

Journal of Thai Association of Radiation Oncology

Volume 30 Issue 1 January – June 2024

Review Articles

- The Feasibility of Synthetic Computed Tomography (sCT) Generated from Magnetic Resonance for Calculating ATenuation (MRCAT) in Prostate Cancer for External Beam Radiotherapy Dose Calculation
- Accuracy of target volume and artifact reduction by optimal sorting methods of 4DCT image reconstruction on lung cancer radiotherapy in patients with mismatched pitch in irregular respiration
- Benefit of radiation therapy in stage III-IV Hodgkin lymphoma after chemotherapy
- Identifying clinical and treatment factors on survival outcomes of cervical cancer: Sawanpracharak Hospital
- Factors influencing real-time 3D surface image-guided for patient setup in radiotherapy

ISSN 2730-177X (Online)

สมาคมรังสีรักษากายและมะเร็งวิทยาแห่งประเทศไทย

Thai Association of Radiation Oncology


รายชื่อคณะกรรมการบริหาร
สมาคมรังสีรักษาและมะเร็งวิทยาแห่งประเทศไทย
วาระปี 2566-2568

คณะกรรมการบริหาร

รองศาสตราจารย์นายแพทย์ชลเกียรติ รองศาสตราจารย์แพทย์หญิงมัณฑนา ศาสตราจารย์แพทย์หญิงอัมใจ	ขอประเสริฐ ธนาไชย ชิตาพนารักษ์	โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลรามาธิบดี โรงพยาบาลมหาราชนครเชียงใหม่	นายกสมาคม อุปนายก 1 อุปนายก 2 และประธานฝ่ายวิเทศสัมพันธ์ และภาพลักษณ์องค์กร
รองศาสตราจารย์แพทย์หญิงกานุจนา ผู้ช่วยศาสตราจารย์นายแพทย์จักรพงษ์ รองศาสตราจารย์แพทย์หญิงพุณพิพรรณ ผู้ช่วยศาสตราจารย์แพทย์หญิงนันทกานต์ รองศาสตราจารย์แพทย์หญิงจันจิรา รองศาสตราจารย์แพทย์หญิงกิตติ์วี	โชติเลอศักดิ์ จักรกานต์ พัชร์วิวงศ์ อภิวีระดมก์ เพชรสุกิริ ศักดิ์ศรีชัย	โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลรามาธิบดี โรงพยาบาลศิริราช โรงพยาบาลศิริราช โรงพยาบาลจุฬาลงกรณ์	เลขานิการ ประธานฝ่ายวิชาการ รองประธานฝ่ายวิชาการ 1 รองประธานฝ่ายวิชาการ 2 รองประธานฝ่ายวิชาการ 3 รองประธานฝ่ายวิเทศสัมพันธ์ และภาพลักษณ์องค์กร และรองประธานฝ่ายสารสนเทศ
ศาสตราจารย์นายแพทย์เอกสิทธิ์ ศาสตราจารย์นายแพทย์ชวิต รองศาสตราจารย์นายแพทย์เต็มศักดิ์ ผู้ช่วยศาสตราจารย์แพทย์หญิงปฐมพร แพทย์หญิงฉัชคนันย์ น.อ.แพทย์หญิงหม่อมหลวงอภิรดี นายแพทย์ธราธร ผู้ช่วยศาสตราจารย์ ดร.แพทย์หญิงนงปัภ ว่าที่ร้อยตรี นายแพทย์ปิยะ ผู้ช่วยศาสตราจารย์แพทย์หญิงชุมพร รองศาสตราจารย์นายแพทย์ศรีชัย รองศาสตราจารย์แพทย์หญิงนาทีพิทย์ พ.อ.แพทย์หญิงคิรินทิพย์ นายแพทย์จิรศักดิ์ ผู้ช่วยศาสตราจารย์แพทย์หญิงศศิกาญจน์ รองศาสตราจารย์นายแพทย์พิทยา	ธรรมวิจิตรกุล เลิศบุญยานนกุล พึงรัชมี ศิริประภาศรี คล้ายทอง กฤตกร ตุ่งคสมิต อมรวิเชฐ์ ประทีปะเสน สีตัชรนี ครุสันธ์ ตันติวัฒน ทรงวุฒิวิชัย สุขบูรณ์ จำด ด่านกุลชัย	โรงพยาบาลมหาราชนครเชียงใหม่ โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลสัตวแพทย์ศิรินครินทร์ สถาบันมะเร็งแห่งชาติ โรงพยาบาลมหาวิชิรลงกรณ โรงพยาบาลภูมิพลอดุลยเดช โรงพยาบาลมหาวิชิรเดช โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลรามาธิบดี โรงพยาบาลศิรินครินทร์ โรงพยาบาลจุฬาลงกรณ โรงพยาบาลพระมงกุฎเกล้า โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลจุฬาลงกรณ์	ประธานฝ่ายวิจัย ประธานฝ่ายสารสนเทศ ประธานฝ่ายสารสนเทศ ประธานฝ่ายสนับสนุนการจัดตั้งระบบบริการ รองประธานฝ่ายสนับสนุนการจัดตั้งระบบบริการ ประธานฝ่ายปฏิบัติ รองฝ่ายปฏิบัติ เหรียญภูก นายทะเบียน คณะกรรมการกลาง คณะกรรมการกลาง คณะกรรมการกลาง คณะกรรมการกลาง คณะกรรมการกลาง คณะกรรมการกลาง คณะกรรมการกลาง คณะกรรมการกลาง คณะกรรมการกลาง

คณะกรรมการฝ่ายวิชาการ

ผู้ช่วยศาสตราจารย์นายแพทย์จักรพงษ์ รองศาสตราจารย์แพทย์หญิงพุณพิพรรณ ผู้ช่วยศาสตราจารย์แพทย์หญิงนันทกานต์ รองศาสตราจารย์แพทย์หญิงจันจิรา	จักรกานต์ พัชร์วิวงศ์ อภิวีระดมก์ เพชรสุกิริ	โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลรามาธิบดี โรงพยาบาลศิริราช โรงพยาบาลศิริราช	ประธานฝ่ายวิชาการ รองประธานฝ่ายวิชาการ 1 รองประธานฝ่ายวิชาการ 2 รองประธานฝ่ายวิชาการ 3
--	---	---	---

สมาคมรังสีรักษาและมะเร็งวิทยาแห่งประเทศไทย Thai Association of Radiation Oncology

รายชื่อคณะกรรมการบริหาร สมาคมรังสีรักษาและมะเร็งวิทยาแห่งประเทศไทย วาระปี 2566-2568

คณะกรรมการฝ่ายวิชาการ

ผู้ช่วยศาสตราจารย์แพทย์หญิงกีรติกานต์ รองศาสตราจารย์พิเศษ ดร.แพทย์หญิงอนุสรดา นายแพทย์เพทาย	นุญญาวรรณ ประยงค์วงศ์ รองดลอนุกูล	โรงพยาบาลรามาธิบดี โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลสหัสนคินทร์	ผู้ช่วยฝ่ายวิชาการ ผู้ช่วยฝ่ายวิชาการ ผู้ช่วยฝ่ายวิชาการ
---	-----------------------------------	---	--

คณะกรรมการฝ่ายวิจัย

ศาสตราจารย์นายแพทย์เอกลีทิช รองศาสตราจารย์นายแพทย์กุลธร รองศาสตราจารย์ ดร.แพทย์หญิงจิราพร นายแพทย์ชัยรัตน์ นายแพทย์นันกพิช นายแพทย์หญิงธนิติพร	ธรรมวิจิตรกุล เทพมงคล เสตกรุณกุล โภวนิชเกียรติกุล โตวน้ำชาัย จารุเรียม	โรงพยาบาลรามาธิบดี โรงพยาบาลศิริราช โรงพยาบาลศิริราช โรงพยาบาลรามาธิบดี โรงพยาบาลภูมิพลอดุลยเดช โรงพยาบาลจุฬาลงกรณ์	ประธานฝ่ายวิจัย ผู้ช่วยฝ่ายวิจัย ผู้ช่วยฝ่ายวิจัย ผู้ช่วยฝ่ายวิจัย ผู้ช่วยฝ่ายวิจัย ผู้ช่วยฝ่ายวิจัย
--	--	---	--

คณะกรรมการฝ่ายปฏิคม

น.อ.แพทย์หญิงหง่อมหลวงอภิรดี นายแพทย์ธราธร นายแพทย์เพชร	กฤดากร ดุวงศ์สมิต อวลีสารท	โรงพยาบาลภูมิพลอดุลยเดช โรงพยาบาลเมืองอุดรธานี โรงพยาบาลจุฬาลงกรณ์	ประธานฝ่ายปฏิคม รองฝ่ายปฏิคม ผู้ช่วยฝ่ายปฏิคม
---	----------------------------	--	---

คณะกรรมการฝ่ายวารสาร

ศาสตราจารย์นายแพทย์ชวลิต รองศาสตราจารย์พิเศษแพทย์หญิงชนมนิภา แพทย์หญิงธนิติพร ผู้ช่วยศาสตราจารย์ ดร.ทวีป ดร.พวงเพ็ญ รองศาสตราจารย์แพทย์หญิงพิมพ์ขัณุ	เลิศบุญยานนกุล นันทวิทยา จาลุเรียม แสงแห่งธรรม ตั้งบุญดวงจิตร กำเนิดศุภผล	โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลรามาธิบดี โรงพยาบาลรามาธิบดี	ประธานฝ่ายวารสาร ผู้ช่วยฝ่ายวารสาร ผู้ช่วยฝ่ายวารสาร ผู้ช่วยฝ่ายวารสาร ผู้ช่วยฝ่ายวารสาร ผู้ช่วยฝ่ายวารสาร
--	---	---	--

คณะกรรมการฝ่ายสารสนเทศ

รองศาสตราจารย์นายแพทย์เต็มศักดิ์ รองศาสตราจารย์แพทย์หญิงกิตต์วี นายนพแพทย์ชวลิต นายนพแพทย์ภรริวัฒน์ นายแพทย์ยศดันย	พี่รัชมี ศักดิ์ศรัชัย หลักดี เมืองวงศ์ นาเมืองจันทร์	โรงพยาบาลสหัสนคินทร์ โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลพุทธชินราช โรงพยาบาลเมืองลำปาง โรงพยาบาลศรีนครินทร์	ประธานฝ่ายสารสนเทศ ผู้ช่วยฝ่ายสารสนเทศ ผู้ช่วยฝ่ายสารสนเทศ ผู้ช่วยฝ่ายสารสนเทศ ผู้ช่วยฝ่ายสารสนเทศ
--	--	---	--

กี่ปรึกษา

สมาคมรังสีรักษาและมะเร็งวิทยาแห่งประเทศไทย

ปี พ.ศ. 2566- 2568

รายชื่อที่ปรึกษา

ศาสตราจารย์เกียรติคุณนายแพทย์ไพรัช เทพมงคล
ศาสตราจารย์เกียรติคุณแพทย์หญิงพวงทอง ไกรพิบูลย์
ศาสตราจารย์เกียรติคุณนายแพทย์วิชาญ หล่อวิทยา¹
ศาสตราจารย์เกียรติคุณแพทย์หญิงลักษณ์ โพขันกุล
พลาอากาศตรีนัยแพทย์เอกชัย วิเศษศิริ
ศาสตราจารย์เกียรติคุณแพทย์หญิงวิมล สุขุมยา

นายแพทย์ยงยุทธ คงนราธัตน์
รองศาสตราจารย์พลดรีแพทย์หญิงพรศรี คิดชอบ
รองศาสตราจารย์พลดรีนัยแพทย์ประมุช พรหมรัตนพงศ์
ศาสตราจารย์นายนายแพทย์พิทยภูมิ ภัทรนรุภาพร
รองศาสตราจารย์นายนายแพทย์ประเสริฐ เลิศสงวนสินชัย
ผู้ช่วยศาสตราจารย์แพทย์หญิงสมใจ แดงประเสริฐ

