

วารสารสมาคมรังสีรักษาระดับประเทศไทย

มะเร็งวิวัฒนา

ปีที่ 4 ฉบับที่ 1

Vol.4 No.1

มกราคม-เมษายน 2541

January-April 1998

ศาสตราจารย์กิตติคุณ แพทย์หญิงพิศมัย อร่ามศรี

Journal of the Society of Radiation Oncology of Thailand

ISSN 0859-2616

สมาคมรังสีรักษาแห่งประเทศไทย
The Society of Radiation Oncology of Thailand

รายชื่อคณะกรรมการชุด 2540

ของสมาคมรังสีรักษาแห่งประเทศไทย

คณะกรรมการที่ปรึกษาติดตั้งศักดิ์

1. ศ.พ.ญ.พิศมัย อร่ามศรี	
2. ศ.พ.ญ.สายสกาน อุณหนันท์	
3. น.พ.สิริศักดิ์ ภริพัฒน์	
4. ผ.ศ.พ.ญ.สุรีย์ วิเศษฐาน	
5. ศ.น.พ.กีรติ ทั่งสุน卓	
1. ศ.น.พ.ไพรัช เทพมงคล	
2. ศ.พ.ญ.พวงทอง ไกรพิบูล	
3. น.พ.พิศิษฐ์ ศิริสุข	
4. ร.ศ.น.พ.วิชาญ หล่อวิทยา	
5. ผ.ศ.พ.ญ.ประภัสสร รัชดาบดี	
6. น.อ.เอกชัย วิเศษศิริ	
7. น.พ.ยงยุทธ คงธนวัตต์	
8. ศ.พ.ญ.ลักษณา โพชนาภรณ์	
9. พ.ญ.สมใจ แดงประเสริฐ	
10. พ.อ.หญิงพรศรี คิดชอบ	
11. พ.ญ.สายพิณ ตั้งครัชต์	
12. ศ.พ.ญ.วิมล สุขุมยາ	
13. ร.ศ.น.พ.ประเสริฐ เลิศสงวนสินชัย	
14. พ.ท.ประมุข พรมหัตตนาพงศ์	
15. ร.ศ.พ.ญ.สุพัตรา แสงรุจิ	
16. น.อ.เกษม จงศิริวัฒน์	
17. นายกสมาคมฯ อุปนายก คนที่ 1	
18. นายกสมาคมฯ อุปนายก คนที่ 2	
19. เลขาธิการสมาคมฯ เหรอญญาณ	
20. ผู้ช่วยเหรอญญาณ	
21. ปฏิคม	
22. ประชาสัมพันธ์และหารายได้	
23. บรรณาธิการ	
24. ประธานวิจัย	
25. ประธานวิชาการ	
26. กรรมการกลาง	
27. นายทะเบียน	

ເນື້ອຂ່າຍມາຈາກປົກ

ຄາລສຕຣາຈາຈາຍກິດຕິຄຸນ ແພທຍໍ່ໜູຝີພິຄົມໝໍ ອຣ່າມຄຣີ

ປະວັດການສຶກຫາ

ພ.ສ.2493 ແພທຍຄາສດຮັບຜົນທີດຈາກຄະແພທຍຄາສດຮັກສອນພາບລ

ພ.ສ.2495 ອາຈາຍແພນກັງສິວິຫຍາ ຄະແພທຍຄາສດຮັກສອນພາບລຈຸພາລັງກຮນ

ພ.ສ.2497-2500 ໄດ້ຖຸນຸ່າລຸໄປຮົກສຶກຫາວິຊາສິວິຫຍາ ໃນ ປະເທດສຫະລູອເມົລິກາ ໄດ້ສຶກຫາ ໃນ Cleveland Clinic, OHIO, U.S.A.

ພ.ສ.2500 ສອບໄດ້ Diploma of American Board of Radiology & Nuclear Medicine

ພ.ສ.2502 ໄດ້ຖຸນຸ່າ SEATO RESEARCH FELLOWSHIP ໄປສຶກຫາວິຊາວິຊາສິວິຫຍາ ທີ່ ປະເທດອັກກຸນ ໃນ ໂຮງພາບລ CHRISTIE HOSPITAL & HOLT RADIUM INSTITUTE MANCHESTER

ພ.ສ.2508 ໄດ້ຖຸນຸ່າລຸມໂບ ຈາກປະເທດແກ່ນາດາ ໄປສຶກຫາດູງການເກື່ອງກັບຮັງສິວິຫຍາ ແລະ ໄດ້ຖຸນຸ່າ DAAD ຈາກ ສຫພັນຫຼວງຍອມັນນີ້

ປະວັດການທຳເໜີນ

ພ.ສ.2493 ແພທຍໍ່ປະຈຳບ້ານ ແພນກັງສິວິຫຍາ ຄະແພທຍຄາສດຮັກສອນພາບລ

ພ.ສ.2495 ອາຈາຍ ແພນກັງສິວິຫຍາ ຄະແພທຍຄາສດຮັກສອນພາບລຈຸພາລັງກຮນ

ພ.ສ.2511 ໄດ້ຮັບແຕ່ງດັ່ງເປັນຜູ້ຂ່າຍຄາສດຣາຈາຍ

ພ.ສ.2512 ໄດ້ຮັບແຕ່ງດັ່ງເປັນຮອງຄາສດຣາຈາຍ ແລະ ທ່ວ້າໜ້າກວິຊາວິຊາສິວິຫຍາ

ພ.ສ.2515 ໄດ້ຮັບແຕ່ງດັ່ງເປັນຄາສດຣາຈາຍ

ພ.ສ.2524 ເປັນປະຮານໝ່າມຄຸນແຮກຂອງໝ່າມຮັງສິວິຫຍາ (ພ.ສ.2524-2529)

ພ.ສ.2529 ເປັນຜູ້ກ່ອດັ່ງ ແລະ ເປັນນາຍກົນແຮກຂອງສາມາຄວັງສິວິຫຍາແຫ່ງປະເທດໄທ (2529-2530)

ພ.ສ.2531 ໄດ້ຮັບແຕ່ງດັ່ງເປັນຄາສດຣາຈາຍກິດຕິຄຸນຂອງຈຸພາລັງກຮນໝໍາຫວິທາລັຍ

ບັນຫຼາຍ

- ແພທຍໍ່ທີ່ປັບປຸງສາບັນນະເງິນແໜ່ງຫາຕີ (ດັ່ງແຕ່ ພ.ສ.2530-ບັນຫຼາຍ)
- ຮອງປະຮານອ່ານຸ່ງການພັດທະນາປະມານຸ່ງ ໃນກິຈການແພທຍໍ່
- ການມາກົດຕິມືສັດຍົບຂອງສາມາຄວັງສິວິຫຍາແຫ່ງປະເທດໄທ

วารสารสมาคมรังสีรักษาระบบทุกประชานไทย
Journal of the Society of Radiation Oncology of Thailand

ปีที่ 4 ฉบับที่ 1

มกราคม-เมษายน 2541

ส า ง บ บ

หน้า

▷ นายกสมาคมฯและ.....	4
▷ บรรณาธิการและ.....	5
▷ สารสนเทศ.....	6
▷ Low dose preoperative and selective high dose postoperative radiation therapy for rectal cancer.....	7
▷ Experiences in the treatment of Osteosarcoma in Ramathibodi Hospital.....	15
▷ The influence of an immobilization mask on the absorbed dose in the build-up region of photon beams.....	25
▷ จะอ่านงานวิจัยที่เกี่ยวกับผลการรักษาอย่างไร.....	37
▷ รังสีรักษานิปปอนของประเทศไทย.....	40

ນາຍກລາມໄແລ້ງ ນາຍກລາມໄແລ້ງ ນາຍກລາມໄແລ້ງ

ในที่สุดวารสาร “ນະເຮັງວິວດັບນົບ” ของสมาคมรังสีรักษาแห่งประเทศไทย ก็ได้คลอดออกมาก็ครั้ง หลังจากหายไประยะหนึ่ง หลังจากนี้กองบรรณาธิการได้แจ้งให้ทราบว่า เราจะจะมีหนังสือออก มาเป็นระยะตามกำหนด ซึ่งก็แน่นอนที่สุด ต้องขึ้นอยู่กับความร่วมมือ ของพวกราในการส่งเรื่องมาลง

วารสารเล่มนี้จะแจกจ่ายให้สมาชิก, ห้องสมุดของ โรงพยาบาลทั่วประเทศไทย ถ้าพวกราเมื่อเรื่องอะไร ที่น่าสนใจ ไม่ว่าจะเป็นข้อคิดเห็น, บทความทางวิชาการ, งานวิจัย ทั้งด้าน Clinical และ Basic research ฯลฯ ก็ขอความกรุณาช่วยส่ง เรื่องมาให้เราด้วย

(ຮ.ສ.ນ.ພ.ວິຊາຍຸ หล່ອວິທາ)
นายกสมาคมรังสีรักษาแห่งประเทศไทย

ບ ຮ ຮ ລ ທ ກ ຣ ກ ຮ ແ ລ ພ

ບ ຮ ຮ ລ ທ ກ ຣ ກ ຮ ແ ລ ພ

ບ ຮ ຮ ລ ທ ກ ຣ ກ ຮ ແ ລ ພ

ກ່ອນອື່ນຕົ້ນການຂອງກ່າຍ ທີ່ວາງສາມະເຮັດວວັນນີບັນນີອຸກ
ມາລ່າໜ້າກວ່າກໍາທັນດົມການ ເນື່ອຈາກມີການເປີ່ຍັນແປ່ງຄະນະການ
ສາມາຄມຮັງສີຮັກໝາ ແລະມີການເປີ່ຍັນແປ່ງຄະນະບຣະນາທິການ ທຳໄໝມີ
ອຸປະສົກໃນການຮັບຮັບມົບທຸກຄວາມ ເຮັດວວັນນີເປັນອ່າຍ່າງຍິ່ງວ່າຕ່ອໄປຄົງຈະຕີ້ຫຸ້ນ
ທັງນີ້ພວກເຮາງຮັງສີຮັກໝາຈະຕົ້ນຊ່ວຍກັນສ່ວນທຸກຄວາມມາລັງໃຫ້ມາກ່າງ
ວາງສາກີຈະສາມາດອຸກໄດ້ອ່າຍ່າງສໍາເສນອແລະທັນເວລາ

ວັດຖຸປະສົງຂອງວາງສານອຸກຈະເພື່ອແຜ່ງແພ່ງຄວາມຮູ້ທັງ
ດ້ານຮັງສີຮັກໝາ ມະເຮັດວວັນນີແລະຄວາມຮູ້ທີ່ໄປທາງການແພທຍິກແກ່ສາມາຊີກ
ແລະຜູ້ສັນໃຈ ຍັງຮັດຈະເປັນສື່ອກລາງການແສດງຄວາມຄືດເຫັນຮະຫວ່າງ
ສາມາຊີກແລະຜູ້ຮ່ວມອ່ານທັງໃນວິຊາຊື່ພົດຍົກກັນແລະດ່າງສາຂາວິຊາຊື່ພື້ນໃຈ
ເພວະຈະນັ້ນຄ້າສາມາຊີກຜູ້ໄດ້ມີຂໍ້ເສັນອແນະ ອີ່ວດ້ອງກາຈະໃຫ້ທາງສາມາຄມໆ
ທໍາວະໄໄ ໂປຣສ່ວນຄວາມເຫັນຂອງທ່ານມາຍັງບຣະນາທິການວາງສາກີ ອີ່ວຈະ
ຜ່ານມາຍັງຄະນະການສາມາຄມໆ ທີ່ຈຶ່ງເປັນຄະນະບຣະນາທິການອີກ
ຕຳແໜ່ງໜຶ່ງດ້ວຍ

ໃນບັນນີ້ເຮົາໄດ້ຮັບຄວາມກຽມງານຈາກສາສດຮາຈາຍກິດຕິຄຸນ
ແພທຍິກແນ່ງພິຄົມບັນຍັດ ອ່ານມາຮັດວວັນນີ ທີ່ຈຶ່ງເປັນນາຍາທ່ານແຮກຂອງເຮົາ ໄດ້ໃຫ້
ເກີຍຮົດໃໝ່ກາພແລະປະວັດຂອງທ່ານມາລັງໃນວາງສາກີ ແລະບັນດ່ອງໃປ
ເຮົາຈະລັງກາພແລະປະວັດຂອງອາຈາຍອົງາວຸໂສໃນງານຮັງສີຮັກໝາທ່ານອື່ນຈຸ
ດ້ວຍ ເພື່ອໃຫ້ຮັງສີຮັກໝາຮຸ່ນໜັງໜັງ ໄດ້ຮູ້ຈັກຜູ້ນຸກເບີກໃນງານວິຊາຊື່ພົດຍົກ
ຂອງເຮົາ

ຂອບພະຄຸນຜູ້ເຂີ້ນທຸກຄວາມໃນວາງສາທຸກທ່ານ

ຄະນະບຣະນາທິການ

สารสนเทศสำหรับผู้เขียน

เรื่องที่จะตีพิมพ์

- บทบรรณาธิการ (Editorial) เป็นบทแสดงความเห็นทางวิชาการ หรือแนวทางการวิชาการ ศึกษา ค้นคว้า วิจัยทางวิชาการที่ยังใหม่
- นิพนธ์ด้านฉบับ (Original articles) และรายงานผู้ป่วย (Case report) ซึ่งเป็นผลงานทางการศึกษาหรือวิจัยของผู้เขียนเอง หรือรายงานผู้ป่วยที่นำเสนอ
- บทพื้นฟูวิชาการ (Review articles) เป็นการรวบรวมสรุปหรือวิจารณ์ความก้าวหน้าทางวิชาการในเรื่องใดเรื่องหนึ่ง
- ปกิณกะ (Miscellany) เป็นบทความทั่วไปเกี่ยวกับการแสดงความคิดเห็น ซักถามปัญหา หรือการรวบรวมน้ำทึกการอภิปราย บทคัดย่อวารสารที่นำเสนอเจลักษณะจดหมายถึงบรรณาธิการ (Letter to editor)

เงื่อนไข

- ด้านฉบับที่ส่งให้พิจารณาจะต้องไม่เคยตีพิมพ์ หรืออยู่ในระหว่างการตีพิมพ์ในวารสารเล่มอื่น
- บทความแและนิพนธ์ด้านฉบับ รวมทั้งการแสดงความคิดเห็นทั้งหมดเป็นผู้เขียนเองทั้งสิ้น คณะกรรมการไม่จำเป็นต้องเห็นด้วยเสนอไป

