureus* (รวมทั้งหมด 9 ราย)

ยา	จำนวนผู้ป่วยที่ไวต่อยา
Chloramphenical	7 (77.7%)
Co-trimoxazole	7 (77.7%)
Cefazolin	5 (55.5%)
Lincomycin	5 (55.5%)
Erythromycin	4 (44.4%)
Cefoxitin	3 (33.3%)
Penicillin	2 (22.2%)
Cefamandole	2 (22.2%)
Meticillin	2 (22.2%)
Kanamycin	1 (11.1%)
Cefuroxime	1 (11.1%)

ตารางที่ 9 แสดงความไวต่อยาปฏิชีวนะของเชื้อ *Staphylococcus aureus*

4.5 *Streptococcus spp.* (รวมทั้งหมด 7 ราย)

ยา	จำนวนผู้ป่วยที่ไวต่อยา
Ampicillin	6 (85.7%)
Lincomycin	6 (85.7%)
Meticillin	6 (85.7%)
Chloramphenical	5 (71.4%)
Erythromycin	5 (71.4%)
Penicillin	4 (57.1%)
Cefazolin	4 (57.1%)
Co-trimoxazole	1 (14.2%)
Norfloxacin	1 (14.2%)

ตารางที่ 10 แสดงความไวต่อยาปฏิชีวนะของเชื้อ *Streptococcus spp.*

(หมายเหตุ) การรายงานผลความไวต่อยาปฏิชีวนะของเชื้อแบคทีเรียทางห้องปฏิบัติการ ไม่ได้ทดสอบความไวสำหรับยาทุกตัวในสิ่งส่งตรวจของผู้ป่วยแต่ละราย

วิจารณ์ และสรุป

จากการศึกษา พบว่า เชื้อแบคทีเรียที่พบบ่อยได้แก่ กลุ่ม gram negative rod ทั้ง Enterobacteriaceae และ Pseudomonas aeruginosa โดยพบรวมกัน ถึง 80.3 % ส่วนที่เหลือได้แก่ เชื้อในกลุ่ม *Streptococcus spp.* (8.6%) และ *Staphylococcus aureus* (11.1 %)

เชื้อแบคทีเรียที่พบได้ 5 อันดับแรก ได้แก่ *Ps. aeruginosa* (25.9%) *Proteus spp.* (23.4 %) *Klebsiella spp.* (13.5%) *Staphylococcus aureus* (11.1%) และ *Streptococcus spp.* (8.0%)

เมื่อแยกผู้ป่วยออกเป็นกลุ่มน้ำเรืองศีรษะ และคอ และกลุ่มน้ำตา พบว่า เชื้อแบคทีเรียที่พบเป็นอันดับ 1 ถึง 3 ยังคงเป็น *Ps.aeruginosa*, *Proteus spp.*, *Klebsiella spp.* ตามลำดับ

จากการรวมผลตรวจความไวของเชื้อแบคทีเรียที่เรียดต่อยาปฏิชีวนะ พบว่ายาในกลุ่ม Aminoglycoside ทุกตัวยังคงสนองคีในการรักษา เชื้อกลุ่ม Enterobacteriaceae และ Pseudomonas aeruginosa

ส่วนความไวต่อยาปฏิชีวนะ ของเชื้อกลุ่ม gram positive cocci ในการศึกษาครั้งนี้ยังไม่สามารถสรุปได้เนื่องจากจำนวนผู้ป่วยยังค่อนข้างน้อย

อย่างไรก็ตาม ในรายงานผลทดสอบความไวต่อยาปฏิชีวนะห้องปฏิบัติการไม่ได้ทำการทดสอบยาปฏิชีวนะทุกตัวแต่เลือกทดสอบในยาที่มีโอกาสติดเชื้อตั้งน้ำ ซึ่งไม่สามารถสรุปถึงความไวของยาปฏิชีวนะได้ทุกตัว

ບຣຣານຸກຣມ

1. Robert F. Infection in patient with neoplastic disease. In : John M eds. Manual of oncologc - therapeutics. 3rd ed. Philadelphia ; J.B. Lippincott , 1995 : 415 - 429.
2. Kenneth R , Grald B. Infectio in patients with cancer . In : James H eds. Cancer medicine. 3rd ed. Pensylvania : lea & Febiger ,1993 : 2416-2441.