อาจารย์อาวุโส สมาคมรังสีรักษาและมะเร็งวิทยาแห่งประเทศไทย

ศาสตราจารย์เกียรติคุณแพทย์หญิงสายสوان อุณหนันท์
รองศาสตราจารย์นายนายแพทย์วิสุทธิ์ วุฒิพุกาน์
ผู้ช่วยศาสตราจารย์แพทย์หญิงสุรีย์ ชิตะฐาน
รองศาสตราจารย์นายนายแพทย์สกapol กัมพลพันธ์
นายแพทย์พิชิษฐ์ ศิริสุข
แพทย์หญิงสุนันทา ศรีสุบติ-พโลยส่องแสง
ผู้ช่วยศาสตราจารย์นายนายแพทย์อนันต์ โทนุสิน
รองศาสตราจารย์แพทย์หญิงสุพัตรา แสงจุจิ
ผู้ช่วยศาสตราจารย์นายนายแพทย์ประยุทธ์ โรจน์พรประดิษฐ์
ผู้ช่วยศาสตราจารย์นายนายแพทย์โรจน์รุ่ง สุวรรณสุทธิ
นายแพทย์ยัณรังค์พล เทียนทอง
แพทย์หญิงสายพิน ตั้งครัชต์

ผู้ช่วยศาสตราจารย์นายนายแพทย์วิรัตน์ ไพรัชเวทย์
รองศาสตราจารย์แพทย์หญิงมณฑียร เบสี
ผู้ช่วยศาสตราจารย์นายนายแพทย์นพดล อัศวเมธ
รองศาสตราจารย์แพทย์หญิงเยาวลักษณ์ ชาญศิลป์
นายแพทย์ศักดิ์พิสิษฐ์ นราธิว
นายแพทย์สมคิด เพ็ญพันกุล
นายแพทย์รนเดช สินธุเสก
นายแพทย์ชนวัชร์ เทศวิบูล
นายแพทย์อภิชาต พานิชชีวลักษณ
รองศาสตราจารย์พันโนนายแพทย์อธิ สร่างศิลป์
ผู้ช่วยศาสตราจารย์แพทย์หญิงลดาวัลย์ นาคพงษ์

Content

มะเร็งวิวัฒนา

วารสารสมาคมรังสีรักษาระและมะเร็งวิทยาแห่งประเทศไทย
ปีที่ 30 ฉบับที่ 1 มกราคมคม - มิถุนายน 2567

03 คณะกรรมการบริหารสมาคมรังสีรักษาระและมะเร็งวิทยาแห่งประเทศไทยปี 2566 - 2568

05 ที่ปรึกษาสมาคมรังสีรักษาระและมะเร็งวิทยาแห่งประเทศไทยปี 2566 - 2568

08 บรรณาธิการแอลจ

R1 ความเป็นไปได้ของการใช้งานภาพเอกซเรย์คอมพิวเตอร์สังเคราะห์ที่ได้จากการคลื่นแม่เหล็กไฟฟ้า คำนวณ การลอดหอน (เอ็มอาร์แคท) สำหรับการคำนวณปริมาณรังสีด้วยเทคนิครังสีรักษาระยะใกล้ในมะเร็งต่อมลูกหมาก
The Feasibility of Synthetic Computed Tomography (sCT) Generated from Magnetic Resonance for Calculating ATenuation (MRCAT) in Prostate Cancer for External Beam Radiotherapy Dose Calculation
พรบวิน บัดเลน, แทนวิวัฒน์ ใจกุณา, พิชญุตม์ นาคราภรณ์, วิศวะ พงษ์ประพันธ์, พิทยา ด่านกุลชัย

R19 ความถูกต้องของปริมาตรก้อนเนื้องอกและการลดสิ่งแผลกปลงบนภาพเอกซเรย์คอมพิวเตอร์แบบ 4 มิติ ด้วยวิธีการจัดเรียงข้อมูลภาพที่เหมาะสมสำหรับการฉายรังสีเมะเร็งปอดในผู้ป่วยที่มีการตั้งค่าพิทซ์ไม่สัมพันธ์กับรูปแบบการหายใจที่ไม่สม่ำเสมอ
Accuracy of target volume and artifact reduction by optimal sorting methods of 4DCT image reconstruction on lung cancer radiotherapy in patients with mismatched pitch in irregular respiration
กนลชนก นอบเพ็อก, อุตุมพร พ่วงรักษ์, กุลธร เทพเมงคล, ภัทรพงษ์ ผาสุขกิจ, ศรุต พ่วงรักษ์,
จิราพร เสตกรณกุล

R38 ประโยชน์ของการฉายรังสีในผู้ป่วยมะเร็งต่อมน้ำเหลืองชนิดระยะกินระยะลุกลามหลังรักษาด้วยเคมีบำบัด
Benefit of radiation therapy in stage III-IV Hodgkin lymphoma after chemotherapy
รุจា วิจิตรเวชพศานต์, ติติวรรณ ประชานุกูล, มานัสวนิช นาวินพิพัฒน์, พรรดา ประดิษฐ์ลุขavar, กัญญาณี แลบวี,
พรวรี ตรีรัลสพานิช, สุนันทา ถึงผ่อง, ธง โชคิฐพันธ์, ศรินยา บวรภัทรประณ์, ศศิกาญจน์ จำจด

R58 ปัจจัยทางคลินิกและการรักษาที่มีผลต่อการรอดชีพของผู้ป่วยมะเร็งปากมดลูกในโรงพยาบาลสวรรค์ประชารักษ์
Identifying clinical and treatment factors on survival outcomes of cervical cancer:
Sawanpracharak Hospital
ณัชชา เสนาวิน, กีรตี ไตรคีรีส์สิต

R76 การศึกษาปัจจัยที่มีผลต่อระบบภาพพื้นผิวสามมิติแบบตรวจจับตลอดเวลาสำหรับจัดท่าผู้ป่วยฉายรังสี
Factors influencing real-time 3D surface image-guided for patient setup in radiotherapy
เมธินี วิเศษรินทอง, Jarvis กันเน็ธร

บรรณาธิการแก้ลง

เจ้าของ

สมาคมรังสีรักษาและมะเร็งวิทยาแห่งประเทศไทย

วัตถุประสงค์

- เพื่อส่งเสริมการวิจัยทางการแพทย์ โดยเฉพาะอย่างยิ่งในประเทศไทย
- เพื่อแก้ไขปัญหานักศึกษาทางวิชาการ ด้านการแพทย์ การสาธารณสุข และวิทยาศาสตร์สุขภาพของประเทศไทย โดยเฉพาะด้านรังสีรักษา
- เพื่อเผยแพร่และประชาสัมพันธ์ความรู้ทางวิชาการแพทย์ และวิทยาศาสตร์สุขภาพ ที่เกี่ยวข้องกับประเทศไทย
- เพื่อเป็นเวทีการเผยแพร่องค์ความรู้ทางวิชาการ รังสีรักษาและมะเร็งวิทยา แห่งประเทศไทย

นโยบายการพิจารณาบทความ

บทความทุกบทความจะต้องผ่านการพิจารณาโดยผู้ทรงคุณวุฒิในสาขาที่เกี่ยวข้องอย่างน้อย 2 ท่าน แบบผู้ทรงคุณวุฒิและผู้ตัดสินใจท้าทายกันและกัน (double-blind review)

กำหนดต่อ

วารสารตีพิมพ์เผยแพร่ 2 ฉบับต่อปี ฉบับที่ 1 มกราคม - มิถุนายน และฉบับที่ 2 กรกฎาคม - ธันวาคม

สำนักงานกองบรรณาธิการ

สาขาวิชารังสีรักษาและมะเร็งวิทยา ภาควิชารังสีรักษา

คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

โทรศัพท์ : 66-2-2564334 โทรสาร : 66-2-2564590

E-mail : thairedjournal@gmail.com

Webpage : <https://www.tci-thaijo.org/index.php/jtaro/index>

ที่ปรึกษา

รศ.นพ.ชลเกียรติ ขอประเสริฐ

รศ.พญ.มัณฑนา ชานไชย

ศ.พญ.อุ่มใจ ชิตาธนาวังษ์

บรรณาธิการ

ศ.นพ.ชาลิต เลิศบุญยานุกูล	รองบรรณาธิการ
ศ.พญ.ธีรศิริ พลุชมณีนิภา	นันทิริพัฒนา
ศ.พญ.ธีรศิริ พลุชมณีนิภา	นันทิริพัฒนา
ผศ.ดร.ทวีป แสงแท้ธรรม	ผศ.ดร.ทวีป แสงแท้ธรรม
อ.ดร.พวงพันธุ์ ตั้งนุบุดวงจิตร	อ.ดร.พวงพันธุ์ ตั้งนุบุดวงจิตร
รศ.พญ.พิมพ์ชัยณุ	รศ.พญ.พิมพ์ชัยณุ

กองบรรณาธิการ

ศ.นพ.เบกอลิส ธรรมจิตรกุล ผศ.ดร.สมศักดิ์ วรรณภูมิรัตน์

ผศ.นพ.ธนาภันธุ์ พิริวงศ์ ผศ.พญ.ทุพิตรรณ พัววีวงศ์

อ.นิศา ชุมศุวรรณ์ ผศ.พญ.จิราพร เศศกรณกุล

รศ.ลดา ตั้ตติภูมิอมร อ.ธิติชุติพันธุ์

อ.แสงอุทิศ ทองสวัสดิ์

ผู้ประสานงานกองบรรณาธิการ

อั้นยรัตน์ ศิรวนวงศ์

ฝ่ายศิลปกรรม

รังษฤษฎา อาศัยศาสส์

ก้าวต่อไปของรังสีรักษาในประเทศไทย

วารสารสมาคมรังสีรักษาและมะเร็งวิทยาแห่งประเทศไทย (JTARO) มุ่งนำเสนอผลงานวิจัย ความก้าวหน้าทางเทคโนโลยี และประเด็นสำคัญ ด้านรังสีรักษาในประเทศไทย ฉบับนี้เน้นประเด็นดังต่อไปนี้:

การใช้ภาพเอ็มอาร์ในการสร้างภาพสังเคราะห์ของเอกซเรย์ คอมพิวเตอร์สำหรับการคำนวณปริมาณรังสี ผลการรักษาด้วยรังสีรักษาในมะเร็งต่อมน้ำเหลืองและมะเร็งปากมดลูก

วารสาร JTARO มุ่งเป็นแหล่งข้อมูลที่มีประโยชน์สำหรับนักวิจัย แพทย์ผู้เชี่ยวชาญ ผู้ประกอบวิชาชีพรังสีรักษา และประชาชนทั่วไป เชิญส่งบทความวิจัย บทความบททวนวรรณกรรม และบทความอื่นๆ ที่เกี่ยวข้องกับรังสีรักษาเพื่อตีพิมพ์ในวารสารฉบับนี้

บรรณาธิการ

วารสารสมาคมรังสีรักษาและมะเร็งวิทยาแห่งประเทศไทย

Journal of Thai Association of Radiation Oncology

The Feasibility of Synthetic Computed Tomography (sCT) Generated from Magnetic Resonance for Calculating ATtenuation (MRCAT) in Prostate Cancer for External Beam Radiotherapy Dose Calculation

ความเป็นไปได้ของการใช้งานภาพเอกซเรย์คอมพิวเตอร์สังเคราะห์ที่ได้จากการ
คลื่นแม่เหล็กไฟฟ้า คำนวณการลอดท่อน (เอ็มอาร์แครท) สำหรับการคำนวณ
ปริมาณรังสีด้วยเทคนิครังสีรักษาระยะไกลในมะเร็งต่อมลูกหมาก

Pronpawee Pudsena¹, Tanwiwat Jaikuna², Pitchayut Nakkrasae², Wisawa Phongprapun²,
Pittaya Dankulchai²

¹Master degree of Science Program in Medical Physics, Faculty of Medical Siriraj Hospital,
Mahidol University, Bangkok, Thailand

²Division of Radiation Oncology, Department of Radiology, Faculty of Medical Siriraj Hospital,
Mahidol University, Bangkok, Thailand

Corresponding author

Pittaya Dankulchai

Division of Radiation Oncology, Department of Radiology, Faculty of Medical Siriraj Hospital,
Mahidol University, Address: 2 Wang Lang Road, Siriraj, Bangkok Noi, Bangkok 10700

Email: pittaya.dan@mahidol.ac.th

พรปริญ์ ปัสดเนา¹, แทนวิวัฒน์ ใจกุณา², พิชญุตม์ นาคกระแสง², วิศวะ พงษ์ประพันธ์², พิทยา ด่านกุลชัย²

¹หลักสูตรวิทยาศาสตรมหาบัณฑิต สาขาวิศึกษาแพทย์ ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัย
มหิดล กรุงเทพฯ ประเทศไทย

²สาขาวิชารังสีรักษา ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล กรุงเทพฯ ประเทศไทย

ผู้นิพนธ์ประสานงาน

พิทยา ด่านกุลชัย

สาขาวิชารังสีรักษา ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล กรุงเทพฯ ประเทศไทย

2 ถนนวังหลัง แขวงศิริราช เขตบางกอกน้อย กรุงเทพฯ 10700

อีเมล: pittaya.dan@mahidol.ac.th

Submitted: Nov 14, 2023

Revised: Dec 15, 2023

Accepted: Jan 2, 2024

Abstract

Background: Magnetic resonance (MR) image has recently become a trendy use for external beam radiotherapy (EBRT) dose calculation according to the dominance of high soft tissue contrast. However, the main challenge of applying an MR image for dose calculation is the lack of a correlation between the material's density and the computed tomography (CT) number in the MR image, which is mandatory for dose calculation in a commercial treatment planning system. Thus, synthetic CT (sCT) is introduced for EBRT dose calculation.