การเตรียมต้นฉบับ

- ด้านฉบับควรพิมพ์หน้าเดียว อาจเป็นภาษาไทยหรืออังกฤษก็ได้
- บทความประเทกนิพนธ์ด้านฉบับและรายงานผู้ป่วยจะต้องมีบทคัดย่อทั้งภาษาไทยและภาษาอังกฤษ
- บทความประเทกนิพนธ์ด้านฉบับและรายงานผู้ป่วย บทพื้นฟูวิชาการ จะต้องมีเอกสารอ้างอิงสำหรับข้อมูลที่อ้างถึงในบทความนั้น
- การอ้างอิงเอกสารในบทความ ให้ใช้ระบบตัวเลขยกระดับอยู่เหนือข้อความที่อ้างอิงในเนื้อเรื่องและเอกสารที่อ้างถึงในบทความนั้น

วารสาร

วารสารภาษาอังกฤษ รายชื่อผู้แต่ง ให้เริ่มจากนามสกุลเดิม ชื่อย่อ ในกรณีที่มีมากกว่า 6 คน ให้ใช้ชื่อ 3 คนแรก ตามด้วย et al. ซึ่งบทความ ชื่อวารสาร ให้ใช้ค่ายอตาม Index Medicus ปี; ปีที่: หน้า

วารสารภาษาไทย รายชื่อผู้แต่ง ให้ใช้ชื่อ นามสกุลเดิม และชื่อวารสารเดิม หนังสือ

ชื่อผู้แต่ง ชื่อเรื่อง พิมพ์ครั้งที่ สถานที่พิมพ์ สำนักพิมพ์ ปี หน้า

การอ้างเฉพาะบทใดบทหนึ่งในหนังสือ ให้เริ่มชื่อผู้แต่ง ชื่อเรื่อง In : ชื่อบรบรรณาธิการ ชื่อหนังสือ สถานที่พิมพ์ สำนักพิมพ์ ปี หน้า

- ตารางหรือรูปภาพประกอบความควรซัดเจนและพิมพ์หรือติดบนกระดาษแยกต่างหาก พร้อมกับคำบรรยายไว้ข้างใต้ ส่วนในเนื้อเรื่องให้เว้นที่ว่าง และเขียนแจ้งกำหนดบริเวณที่ควรใส่ตารางหรือรูปที่ต้องการ

Low dose preoperative and selective high dose postoperative radiation therapy for rectal cancer

Thiti Swangsilpa, M.D.*, Pramook Phromratanapongse, M.D.*,
Pornsri Kidchob, M.D.* , Suneerat Sangvirojkul, M.D.*,
Chanawat Tesavibul, M.D.* , Nathsith Yamyim, M.D.*,
Chatrachai Tasaniyananda, M.D.**, Parinya Thavichaigarn, M.D.**

Abstract

Twenty six patients with adenocarcinoma of the rectum were entered in a program of adjuvant “sandwich irradiation” at Pramongkutkla hospital. All patients were given a single dose of preoperative radiation 500 cGy one day before surgery. After surgical staging, the patients who had diseases beyond stage B1 (modified Astler-Coller staging) would receive postoperative

radiation 4500-5400 cGy. Twenty one patients received full course of this treatment regimen, but only 16 patients could be followed up after completion of treatment. The mean follow up time was 35 months. The 2-year and 4-year Kaplan-Meier actuarial survival were 74% and 44% respectively. No severe treatment-related complication has been observed.

* Department of Radiation Oncology, Pramongkutkla Hospital

** Department of Surgery, Pramongkutkla Hospital

การฉายรังสีปริมาณน้อยก่อนการผ่าตัดและการฉายรังสีหลังการผ่าตัด เมื่อมีข้อบ่งชี้ในมะเร็งลำไส้ใหญ่ส่วนปลาย

ธิติ สว่างศิลป์ พ.บ.*, ประมุข พรหมรัตนพงศ์ พ.บ.*
พรศรี คิดชอบ พ.บ.*. สุนิรัตน์ แสงวิโรจน์กุล พ.บ.*. ชนวัณน์ เทศะวินล พ.บ.*.
ณัฐสิทธิ์ แย้มยิ่ม พ.บ.* ฉัตรชัย ทัศนียานนท์ พ.บ.**, ปริญญา ทวีชัยการ พ.บ.**

บทคัดย่อ

ผู้ป่วยมะเร็งลำไส้ใหญ่ส่วนปลายจำนวน 26 ราย ได้รับการรักษาโดยการผ่าตัดร่วมกับฉายรังสีแบบ sandwich technique ที่โรงพยาบาลพระมงกุฎเกล้า ผู้ป่วยทุกรายได้รับการฉายแสง 500 cGy ใน 1 fraction หนึ่งวันก่อนผ่าตัด หลังจากทราบระยะของโรคจากการผ่าตัดแล้วผู้ป่วยที่มีระยะของโรคมากกว่าระยะ B1 (ตาม modified Astler - Coller staging) จะได้รับการฉายรังสีหลังผ่าตัด 4,500-5,400 cGy ผู้ป่วย 21 รายได้รับการรักษาตามแผนการรักษา แต่สามารถติดตามผู้ป่วยได้ 16 ราย หลังการรักษา ระยะเวลาเฉลี่ยในการติดตามผู้ป่วยประมาณ 35 เดือน อัตราการรอดชีวิตของผู้ป่วยที่ 2 และ 4 ปี (ตาม Kaplan-Meier survival) เป็น 74% และ 44% ตามลำดับ โดยไม่พบผลแทรกซ้อนที่รุนแรงจากการรักษา

Introduction

For rectal carcinoma, surgical resection is accepted as the initial treatment of choice for most patients(1). The objective is removal of the tumor and primary nodal drainage with as wide a margin around both as feasible. Adjuvant radiation therapy is becoming widely accepted as an effective therapeutic modality. The objective of adjuvant radiation therapy is to prevent the growth of cancer cells not removed at the time of surgery. Preoperative radiation treatment can inhibit the proliferation of such cells whether they remain local or spread outside the pelvis after therapy. Postoperative radiation treatment can effect only those cancer cells that remain within the volume exposed to radiation. By combining pre and postoperative irradiation (so-called "sandwich" technique), one could achieve the theoretical advantages of both. (1) The use of combined low dose preoperative (500 cGy) and selective high dose postoperative radiation treatment (4500-5400 cGy) has been utilized in the management of rectal cancer at Pramongkutkla hospital since 1987. This report presents the results of the "sandwich" irradiation technique in rectal cancer patients at our institution.

* แผนกรังสีรักษา กองรังสีกรรม โรงพยาบาลพระมงกุฎเกล้า
** กองศัลยกรรม โรงพยาบาลพระมงกุฎเกล้า

Materials and Methods

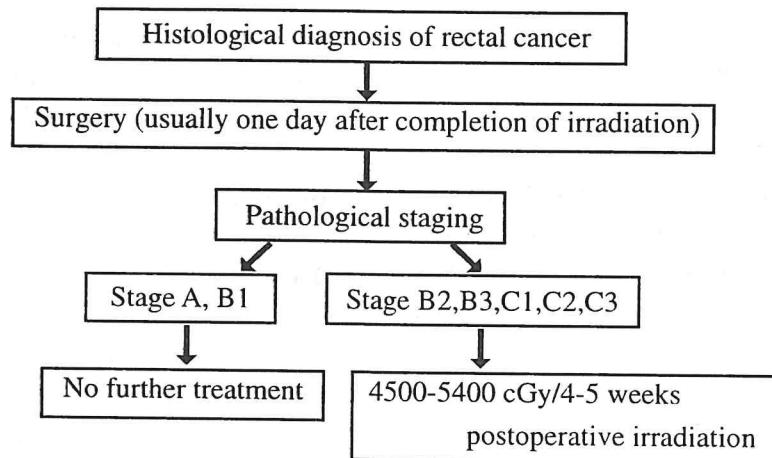
The eligibility criteria were as follows: histologically proven adenocarcinoma of the rectum in operable stage, medically fit for surgery either by A-P resection (APR) or low anterior resection only (LAR) , ECOG performance status of 0,1 or 2, no evidence of liver metastasis on liver ultrasound, normal LFT and chest x-rays.

All patients who have met the above criteria would be treated by the schedule in Fig. 1.

From September 1987 to November 1993, a total of 26 patients with adenocarcinoma of the rectum were entered in a program of adjuvant "sandwich irradiation". All patients received a single dose of preoperative irradiation 500 cGy one day before surgery. After surgical staging, two patients who had stage A and B1 disease received no postoperative irradiation. Five patients who had stage more than B1 but did not receive postoperative irradiation or received only partial course of postoperative irradiation were excluded from the program. As a result, only 21 patients received full course of treatment and were included for final analysis. The characteristics of those 21 patients were shown in Table 2.

Irradiation technique

The preoperative irradiation was administered using parallel AP/PA treatment fields including whole pelvis (about 15x15 cm), 500 cGy single fraction, 24 hours before surgery.


All postoperative irradiation treatments were started within 3-4 weeks

following surgery, using parallel AP/PA technique. (with colostomy block). The dose was 180-200 cGy / fraction, 5 days per week, for a total dose of 4500-5400 cGy depending on the decision of radiation oncologist. Megavoltage equipment with photon energy of 10 MV was used.

Results

Among the 21 patients, 6 cases were lost to follow up after completion of post-operative irradiation and was excluded from final analysis. The remaining 16 patients who came back for a follow up visit after completion of radiation treatment also received chemotherapy (5-FU) at the surgical department. The follow up period ranged from a minimum of 4 months to a maximum of 7 years after completion of postoperative irradiation. (mean follow up of 35 months) No severe radiation or surgical complication was detected.

According to the follow up record, 5 patients died. Two patients with stage C2 died from unknown cause. Residual tumor was noted in one case of stage D and the patient died at 1.5 year after surgery was done. Two patients with stage C2 had metastatic disease, one with bony metastasis died at 4 years, the other one with lung metastasis and recurrence at the primary site died at 1.5 year. The remaining 11 patients were alive without evidence of disease. The mean follow up time in this group was 2.5 years. The survival was calculated from the day of surgery. The 2-year and 4-year Kaplan-Meier actuarial survival were 74% and 44% respectively.

Fig.1 Scheme of Adjuvant “Sandwich irradiation” for rectal cancer**Table 1 Modified Astler - Coller staging**

A	Nodes negative; limited to mucosa
B1	Nodes negative; penetration into submucosa but not through muscularis propria
B2	Nodes negative; penetration through muscularis propria.
B3	Nodes negative; penetration through muscularis propria with adherence to or invasion of surrounding organs or structures.
C1	Stage B1 with nodes positive
C2	Stage B2 with nodes positive,
C3	Stage B3 with nodes positive.
D	Distant metastasis

Table 2 Patient Characteristics

Sex	Male : Female	12:9
Age (yr)		41-85 (mean = 55.12)
Tumor level (cm)	0-6	6 cases
	6	12 cases
	not specified	3 cases
Type of surgery	APR	17 cases
	LAR	2 cases
	Loop colostomy	2 cases
Stage	A	1 case
	B1	1 case
	B2	5 cases
	C1	1 case
	C2	9 cases
	C3	1 case
	D	2 cases
	Unknown	1 case

Discussion

The major reasons(2) given for preoperative radiation therapy have been the intent to reduce both the rate of extrapelvic metastases and pelvic recurrence from cancer cell released during resection; reduction the size of the primary tumor and regional node metastasis before resection; the lower likelihood of late radiation enteritis because the small bowel is less likely to be adherent in the pelvis; and the greater radiation responsiveness of normally oxygenated cancer cells relative to possible hypoxic cells in tissue in which vascularity has been altered by recent surgery.

For patients who have undergone incomplete tumor resection or apparently complete resection and have been found to have tumor extending into entire bowel wall, perirectal tissue or regional lymph node metastasis are those usually selected for postoperative adjuvant radiation treatment to prevent local recurrence of tumor.(2)

A program of "sandwich" adjuvant irradiation has been favored by those who wish to realize the theoretical benefits of low-dose preoperative radiation and to select those at higher risk by histopathologic stage for postoperative radiation treatment. (2)

In 1967, Nias suggested that low dose preoperative irradiation was the most advantageous procedure.(3) Although only a moderate degree of cell sterilization was obtained before operation, there was negligible disturbance of the surgical field and wound healing was not delayed. Immediate operation was possible and high dose radiation treatment could still be given

postoperatively if indicated. The lowest dose that would sterilize a useful proportion of cells was 500 cGy in a single fraction. (resulted in a 90-99% depopulation of oxygenated cells, 50% depopulation of anoxic cells, assuming that the cells disseminated at the time of operation were oxygenated). With such low dosage, there was no advantage to be gained by fractionation, and immediate surgery was desirable before there would be time for repopulation. Cells disseminated immediately after irradiation would possess the minimum reproductive capacity and there was another reason why it was so important to have a minimum delay between irradiation and operation.

In a randomized series of rectal cancer patients, Rider et al (4) found a statistical improvement in survival in patients with involved nodes who received 500 cGy in a single dose prior to surgery versus those treated with operation alone.

In 1975, the MRC trial protocol was designed to assess the effectiveness of low dose radiotherapy given before definite excision of operable carcinoma of the rectum. (5) There were 824 patients randomized to receive surgery alone, surgery plus a single fraction of 500 cGy and surgery plus 2000 cGy in 10 fraction over 2 weeks. They reported no evidence of an increased morbidity or mortality following irradiation. The 5 year survival, the local recurrence free survival and metastasis free rates did not show any significant difference among these 3 groups. (6) However, the authors still suggested that the patients with fixed or partially fixed cancer might benefit from preoperative

radiotherapy and survival of patients beyond five years in these patients would continue to be followed up. Anyhow, this study did not mention about postoperative irradiation which the patients would have gained a benefit in terms of reduction in the local recurrence and increase in survival.

In 1983, Gunderson et al, (7) reported the results of low dose preoperative irradiation 500 cGy in a single fraction and 1000cGy in 5 fractions and elective postoperative radiation treatment 4500-5000 cGy in 5 to 6 weeks in selected cases for resectable carcinoma of the rectum in 36 patients. Fifteen patients who had indications for postoperative irradiation had 4-year survival rate of 79%, with 4 patients subsequently relapsed. This regimen of treatment was well tolerated.