Objectives: This study aims to examine the feasibility of using MR image for Calculating A Ttenuation (MRCAT)-sCT imaging in prostate cancer patients to calculate the external beam dose.

Materials and methods: Ten prospective prostate cancer patients were enrolled in this study. The pCT and MR images were acquired using the pre-imaging protocol. Tumors and organs at risk (OARs) were delineated on planning CT (pCT) and sCT. The Hounsfield unit (HU) of each organ was compared between pCT and sCT. The volumetric modulated arc therapy (VMAT) plan was generated on pCT and calculated based on the Acuros XB (AXB) algorithm using Eclipse, then recalculated on sCT. The similarity between pCT- and sCT-based dose was evaluated using dosimetric data extracted from the dose-volume histogram and 3D gamma analysis.

Results: This study demonstrated a minor difference in HU between sCT and pCT in soft tissue (13.02 ± 15.58 HU) while the discrimination of HU was larger in femur bone (51.59 ± 49.08 HU). The mean HU of soft tissue in sCT was greater than in pCT; contrastingly, the mean HU of bone from sCT was lower than in pCT. The dose distributions calculated from sCT and pCT were similar ($>95\%$ gamma passing rate at all criteria (varies from 3%3mm to 1%1mm). Each dosimetric determination showed insignificant differences across all relevant contours.

Conclusion: MRCAT-generated sCT can calculate prostate cancer EBRT doses with a negligible dose difference from pCT. This study promotes prostate EBRT using MR-only workflow.

Keywords: MRCAT, MR-only planning, Prostate cancer, Synthetic CT

บทคัดย่อ

หลักการและเหตุผล: ภาพคลื่นแม่เหล็กไฟฟ้า (เอ็มอาร์) ถูกนำมาใช้ในการคำนวณปริมาณรังสีสำหรับรังสีรักษาระยะไกลมากขึ้น เนื่องจากสามารถแสดงความแตกต่างของเนื้อเยื่อได้ดี อย่างไรก็ตามการคำนวณปริมาณรังสีด้วยภาพเอ็มอาร์ยังขาดความสมัพน์ระหว่างความหนาแน่นวัสดุและเลขซีที ซึ่งจำเป็นต่อการคำนวณปริมาณรังสีในเครื่องวางแผนการรักษาเชิงพานิชย์ ดังนั้นภาพซีทีสังเคราะห์จึงถูกพัฒนาและนำมาใช้ในการคำนวณปริมาณรังสีในรังสีรักษาระยะไกล

วัตถุประสงค์: เพื่อตรวจสอบความเป็นไปได้ในการใช้ภาพซีทีสังเคราะห์จากเอ็มอาร์แคทในการคำนวณปริมาณรังสีเทคนิครังสีรักษาระยะไกลสำหรับผู้ป่วยมะเร็งต่อมลูกหมาก

วัสดุและวิธีการ: ผู้ป่วยมะเร็งต่อมลูกหมาก จำนวน 10 ราย ได้รับการจำลองการรักษาโดยสร้างภาพซีทีและภาพซีทีสังเคราะห์โดยใช้โปรตوكอลก่อนการสร้างภาพ ขอบเขตรอยโรคและอวัยวะสำคัญใกล้เคียงถูกกำหนดบนภาพซีทีและภาพซีทีสังเคราะห์ แล้วทำการเปรียบเทียบเลขซีทีของแต่ละอวัยวะระหว่างค่าที่ได้จากภาพซีทีสังเคราะห์และภาพซีที ภาพแผนการรักษาเทคนิคการฉายรังสีแบบปรับความเข้มหมุนรอบตัวถูกสร้างขึ้นโดยอาศัยภาพซีที ปริมาณรังสีถูกคำนวณด้วยอัลกอริทึม Acuros XB ด้วยเครื่องวางแผนการรักษา Eclipse (เวอร์ชัน 16.1) จากนั้นแผนการรักษาถูกถ่ายโอนและทำการคำนวณปริมาณรังสีใหม่โดยอาศัยภาพซีทีสังเคราะห์ ความเหมือนของการกระจายรังสีระหว่างการคำนวณโดยอาศัยภาพซีทีและภาพซีทีสังเคราะห์ถูกประเมินด้วยพารามิเตอร์ของปริมาณรังสี และการวิเคราะห์แบบแกมมาแบบ 3 มิติ

ผลการศึกษา: เลขซีทีระหว่างภาพซีทีสังเคราะห์และภาพซีทีมีความแตกต่างกันเล็กน้อยในบริเวณเนื้อเยื่อ (13.02 ± 15.58 HU) และมีความแตกต่างกันเพิ่มมากขึ้นในกระดูกโคนขา (51.59 ± 49.08 HU) โดยเลขซีทีในภาพซีทีสังเคราะห์มีค่าสูงกว่าภาพซีทีในบริเวณเนื้อเยื่อและต่ำกว่าในบริเวณกระดูก การกระจายรังสีที่ได้จากการคำนวณโดยอาศัยภาพทั้งสองมีความคล้ายคลึงกัน (อัตราผ่านค่าแกมมา $>95\%$ ทุกเกณฑ์พิจารณา) และไม่พบความแตกต่างเมื่อพิจารณาค่าพารามิเตอร์ของปริมาณรังสีในอวัยวะสำคัญใกล้เคียง

ข้อสรุป: ภาพซีทีสังเคราะห์ที่สร้างด้วยเอ็มอาร์แคทสามารถคำนวณการกระจายรังสีได้ไม่แตกต่างจากภาพซีทีการศึกษานี้ส่งเสริมการนำภาพซีทีสังเคราะห์ด้วยเอ็มอาร์ที่ทำนั้นมาใช้ในขั้นตอนการรักษาด้วยรังสีระยะไกลในผู้ป่วยมะเร็งต่อมลูกหมาก

คำสำคัญ: เอ็มอาร์แคท, การวางแผนการรักษาด้วยเอ็มอาร์เท่านั้น, มะเร็งต่อมลูกหมาก, ภาพซีทีสังเคราะห์

J Thai Assoc Radiat Oncol 2024; 30(1): R1 - R18

Introduction

Computed tomography (CT) is commonly the primary imaging modality utilized in radiotherapy (RT) planning workflows due to its capacity to provide electron density maps crucial for dose calculations. The high geometric fidelity of three-dimensional (3D) anatomy and tissue heterogeneity information allows the isodose distribution to be calculated for tumors as well as the surrounding normal tissue doses. However, CT images in low contrast of the grayscale region, e.g., pelvis and abdomen, may present difficulties in identifying tissue features, especially to separate tumors and normal organs in prostate cancer, which impairs the contouring accuracy^[1]. This difficulty of contouring in low contrast CT could lead to consecutive systematic uncertainty in radiotherapy workflow^[2, 3].

The magnetic resonance (MR) image showed a superior advantage of contouring accuracy for the low contrast of the grayscale region^[4, 5]. The tumors burden could be easily identified and separated from normal tissue in the tumors-invasion area. In addition, some MR imaging techniques provide a functional characteristic of tissue which promotes biological target contouring and the zone of highly condensed tumors cells^[6]. Due to the advantage of MR over CT images, many publications aim to introduce MR in routine RT workflow, for example, using MR images for contouring, guiding the patient's setup, and tracking tumors

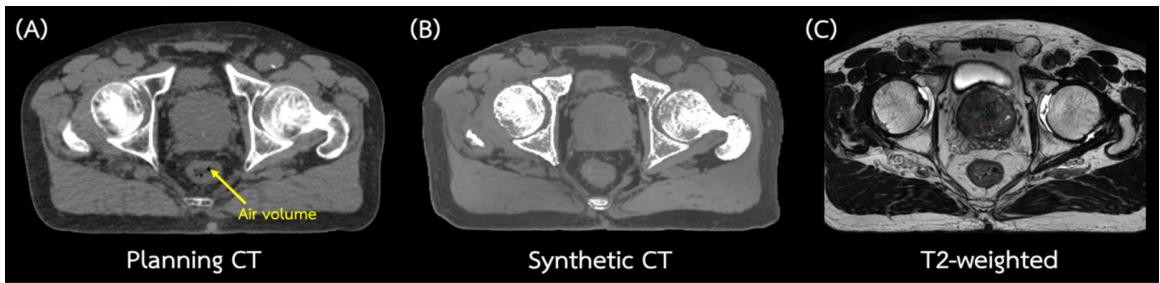
or organs at risk before and during irradiation^[7-9]. These approaches are accomplished through the process of image registration between CT and MR images. However, employing MR images for external beam radiotherapy (EBRT) dose calculations remains challenging, primarily due to the absence of essential electron density information. Consequently, the use of synthetic CT (sCT) derived from MR images has been proposed as a solution for EBRT dose calculations^[10, 11].

There are many techniques for the sCT generation from MR images. The vast majority of approaches to sCT generation involve applying the derived Hounsfield unit (HU) from the planning CT (pCT), either personal or average values of an entire cohort, to the MR image. The bulk density override technique is one example of the HU transformation from CT to the MR image. The target regions of interest (ROIs) on the MR image were overridden by an average of relative or physical electron density extracted from ROIs on the pCT^[12]. Another technique is mapping HU from the CT image directly to the MR image in the voxel-based technique^[13-15].

Although the sCT is able to be generated by the transformation of HU, in many cases the accuracy of HU transformation still needs extensive verification in individual patients because it is strongly dependent on the accuracy of image registration between CT and MR. An enormous error could be seen in the

movable- and deformable-organs, e.g., the pelvis region, as the shape and volume of the bladder and rectum could move and change during the intra- and inter-scanning time. Moreover, a significant registration mismatch could be induced by setup uncertainty from the repositioning of the patient between CT and MR acquisition. In addition, several studies have investigated the impact of image registration between CT and MR and found that the uncertainty of cross-registration between both images could be around 2-4 mm^[16-18]. This uncertainty in turn affects the accuracy of dose calculation based on the sCT.

Recently, a commercial MR for Calculating ATtenuation (MRCAT) solution is software that includes an option to generate the sCT. This function is available in the MRCAT solution sCT version 4.1 (Philips Healthcare, Finland)^[7, 11]. The MRCAT technique uses a dedicated MR sequence (a dual-echo 3D mDIXON fast field echo (FFE)) to generate the sCT and is valid for the MR-only clinical dose calculation in the brain, head and neck, and pelvis region. This technique is independent of image registration. However, the accuracy validation of the sCT before use in routine clinics is required.


This study aims to investigate the feasibility of the sCT generated from the MRCAT for prostate cancer by considering the accuracy of HU and dose calculation between the sCT and pCT at the Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Siriraj Hospital.

Materials and Methods

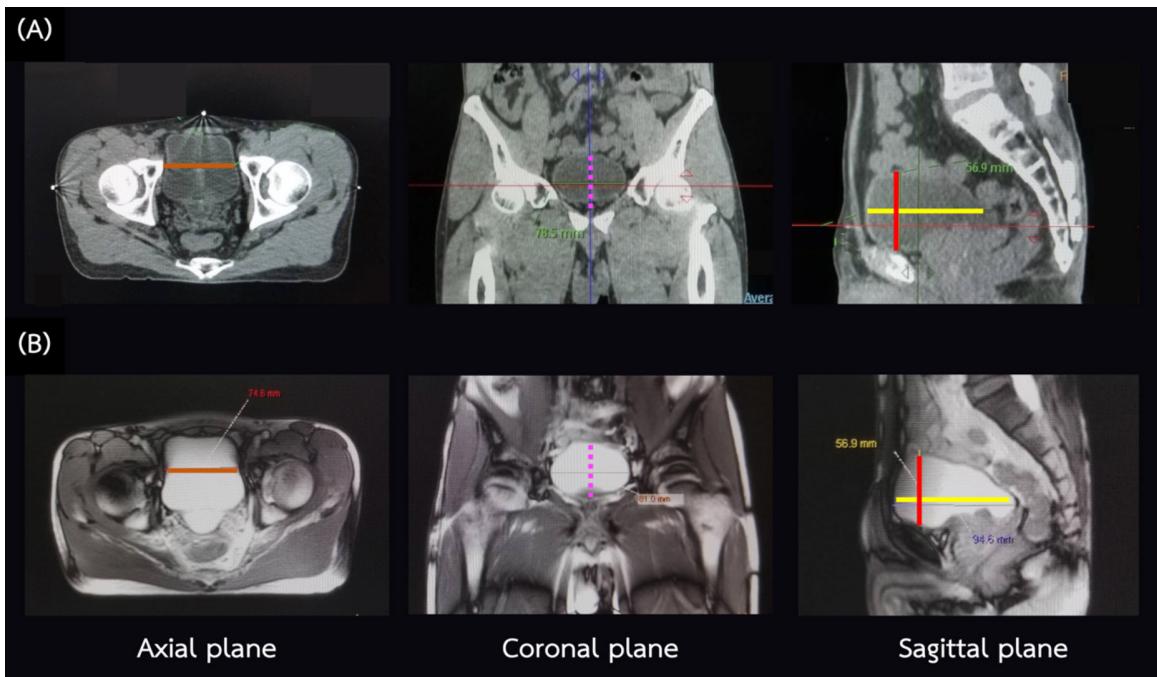
Patient Selection and Pre-imaging Preparation
Ten definitive radiotherapy prostate cancer patients were enrolled in this prospective study which was approved by the Siriraj Institutional Review Board (SIRB protocol No. 039/2565). The patients provided informed consent to acquire the additional mDIXON sequence during the MR scan and data collection. The data were collected from March to July 2022. This study was not include patients who had fiducial marker implantation and metal insertion in the pelvis region from surgery. As part of the pre-imaging process, all patients followed a protocol of consuming 600 ml of water after completed urination for full bladder condition, ensuring emptied rectum. Prior to the MR scan, CT imaging was performed approximately 40 minutes after water intake.

Image Acquisition

All patients underwent CT and MR imaging consecutively on the same date. The planning CT (pCT) and sCT-generated from the MR image was reconstructed and used for HU comparison of each organ and dose calculation, whereas the MR image was used for contouring purposes. Examples of the pCT and sCT for dose calculation and MR image for contouring purposes are shown in **Figure 1**. In this study, the controlling protocol of bladder dimension was established to maintain the size and shape of the bladder in all image modalities. The bladder dimensions

Figure 1. The different images on the same patient obtained from (A) pCT imaging, (B) sCT generating, and (C) MR imaging.

were measured from right-left (RL) of the bladder wall in the axial plane for the RL dimension, from mid-pubic symphysis to the mid-bladder dome for the craniocaudal (CC) dimension, and from anterior to posterior of the bladder wall in the midsagittal plane for the anteroposterior (AP) dimension. The bladder lengths from the pCT and MR images were collected and reported by a single observer to eliminate inter-rater variability. An illustrative example of bladder dimension measurement for the bladder control protocol is depicted in **Figure 2A** for pCT image acquisition and **Figure 2B** for MR image acquisition.


1. Computed Tomography Image Generation

A CT image with a 2 mm slice thickness was obtained for all prostate cancer patients using a 32-slice Big Bore RT CT scanner (Philips, Healthcare, Andover, MA, USA). The patients were placed in a supine position with a full bladder condition. Initially, a CT image was acquired for

bladder dimension control as part of the protocol, using an exposure setting of 120 kV and 190 mAs. This image served as the reference for HU and dose comparisons.

2. Synthetic Computed Tomography Image Generation

The sCT image was reconstructed from the MRCAT solution sCT version 4.1 (Philips Healthcare, Finland) by acquiring the MR image from a 3.0 Tesla Ingenia MR-RT simulator (Philips N.V., Netherlands). A commercial MRCAT solution is developed to map voxel electron density information that relies on a dual-echo 3D mDIXON fast field echo (FFE) sequence for the sCT reconstruction with continuous HU (more detail is illustrated by^[19]). In this study, the patient was positioned identically to the CT simulation process. The organ check (pre-sCT) protocol, a component of the pre-imaging protocol, generated images in three planes (comprising three images per plane: the first, middle, and last

Figure 2. The bladder dimension control between two image scans. (A) Planning CT image with three planes was measured and used as a reference length for the MR scan. The brown line is the RL direction measured from right to left of the bladder wall, the yellow line is the AP direction measured from anterior to posterior of the bladder wall, the red line is the CC direction measured from mid-pubic symphysis to the bladder dome, and the pink dotted line is the height measured in some cases. (B) Pre-sCT images in each plane. Their lines were drawn as shown by the pCT to compare the bladder size at that moment.

images) embedded in the MR scanner to form the patient's body. Prior to sCT reconstruction, bladder dimensions were reevaluated using the planar image from each imaging plane. The resulting of sCT image was utilized for dose calculation in the planning process.

3. Magnetic Resonance Image Generation

T2-weighted (T2W) and diffusion-weighted imaging (DWI) with slice thicknesses of 1 and 3 mm were acquired for all prostate cancer patients in this prospective study. Both MR sequences were used for target and organs at risk (OARs) segmentation by experienced radiation oncologists (RO).

Contouring and Treatment Planning

Target and OARs for prostate cancer radiotherapy were delineated by more than 5-year experienced RO. The target structure, including the prostate gland and seminal vesicle, was delineated on the T2W MR image using the combination of the DWI image in the Eclipse treatment planning system version 16.1 (Varian Medical Systems, Palo Alto, CA). The target from the T2W image was transferred to the pCT and sCT by rigid registration with a local focus on the prostate region and expanded of 5 mm to generate the planning target volume (PTV). The accuracy of image registration between pCT and MR images was assessed by experienced RO based on a qualitative visualized check. In addition, the OARs, including the bowel, bladder, rectum, penile bulb, and femur, were segmented based on the pCT and sCT images. The average HU from individual OARs between the pCT and sCT was calculated and compared.

The 3-full arc of volumetric modulated arc therapy (VMAT) with 10 MV photons was generated based on the pCT image. The dose at the PTV was prescribed at 3 Gy per fraction in 20 fractions. The planning dose was calculated based on the Acuros XB (AXB) calculation algorithm using a 2 mm dose grid calculation. The treatment plan from the pCT image was transferred to the sCT image, and then the

planning dose was recalculated by a similar dose calculation protocol.

Dose Similarity Evaluation

This study assessed the feasibility of sCT-based external beam dose calculations by evaluating specific dosimetric parameters extracted from the dose-volume histogram (DVH) of each relevant contour within the PTV and OARs. These parameters were derived from internal institutional clinical guidelines based on the definitive hypofractionation EBRT protocol for prostate adenocarcinoma, as outlined in **Table 1** for prostate plan evaluation^[20]. In addition, the similarity of dose distribution between the dose calculated based on the sCT and pCT will be evaluated by considering the 3D gamma analysis (various gamma criteria from 3%/3mm, 2%/2 mm, and 1%/1 mm with 10% dose threshold) on PTW-Verisoft software (PTW, Freiburg, Germany).

Statistical Analysis

The dimensions and volume of the bladder and the dose difference between the pCT and sCT-based dose calculations were considered by paired t-test or Wilcoxon Signed Rank test with a 95% confidence interval using IBM SPSS Statistics version 18 (IBM SPSS Statistics). The significant difference was considered at 0.05 ($p<0.05$).

Table 1. Dosimetric parameters for plan evaluation.

Structures	Prostate gland	PTV	Bowel	Bladder	Rectum	Penile bulb	Femurs
Dosimetric parameters	$V_{60\text{Gy}}$	$D_{1\text{cc}}$, $D_{(95\%)}$	$V^{45\text{Gy}}$, $V_{15\text{Gy}}$	$V_{60\text{Gy}}$, $V_{48.6\text{Gy}}$, $V_{40.8\text{Gy}}$	$V_{60\text{Gy}}$, $V_{57\text{Gy}}$, $V_{46\text{Gy}}$, $V_{37\text{Gy}}$	$V_{40\text{Gy}}$	$V_{(50\%)}$

Abbreriation: PTV: Planning target volume, $V_x \text{ Gy}$: Percent of volume received absorbed dose \times Gy,

$D_{(x \text{ cc})}$: Absolute dose coverage at a RT structure volume of $x \text{ cc}$.

Results

Image Characteristics and Contours zEvaluation

Dimensions and Volume of Bladder in Pre-imaging Protocol

The mean difference in the bladder length in all directions from the pre-imaging procedure between CT and MR was $-0.22 \pm 0.53 \text{ cm}$. The mean length of the bladder in the CT image was relatively shorter than MR in RL and CC directions (7.36 cm and 5.15 cm for CT, and 7.64 cm and 5.19 cm for MR, respectively), while the length of the bladder in the CT image was greater in the AP direction (8.06 cm for CT and 7.76 cm for MR). This study was not found a significant different in bladder length between CT and MR. However, the mean volume of the bladder on the sCT was significantly larger than the pCT, at around $10.83 \pm 13.78 \text{ cm}^{[3]}$ ($p < 0.05$). The bladder volume ratio between the sCT and pCT ranged from 0.92 to 1.32. The result of bladder control of pre-imaging in each patient is shown in **Table 2**.

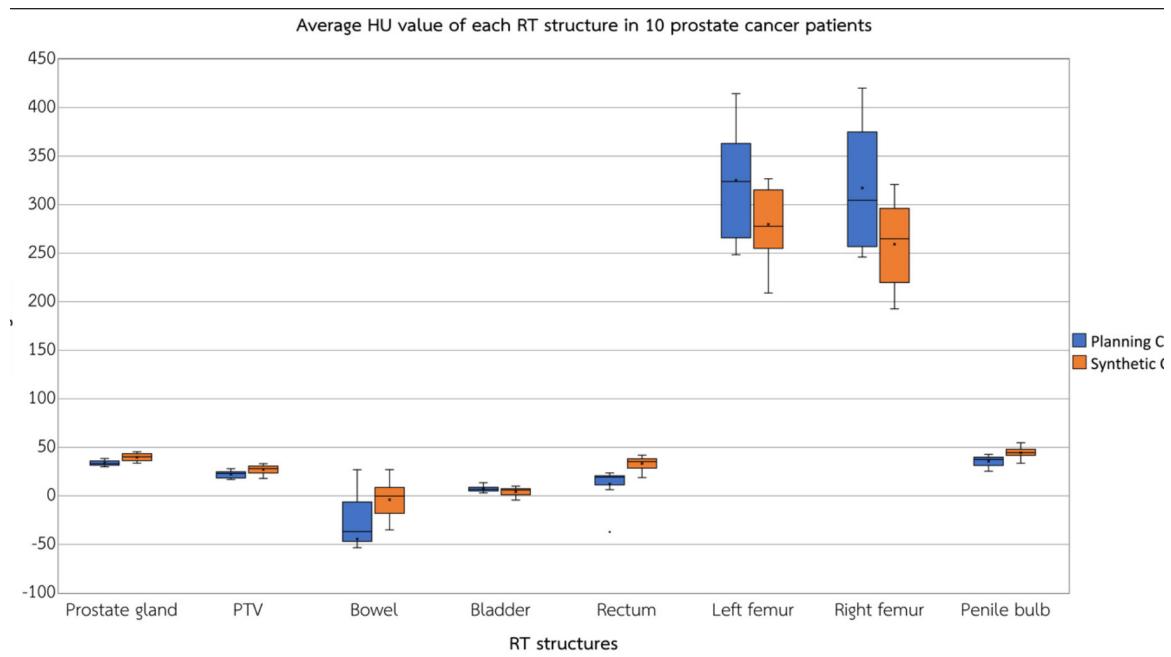
Hounsfield Unit of Interested Contours

This study found a low variation of HU for the inter-patients (10 patients) in the prostate gland, PTV, bowel, bladder, rectum, and penile bulb, whereas a high variation of HU was found in the femur. A small mean difference of HU between the pCT and the sCT was found in soft tissue ($13.02 \pm 15.58 \text{ HU}$) and the smallest in the bladder at about $2.83 \pm 5.60 \text{ HU}$. Nonetheless, a considerable difference in HU was observed in the femurs of around $51.59 \pm 49.08 \text{ HU}$. Interestingly, a high variation of HU was found in the femur, while a slight variation was observed in soft tissue. The average HU extracted from the interested contours of each patient in the cohort is shown in **Figure 3**.