In 1990, Sause et al, reported the results of RTOG 81-15, ECOG 83-23 testing the efficacy of sandwich irradiation in rectal carcinoma. (8) The study compared between preoperative irradiation 500 cGy, 24 hours prior to surgery and no irradiation. Those patients with stage B2,B3 or C carcinoma underwent postoperative radiation treatment. The 304 analyzable cases were obtained and there appeared to be a trend towards improvement in locoregional control for patients in the stage B2-C3 group undergoing preoperative irradiation, but no difference in distant metastasis and survival was observed.

Lingareddy et al from Thomas Jefferson University Hospital reported long term result of "selective sandwich" adjunctive radiotherapy for cancer of the rectum in 1990. (9) One hundred and twenty patients with adenocarcinoma of the rectum were given a single dose of preoperative radia-

tion treatment 500 cGy and postoperative radiation treatment 4,500 cGy in 5 weeks for patients with stage B2 or C cancer. The treatment was well tolerated. The results for patients with stage B2 and C in terms of 5-year survival and local recurrence rates in the combined pre and postoperative irradiation group were better than those treated with either low dose preoperative radiation alone or postoperative radiation only.

Recent report about long term results of "selective sandwich" adjuvant radiotherapy for cancer of the rectum was shown by Mohiuddin et al in 1994. (10) They used a single dose of preoperative irradiation 500 cGy on the day of surgery or one day before surgery and postoperative irradiation 4500 cGy in 5 weeks for patients with stage B2 or C cancer in 54 patients. Local recurrence and 5 year survival were 9% and 72% respectively. Four percents of patients had major small bowel complications.

Summarizing from those reports, the benefit of low dose preoperative irradiation 500 cGy combined with selective postoperative irradiation was still controversial. Due to limited number of patients in our study, we could not interpret the true beneficial effect of the sandwich irradiation. Anyhow, we demonstrated that there was no severe complication from this combined modality treatment. Therefore, this regimen could be used safely to the patients who had the indication for combined treatment in rectal carcinoma. Strict patient selection criteria should be defined, preferably in a prospective randomized trial, to optimize the actual benefit of preoperative and postoperative radiation therapy.

References

- 1) Perez CA, Brady LW. Principles and practice of radiation oncology; 2nd edition, 1992. Philadelphia, Lippincott: 1000-14.
- 2) Cummings B.J. Adjuvant radiation therapy for colorectal cancer. *Cancer* 1992; 70(Suppl.):1372-83.
- 3) Nias AH. Radiobiological aspects of preoperative irradiation *Br J Radiol.* 1967; 40: 166-9.
- 4) Rider WD. Is the miles operation really necessary for the treatment of rectal cancer. *J Can Assoc. Radiol.* 1975; 26:167-75.
- 5) MRC working party. A trial of preoperative radiotherapy in the management of operable rectal cancer. *Br J Surg.* 1982;69:513-9.
- 6) MRC working party. The evaluation of low dose preoperative X-ray therapy in the management of operable rectal cancer; results of a randomly controlled trial. *Br J Surg.* 1984; 71:21-5.
- 7) Gunderson LL., Dosoretz DE., Hedberg ES., et al. Low dose preoperative irradiation, surgery, and elective postoperative radiation therapy for resectable rectum and rectosigmoid carcinoma. *Cancer* 1983;52:446-51.
- 8) Sause WT, Martz KL, Noyes D, et al. RTOG 81-15 ECOG 83-23 evaluation of preoperative radiation therapy in operable rectal carcinoma. *Int. J Radiat. Oncol. Biol. Phys.* 1990; 19 (suppl.): 179.
- 9) Lingareddy V., Mohiuddin M., Marks G. Long term results of "selective sandwich" adjunctive radiotherapy of cancer of the rectum. *Int. J Radiat. Oncol. Biol. Phys.* 1990; 19 (suppl.): 179.
- 10) Mohiuddin M., Lingareddy V., Marks G., Long term results of "selective sandwich" adjunctive radiotherapy for cancer of the rectum. *Am. J. Clin. Oncol.* 1994 ; 17 (3): 264-8.

Experiences in the treatment of Osteosarcoma in Ramathibodi Hospital

Lucsana Pochanugool, M.D., Mantana Dhanachai, M.D.,
 Somjai Dangprasert, M.D., Daungjai Sangthawan, M.D.,
 Thanya Subhadharaphandou, M.D., Phongjan Hathirat., M.D.,
 Tassanee Layangkul, B.Sc., Suporn Onsanit, B.S., and Sirinthon Sasini, B.Sc.

Abstract:

One hundred thirty cases of osteosarcoma were enrolled to the multidisciplinary treatment. The 9 years survival probability was 55% and the survival was stable after 4.4 years. Local irradiation of the primary tumor was proved to increase chance of limb salvage surgery ($p = 0.007$) and provided more tumor response as compare to the control patients ($p = 0.14$). The 9 years survival in the patients with local radiation was 70% and dropped to 45% in the non radiation. (log-rank = 0.01). Prophylactic whole lung irradiation also beneficially decreased the incidence of lung metastases ($p = 0.0009$) and the 9 years survival was 70% versus 46% in PLI and non PLI patients (log-rank = 0.05).

Introduction

Osteosarcoma is a rare tumor. The incidence in Thai people is 1.3 cases per million per year according to the incidence of the National Cancer Institute(1). In Ramathibodi Hospital, there was 20 cases of osteosarcoma out of 1985 malignant tumor (0.01%) in the year 1993.(2)

Although it was a rare tumor but the cure rate was so poor. Before 1972, 20% of osteosarcoma survived for five years after diagnosis and after the introduction of intensive chemotherapy especially with high dose methotrexate, doxorubicin, cisplatin or ifosfamide, the long term survival was improved to 55-75% range. (3) Chemotherapy was claimed to able to control micrometastases included skip lesion and feeling that neoadjuvant chemotherapy might reduce soft tissue infiltration, leading to limb salvage surgery. (3) Because of effective prophylactic or treatment of metastases with chemotherapy, radiation has since been replaced and radiation therapy was omitted, and only used as palliative purpose or radiated the rarer location in spine, base of skull or pelvis. (7,8)

Yamamuro described the technique of intraoperative radiotherapy with a single electron dose of 50-60 Gy and subsequent adjuvant therapy and provision of a prosthesis after 3 months. Only 1 out of 32 patients developed local recurrence with 78% 5 years survival. Bleher mentioned about the report from Takada (7) treated 38 osteosarcoma patients with fast neutron radiotherapy, systemic chemotherapy and limb salvage surgery. Thirty-five of 38 cases underwent en bloc resection. Only one had evidence of local tumor recurrence. Other 31 cases were alive without distant metastases after 9-120 months. Hug (8) in 1995 gained overall survival of 44% at 5 years in axial skeletal disease treated by combined proton and photon radiation therapy. In the situation of Thai people when percutaneous photon therapy is the only practical way in treating osteosarcoma, local irradiation combined with chemotherapy still the most optimal treatment. So radiation treatment may be still have some role in the treatment of osteosarcoma. However, despite aggressive primary treatment, 30-40% of the patients still relapse, mostly from pulmonary metastases. Surgical resection of the pulmonary nodule had been attempted with curative intent by several centers in the world literature with 30-40% long term survival. (3) But surgical resection in pulmonary metastases was a limited procedure in Thai patients due to very advance both primary and pulmonary disease and nonavailable adequate chemotherapy so pulmonary resection in this country was not worth-while. So pulmonary irradiation may be another way to prevent and control

pulmonary metastases.

The purpose of this study was to demonstrate the efficacy of various roles of radiation in the treatment of osteosarcoma included local irradiation and prophylactic whole lung irradiation.

Materials and Methods

From 1986 to 1995, 130 cases of primary osteosarcoma were enrolled to the prospective multidisciplinary treatment in Faculty of Medicine, Ramathibodi Hospital, Mahidol University. Seventy three percent of the patients were referred from other hospitals included both in Bangkok and provincial hospitals. The treatment consisted of 2-6 courses of intraarterial chemotherapy of 100 mg/m² in day 2 or epirubicin 20 mg/m² day 2,3,4, or 60 mg/m² 3,4 of etoposide based on the simple randomization.

Fifty one cases were locally irradiated at the primary site while other 79 were not. The radiation port only included the gross disease that was seen in the angiography without any safety margin, due to the assumption that microscopic lesion even skip lesion can be destroyed by intraarterial and intravenous chemotherapy and to minimize the radiation effect on the soft tissue in the cases of limb salvage surgery. Surrounding soft tissue as much as possible was spared for avoiding radiation injury and cause problem on the wound healing when the limb was salvaged. The total dose was 30 Gy in the period of 2 weeks. In the group of patients with local irradiation (local RT), the surgical treatment were delayed for another 2 weeks. After surgery, all the patients after June 1989, had

prophylactic whole lung irradiation (PLI). The treatment was from Co-60 machine or 6 MV linear accelerator, without any lung correction for the lesser absorption in the air containing lung. The dose was 2250-2700 cGy, mean 2486.67 ± 151.22 , median 2510 cGy with the daily dose of 150 cGy on every other days. The total treatment time ranging from 6-16 weeks with the median of 8 weeks. The criteria for selection of PLI modified from Breur et al (10) included.

- 1) age under 50 years
- 2) primary tumor must be high to moderate grade histology of osteosarcoma
- 3) tumor located in one limb only
- 4) absence of clinically detectable metastases.

In the total of 130 cases, 63 (49.5%) were completed the treatment while other 67 the treatment was terminated before completed the scheme, 17 due to initial lung metastases, 4 refused to have any treatment, other 46 lost before treatment ended, 31 out of 46 lost after good response to neoadjuvant treatment and refused to be amputated. The follow up time ranging from 0 to 116.3 months with mean \pm SD and median = 26.1 ± 26.3 months and 15.45 months respectively.

Results

There were no statistical different in the patients' profile between local RT and non local RT or patients with PLI and non PLI as shown in Table I, II.

Fifty one cases who received local RT, had further surgery other 6 lost. Twenty out of 45 or 44.4% can salvage the limb,

5 had various type of surgery included 4 disarticulation and one pelvic bone resection, other 20 cases (44.4%) had amputation. Six cases who had local RT and lost to follow up, two had local RT of 600 cGy and 150 cGy then lost, one returned to the hospital again and died with lung metastasis 24 months after diagnosis while the other suspected dead due to her poor condition. She had very high serum AP of 1350 U/L and the level never decrease after 4 courses of intraarterial and intravenous chemotherapy. The other 4 had 3000 cGy local RT and all refused amputation after good response to neoadjuvant treatment. One developed lung metastasis and dead 14 months after initial diagnosis. The other 3 was lost.

In 79 cases of non local RT patients 37 cases had further surgery, 6 out of 37 (16.2%) can preserve the limb and other 23 (62.2%) had amputation.

Twenty one out of 40 evaluated patients with local irradiation had 100% tumor necrosis while the non local RT group, 8 out of 24 (33.3%) had the 100% tumor response after neoadjuvant treatment ($p = 0.14$). The survival in the local RT was 70% and dropped to 45% in the patients without local irradiation (log-rank $p = 0.01$). (Table III, Fig I)

Evaluation of complication from local RT there were 4 out of 7 cases of tibia lesion with local RT had chronic discharge from the sinus tract after limb salvage surgery, while there was only one cases of tibia lesion without local RT had limb salvage surgery and unfortunately, this case developed local recurrence at 12 months after surgery. Other complications such as

one delay calcification and another foot drop were found in local RT patients. Other 11 limb salvage patients had no surgical complication. In the group of non local RT, 6-limb salvage surgery were achieved without any complication accept one local recurrence as mentioned before. (Table IV) There were 5 local recurrence, 3 belonged to the local RT group and 2 in the non local RT. (Table V).

In the point of view of the prophylactic whole lung irradiation, there were 6 in 36 cases (16.7%) developed lung metastases while 39 out of 79 (49.4%) in non PLI group had lung disease ($p = 0.0009$). The patient with local RT combined with PLI had lower incidence of lung metastasis as compared to the local RT without PLI. (Table VI) The 9-years survival of the PLI patients were 70% as compared to the non PLI was 46% (log-rank $p = 0.05$) (Fig II).

Table I Initial profile of the patients with local RT and non local RT

Profile	control (non local RT) N %	local RT N %	p value χ^2
Age (mean)	18.2 yrs.	17.4 yrs.	NS (0.56)
Sex			
male	44 (55.7)	28 (54.9)	NS (0.93)
female	35 (44.3)	23 (45.1)	
Bone position			
femur	43 (54.4)	24 (47.1)	NS (0.33)
tibia	19 (24.1)	16 (31.4)	
Sign duration			
≥ 2 mos	22 (28.2)	10 (19.6)	NS (0.26)
≥ 3 mos	17 (21.8)	14 (27.5)	
-Chief complaint			
mass	16 (28.3)	14 (27.5)	NS (0.34)
mass + pain	60 (75.9)	35 (68.6)	
Trauma -ve	37 (46.8)	23 (45.1)	NS (0.82)
+ve	40 (50.6)	27 (52.9)	
Fracture -ve	59 (74.7)	47 (92.3)	0.017*
+ve	19 (20.1)	4 (7.8)	
Pathology			
osteoblastic	30 (38.0)	19 (37.3)	NS (0.46)
chondroblastic	10 (12.7)	12 (23.5)	
telangiectasia	9 (11.4)	7 (13.7)	
Chemotherapeutic agent			
doxorubicin	18 (22.8)	21 (41.2)	NS (0.10)
epirubicin	50 (63.3)	26 (51.0)	
etoposide	9 (11.4)	4 (7.8)	

Table II Initial profile of the patients with Non PLI and PLI

Profile	control (non local RT) N %	local RT N %	p value χ^2
Age (mean)	18.3 yrs	17.2 yrs	NS (0.61) (t-test)
Sex			
male	42 (53.2)	19 (52.8)	NS (0.97)
female	37 (46.8)	17 (47.2)	
Bone position			
femur	42 (51.9)	18 (50.0)	NS (0.56)
	tibia	24 (29.6)	6 (16.7)
Sign duration			
2 mos	19 (29.2)	10 (20.4)	NS (0.56)
3 mos	12 (18.5)	15 (30.6)	
Chief complaint			
mass+ pain	43 (65.2)	32 (64.0)	* NS (0.78)
mass	8 (12.1)	7 (14.0)	
+ve	38 (46.9)	20 (55.6)	
Fracture -ve	59 (74.7)	30 (83.3)	NS = 0.87
+ve	14 (17.7)	6 (16.7)	
Pathology			
osteoblastic	26 (32.1)	17 (47.2)	NS (0.26)
chondroblastic	15 (18.5)	5 (13.9)	
Chemotherapeutic agent			
epirubicin	50 (63.3)	28 (77.8)	NS (0.63)
etoposide	6 (7.4)	6 (16.7)	