Dose Similarity Analysis

Dosimetric Analysis of Synthetic Computed Tomography

Our study found an insignificant difference in dosimetric parameters extracted from interested


Table 2. The length of bladder in all dimensions and volume measured during pre-imaging preparation of CT and MR images.

Number	Dimension (cm)										Volume (cm ³)		
	RL		CC		AP		sCT		Ratio		(sCT/pCT)		%
	pCT	Pre-sCT	Δ Distance*	pCT	Pre-sCT	Δ Distance	pCT	Pre-sCT	Δ Distance	(sCT/pCT)	(sCT/pCT)	Difference**	
1	7.17	7.46	0.29	5.69	5.69	0.00	8.79	9.46	0.67	207.30	270.10	1.30	30.29
2	7.48	8.35	-0.87	6.73	6.82	-0.09	7.82	7.54	-0.28	283.10	296.40	1.05	4.70
3	7.74	8.46	-0.72	2.88	3.48	-0.60	8.40	8.31	-0.09	108.50	131.00	1.21	20.74
4	8.49	7.72	0.77	6.47	6.33	0.14	6.65	4.04	-2.61	276.70	267.90	0.97	-3.18
5	8.25	8.07	0.18	5.34	4.60	0.74	9.45	9.21	-0.24	243.30	257.30	1.06	5.75
6	6.87	7.72	-0.85	4.05	4.73	-0.68	6.67	7.65	0.98	121.70	118.70	0.98	-2.47
7	6.93	7.29	-0.36	3.25	3.26	-0.01	7.84	7.08	-0.76	139.60	183.60	1.32	31.52
8	8.76	8.83	-0.07	7.09	6.79	0.30	6.67	6.88	0.21	265.90	245.50	0.92	-7.67
9	5.53	5.73	-0.20	4.55	5.06	-0.51	10.53	10.48	-0.05	199.50	228.70	1.15	14.64
10	6.40	6.73	-0.33	5.42	5.14	0.28	7.73	6.91	-0.82	182.70	208.20	1.14	13.96
Mean	7.36	7.64	-0.22	5.15	5.19	-0.04	8.06	7.76	-0.30	202.83	220.74	1.11	10.83
±	±	±	±	±	±	±	±	±	±	±	±	±	±
S.D.	1.00	0.91	0.53	1.44	1.25	0.45	1.28	1.78	0.99	64.49	60.00	0.14	13.78
P-value	0.116		0.768		0.363		<0.05						

* Δ Distance = Dimension_{pCT}–Dimension_{Pre-sCT}, the pre-sCT involved planar images used to reevaluate the dimensions of the bladder before the sCT generation.

$$** \% \text{ Difference} = \frac{\text{Volume}_{\text{sCT}} - \text{Volume}_{\text{pCT}}}{\text{Volume}_{\text{pCT}}} \times 100$$

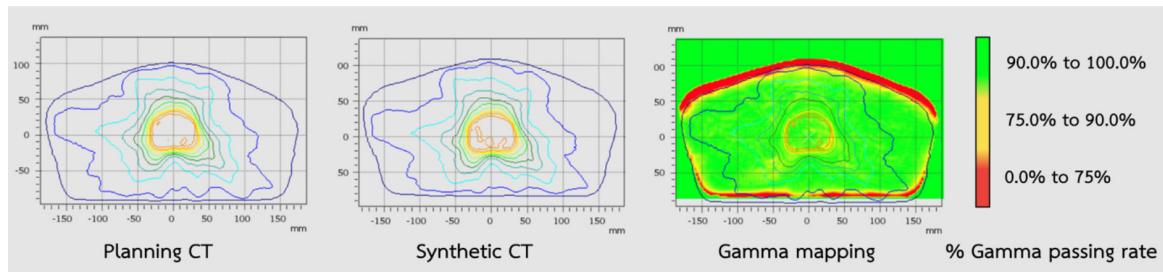
*** Statistical difference at $p < 0.05$

Figure 3. Average HU values comparison of each RT structure in 10 prostate cancer patients.

contours between the sCT and pCT except D95% of the PTV. The difference in dosimetric parameters between the sCT- and pCT-based dose calculations in the PTV was less than 0.2 Gy when considering D95% and D1cc, as well as less than 0.1% for V60Gy of the prostate gland. An inconsiderable volume difference percentage was observed in the OARs. However, the OARs dose from the sCT-based dose calculation was slightly higher than the pCT-based dose, especially at the parameter reflecting volume received high dose, e.g., 0.85% at V46Gy in the rectum. The results of the dose difference from our clinical dosimetric parameters between the pCT- and sCT-based dose calculations in the individual patients are summarized in **Table 3**.

Dose Distribution Analysis of Synthetic Computed Tomography

High similarity of 3D dose distribution between the pCT-based and sCT-based dose calculations was found in this study. The mean gamma passing rate was $99.9 \pm 0.2\%$ when considering the 3%3mm gamma criteria, and it was reduced to $98.9 \pm 0.8\%$ at the 1%1mm criteria. A slight difference in gamma analysis was observed in the high gradient dose of the PTV boundary, while a significant difference was found at the edge of the external body contour (**Figure 4**). The gamma passing rate of individual patients from this study is shown in **Table 4**.


Table 3. The mean \pm SD and range of percentage dose difference in the dosimetric parameters of RT structures from DVH comparing the pCT and sCT in 15 prostate cancer patients.

RT structure	Parameter	Mean \pm SD			p-value
		pCT	sCT	Absolute Difference*	
Prostate gland					
	V_60Gy(%)	100.00 \pm 0.00	99.94 \pm 0.13	-0.06 \pm 0.13	<0.05
PTV					
	D_1cc (Gy)	62.93 \pm 0.17	63.06 \pm 0.36	0.13 \pm 0.36	0.386
	D_(95%) (Gy)	60.57 \pm 0.10	60.41 \pm 0.17	-0.16 \pm 0.12	<0.05
Bowel					
	V_45Gy(%)	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	1.000
	V_15Gy(%)	0.29 \pm 0.92	0.10 \pm 0.32	-0.19 \pm 0.60	0.317
Bladder					
	V_60Gy(%)	3.59 \pm 2.29	3.51 \pm 1.65	-0.08 \pm 1.14	0.683
	V_48.6Gy(%)	9.18 \pm 4.94	9.33 \pm 4.06	0.15 \pm 1.90	0.575
	V_40.8Gy(%)	13.18 \pm 6.87	13.18 \pm 5.90	0.19 \pm 2.48	0.575
Rectum					
	V_60Gy(%)	2.85 \pm 2.08	3.60 \pm 2.76	0.74 \pm 2.87	0.386
	V_57Gy(%)	5.58 \pm 2.91	6.38 \pm 3.42	0.80 \pm 3.17	0.508
	V_46Gy(%)	12.46 \pm 4.24	13.31 \pm 4.62	0.85 \pm 3.66	0.445
	V_37Gy(%)	19.43 \pm 4.81	20.18 \pm 5.19	0.75 \pm 3.78	0.646
Penile bulb					
	V_40Gy(%)	16.39 \pm 30.03	16.24 \pm 29.12	-0.15 \pm 1.40	1.000
Left femur					
	V_(50%) (%)	0.06 \pm 0.12	0.05 \pm 0.12	-0.01 \pm 0.05	0.197
Right femur					
	V_(50%) (%)	0.39 \pm 0.89	0.02 \pm 0.04	-0.37 \pm 0.86	0.285

* Absolute difference: sCT - pCT

** $p<0.05$ was as statistical difference

Abbreriation: PTV: Planning target volume, V_{xGy} : Percent of volume received absorbed dose \times Gy, D_{xcc} : Absolute dose coverage at a RT structure volume of x cc, $D_{x\%}$: Absolute dose coverage at a RT structure volume of x %

Figure 4. An example of the gamma analysis of one patient considered at the 3%/3mm criteria by comparing the pCT and sCT-based dose distributions. The color bar on the right displays the gamma passing rate results, with red indicating 0-75%, yellow representing 75-90%, and green signifying scores above 90%.

Table 4. Dose distribution comparison between the pCT and sCT-based planning in prostate cancer patients based on a 3D gamma analysis.

Patient No.	Global Gamma Passing Rate (%)		
	3%/3mm	2%/2mm	1%/1mm
1	100.0	100.0	99.4
2	99.7	99.1	97.0
3	99.9	99.9	99.2
4	99.8	99.6	98.1
5	100.0	99.9	99.4
6	100.0	99.9	99.2
7	99.9	99.8	99.6
8	100.0	100.0	99.4
9	99.7	99.5	98.7
10	99.5	99.4	99.0
Mean±SD	99.9±0.2	99.7±0.3	98.9±0.8

Discussion

This study demonstrated the feasibility of the sCT generated from the MRCAT for prostate treatment plans, focusing on prospective clinical patients. The MRCAT is a commercially available tool for generating sCT images that rely on MR images. Thus, it allows patients to potentially reduce their exposure to ionizing radiation during CT scans. The accuracy of sCT images depends on the MRCAT generation method, which relies on voxel intensity in the source MRCAT in-phase and water-only images for body outline and bone creation through model-based segmentation. The voxel intensity in the source MRCAT fat and water-only images was utilized for tissue classification. These images were acquired through a 3D dual mDixon FFE sequence and were subsequently automatically converted to HU. The findings of this study indicated no major differences in the mean HU of soft tissue and bone. The disparity of HU between the values obtained from the sCT compared to the pCT was found to be larger in soft tissue. In contrast, the derived HU from the sCT and the pCT was smaller in bone. Consequently, a minor dosimetric difference in all interested contours and a highly similar dose distribution were observed between the pCT and the sCT. The significant dosimetric difference, e.g., D95% in the PTV, did not seem to be impacted by clinical meaning because the absolute dose difference was around 0.2 Gy.

Although this study found a slight difference in HU between the pCT and sCT, the HU in the bone region still had a high variation compared to soft tissue. The sCT generated from MR images exhibited poor capability in producing MR images from the bony region, which contains small amounts of hydrogen, which affects bone reconstruction in the sCT^[21]. The largest difference of HU in the bone region at around a factor of 2 compared to the acceptable level of HU difference from a previous study (± 20 HU and ± 50 HU for soft tissue and bone, respectively) was observed in this study. The variation of HU within the recommended margin resulted in a dose change of less than 1% of the expected dose^[22]. However, some studies showed that the difference in HU between the pCT and sCT in the femurs could be up to a factor of 3, which was higher than our discovery^[23].

The observation of dose similarity between the pCT and sCT in this study closely aligns with many previous MRCAT studies in the pelvis region^[11, 24-26]. Likewise, the trend of dose coverage to the PTV in the sCT was around 1% lower than the pCT when considering D95% or D98%. Nonetheless, a high dose in a small volume of the PTV and OARs tends to be increased by roughly 5% in the sCT compared to the pCT. By using the sCT generated from MRCAT, the HU on the image is a continuous value, which is different from other MR-based dose calculation techniques, e.g., the homoge-

nous HU in bulk density technique. Thus, applying a different dose calculation algorithm could potentially impact the dose distribution pattern^[27]. This study applied AXB for treatment dose calculation to reduce dose calculation uncertainty from heterogeneous materials. However, this study considers the effect of the sCT only on the planning dose, and it is mandatory to compare the planning dose with the delivery dose before implementing the sCT in the clinic. The dose calculated from the sCT is not reflected in the actual patient dose as it could vary between inter-fractions^[28].