Table III Local RT related to type of surgery and result

	local RT		p value
	+	-	
Type of Surgery			
limb salvage	20/45	6/37	$\chi^2 = 0.01$
amputation	20/45	23/37	
Residua tumor			
tumor = 0	21/29	8/29	$\chi^2 = 0.05$
tumor > 0.99 <9.99%	0/2	2/2	
tumor $\geq 10 \leq 49.99\%$	16/24	8/24	
tumor > 50%	3/9	6/9	
9 - year survival	70%	45%	log-rank p = 0.01

Fig I Survival probability of local RT and non local RT patients

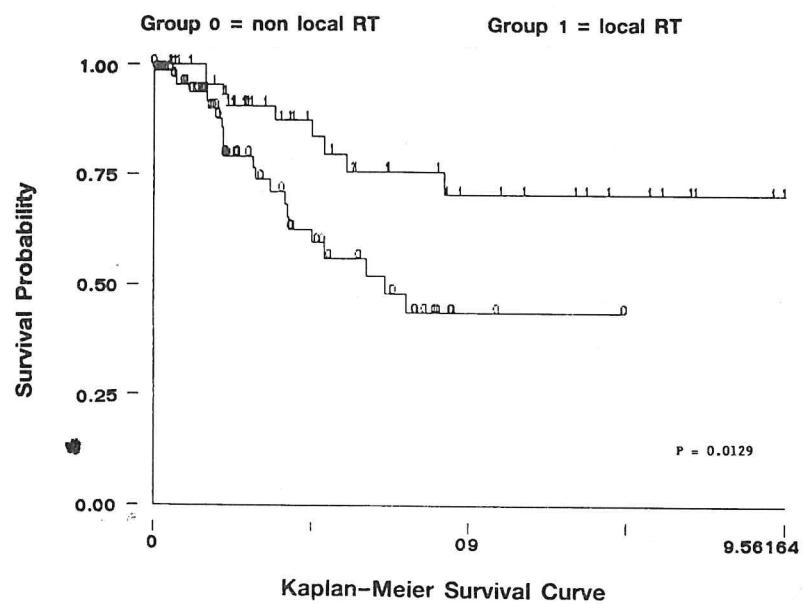
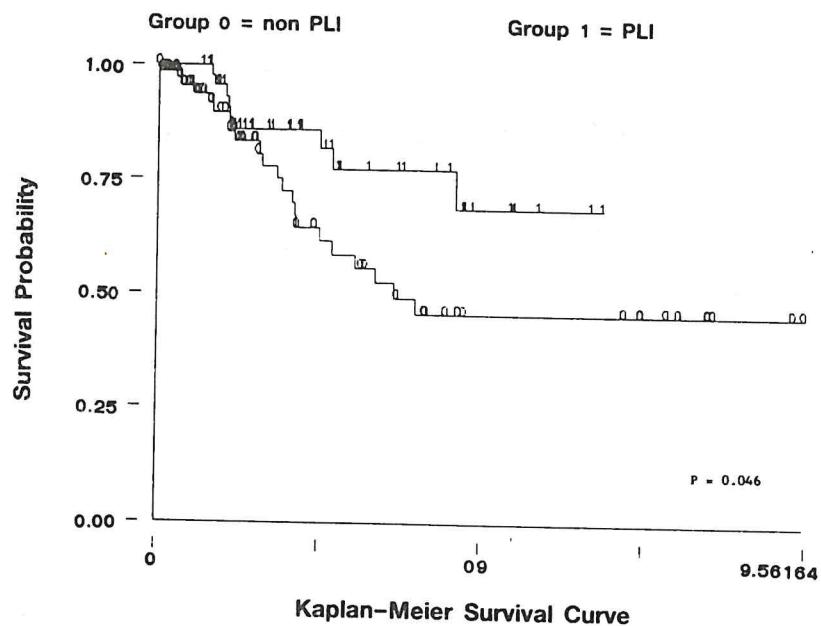



Fig II Survival probability of PLI and non PLI patients

Discussion

Radiation response of osteosarcoma is a rather limited role due to the relatively radioresistant tumor with high capacity to repair the sublethal damaged cell (11-12) and very rapidly growth with 34 days to doubling the tumor cells.(3) So by conventional way of treatment, radiation therapy was ignorant since various chemotherapy was introduced in 1970. High dose methotrexate and doxorubicin found to be very effective in controlling metastases and leading to limb salvage surgery after neoadjuvant therapy. Multidrug neoadjuvant therapy showed a significant favorable impact on disease free survival and drug might reduce soft tissue infiltration by tumor cell, also the intramedullary spread and skip lesion. (3-7,11-14)

Limb sparing resection was originated in 1970 (3) and in Ramathibodi Hospital in 1986.(15- 21) We combined intraarterial cisplatin, intravenous doxorubicin, epirubicin or etoposide to local irradiation by simple randomization. The group with local RT achieved more limb salvage surgery and more tumor necrosis (log-rank $p = 0.009$) and had higher survival probability. (log-rank $p = 0.01$) Although in the local RT had more local recurrence, the reason might due to more limb salvage surgery was achieved while the patients without local RT had amputation. The histological subtype might be an other reason, chondroblastic cell trend to have worse response to neoadjuvant therapy as compare to other subtype, there were 40, 80% tumor left after local RT combined with chemotherapy. Telangiectatic subtype had 100% tumor necrosis after local RT and

chemotherapy. Osteoblastic had 10, 100% tumor left when only chemotherapy was implemented. (Table IV). The cause of local recurrence included limb salvage procedure in the fractured limb, we had a case of 6 years old girl with 100% tumor necrosis of fractured humerus and the surgical procedure had no any postoperative complication, her disease recurred at 13 months and lung disease was so delay and still had long survival, these might be due to she had PLI after surgery. In the patients with PLI we had proved that only 16.7% of PLI group had better survival probability with log-rank p value = 0.05. The failure of PLI might be suboptimal treatment time. We irradiated the lung at the same time of post-operative chemotherapy, so every patients had WBC dropped and poor condition, high dose medroxy-progesterone acetate had been proved to be benefit in these patients and will be reported elsewhere. Some patients finished the PLI after 8 weeks period. Conventional dose for whole lung irradiation of 2500 cGy is just 3 weeks but only 70% of the cases could finish the radiation less than 8 weeks other 30% had prolong irradiation up to 16 weeks. So this might be the main reason of PLI failure.

We had a patient with 2.5 cm soft tissue nodule a distance far from the biopsy scar and local RT was skip this lesion due to we believed that intraarterial and intravenous chemotherapy could sterile the soft tissue infiltration and we wanted not the cover the whole circumference in the radiation port. This patients had 100% tumor necrosis on limb salvaged bone but the soft tissue still had viable tumor so she was amputated immediately and still in good health for more

than 90 months now. So we assumed that gross soft tissue lesion had to combined with local RT, not only adjuvanted with chemotherapy.

Conclusion

In a part of multidisciplinary approach in the treatment of osteosarcoma, local irradiation had a definite role to produce more possibility of limb salvage surgery and more survival with acceptable complication. Prophylactic whole lung irradiation was another way for preventing or controlling lung metastases. Further

research question was whether prophylactic whole lung radiation had a role in other microscopic metastatic lung disease, not only in osteosarcoma.

Acknowledgements

The authors are extremely grateful to Associated Professor Suwattana Nontasut for her participation of this study and Professor Dr.Kamheang Chaturachinda for his valuable comments. Mrs.Ammarin Thakkinstian for the statistical analysis and also Mrs. Waree Ausavasana for the preparation of the manuscript.

References

- 1) Cancer in Thailand 1988-1993. Vatanasapt V, Martin N, Sriplung H et al eds. IARC technical report No.16. Lyon Cedex 08, France 1993: 56.
- 2) Ramathibodi Cancer Registry. Annual report 1993: Faculty of Medicine, Ramathibodi Hospital, Mahidol University.
- 3) Goorin AM, Abelson HT, Frei III E. Osteosarcoma : Fifteen year later. *N Engl J Med* 1985; 313: 1637-42.
- 4) Meyers PA, Heller G. Vlamis V. Osteosarcoma of the extremities: Chemotherapy experience at Memorial Sloan-Kettering. In : Humphrey GB, Koops HS, Molenaar WM. Postma A, eds. Osteosarcoma in adolescents and young adults : new developments and controversies. Massachusetts : Kluwer Academic Publishers 1993: 309-22.
- 5) Winkler K, Beron G, Delling G, Heise U, Kabisch H, Purfurst C, Berger J, Ritter J, Jurgens H, Gerein V, Graf N, Russe W, Gruemayer ER,
- 6) Ertelt W, Kotz R, Preusserp, Prindull G, Brandeis W, Landbeck G. Neoadjuvant chemotherapy of osteosarcoma : results of a randomized cooperative trial(COSS-82) with salvage chemotherapy based on histological tumor response. *J Clin Oncol* 1988; 6: 329-37.
- 7) Pratt CB, Meyer WH, Rao BN, Parham DM. Flemming ID, Osteosarcoma at St. Jude Children's Research Hospital from 1968 through 1990. In : Humphrey GB, Koops HS, Molenaar WM. Postma A, eds. Osteosarcoma in adolescents and young adults : new developments and controversies. Massachusetts : Kluwer Academic Publishers 1993; 323-6.
- 7) Bleher EA. Is there a rational role for radiotherapy in the treatment of osteosarcoma ? In : Humphrey GB, Koops HS, Molenaar WM, Postma A, eds. Osteosarcoma in adolescents and young adults: new development and controversies. Massachusetts :

Kluwer Academic Publishers 1993:379-81.

- 8) Hug EB, Fitzek MM, Liebsch NS, Munzenrider JE. Locally challenging osteoand chondrogenic tumors of the axial skeleton : results of combined proton and photon radiation therapy using three-dimensional treatment planning. *Int J Radiation Oncology Biol. Phys.* 1995;31:467-76.
- 9) Yamamuro T, Kotoura Y. Intraoperative radiation therapy for osteosarcoma. In : Humphrey GB, Koops HS, Molenaar WM. Postma A, eds *Osteosarcoma in adolescents and young adults : new developments and controversies*. Massachusetts : Kluwer Academic Publishers 1993;177-84.
- 10) Breur K, Cohen P, Schweisguth O, Hart AMM. Irradiation of the lungs as an adjuvant therapy in the treatment of osteosarcoma of the limbs. An E.O.R.T.C. randomized study. *Europ J Cancer* 1978; 14:461-71.
- 11) Bertoli RJ, Brady LW, Thomas PRM. Tumors of the bone: In Perez CA, Brady LW eds. *Principles and practice of radition oncology*. Philadelphia : J.B. Lippincott, 1987: 1163-81.
- 12) Martinez A; Goffinet DR, Donaldson SS, Bagohaw MA, Kaplan HS. Intraarterial infusion of radiosensitizer (BudR) combined with hypofractionated irradiation and chemotherapy for primary treatment of osteogenic sarcoma. *Int J Radiat Oncol Biol Phys* 1985; 11:123-8.
- 13) Bacci G, Avella M, Picci P et al. Metastatic patterns in osteosarcoma. *Tumori* 1988; 74:421-7.
- 14) Yanguas MG. A study of the response of osteogenic sarcoma and adjacent normal tissues to radiation. *Int J Radiat Oncol Biol Phys* 1981; 7: 593-5.
- 15) Pochanugool L, Nontasut S, Subhadharaphandou T, Hathirat P, Sirikulchayanonta V, Ratanatharathorn V, Yuktanonad P. Multidisciplinary "Limb salvage" treatment of osteosarcoma. *J Med Asso Thai* 1991; 74:504-11.
- 16) Pochanugool L, Nontasut S, Keorochana S, Sirikulchayanonta V, Ratanatharathorn V, Subhadharaphandou T. Multidisciplinary preoperative therapy for bone and soft tissue sarcoma. *Intern Med* 1988; 4: 5-8.
- 17) Pochanugool L, Kuhatong K, Layangkul T, Sangthawan D, Onsanit S. Osteosarcoma: A study of 100 cases. *Asean J Radiol* 1995; 1: 123-8.
- 18) Pochanugool L, Tannanonta C, Sangthawan D, Onsanit S. Radiation response of pulmonary metastatic osteosarcoma. *Asean J Radiol* 1995; 1: 129-3.
- 19) Pochanugool L, Pirabul R, Sangthawan D, Onsanit S. Osteosarcoma with high serum alkaline phosphatase over 500 U/L. *Asean J Radiol* 1996; 2:12-7.
- 20) Sirikulchayanonta V, Pochanugool L, Subhadharaphandou T. Update of osteosarcoma in Ramathibodi, Thailand. In :Humphrey GB, Kiips HS, Molenaar WM, Postma A, eds. *Osteosarcoma in adolescents and young adults : new developments and controversies*. Massachusetts : Kluwer Academic Publishers 1993: 372-4.
- 21) Subhadharaphandou T, Nontasut S, Pochanugool L; Sirikulchayanonta V. Limb salvage for extremity sarcoma in Ramathibodi Hospital. *J Med Assoc. Thai* 1992; 75 (Suppl 1) : 112-8.