The strengths of this study include the application of a dose calculation algorithm with corrective heterogeneity for soft tissue, specifically the AXB algorithm, which was known for its heightened sensitivity to HU changes^[29]. The results clearly demonstrated discernible dose differences within each evaluated contour and the study also recruited prospective patients who underwent both pCT and MR images within the same day. This study controlled organ volume similarity between pCT and MR images by applying a water-controlling protocol with the pre-image dimension measurement for the bladder. In contrast, other studies only focus on the amount of water and waiting time without the dimension measurement^[11, 24]. Nevertheless, the body outline is an alternative factor that has impacted dose distribution as it could change the depth of the ionization path. This effect is an unavoidable factor when patient repositioning

from pCT to MR acquisition is required. As a result, the dose difference was experienced on the skin around the body; this effect was also found in other studies^[11].

The limitation of this study was the difference in each individual patient's characteristics and behavior as it affected the organ dislocation between pCT and MR images. Even though our study implements the pre-image dimension measurement, it still found that some patients could not be tolerated when making a second attempt of the full bladder. Therefore, a marginal difference in bladder dimension and volume was observed. In addition, the air in the rectum and the rectum volume affected the PTV location, and in turn affected dose calculation. Also, a small volume of air in the rectum could potentially lead to an incorrect HU on the sCT, but it did not significantly impact the dose distribution pattern in this study. Although the sCT has been applied clinically in several institutions, to replace the pCT completely, for example, in the contouring process, further image quality analysis, such as image contrast and distortion, is still required^[7, 30].

Conclusion

The use of the sCT image generated from MRCAT is feasible for prostate EBRT dose calculation. A slight difference in HU between the sCT and pCT was observed in soft tissue with a small HU variation, but a considerable difference was found in bone. The pCT and sCT

had similar dose distributions and negligible dosimetric differences in all contours. The result of this study provides a good promotion for the MR-only workflow in prostate EBRT.

Acknowledgements

There was no funding for this study. This work was approved by the Siriraj Institutional

Review Board (SIRB protocol No. 039/2565). The authors appreciate and thank all the patients for participating in this research. The authors would like to thank Assoc. Prof. Lalida Tuntipumiamorn, and other supporting staff, Siriraj Hospital, Bangkok, for their assistance and excellent advice in ensuring the success of this endeavor. Finally, I would also like to thank Siriraj Graduate Scholarship.

References

1. Engeler CE, Wasserman NF, Zhang G. Preoperative assessment of prostatic carcinoma by computerized tomography. Weaknesses and new perspectives. *Urol* 1992;40:346-50.
2. Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: a multi-observer study. *Int J Radiat Oncol Biol Phys* 1999;43:57-66.
3. den Hartogh MD, Philippens MEP, van Dam IE, Kleynen CE, Tersteeg RJHA, Pijnappel RM, et al. MRI and CT imaging for preoperative target volume delineation in breast-conserving therapy. *Radiat Oncol* 2014;9:63.
4. Platt JF, Bree RL, Schwab RE. The accuracy of CT in the staging of carcinoma of the prostate. *Am J Roentgenol* 1987;149:315-8.
5. Claus FG, Hricak H, Hattery RR. Pretreatment evaluation of prostate cancer: role of MR imaging and 1H MR spectroscopy. *Radiographics* 2004;24 Suppl 1:S167-80.
6. Turkbey B, Albert PS, Kurdziel K, Choyke PL. Imaging localized prostate cancer: current approaches and new developments. *Am J Roentgenol* 2009;192: 1471-80.
7. Tyagi N, Fontenla S, Zelefsky M, Chong TM, Ostergren K, Shah N, et al. Clinical workflow for MR-only simulation and planning in prostate. *Radiat Oncol* 2017; 12:119.
8. Goudschaal K, Beeksma F, Boon M, Bijveld M, Visser J, Hinnen K, et al. Accuracy of an MR-only workflow for prostate radiotherapy using semi-automatically burned-in fiducial markers. *Radiat Oncol* 2021;16:37-49.

9. Nierer L, Eze C, da Silva Mendes V, Braun J, Thum P, von Bestenbostel R, et al. Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor entities: liver, lung, abdominal lymph nodes, pancreas and prostate. *Radiat Oncol* 2022;17:53-66.
10. Chen L, Price RA, Jr., Nguyen TB, Wang L, Li JS, Qin L, et al. Dosimetric evaluation of MRI-based treatment planning for prostate cancer. *Phys Med Biol* 2004;49:5157-70.
11. Christiansen RL, Jensen HR, Brink C. Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer. *Acta Oncol* 2017;56:787-91.
12. Jonsson JH, Karlsson MG, Karlsson M, Nyholm T. Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions. *Radiat Oncol* 2010;5:62-9.
13. Dowling JA, Sun J, Pichler P, Rivest-Hénault D, Ghose S, Richardson H, et al. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences. *International Journal of Radiation Oncology Biology Physics* 2015;93:1144-53.
14. Johnstone E, Wyatt JJ, Henry AM, Short SC, Sebag-Montefiore D, Murray L, et al. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging-Only Radiation Therapy. *Int J Radiat Oncol Biol Phys* 2018;100:199-217.
15. Rank CM, Tremmel C, Hünemohr N, Nagel AM, Jäkel O, Greilich S. MRI-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach. *Radiat Oncol* 2013;8:51-63.
16. Nyholm T, Nyberg M, Karlsson MG, Karlsson M. Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments. *Radiat Oncol* 2009;4:54-62.
17. Dean CJ, Sykes JR, Cooper RA, Hatfield P, Carey B, Swift S, et al. An evaluation of four CT-MRI co-registration techniques for radiotherapy treatment planning of prone rectal cancer patients. *Br J Radiol* 2012;85:61-8.
18. Korsager AS, Carl J, Riis Østergaard L. Comparison of manual and automatic MR-CT registration for radiotherapy of prostate cancer. *J Appl Clin Med Phys* 2016;17:294-303.

19. Köhler M, Vaara T, Grootel Mv, Hoogeveen RM, Kemppainen R, Renisch S, editors. MR-only simulation for radiotherapyn planning White paper: Philips MRCAT for prostate dose calculations using only MRI data. 2015.
20. eviQ. Prostate adenocarcinoma definitive EBRT hypofractionation: Cancer Institute NSW; 2018 [updated 30 Dec 2021; cited 2023 8 Aug]. Available from: <https://www.eviq.org.au/p/3370>.
21. Aisen AM, Martel W, Braunstein EM, McMillin KI, Phillips WA, Kling TF. MRI and CT evaluation of primary bone and soft-tissue tumors. *Am J Roentgenol* 1986; 146:749-56.
22. Davis AT, Palmer AL, Nisbet A. Can CT scan protocols used for radiotherapy treatment planning be adjusted to optimize image quality and patient dose? A systematic review. *Br J Radiol* 2017;90:20160406.
23. Farjam R, Tyagi N, Deasy JO, Hunt MA. Dosimetric evaluation of an atlas-based synthetic CT generation approach for MR-only radiotherapy of pelvis anatomy. *J Appl Clin Med Phys* 2019;20:101-9.
24. Kemppainen R, Suilamo S, Tuokkola T, Lindholm P, Deppe MH, Keyrilainen J. Magnetic resonance-only simulation and dose calculation in external beam radiation therapy: a feasibility study for pelvic cancers. *Acta Oncol* 2017;56: 792-8.
25. Tyagi N, Fontenla S, Zhang J, Cloutier M, Kadbi M, Mechakos J, et al. Dosimetric and workflow evaluation of first commercial synthetic CT software for clinical use in pelvis. *Phys Med Biol* 2017;62:2961-75.
26. Bratova I, Paluska P, Grepl J, Sykorova P, Jansa J, Hodek M, et al. Validation of dose distribution computation on sCT images generated from MRI scans by Philips MRCAT. *Rep Pract Oncol Radiother* 2019;24:245-50.
27. Yan C, Combine AG, Bednarz G, Lalonde RJ, Hu B, Dickens K, et al. Clinical implementation and evaluation of the Acuros dose calculation algorithm. *J Appl Clin Med Phys* 2017;18:195-209.
28. Buranaporn P, Dankulchai P, Jaikuna T, Prasartserree T. Relation between DIR recalculated dose based CBCT and GI and GU toxicity in postoperative prostate cancer patients treated with VMAT. *Radiother Oncol* 2021;157:8-14.
29. Bouyer C, Fargier-Voiron M, Beneux A. Comparison of algorithms AAA and Acuros (AxB) on heterogenous medium. *Physica Medica* 2017;44:286-91.
30. Kerkmeijer LGW, Maspero M, Meijer GJ, van der Voort van Zyp JRN, de Boer HCJ, et al. Magnetic resonance imaging only workflow for radiotherapy simulation and planning in prostate cancer. *Clin Oncol* 2018;30:692-701.

Accuracy of target volume and artifact reduction by optimal sorting methods of 4DCT image reconstruction on lung cancer radiotherapy

in patients with mismatched pitch in irregular respiration

ความถูกต้องของปริมาตรก้อนเนื้องอกและการลดลิ้งแบลกปลอมบนภาพเอกซเรย์คอมพิวเตอร์แบบ 4 มิติด้วยวิธีการจัดเรียงข้อมูลภาพที่เหมาะสมสำหรับการฉายรังสีมะเร็งปอดในผู้ป่วยที่มีการตั้งค่าพิทซ์ไม่สัมพันธ์กับรูปแบบการหายใจที่ไม่สม่ำเสมอ

Kamonchanok Nobphuek¹, Utumporn Puangragsa¹, Kullathorn Thephamongkhol¹,

Patarapong Phasukkit², Sarut Puangragsa², Jiraporn Setakornnukul¹

¹Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

²School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.

Corresponding author:

Jiraporn Setakornnukul

Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 72-year building, basement, 2 Wanglang Road Bangkoknoi, Bangkok 10700, Thailand.

E-mail address: jiraporn.set@mahidol.ac.th

กมลชนก นอบเพ็อก¹, อุตุมพร พ่วงรักษा¹, กุลธร เทพมงคล¹, ภัทรพงษ์ ผาสุขกิจ², ศรุต พ่วงรักษा²,
จิราพร เสตกรณกุล¹

¹สาขาวิชารังสีรักษा ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

²คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าธนบุรี ลาดกระบัง

ผู้นิพนธ์ประสานงาน

จิราพร เสตกรณกุล

สาขาวิชารังสีรักษा ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

ตึก 72 ปี ชั้นใต้ดิน เลขที่ 2 ถนนวังหลัง แขวงศิริราช เขตบางกอกน้อย จังหวัดกรุงเทพมหานคร 10700

อีเมล: jiraporn.set@mahidol.ac.th

Submitted: Oct 13, 2023

Revised: Dec 24, 2023

Accepted: Jan 2, 2024

Abstract

Backgrounds: In four-dimensional computed tomography (4DCT), pitch estimates are initially selected before data acquisition. However, during data acquisition, it is observed that pitch values mismatch with the breathing period due to respiratory changes, leading to image artifacts. Addressing this issue requires the selection of an appropriate sorting method, especially for a group of patients in such cases who lack a standardized sorting protocol.

Objective: The study aims to determine the optimal 4DCT scan sorting method for patients with a set-up pitch not aligned with breathing period.

Materials and methods: The respiratory waveforms of 40 lung cancer patients were programmed into the CIRS dynamic thorax phantom, and data were acquired using a CT scanner. Subsequently, 4DCT scans were performed, and the appropriateness of the pitch values, which were set according to standard protocols, was assessed. Three sorting methods, namely phase-based, amplitude-based, and percent Pi-based, were evaluated for their impact on volume accuracy, shape, and the presence of artifacts on 4DCT image in terms of absolute volume difference (AVD), sphericity, and artifact score, respectively, specifically in six subjects with inappropriate parameter settings for acquisition data.

Results: Among the 40 patients studied, six respiratory waveforms had improper parameter settings. The volume of a spherical object for the respiratory phases of 0% and 50% showed similarities to the static volume in all three sorting methods, resulting in an AVD range of 0.18-0.29 cm³. The sphericity values of the three sorting methods with phases of 0% and 50% exhibited variations ranging from 0.001 to 0.003, and the artifacts exhibited a severity level close to 2. Therefore, the study recommended using the images at the 0% and 50% respiratory phase with all sorting methods for target contouring images in clinical practice, as they closely matched the static volume. The findings emphasize the importance of aligning pitch values with the breathing period during data acquisition to maintain image quality.