The influence of an immobilization mask on the absorbed dose in the build-up region of photon beams

Wilailak Panphae, B.Sc.* Aris Tilikidis, Ph.D.**
Bengt-Inge Rud'en, Ph.D.**, Anders Brahme, Prof.***

Abstract

The purpose of this work is to study how a mask, used for immobilization, alters the depth dose in the build up region of photon beams as compared to the situation in the absence of the mask. Depth dose curves in the build up region of photon beams (^{60}Co , 6 MV) and with field sizes $5 \times 5 \text{ cm}^2$ and $15 \times 15 \text{ cm}^2$, were measured by 3-4 batches of LiF TLDs (more than 50 LiF TLDs, 0.13 mm thin) alternatively by a plane parallel ionisation chamber (NACP 02). The experiments were carried out in the presence and absence of the mask. To ensure the linearity of the dosimeters, the dose was limited to 1 Gy. The data show that the mask can significantly increase the dose at the surface from 11% to 76% for $5 \times 5 \text{ cm}^2$ and from 25% to 83% for $15 \times 15 \text{ cm}^2$ in the ^{60}Co . In the 6 MV beam it alters the surface dose from 7% to 48% for $5 \times 5 \text{ cm}^2$ and from 18% to 56% in $15 \times 15 \text{ cm}^2$ field. The mask will actually change the dose in the whole build up region but the dose increase will be less with increasing depth up to nearly the maximum dose where no more influence of the mask is shown. The

data show that the relative influence of the mask in term of increased absorbed dose in the build up region is higher in small fields compared to large fields but in term of the absolute absorbed dose, in large fields is of course higher than in small fields. The effect of the mask on the surface dose is higher in ^{60}Co as compared to 6 MV. The results show that the mask will substantially increase the absorbed dose in the build up region. This is particularly important at high doses where skin reactions can be a problem. This dose increase should be verified experimentally for each radiation beam and type of mask in order to obtain for considering to decrease early and late radiation induced effects in normal tissues.

Introduction

The principle of curative radiotherapy is to provide maximum dose to the target volume without inducing severe early and late complications in normal tissues and thus maximizing the quality of life for the patients⁽¹⁾. Various approaches are combined to fulfill this aim. For instance,

* Department of Radiology, Radiation Oncology Section, Faculty of Medicine and Chiangmai University, CHIANGMAI, Thailand

** Department of Hospital Physics, Karolinska Hospital and University of Stockholm S-171 76 STOCKHOLM, Sweden

*** Department of Medical Radiation Physics, Karolinska Institutet and University of Stockholm S-171 76 STOCKHOLM, Sweden

megavoltage machines are chosen to deliver the maximum dose at deeply located tissues without injuring the skin⁽²⁾, multiple beam portals and non coplanar techniques are combined to maximize the tumour dose while minimizing the dose to normal tissues and methods of treatment planning optimization including intensity modulation using scanned beams, multileaf collimators, etc are applied⁽³⁻¹⁰⁾. In addition, the patient is immobilized appropriately in order to achieve reproducibility in the every day treatments⁽¹¹⁾. The mask, a particular kind of immobilization device, is used to immobilize the head and neck region⁽¹²⁾. It is commonly a thermoplastic 2 mm thick sheet, which becomes flexible in hot water while it reobtains rigidity after about 5 min exposure in air. It can be shaped covering the head and the patients face from the middle of the forehead to the neck thus resulting in accurate patient repositioning. However, the mask is also irradiated during the treatment thus altering substantially the beam properties. This is due to the interactions of the primary and even secondary photons with the mask itself and the consequence production of secondary electrons which increase the dose to the skin and alter the whole build up region of the depth dose curve^(2, 13-19). It has been shown that these interaction processes may result in an increasing skin dose by up to 113% in a 6 MV bremsstrahlung beam respectively 165% in a ⁶⁰Co gamma ray beam⁽¹⁷⁾. The direct effect of the increasing dose in the presence of the mask is that the skin sparing effect will be lost. For a normal therapeutic treatment with tumour dose of 60 Gy, the skin is expected to receive doses of about

10-15 Gy. However, in the presence of the mask the skin dose may be increased up to 20-30 Gy which may result in erythematous skin while cumulative doses of about 50-60 Gy may result in moistly epithelolysis. It is however worthwhile to note that the relation between dose and induced skin effects depends strongly on the sensitivity of the individual patients to the irradiation. Measurements of the dose in the build up region are difficult since the presence of conventional dosimeters will perturb the radiation beam during lack of electronic equilibrium. This effect depends directly on the size and the material of the dosimeter⁽²⁰⁻²⁵⁾. Thus, the dosimeters should be preferred very thin and ideally based on material with properties as close as possible to tissue or water. The thin TLD or the plane parallel ionisation chamber with a thin entrance window is suitable for dose determination in regions like the build up of the radiation beam where lack of electronic equilibrium⁽²⁶⁾.

Materials and Methods

Build up curve

The build up curve is defined as the part of increasing dose with depth in an irradiated medium until a balance is achieved between the most penetrating electrons and those attenuated. At this particular point the maximum absorbed dose to the irradiated medium is obtained.

Irradiation units

Photon beams were obtained by a ⁶⁰Co gamma ray unit (Alcyon II, GE) and a 6 MV Linear accelerator (Philips SL75-5). For the ⁶⁰Co unit the maximum dose is provided at the depth of about 5 mm in water

for a field size of $10 \times 10 \text{ cm}^2$ while for the 6 MV bremsstrahlung beam and the same field size it is located at the depth of 15 mm. This implies that during normal treatments the skin sparing effect during high dose delivery is substantial.

TLDs Dosemeters

LiF-Teflon, thermoluminescence dosemeters (TLDs) with density 2.64 g. cm^{-3} were used for the measurements⁽²²⁾. The LiF TLDs have thickness 0.13 mm, corresponding to water equivalent thickness of 0.34 mm, and are 12 mm in diameter. During irradiation traps are induced in the TLD material itself. The traps are then released when the TLD is heated giving off the energy in terms of light. The light can be measured accurately by a photo multiplier and this signal can be correlated to radiation dose⁽²⁷⁾.

TLDs sensitivity calibration^(22,27,28)

The TLDs were zeroed at 300°C for 0.5 h and then rest in room temperature for 15 min. They were then stored in 80°C for 24 h, again rest in room temperature for 15 min and finally irradiated in a ^{60}Co gamma beam. After irradiation they were rest in room temperature for 1 h, then in 80°C for 15 minutes and finally rest in room temperature for 15 min. The signal was measured by a TLD 7300 Teledyne reader. The individual sensitivity of the dosemeters in each batch was measured 3 times. The average sensitivity was then obtained for each dosemeter. Then mean readout of the whole batch was then defined as:

$$\bar{X} = \frac{\sum X_i}{N} \quad \dots(1)$$

where \bar{X} is the mean value of the readout of the dosemeters, N is the number of dosemeters and $\sum X_i$ is the total value of readout of all dosemeters in the same batch. The sensitivity of each dosemeter, C_i , was defined as:

$$C_i = \frac{\bar{X}}{X_i} \quad \dots(2)$$

where X_i is the readout value of i-dosemeter. Dosemeters with individual sensitivity variation of more than $\pm 5\%$ where then disregarded.

Ionisation chamber

A plane parallel ionisation chamber (NACP 02) with front wall of 0.2 mm mylar foil and 0.5 mm thick contacting high voltage electrode of graphite and with the effective point of measurement at about 0.8 mm water equivalent taken to be at the inner of the inside surface of the chamber window was also used for this kind of measurements⁽²⁴⁾. The chamber is placed in a solid (PMMA) phantom with dimension $29.5 \times 29.5 \times 9.5 \text{ cm}^3$. The ionisation chamber is connected through a constant voltage supply to -400 V and the signal is read through a digital electrometer in terms of charge integrated over a constant time of 60 seconds.

Measurements

The measurements were performed in the two following conditions: with field sizes of $5 \times 5 \text{ cm}^2$ and $15 \times 15 \text{ cm}^2$ with the mask on the top of phantom alternatively with the same field sizes but without the mask. The mask itself is a layer with 2 mm constant thickness with perforated holes 3

mm in diameter (POSIFIX-4, Posicast PR-3 precast). The gantry was always set to 0 degree and the collimator at 90 degree. In order to measure the depth dose in the presence and absence of the immobilization mask the different depths were simulated using slabs of polystyrene which are rather water equivalent with density of 1.06 g. cm⁻³. A polystyrene phantom, 5 cm in thickness, was used to obtain back scattering. To ensure linearity of the TLDs the dose was limited to about 1 Gy at the dose maximum. For the measurements with the TLDs the relative depth dose, PDD, normalized to the dose at the dose maximum is obtained by as:

$$PDD (\%) = (D_a / D_m) \times 100 \dots (3)$$

where D_a is the mean readout corrected signal for individual sensitivity of the dosimeters irradiated at any depth and D_m the corresponding mean readout corrected signal at the depth of the maximum dose. In order to improve the accuracy of the results the experiments were repeated at least three times and the results are expressed as mean values with one standard deviation as an indication of the uncertainties involved. In the case of the plane parallel ionisation chamber the results are the mean of several repeated charge integrations all over the same constant 100 monitor unit for 6 MV and irradiation time of 60 seconds for ⁶⁰Co.

Results

The actual thickness of the polystyrene slabs, used in ⁶⁰Co measurement, measured with the accuracy of 0.1 mm are 1.0, 2.0, 3.1, 4.1, 5.1 mm and those used in the 6 MV beam are 3.0,

6.0, 9.0, 12.0, 15.0 mm. These thicknesses were converted to water equivalent depth by density correction and taking into account the effective point of measurement⁽²⁴⁾. For the TLDs, the effective point of measurement is located at the middle of each dosimeter corresponding to a water equivalent depth of 0.17 mm. In the plane parallel ionisation chamber (NACP 02) the effective point of measurement is located at 0.8 mm equivalent water located under the inner surface of the entrance window of the chamber. Since the measurements were performed in a constant source to dosimeter distance the results were further corrected for the difference in SSD by applying the inverse square law, as well as for the differences in the depth dose due to the change in SSD⁽³⁴⁾. Particularly for the plane parallel ionisation chamber no specific correction was applied for the temperature and pressure since both were constant during the experiments. The influence of the 2 mm thick mask to the doses at the surface and in the whole build up region, is shown in Fig. 1-2 for the TLD measurements and Fig. 3-4 for the plane parallel ionisation chamber measurements. Based on the TLDs measurements it is shown that the presence of the mask increases the surface dose in the ⁶⁰Co beam from 11% to 76% for the 5 x 5 cm² field while for the 15 x 15 cm² field the dose increases from 25% to 83% respectively. Beneath the surface, in the build-up region, the mask will also result in an increasing dose but the rate of increase is less step towards the maximum dose. The corresponding increases in the 6 MV bremsstrahlung beam are from 7% to 48% for the 5 x 5 cm² field and from 18% to 56%

in the $15 \times 15 \text{ cm}^2$ field. The increase of the surface dose is due to the interaction of the primary and secondary beam components with the mask itself resulting in production of secondary electrons which then increase the surface dose⁽¹³⁻¹⁹⁾. At the same time the mask itself may slightly absorb contaminating electron from the treatment head and air⁽²⁹⁾ but this effect is minor compare to the influence of the mask. Obviously, the presence of the mask almost eliminates the skin sparing effect of megavoltage therapeutic beams. From the Fig. 3, 4 and 5, it is that in spite of the appropriate density corrections for the depth in the phantom and the effective point of measurement, the surface dose measured with the plane parallel ionisation chamber

is consistently higher than that measured by TLDs. For the $5 \times 5 \text{ cm}^2$ field size in the ^{60}Co beam the surface dose as measured by plane parallel ionisation chamber is in the absence of mask about 32% and increase to about 82% in the presence of the mask. Similarly, in the 6 MV bremsstrahlung beam and for the same field size the surface dose is correspondingly 25% and 56%. This effect is mainly due to the thick front wall and the perturbation effects of the plane parallel ionisation chamber as described by Nilsson and Montelius⁽²⁶⁾. It is thus shown that the plane parallel ionisation chamber can be used for relative measurements and surface doses if appropriate correction for the perturbations are applied^(21,26).

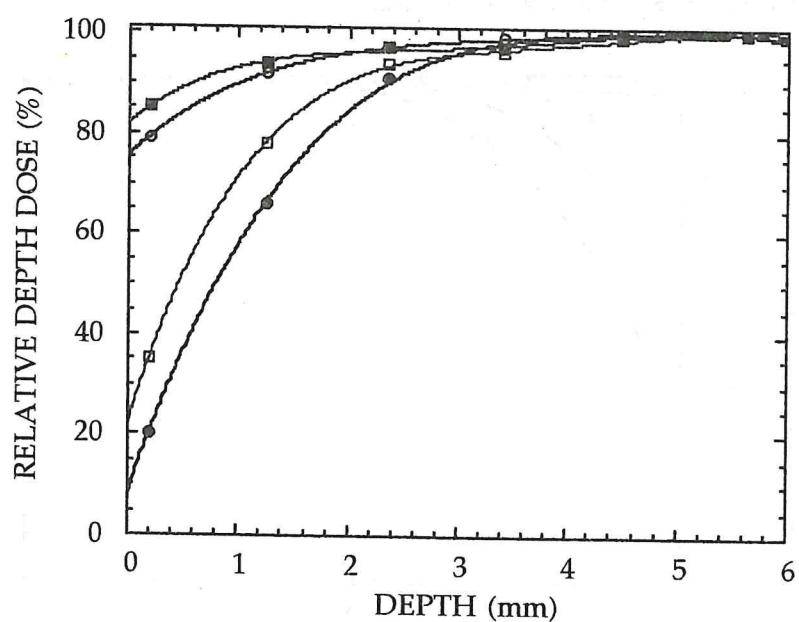
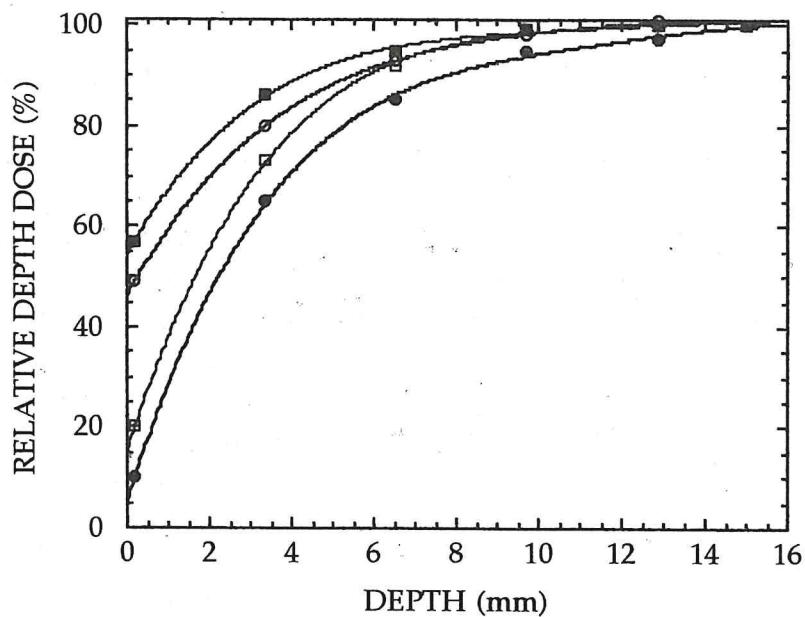
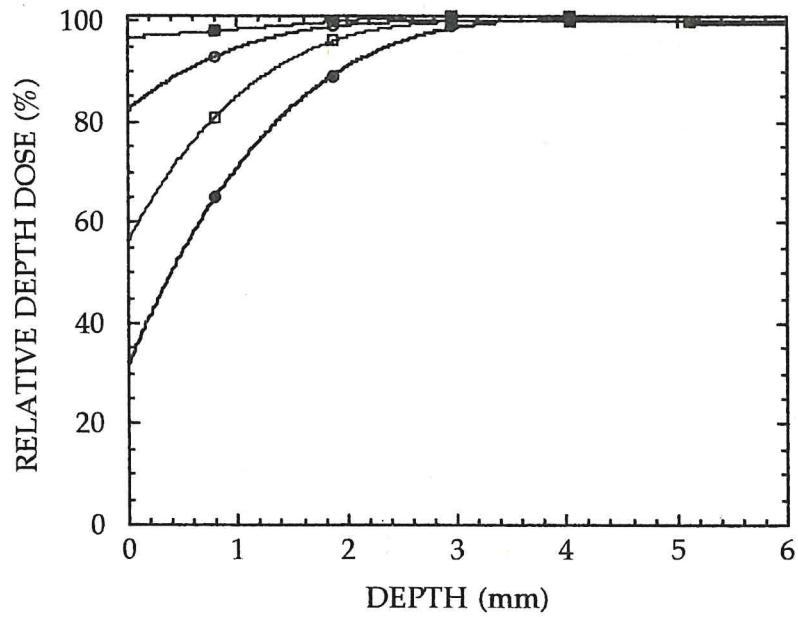