Conclusion: In patients with irregular breathing amplitude and a mismatch in respiratory rate and breathing period, phase-based or percent Pi-based sorting methods were preferably used for 4DCT reconstructions.

Keywords: Artifact, Four-dimensional computed tomography, Radiotherapy, Sorting, Tumor volume

บทคัดย่อ

หลักการและเหตุผล: การทำเอกซเรย์คอมพิวเตอร์แบบสีมิติเลือกประมาณค่าพิทช์ก่อนเก็บข้อมูล ต่อมากันนะเก็บข้อมูลพบค่าพิทช์ไม่สัมพันธ์กับระยะเวลาการหายใจเนื่องจากการหายใจเปลี่ยนแปลงไปปัจจุบันก่อให้เกิดสิ่งแผลกลบломขึ้นบนภาพจำเป็นต้องแก้ไขปัญหานี้รวมไปถึงการเลือกใช้วิธีการจัดเรียงข้อมูลภาพที่เหมาะสมในกลุ่มผู้ป่วยกลุ่มนี้และยังไม่มีprotoคอลอที่เป็นมาตรฐานสำหรับวิธีการจัดเรียงข้อมูลภาพ

วัตถุประสงค์: เพื่อกำหนดวิธีการจัดเรียงข้อมูลภาพในการทำเอกซเรย์คอมพิวเตอร์แบบสีมิติที่เหมาะสมสำหรับผู้ป่วยที่มีการตั้งค่าพิทช์ไม่สัมพันธ์กับการหายใจ

วัสดุและวิธีการ: ข้อมูลสัญญาณการหายใจผู้ป่วยมีการปอด 40 คนได้รับทุนจำลองการหายใจ เก็บข้อมูลโดยเครื่องเอกซเรย์คอมพิวเตอร์แบบสีมิติ ประเมินความเหมาะสมของค่าพิทช์ซึ่งตั้งค่าตามprotoคอลมาตรฐาน เลือกวิธีการจัดเรียงข้อมูลภาพ แบบเฟส แบบแอมพลิจูด และแบบเบอร์เซ็นต์พาย ประเมินความถูกต้องของปริมาตรรูป่าง และสิ่งแผลกลบลอมบนภาพ ในแต่ละภาพ ให้คะแนน 0-100% และให้คะแนนระดับสิ่งแผลกลบลอมตามลำดับ โดยเฉพาะในผู้ป่วยที่มีการตั้งค่าพารามิเตอร์ที่ไม่เหมาะสมในการเก็บข้อมูล

ผลการศึกษา: จากผู้ป่วย 40 คน พบ 6 คนที่มีการตั้งค่าพารามิเตอร์ที่ไม่เหมาะสม ผลการศึกษาปริมาตรทั่วโลก 0% และ 50% มีปริมาตรใกล้เคียงกับปริมาณทั่วโลกขนาดจริงในการจัดเรียงข้อมูลภาพทั้งสามวิธี ผลของช่วงปริมาตรสัมบูรณ์ อยู่ที่ 0.18-0.29 ลูกบาศก์เซนติเมตร ค่าความเป็นทั่วโลกทั้งสามวิธีที่เฟสการหายใจ 0% และ 50% มีความแปรผันตั้งแต่ 0.001 ถึง 0.003 และระดับความรุนแรงของสิ่งแผลกลบลอมเข้าใกล้ 2 ดังนั้นจากการศึกษาครั้นนี้แนะนำให้เลือกใช้ภาพที่เฟสการหายใจ 0% และ 50% ในทั้งสามวิธีสำหรับการคาดคะเนของเขตภูมิที่ไม่สัมพันธ์กับระยะเวลาการหายใจในระหว่างเก็บข้อมูลเพื่อรักษาคุณภาพของภาพ

ข้อสรุป: ในผู้ป่วยที่มีแอมพลิจูดของการหายใจที่ไม่สม่ำเสมอ อัตราการหายใจและระยะเวลาการหายใจไม่ต่องกันควรใช้วิธีการจัดเรียงข้อมูลภาพแบบเฟสหรือแบบเบอร์เซ็นต์พาย สำหรับสร้างภาพ

คำสำคัญ: สิ่งแผลกลบลอม, เอกซเรย์คอมพิวเตอร์แบบสีมิติ, รังสีรักษา, การจัดเรียงข้อมูลภาพ, ปริมาตรก้อนมะเร็ง

J Thai Assoc Radiat Oncol 2024; 30(1): R19 - R37

Introduction

The 4DCT (four-dimensional computed tomography) comprises the 3D CT dataset obtained from the CT scanner alongside the patient's respiratory signals acquired from an external surrogate device. These signals are recorded simultaneously or at corresponding timestamps with each respiratory cycle^[1, 2]. The data acquisition involves a slow couch movement characterized by a low pitch. In spiral mode, a low pitch value is necessary to capture each voxel of the patient's anatomy for an entire respiratory cycle^[3]. The maximum pitch depends on the patient's respiratory frequency and exceeding it can lead to motion artifacts. As a result, the pitch serves as a crucial parameter that requires careful consideration during a 4DCT scan. Particularly, configuring the pitch value unrelated to the breathing period can lead to image artifacts. Furthermore, according to Keall et al.^[4], it is recommended that the ratio of rotation time to pitch be equal to or exceeds the duration of the breathing period. This strategy ensures the acquisition of an adequate number of breathing cycles for a comprehensive 4DCT image and mitigates the risk of encountering data sufficiency condition (DSC).

In a practical scenario, certain patients encountered difficulties in maintaining a consistent respiratory pattern during 4DCT scans. The respiratory rate could change while the beam was active, leading to a disparity between

the predetermined pitch set before the 4DCT and the actual respiratory rate during the scan. Various approaches existed to address irregular breathing, including breathing-adapted 4DCT^[5-9] and the implementation of visual or audio feedback systems^[10]. These solutions demanded new software or hardware components and thorough intensive training. Another approach for solving this issue was the selection of an optimal sorting method for 4DCT data. There were three categorizations of sorting techniques: amplitude-based, phase-based, and Pi-based.

Currently, there is a lack of automated detection methods to identify instances where the set-up pitch is not aligned with the breathing period. Moreover, there is a shortage of established standard protocols or consensus for sorting data under such conditions. Consequently, this study aims to determine the most suitable sorting approach for addressing this scenario.

Material and method

Preparation of respiratory waveform data

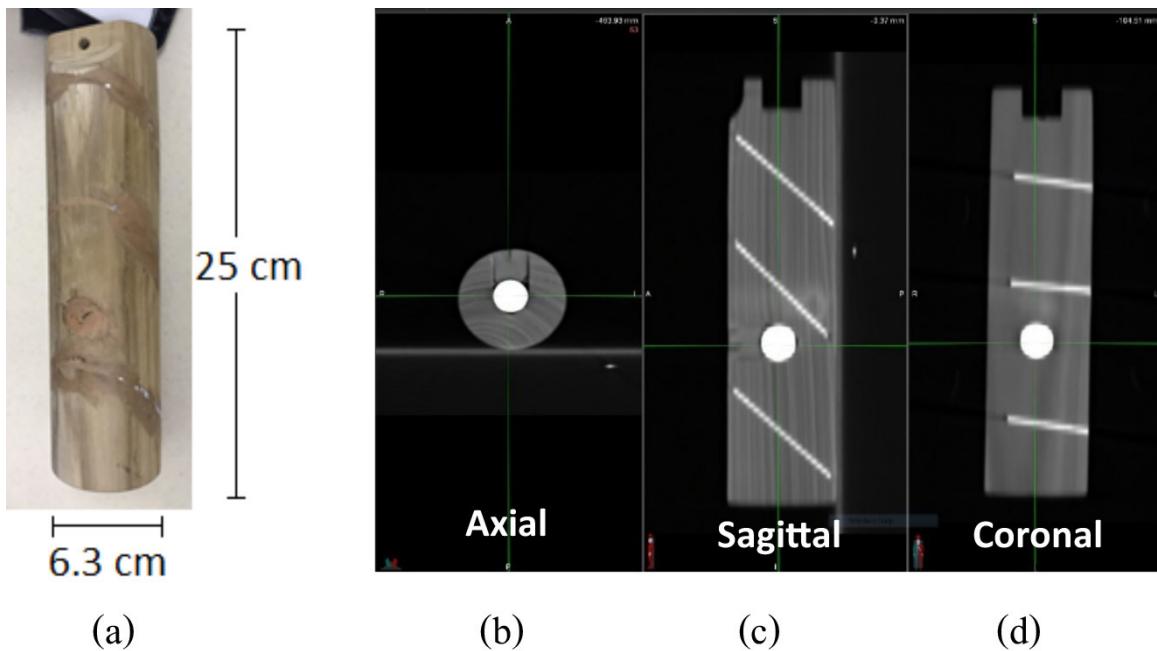
The respiratory waveform data was collected from 40 lung cancer patients who received treatment at the radiotherapy division of Siriraj Hospital between 2018 to 2021. The data was obtained using the Somatom Confidence RT Pro scanner (Siemens Healthcare, Forchheim, Germany), without utilizing the deep inspiration breath hold (DIBH) technique. The respiratory

waveform was recorded using dynamic thorax phantom model 008A (CIRS, Norfolk, Virginia, USA). In accordance with the requirements for retrospective studies, the concept and study design of this study were approved by Siriraj Institutional Review Board (study code: Si 035/2022).

4DCT acquisition

All 40 respiratory waveforms were programmed into the dynamic thorax phantom model 008A (CIRS, Norfolk, VA, USA) using an in-house wooden rod, as demonstrated in **Figure 1**. This wooden rod contained an oblique aluminum plate with a thickness of 2 mm and a spherical object with a diameter of 2 cm (tumor target), measured with a caliper. The aluminum plates were used to evaluate artifact severity, while the spheres displayed distortions in size and shape.

A 4DCT scan was performed using Siriraj Hospital's routine lung 4DCT protocol during the data acquisition process, employing the real-time position management (RPM) system (Varian Medical Systems, Palo Alto, CA, USA) for motion tracking. Then, the reference points in the respiratory signal data recorded via the RPM were adjusted using an in-house Python script (<https://github.com/bombonTH/SIRO-RPM-Peak-Correction>). The points stamped by the RPM, including the peaks and valleys of the respiratory signal, were corrected. This adjustment is crucial as these points serve as references for the reconstruction in the next step.


Acquisition parameters for the spiral 4DCT images were set as follows: 120 kV, 84 mAs, 350 mm FOV, 2 mm slice thickness, 0.5s rotation time, and B30F medium smooth kernel reconstruction filter. The 3DCT image dataset was synchronized with the RPM reference motion file. The scanner's rotation time and pitch were automatically determined by observing the breathing period on the RPM monitor in correlation with the selected range of estimated respiration rates on CT scanner.

Verification of the appropriateness of parameters during the data acquisition process

Calculate the appropriate rotation time per pitch value that corresponds to the breathing period. Afterward, verify that the rotation time per pitch value for each respiratory waveform exceeds the breathing period^[11], using the following formula:

$$\frac{\text{Gantry rotation time}}{\text{Pitch}} \geq \text{Breathing period}$$

The rotation time per pitch values can typically be obtained from the 4DCT scanner instruction manual in **Table 1**. In order to optimize 4DCT scans based on a patient's respiration rate, measured in breaths per minute (BPM), specific settings for rotation time and pitch are recommended. For patients with a respiration rate greater than 6 BPM, but not exceeding 9 BPM, a rotation time of 1 second with a pitch

Figure 1 (a) The improvised in-house wooden rod is presented in three cross-sectional planes—(b) axial, (c) sagittal, and (d) coronal. The inside of the wooden rod contains an oblique aluminum slab with a thickness of 0.2 cm and a spherical object (marble) with a diameter of 2 cm, measured with a caliper.

of 0.09 is advised. This configuration results in a rotation time to pitch ratio of 11.11, which is suitable for breathing periods that range between 10 to 11.10 seconds. For those whose respiration rate exceeds 9 BPM but is no more than 12 BPM, the rotation time remains at 1 second, but the pitch is increased to 0.14. This adjustment leads to a rotation time to pitch ratio of 7.14, ideal for breathing periods between 6.67 and 7.13

seconds. Lastly, for patients with a respiration rate over 12 BPM, a shorter rotation time of 0.5 seconds and a pitch of 0.09 are recommended, yielding a rotation time to pitch ratio of 5.56, suitable for breathing periods of 5 to 5.54 seconds. These tailored settings are crucial for aligning the scanner's operation with the patient's breathing pattern, significantly enhancing the quality and accuracy of the 4DCT images.