Fig.1. Relative depth dose curves of ^{60}Co measured by LiF TLDs for two different field sizes without respectively with the immobilization mask. Full circle: $5 \times 5 \text{ cm}^2$, without the mask. Open circle: $5 \times 5 \text{ cm}^2$, with the mask. Open rectangle: $15 \times 15 \text{ cm}^2$, without the mask. Full rectangle: $15 \times 15 \text{ cm}^2$, with the mask.

Fig.2. Relative depth dose curves of 6 MV measured by LiF TLDs for two different field sizes, without respectively with mask. Open circle: $5 \times 5 \text{ mm}^2$, with the mask. Full circle: $5 \times 5 \text{ mm}^2$, without the mask. Open rectangle: $15 \times 15 \text{ mm}^2$ without the mask. Full rectangle: $15 \times 15 \text{ mm}^2$ with the mask.

Fig.3. Relative depth dose comparison of ^{60}Co measured by the plane parallel ionisation chamber for two different field sizes without respectively with the mask. Open circle: $5 \times 5 \text{ cm}^2$, with the mask. Full circle: $5 \times 5 \text{ cm}^2$, without the mask. Full rectangle: $15 \times 15 \text{ cm}^2$ with the mask. Open rectangle: $15 \times 15 \text{ cm}^2$ without the mask.

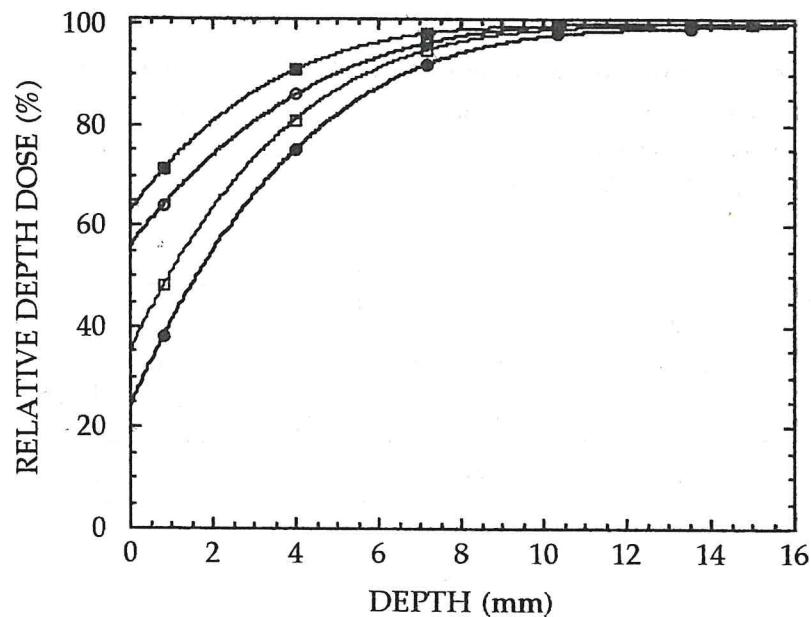


Fig.4. Relative depth dose comparison of 6 MV measured with the plane parallel ionisation chamber for two different field sizes without respectively with the mask. Open circle: $5 \times 5 \text{ mm}^2$, with the mask. Full circle: $5 \times 5 \text{ mm}^2$, without the mask. Open rectangle: $15 \times 15 \text{ mm}^2$ without the mask. Full rectangle: $15 \times 15 \text{ mm}^2$ with the mask.

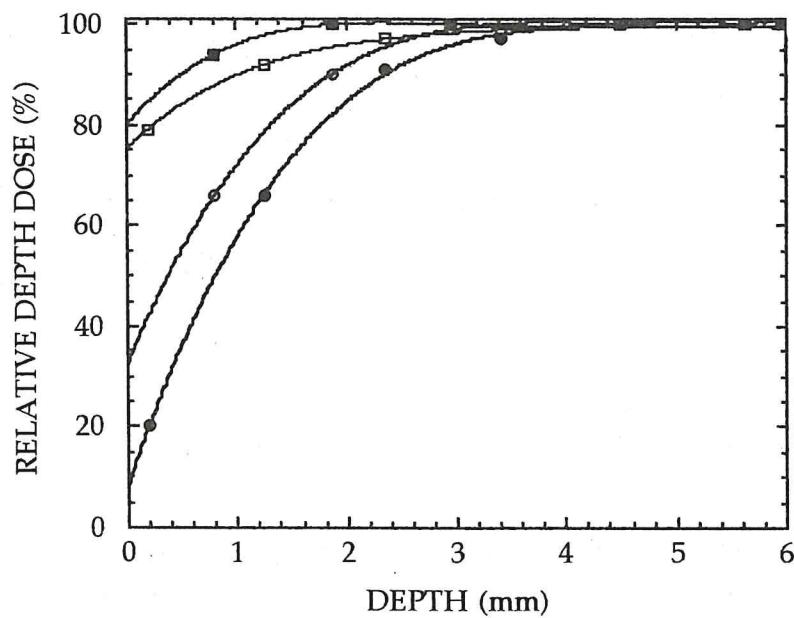
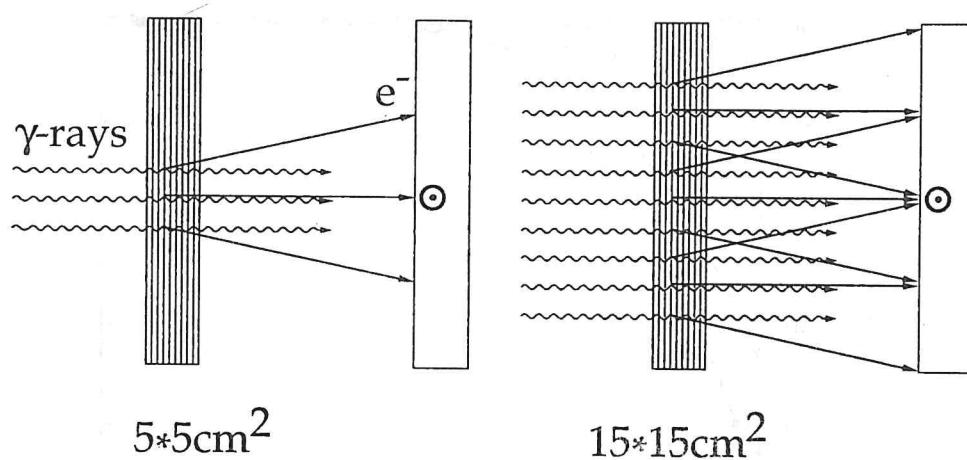



Fig.5. Comparison of depth dose curves between measured by LiF TLDs and the plane parallel ionisation chamber. Field size $5 \times 5 \text{ cm}^2$, ^{60}Co beam. Full circle: without the mask, LiF TLDs. Open circle: without the mask, the plane parallel ionisation chamber. Open rectangle: with the mask, LiF TLDs. Full rectangular: with the mask, the plane parallel ionisation chamber.

Table 1. The percentage absorbed dose increase due to the influence of the mask for small fields and large fields of ^{60}Co beam measured by LiF TLDs and the plane parallel ionisation chamber. %wm: % relative depth dose, with the mask. %nm, % relative depth dose, without the mask.

depth (mm)	5x5 cm ² %wm-%nm (LiF)	15x15 cm ² %wm-%nm (LiF)	5x5 cm ² %wm-%nm (plane parallel)	15x15 cm ² %wm-%nm (plane parallel)
0	65	58	50	40
0.8	39	28	27	17
2	10	5	7	4
3	2	2	3	0
4	0	0	0	0
5	0	0	0	0

Fig.6. Schematic illustration of the generation of secondary electrons in the mask. The electrons that reach the dosimeter in the phantom are numerous for a broad beam than in a narrow beam and thus the dose is higher. The same mechanism is applicable in the presence of the immobilization mask. The mask will produce more electrons for low photon energies since the build up region is much shallower and the complete slowing down spectrum of secondary electrons is achieved much faster.

Discussion

In radiotherapy, immobilization allows reproducible treatments thus increasing the possibility of delivering a precise and higher total dose to the tumour and decreasing the dose to the surrounding normal tissues^(11,12). However, the mask itself decreases the skin sparing effect since it increases the doses in the build up region thus delivering the highest dose to the surface and the subsequent tissues. This dose increase is mainly due to compton electrons set in motion by the primary photons but even due to the presence of beam contaminating electrons and photons. Since the electrons have a certain angular spread around the forward direction, the dose in a small field is generally lower than that in a large field as illustrated in Fig. 6. This process also explains the field size dependence in the absence of the mask since the air volume in front of the patient act as a source of electrons^(19,29). Ideally, when the patients need to be immobilized with a mask, it should be cut in the locations of the beam portals. On the other hand, if an increased skin dose is desired, particularly for superficial tumours, the mask can, at least partially, be used like a bolus to increase the dose. For 6 MV, the dose increase in the build up region due to the mask is less than in ^{60}Co , which is explained by the more forward directed electrons which in addition have longer pathlength due to their higher energy. In this experiment only one constant layer of the mask, 2 mm in thickness and with perforated holes of standard size of 3 mm in

diameter was used. Normally, when the mask is warmed up and individually fitted on a patient, the thickness may vary substantially over the whole surface. But the more thin mask, the less its immobilization capacity. Generally, the doses in the build up region will be altered depending on type of material and thickness of the mask, beam type, beam energy, and the angle of incidence of the beam^(13-19,34,35). The present data show that the mask will increase the dose equally to 1.65 mm of water in 5 x 5 cm² field and 1.5 mm of water in 15 x 15 cm² field in a ^{60}Co beam. On the other hand, in the 6 MV beam it will effect to the dose equally to 2 mm of water both in the 5 x 5 cm² and 15 x 15 cm² fields. In the present work it is proved that the precise determination of the percentage depth doses in the build up region is more accurate using extremely thin LiF TLDs⁽²²⁾. A plane parallel ionisation chamber (NACP 02) was also used since the thickness of the wall for this dosimeter was considered thin enough and the perturbation effects on the radiation beam relatively low. However the difference in the measured surface dose between the two types of dosimeters is 21% in the ^{60}Co beam. Thus it is shown that this plane parallel ionisation chamber substantially overestimates the surface dose. The data are very important. They should be obtained to consider in dose planning for optimization in order to keep the radiation induced reactions to normal tissues at a low level and to improve the quality of life of the patients.

Conclusion

The mask will alter the build up curve, the slope of the curve will be changed, the doses in the build up region tend to increase to maximum dose. The affect on the dose distribution in low energy beams are higher than in high energy beams. The percentage of the increase dose at the surface is the highest and under skin will be also increased but the percentage of absorbed dose increase reducing as a function of depth up to maximum dose the influence of the mask is not shown.(Table 1) When using the mask in low energy beams, the mask should be cut off to maintain skin sparing, but it can be left in the field when the tumour extends to the surface. In higher energy beams the effect of the mask in build up region is lower, the curve shown less steep than of ^{60}Co . In larger fields, the doses in the build up region will be higher than in smaller fields, the rate of increase absorbed dose by the mask in small fields is higher than in large field.

Acknowledgements

I would like to express my sincere gratitude to Professor Anders Brahme, my co-author, for giving me the opportunity to visit and carrying out this work in the department of Hospital Physics. Dr. Bengt-Inge Rud'en, my co-author, for initiating this work. Dr. Aris Tilikidis, my advisor and co-author, for helping with the experiments and suggestions. Professor Bo Nillson for some lecture. Dr. Freddi and Dr. Nongnit Lewin for helping and many suggestions. The staff of the physicists (Bruno, Ingmar, Marie, Thomas, Ingvar, Svante, Younes), and the nurses (particularly Laila) at the department of Hospital Physics. The entire staff at Department of Medical Radiation Physics especially Ann-Charlötte Ekelöf, Lil Engström, and Anders Ekelöf. Mrs. Toom Singnomklao and Mrs. Suree Nujisiri for warm residence in Stockholm. This work was supported by the grant from the faculty of Medicine and Chiangmai University, THAILAND. This work was performed at the Department of Hospital physics, Karolinska Hospital and the Department of Medical Radiation Physics, Karolinska Institute, and University of Stockholm, SWEDEN.

References

- 1) Brahme A. Optimization of radiation of radiation therapy for cancer patients. FORUM, Trends in Experimental and Clinical Medicine 1994 ; 4 : 569-584.
- 2) Beauvais H, Bridier A, Dutreix A. Characteristic of contamination electron in high energy photon beams. Radiother Oncol 1993 ; 29 : 308-316.
- 3) Brahme A. Dosimetric precision requirement in radiationtherapy. Acta Radiol Oncol 1984 ; 23: 379-391
- 4) Brahme A. Multileaf collimation of neutron, photon and electron beams Proc 3rd Ann ESTRO meeting, Jerusalem 1984 : 218.
- 5) Brahme A. Optimization of radiation therapy and the development of multileaf collimation. Int J Radiat Oncol Biol Phys 1993 ; 25 : 373-375.
- 6) Brahme A. Optimization of stationary and moving beam radiotherapy techniques. Radiotherapy Oncol 1988 ;12 :129-140.
- 7) Brahme A. Treatment optimization using physical and radiobiological objective functions. In : Medical Radiology Radiation Therapy Physics. Editor :A. R. Smith. Springer Verlag, Berlin 1995 : 209-246.
- 8) Spiridon VS, Chui CS. Generation of arbitrary intensity profiles by combining the scanning beam with dynamic multileaf collimation. Med Phys 1996 ; 23 :1-8.
- 9) Webb S. Optimization by simulated annealing of three - dimensional, conformal treatment planning for radiation fields defined by a multileaf collimator :II. Inclusion of two-dimensional modulation of the x-ray intensity. Phys Med Biol 1992 ; 37 : 1689-1704.
- 10) Webb S. Optimised Three-Dimensional Treatment Planning for Volumes with Concave Outlines, Using a multileaf Collimator. Advancee Radiation Therapy Tumour Response Monitoring and Treatment Planning. Springer-Ver, Berlin Heidelberg 1992 : 495-501.
- 11) Barish RJ, Lerch LA. Patient immobilization with a low temperature splint/brace material. Radiology 1978 : 127 : 548.
- 12) Bentel CG. Immobilization of patients undergoing Radiation therapy for head and neck malignancies. Alpha Cradle® patient repositioning system field guide. Smithers Medical Products, Inc: 182.
- 13) Ciesielski B, Reinstein L, Weilopolski L, Meek A. Dose enhancement in build-up region by lead, aluminum, and lucite absorbers for 15 MV photon beam. Med Phys 1989 ; 16 : 609-613.
- 14) Caring SER, Windeyer BY, Smither D W. British practice in Radiotherapy. Butterworth 1955 : 3-65.
- 15) Khan FM, Moore VC, Levitt SH. Effect of various atomic number absorbers on skin dose for 10-MeV x-rays. Radiology 1973 ; 109 : 209-212.
- 16) Nilsson B. Electron contamination from different materials in high energy photon beams. PMB 1985; 30: 139-151.
- 17) Thilmann C, Adamietz IA, et al. Increase of surface dose using wound dressings during percutaneous radio therapy with photon and electrons. Radiother Oncol 1996 ; 40 : 181-184.

- 18) Nilsson B, Brahme A. Absorbed Dose from Secondary Electrons in High Energy Photon Beams. *Phys Med Biol* 1979 ; 5:901-912.
- 19) Nilsson B, Brahme A. Contamination of high-energy photon beams by scattered photons. *Trahlentherapie* 1981 ; 157 : 181- 186.
- 20) Kron T, Metcalfe P, Wong T. Thermoluminescence dosimetry of therapeutic x-rays with LiF ribbons and rods. *Phys Med Biol* 1993 ;38 : 833-845.
- 21) Wittkomper FW, et al. Perturbation correction factors for some ionisation chambers commonly applied in electron beams. *Phys Med Biol* 1991 ; 36 : 1639-1652.
- 22) Nilsson B, Sorcini B. Surface dose measurements in clinical photon beams. *Acta Oncol* 1989 ; 28 : 537-542.
- 23) Rocha MPO. The effect of build up cap materials on the response of an ionisation chamber to ^{60}Co gamma rays. *Phys Med Biol* 1993 ; 38 : 793-804.
- 24) Technical Reports series No. 277 . Absorbed dose determination in photon and electron beams. An international code of practice. International Atomic Energy Agency, Vienna; 1978.
- 25) ICRU report 37. International Commission of Radiation units and measurements. Stopping Powers for Electrons and Positrons 1984.
- 26) Nilsson B, Montelius A. Fluence perturbation in Photon beams under non equilibrium conditions. *Med Phys* 1986 ; 13 : 191-195.
- 27) Mckinlay AF. Thermoluminescence dosimetry. *Medical Physics Handbooks* 5 1981 ; 32, 103, 127, 132.
- 28) Joelsson I, Rud'en BI, et al. Determination of dose distribution in the pelvis by measurement and by computer in gynaecology radiation therapy. *Acta Radiologica* 1972 ; 11 : 292.
- 29) Nilsson B, Brahme A. Electron contamination from photon beam collimators. *Radiother Oncol* 1986; 5 : 235 - 244.
- 30) Christ G, Major J, et al. Does the photon quality factor depend on the type of ionization chamber ? *Radiol Oncol* 1995 ; 36 : 153-155.
- 31) Mitie C, Leunes, GV, et al. Is it necessary to repeat quality control procedures for head and neck patients? *Radiother Oncol* 1991 ; 21 : 201-210.
- 32) Khatab EIE. Conversion of ionization measurements to radiation absorbed dose in non-water density material. *Phys Med Biol* 1992 ; 37: 2083-2094.
- 33) Gold S, Chmidt H, Sherwin WK. Reaction to ionizing radiation. *J Am Acad Demtol* 1960,;3 : 551-579.
- 34) Sjogren R, Karlsson M. Electron contamination in clinic high energy photon beams. *Med Phys* 1996 ; 23 : 1873-1881.
- 35) Ostwad PM, Kron T. Surface dosimetry for highly oblique electron beams. *Med Phys* 1996 ; 23 : 1413-1419.

จะอ่านงานวิจัยที่เกี่ยวกับผลการรักษาอย่างไร

ผศ.นพ.เต็มศักดิ์ พิ่งรัศมี
หน่วยรังสีรักษา ภาควิชารังสีวิทยา คณะแพทยศาสตร์
มหาวิทยาลัยสงขลานครินทร์ หาดใหญ่ สงขลา 90112

บทนำ

ในปัจจุบันมีบทความและผลงานวิจัยตีพิมพ์ในวารสารต่างๆ มากมาย แพทย์จำเป็นต้องบริหารเวลาที่มีอยู่ไม่มากนัก นอกเหนือจากการงานดูแลผู้ป่วยจำนวนมาก เพื่อดิดตามความก้าวหน้าทางวิชาการดังกล่าวให้ทันด้วยวัตถุประสงค์ที่แตกต่างกัน เช่น เพื่อดิดตามแนวโน้มของการศึกษาวิจัยในสาขาที่ตนเกี่ยวข้อง เพื่อศึกษารูปแบบวิธีวิจัยสำหรับการเรียนการสอนและงานวิจัย หรือ เพื่อดัดสินใจนำการรักษาตามงานวิจัยนั้นมาปรับผู้ป่วยของตนเอง¹ บทความนี้จะกล่าวถึงเฉพาะในกรณีสุดท้าย คือ การตัดสินใจนำวิธีการรักษาตามงานวิจัยมาปรับผู้ป่วยของตนเอง ซึ่งมีความสำคัญที่สุดเนื่องจากผลกระทบจากการตัดสินใจนั้นจะกระทบต่อผู้ป่วยที่ต้องฝ่าชีวิตไว้กับแพทย์ผู้รักษา

แนวทางในการพิจารณางานวิจัยเกี่ยวกับผลการรักษา

ในการอ่านงานวิจัยที่เกี่ยวกับการรักษาวิธีต่างๆ นั้น คำถามที่ผู้อ่านมักจะถามดูน่องก่อนเสมอคือ จะเชื่อผู้วิจัยหรือไม่?

เพื่อตอบคำถามเหล่านี้นั้น ผู้อ่านจำเป็นต้องพิจารณาในหัวข้อวัสดุและวิธีการที่ผู้วิจัยปฏิบัติตามมากกว่าเหตุผลที่ผู้วิจัยนำมาสนใจที่สุด ในหัวข้อการวิจารณ์ผล ประเด็นที่ควรพิจารณาประกอบด้วย

1) งานวิจัยนั้นเป็น randomized controlled trial (RCT) หรือไม่?

เป็นที่ยอมรับทั่วไปว่า RCT จะตอบคำถามเกี่ยวกับผลการรักษาได้ดีที่สุด² เนื่องจากวิธีวิจัยออกแบบควบคุมให้ผู้ป่วยแต่ละกลุ่มที่ทำการศึกษามีปัจจัยด้านอื่นแตกต่างกันน้อยที่สุด ความแตกต่างในผลการรักษาที่เกิดขึ้นย่อมเกิดจากวิธีการรักษาที่ถูกออกแบบให้ต่างกัน

งานวิจัยที่เป็น RCT มักจะมีข้อความ

เกี่ยวกับการสุ่มวิธีรักษาอยู่ในส่วนใดส่วนหนึ่งของบทความโดยเฉพาะในชื่อเรื่อง เนื่องจากจะเป็นจุดกระตุ้นความสนใจและน่าเชื่อถือของงานวิจัยนั้น ถ้างานวิจัยในนั้นไม่มีการสุ่มวิธีรักษาแล้วผู้อ่านไม่มีเวลาอ่าน มีผู้แนะนำให้ผ่านงานวิจัยนั้นไปก่อน³ เนื่องจากความน่าเชื่อถือในวิธีวิจัยน้อยลง

2) ผู้ป่วยในกลุ่มที่รับการรักษา กับกลุ่มควบคุม เหมือนกันหรือไม่?

ประเด็นนี้เป็นการพิสูจน์ว่า งานวิจัยนั้นมีการสุ่มวิธีรักษาจริงหรือไม่ เนื่องจากบางงานวิจัยใช้คำว่า randomization แต่ขั้นตอนการดำเนินงานอาจเบี่ยงเบนไป

ถ้าการสุ่มวิธีรักษาทำได้อย่างสมบูรณ์ ผู้ป่วยในแต่ละกลุ่มควรมีลักษณะพื้นฐาน เช่น เพศ อายุ ระยะของโรคเหมือนกัน โดยผู้วิจัยควรแสดงตารางเปรียบเทียบให้ชัดเจน และทดสอบทางสถิติให้เห็นว่าผู้ป่วยแต่ละกลุ่มมีลักษณะพื้นฐานนอกเหนือจากวิธีการรักษาไม่แตกต่างกัน

3) ผู้ป่วยในกลุ่มศึกษาและผู้ประเมินผลการรักษาทราบว่าใครได้รับการรักษาวิธีใด หรือไม่?

ถ้าผู้ป่วยหรือผู้ประเมินผลการรักษาทราบว่าตนเองหรือใครได้รับการรักษาอย่างไร จะทำให้เกิดความลำเอียง (bias) ได้ง่าย ทั้งจากผู้ป่วยเองและในการประเมินผลการรักษา เช่น ผู้ป่วยอาจมีความรู้สึกที่ดีหรือไม่ดีต่อการรักษาอยู่แล้ว หรือผู้ประเมินที่เป็นผู้วิจัยเองมักจะประเมินผลเข้าข้างการรักษาที่ตนชอบกว่าได้

ผู้อ่านจึงต้องประเมินระดับของการปักปิดว่า ผู้ป่วยและผู้ประเมินผลการรักษาทราบวิธีการรักษาหรือไม่ ซึ่งผู้วิจัยมักจะใช้ข้อความว่า single-blind หรือ double-blind และสอดไห้เสมออย่างไรก็ตามผู้อ่านควรประเมินต่อไปด้วยว่า มีการปักปิดหรือสามารถกระทำการปักปิดได้จริงหรือไม่ เช่นในการศึกษาเกี่ยวกับการผ่าตัด ยาเคมีบำบัด หรือรังสีรักษา มักจะปักปิดได้ยาก เพราะผู้ป่วยจะทราบวิธีการรักษาของตนและผลข้างเคียงที่ชัดเจนของการศึกษา ถ้ากลุ่มควบคุมไม่ได้รับการรักษาดังกล่าวด้วย

4) งานวิจัยนั้น สามารถติดตามผลการรักษาผู้ป่วยในกลุ่มศึกษาได้ทั้งหมดหรือไม่?

กลุ่มศึกษาที่ไม่สามารถติดตามผลได้มักเป็นผู้ป่วยที่มีผลข้างเคียงของการรักษามาก หรือได้การรักษาไม่ครบถ้วนตามที่ผู้วิจัยกำหนด⁴ อาจจะมีผลการรักษาที่ดีมากคือหายจากโรคจนไม่กลับมาติดตามผล หรือผลการรักษาไม่ดี คือเสียชีวิตแล้ว ถ้าสัดส่วนของผู้ป่วยกลุ่มนี้มีมาก จะทำให้ความน่าเชื่อถือของงานวิจัยน้อยลง⁵

ดังนั้นจึงควรตรวจสอบจำนวนของกลุ่มศึกษาแต่ละกลุ่มที่นำเสนอในตารางผลการรักษา บอกร้อยละของกลุ่มที่หายใจหายใจต่อไป แต่ไม่กลับมาติดตามผล หรือเสียชีวิตแล้ว ที่อ่านงานวิจัย

5) การวิเคราะห์ข้อมูลกลุ่มศึกษาที่ได้รับการรักษาไม่ครบถ้วน ทำอย่างไร?

ในการวิจัยจะมีผู้ป่วยกลุ่มนึงที่ได้รับการรักษาไม่ครบถ้วน เช่น ผู้ป่วยที่เกิดผลข้างเคียงมากจนต้องหยุดการรักษา การวิเคราะห์ข้อมูลโดยตัดผู้ป่วยกลุ่มนี้ออกไปเลย เป็นวิธีที่ไม่ดี อาจได้ผลแตกต่างกันสิ่งที่ปฏิบัติกันบ่อยในการวิเคราะห์ผลการรักษา ชนิดที่มีโอกาสเกิดผลข้างเคียงมาก เช่นยาเคมีบำบัดหรือรังสีรักษา โดยตัดกลุ่มที่ได้รับการรักษาไม่ครบถ้วน มักทำให้ผลการรักษาดีกว่าความเป็นจริงเสมอ

โดยทั่วไปเป็นที่ยอมรับว่าในกรณีเช่นนี้ ควรวิเคราะห์ข้อมูลด้วยวิธี Intention to treat basis คือวิเคราะห์การรักษาโดยจัดผู้ป่วยที่ไม่สามารถรับการรักษาได้ครบถ้วนไว้ในกลุ่มเดิมจาก การสุ่มวิธีรักษาครั้งแรก ไม่ควรตัดออกหรือเปลี่ยนไปอยู่ในกลุ่มควบคุม

6) สถิติที่ใช้วิเคราะห์และรายงานผลการรักษา เป็นอย่างไร?

ในกรณีที่มีการเปรียบเทียบผลการรักษาในกลุ่มศึกษามากกว่า 1 กลุ่ม ผู้วิจัยสามารถใช้วิธีทางสถิติทดสอบความแตกต่างของผลการรักษา ดังกล่าวได้หลายวิธี เช่น t test, χ^2 test และแสดงระดับความแตกต่างของผลการรักษา มีนัยสำคัญทางสถิติมากน้อยเพียงใดร่วมไปกับนัยสำคัญทางคลินิก

7) การรายงานผลการรักษามีทั้งผลดีและผลข้างเคียงหรือไม่?

ในการรักษาโรคโดยเฉพาะโรคมะเร็ง ซึ่งจำเป็นต้องใช้วิธีการรักษาที่เด็ดขาด เช่น การผ่าตัด รังสีรักษา หรือยาเคมีบำบัด มักมีผลข้างเคียงของการรักษาร่วมด้วยเสมอไม่มากก็น้อย ถ้างาน

วิจัยรายงานแต่เฉพาะผลดีของการรักษาโดยไม่ได้กล่าวถึงข้อไม่ดีหรือผลข้างเคียงของการรักษาเลย นักแสดงถึงความลำเอียงของผู้วิจัยเข้าข้างการรักษาดังกล่าวมากกว่าจะไม่มีผลข้างเคียงจริง

ผู้อ่านควรพิจารณาว่าผลการรักษาในงานวิจัยนั้นตรงกับผลที่ตนสนใจหรือไม่ เช่น สนใจการตอบสนองของก้อนมะเร็ง หรือสนใจคุณภาพชีวิตของผู้ป่วย รวมทั้งมีผลข้างเคียงจากการรักษามาก น้อยเพียงใด ก่อนจะเชื่อผู้วิจัยแล้วนำการรักษามาใช้กับผู้ป่วยของตนเอง

8) ผู้ป่วยของเรา สามารถให้การรักษาตามแบบงานวิจัยนี้ หรือไม่?

การนำวิธีการรักษาจากงานวิจัยมาใช้กับผู้ป่วยจริง จำเป็นต้องพิจารณาว่าก่อนผู้ป่วยในงานวิจัยเข้าได้กับผู้ป่วยของเราหรือไม่ โดยดูจากวิธีคัดเลือกและคัดออกของกลุ่มศึกษา งานวิจัยที่มีหลักเกณฑ์คัดเลือกและคัดออกของกลุ่มศึกษาเข้มงวด จะมีความน่าเชื่อถือในผลการรักษา เช่นหากลุ่มดังกล่าวสูง แต่การนำไปใช้ในผู้ป่วยจริงซึ่งไม่สามารถคัดผู้ป่วยได้อาจไม่ได้ผลตามงาน

วิจัยนั้น นอกจากนี้ยังต้องคำนึงถึงความพร้อมของอุปกรณ์และบุคลากร ความปลอดภัยและการลงทุนว่าสามารถทำการรักษาได้เมื่อมีกับการรักษาในงานวิจัยนั้นๆ จริงๆหรือไม่

งานวิจัยที่ดีจึงมักมีรายละเอียดของวิธีการรักษา หลักเกณฑ์คัดเลือกและคัดออกของกลุ่มศึกษาโดยละเอียด เพื่อให้ผู้อ่านได้พิจารณาประเด็นดังกล่าวข้างต้นก่อนนำไปใช้กับผู้ป่วยของตนเอง

สรุป

ก่อนจะนำวิธีการรักษาจากงานวิจัยมาใช้ในการดูแลผู้ป่วยของตนเอง แพทย์ควรจะพิจารณาประเมินความน่าเชื่อถือของงานวิจัยจากหัวข้อสัดส่วนและวิธีการที่ผู้วิจัยปฏิบัติก่อนเสมอ โดยการวิจัยวิธี double-blind randomized controlled trial ที่ถูกต้อง จะมีความน่าเชื่อถือ และให้คำตอบเกี่ยวกับการวัดผลการรักษาได้ดีที่สุด แต่วิธีดังกล่าว อาจมีข้อจำกัดไม่สามารถกระทำได้ การนำงานวิจัยรูปแบบอื่นไปใช้จึงควรกระทำด้วยความระมัดระวัง

เอกสารอ้างอิง

- 1) Sackett DL, Haynes RB., Tugwell P. clinical epidemiology: A basic science for clinical medicine. Boston: Little Brown, 1985:287
- 2) Trisha G. How to read a paper: Getting your bearings (deciding what the paper is about). BMJ 1997; 315:243-6.
- 3) Sackett DL, Haynes RB, Tugwell P. Clinical epidemiology: A basic science for clinical medicine. Boston: Little Brown, 1985:300-2.
- 4) Trisha G. How to read a paper: Assessing the methodological quality of published papers. BMJ 1997; 315: 305-8.
- 5) Guyatt GH, Sackett DL, Cook DJ. Users' guides to the medical literature II. How to use an article about therapy or prevention. A. Are the results of the study valid? JAMA 1993; 270(21): 2598-601.
- 6) Stewart LA, Parmar MKB. Bias in the analysis and reporting of randomized controlled trials. Int J Health Technology Assessment 1996; 12: 264-75.
- 7) Guyatt GH, Sackett DL, Cook DJ. Users' guides to the medical literature II. How to use an article about the or prevention. B. What were the results and will they help me in caring for my patients? JAMA 1994; 271 (1) : 59-63.

รังสีรักษาในปัจจุบันของประเทศไทย

นายแพทย์นพดล อัศวเมธ *

น.ส. โอดิเก้า จำปาเชิน **

บทคัดย่อ

จากการสำรวจในปี พ.ศ. 2540 พบว่าในปัจจุบันประเทศไทยมีสถาบันที่ใช้รังสีในการรักษาผู้ป่วยอยู่ทั้งสิ้น 23 สถาบัน มีแพทย์ที่ปฏิบัติงานทางรังสีรักษา 56 ท่าน นักพิสิกส์ทางรังสีรักษา 35 ท่าน เจ้าหน้าที่และนักรังสีเทคนิคทางรังสีรักษา 115 ท่าน มีเครื่องเร่งอนุภาค (Linear accelerator) 23 เครื่อง เครื่องฉายรังสีโคลบล็อต 22 เครื่อง γ -knife 1 เครื่องและอุปกรณ์สำหรับฉายรังสีแบบ Stereotactic radiosurgery ด้วยเครื่อง Linear accelerator 3 เครื่อง ปัญหาขาดแคลนบุคลากรจะมีมากกว่าขาดแคลนเครื่องมือ โดยเฉพาะสถาบันที่อยู่นอกกรุงเทพมหานคร ซึ่งสถาบันมีน้อยเมื่อเทียบกับประชากรและสถาบันอยู่ห่างไกล ทำให้ผู้ป่วยมีความไม่สะดวกในการรักษา

บทนำ

เนื่องจากในปัจจุบันยังไม่มีการรวบรวมข้อมูลเกี่ยวกับสถาบันที่ให้บริการทางรังสีรักษาบุคลากรต่างๆ ที่ทำงานทางด้านนี้ และเครื่องมือที่มีอยู่ในสถาบันเหล่านี้ ทำให้ไม่ทราบถึงสถานะ

ความต้องการ ความขาดแคลนของงานทางรังสีรักษา บุคลากรต่างๆ ที่ทำงานทางด้านนี้ และเครื่องมือที่มีอยู่ในสถาบันเหล่านี้ ทำให้ไม่ทราบถึงสถานะความต้องการ ความขาดแคลนของงานทางรังสีรักษา จึงได้รวบรวมข้อมูลทางรังสีรักษาขึ้นเพื่อประโยชน์ของการวางแผนต่อไปในอนาคต

วิธีการ

ส่งแบบสอบถามไปยังสถานที่ต่างๆ ซึ่งได้รับความร่วมมืออย่างดีและเนื่องจากแพทย์และนักพิสิกส์บางท่านทำงานหลายสถาบัน อันจะทำให้จำนวนที่ได้ช้ากันเกิดความผิดพลาดได้ จึงใช้โทรศัพท์สอบถาม และถามโดยตรงจากบุคลากรที่ทำงานในสถาบันนั้นๆ เพื่อความถูกต้องของข้อมูล

ผล

ข้อมูลทางรังสีรักษาได้แสดงในตารางที่ 1 และตารางที่ 2

* หน่วยรังสีรักษา ภาควิชารังสีวิทยา คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

** หน่วยรังสีรักษา ฝ่ายรังสีวิทยา โรงพยาบาลจุฬาลงกรณ์

ข้อมูลรังสีรักษากองประเทศไทย ปี พ.ศ. 2540

	ทั้งหมด	กรุงเทพฯ	ต่างจังหวัด
สถาบันที่ให้บริการรังสีรักษา	23	13	10
แพทย์	56	41	15
นักพิสิกส์	35	24	11
รังสีเทคนิค 4 ปี	50	38	12
รังสีเทคนิค 2 ปี	65	26	39

เครื่องมือ

	ทั้งหมด	กรุงเทพฯ	ต่างจังหวัด
Linear	23	15	8
Cobalt	22	12	10
Sup + Contact + X-ray	9	5	4
Simulator	21	13	8
Planning	23	15	8
Hyper thermia	4	4	-
Stereotactic radiosurgery	3	2	1
γ-Knife	1	1	-
HDR	10	5	5
MDR or LDR	10	7	3

HDR = High Dose Rate Brachytherapy

MDR = Medium Dose Rate Brachytherapy

LDR = Low Dose Rate Brachytherapy

วิจารณ์

จำนวน 23 สถาบันที่ให้บริการทางรังสีรักษา มี 1 สถาบันที่มีเฉพาะเครื่อง γ-knife ดังนั้น สถาบันที่ให้การรักษาแบบทั่วไปมี 22 สถาบัน เป็นของเอกชน 5 สถาบัน จำนวนเครื่อง Linear และ Cobalt รวมกันมี 45 เครื่อง ในปี ค.ศ. 1990 ประเทศไทยมีอัตรามะเร็งในเพศชาย 149.6 ต่อประชากร 100,000 คน และในเพศหญิง 125.2 ต่อประชากร 100,000 คน ถ้าคิดอัตรามะเร็งเฉลี่ย 130 คนต่อประชากร 100,000 คนและประชากร 60 ล้านคน ในปี พ.ศ. 2540 จะได้ผู้ป่วยมะเร็ง 78,000 คนต่อปีเป็นอย่างน้อย หากคิดว่าผู้ป่วยมะเร็งประมาณหนึ่งในสามต้องการรักษาด้วยรังสี ดังนั้นผู้ป่วยที่ต้องได้รับการรักษาด้วยรังสีเป็น 26,000 คนต่อปี คิดเฉลี่ยแต่ละสถาบันรักษาผู้ป่วยใหม่ได้ 1,000 คนต่อปี ประเทศไทยจึงขาดสถาบันอยู่อีก 4 สถาบันในปัจจุบัน ซึ่งควรที่จะอยู่ในกรุงเทพมหานคร คาดว่าอัตรากำลังต่อหนึ่งสถาบันมี แพทย์ 3 ท่าน นักพิสิกส์ 1 ท่าน นักรังสีเทคนิค 1 ท่าน เจ้าหน้าที่รังสีเทคนิค หรือนักรังสีเทคนิค 8 ท่านเป็นอย่างน้อย ในการรักษาผู้ป่วยใหม่ 1,000 คนต่อปี ถ้าเป็นโรงเรียนแพทย์ให้เป็นแพทย์ 6 ท่าน นักพิสิกส์ 3 ท่าน นักรังสีเทคนิค 3 ท่าน และเจ้าหน้าที่รังสีเทคนิค หรือนักรังสีเทคนิค 8 ท่านเพื่อทำการสอนนิสิตแพทย์ แพทย์ประจำบ้าน นิสิตปริญญาโท และการทำหัตถการอย่างยก รวมแล้วเราต้องการแพทย์ทั้งสิ้น 102 ท่าน นักพิสิกส์ 42 ท่าน เจ้าหน้าที่รังสีเทคนิค หรือนักรังสีเทคนิค 250 ท่าน ถ้าเปรียบเทียบกับอัตรากำลังคนของข้อมูลในปัจจุบัน จะเห็นว่าเรายังขาดอัตรากำลังประมาณครึ่งหนึ่งสำหรับแพทย์และเจ้าหน้าที่และนักรังสีเทคนิค

สรุป

ในปัจจุบันเรายังขาดสถาบันสำหรับรังสีรักษาอีก 4 สถาบัน สำหรับประชาชนนอกกรุงเทพมหานคร และเครื่องมือสำหรับสถาบันใหม่ ส่วนบุคคลการยังขาดอยู่ทุกสาขา โดยเฉพาะสถาบันที่อยู่นอกกรุงเทพมหานคร 10 สถาบัน ซึ่งยังขาดแคลนทั้งแพทย์, นักพิสิกส์, เจ้าหน้าที่ และนักรังสีเทคนิคก็อย่างน้อย 1 เท่าของที่มีอยู่ในปัจจุบัน ส่วนสถาบันในกรุงเทพจะขาดแคลนในจำนวนที่น้อยกว่า ในต่างจังหวัดหากมีสถาบันเพียงพอและได้มาตรฐานแล้ว จำนวนผู้ป่วยที่มารับการรักษาในกรุงเทพจากต่างจังหวัดก็จะลดลง และหากคิดจำนวนสถาบันทางรังสีรักษาสำหรับประชาชนในกรุงเทพ และปริมณฑลแล้ว ก็คิดว่าเราจะเพียงพอแล้ว เพียงแต่เพิ่มความสามารถของสถาบันในด้านเครื่องมือและบุคคลการเท่านั้นก็จะสามารถบริการประชาชนในกรุงเทพ และปริมณฑลได้อย่างเพียงพอ

บรรณานุกรม

1. V. Vatanasopt et al. Cancer in Thailand 1988-1991 IARC Technical Report No 16, 1993. Page 61
2. Optimization of Radiotherapy Report of a WHO meetings of Investigators. World Health Organization Technical Report Series. 644, 1980, Page 8