Table 1 The estimated respiration time values of 4DCT scanner obtained from the instruction manual and the appropriate breathing period values.

Est. respiration time (BPM)	Rotation time (s)	Pitch	Rotation time/pitch	Breathing period (s)
6-9	1	0.09	11.11	10.00-11.10
>9-12	1	0.14	7.14	6.67-7.13
>12	0.5	0.09	5.56	5.00-5.55

Abbreviation: BPM= breaths per minute, Est. respiration time= Estimated respiration time

Subsequently, it is essential to verify the suitability of the estimated respiratory time selection in relation to the breathing period of the RPM. The breathing period value displayed on the RPM screen during the acquisition process serves as an indicator of the appropriateness of the parameter settings. In the context of this 4DCT scanner, the Somatom Confidence RT Pro scanner (Siemens Healthcare, Forchheim, Germany) establishes a fixed rotation time per pitch value for each tap, as detailed in Table 1. Therefore, our focus lies in evaluating range of the breathing period in relation to the rotation time per pitch value. This involves analyzing datasets within groups of inappropriate acquisition parameters, with a tolerance of the mean breathing period ± 0.5 standard deviation taken into consideration.

Image sorting for 4DCT reconstruction

Following dynamic phantom scanning, images obtained under inadequate acquisition

parameters were categorized into ten phases using amplitude-based, phase-based, and percentage pi algorithms.

For the amplitude sorting, the acquired CT images are sorted based on the displacement. The breathing cycle is divided by the range of inhalation and exhalation into five equidistant steps from maximum to minimum. The amplitude sorting method in 4DCT presents an advantage in highlighting variations in physiological signals, offering insights into anatomical changes throughout the respiratory or cardiac cycle. However, its disadvantage lies in potential susceptibility to noise, as variations in amplitude may not always correlate precisely with anatomical motion.

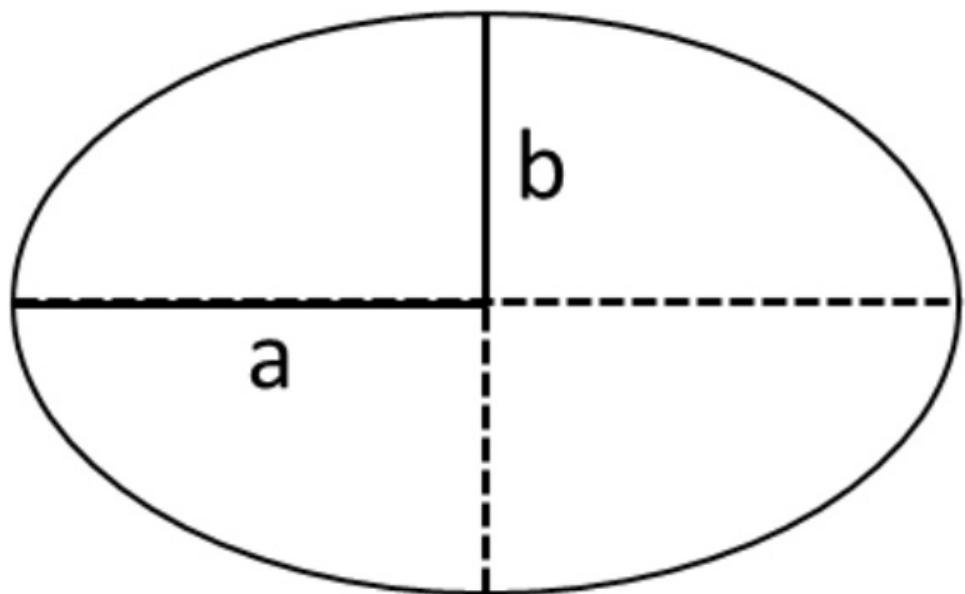
In contrast, phase-based sorting, CT images are sorted based on the phase or relative timing within the patient's breathing cycle. The respiratory cycle is divided into the percentage of equal time points from peak to peak in each

respiratory cycle^[12]. The phase-based sorting method excels in providing a temporal perspective, but its drawback involves potential inaccuracies if the phase information is affected by irregularities or inconsistencies in physiological cycles.

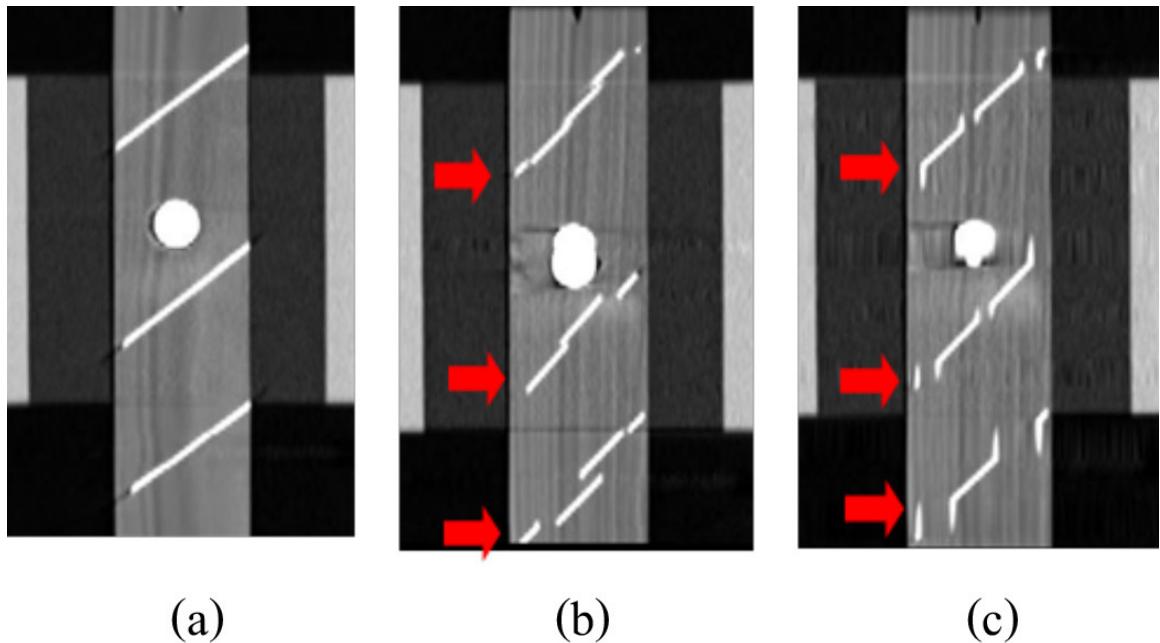
Meanwhile, the percentage of Pi (percent Pi-based sorting), CT images are sorted based on the phase but use a different representation of the respiratory cycle. The respiratory cycle is represented in terms of pi (π), where 0% corresponds to 0π and 100% corresponds to 2π . The prominent point in this method is the position where 0% corresponds to the end inhalation, and 50% corresponds to the end exhalation position. The resulting image in this point will be the anatomical position corresponding to the actual breathing position of the patient. The percent Pi-based sorting method optimizes temporal resolution, yet its disadvantage lies in the complexity of implementation and potential challenges in maintaining synchronization due to the periodicity of 2π .

Evaluation of volume, shape, and artifact characteristics under inappropriate data acquisition parameters

Characteristics of breathing patterns under inappropriate data acquisition parameters were evaluated in terms of absolute volume difference (AVD), shape, and artifact in MIM software version 7.0 (MIMvista Corp., Cleveland, OH, USA) by using auto-segmented contour at 40 HU in ten phases (WW -362 HU and WL 1324 HU). The AVD was


calculated to evaluate the variation in volume for each sorting method. The AVD represents the volume difference between tumor volumes in each phase of the sorting method, compared to a static tumor in MIM software. The shape accuracy of the tumor is evaluated by the sphericity (Ψ), using the following formula.

$$\Psi = \frac{2\sqrt[3]{ab^2}}{a + \frac{b^2}{\sqrt{a^2 - b^2}} \ln\left(\frac{a + \sqrt{a^2 - b^2}}{b}\right)}$$


The sphericity measured semi-major (a) and semi-minor (b) axes^[13] as shown in **Figure 2**. The good sphericity should be close to 1^[14].

Furthermore, for artifact assessment, two evaluators assigned scores to the discrepancies observed in the intermediate aluminum slab within the 4DCT image shown in **Figure 3**. In cases where there were significant discrepancies in their assessments, a third expert was confirmed to provide a final determination. Artifacts in each sorting method were simultaneously evaluated on the sagittal plane at the same phase. None of the artifacts gives a 0 score, one artifact on the aluminum plate = 1, two artifacts on the aluminum plate = 2, and three artifacts on the aluminum plate = 3.

A statistical analysis comparing volume, shape, and image artifacts between three sorting types was tested using multilevel mixed-effects linear regression in Stata (Erlangen, Germany). The statistical significance was a p-value less than 0.05.

Figure 2 (a) The semi-major and (b) semi-minor axis of an ellipse.

Figure 3 An example artifact found on the 4DCT image considering the anomaly of the aluminum slab: (a) No artifact, (b) and (c) Artifact on 4DCT images in the phantom, indicated by red arrows.

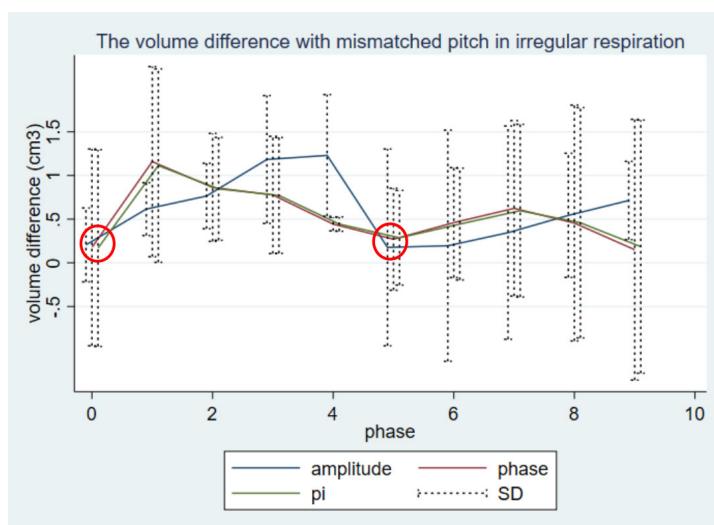
Results

Among the 40 patients studied, six cases had the rotation time per pitch value (7.14) shorter than the breathing period value plus 0.5 standard deviation (7.66 to 11.78) during the actual scan due to changes in the patient's respiratory rate during the scan. Therefore, these six patients were controlled in this study. These effects resulted in an inadequate amount of data for generating 4DCT images, as indicated in **Table 2**.

The study assessed the accuracy of volume, shape, and artifact in the respiratory waveforms of six respiratory waveforms with improper parameter settings or mismatched pitch in irregular respiration. Volume accuracy was assessed using AVD values, with amplitude-based, phase-based, and percent Pi-based methods yielding the values in the ranges of 0.18-1.23 cm³, 0.15-1.16 cm³, and 0.17-1.11 cm³, respectively

(**Figure 4**). Considering the volume (red circle) at the phase of 0% and 50% showed similarities to the static volume in all three sorting methods, resulting in an AVD range of 0.18-0.29 cm³ (**Table 3, Figure 4**). The 20% respiratory phase revealed no significant volume differences among the three imaging methods ($p>0.05$).

The amplitude-based sorting method demonstrated significantly superior volume accuracy compared to the phase-based and percent Pi-based sorting methods at 10% respiratory phase (0.62 cm³, 1.16 cm³, and 1.11 cm³, respectively) (**Table 3**). Conversely, the phase-based and percent Pi-based sorting methods exhibited higher AVD values than the amplitude-based sorting method, particularly noticeable at respiratory phases 30% and 40%, with a statistically significant difference ($p<0.001$) (**Table 3**)


Table 2 Inappropriate data acquisition parameters settings for 6 patients during scan 4DCT.

No. Patient	Pre-scan		During scan		Rot/pitch	Appropriate CT setting (Est. respiration time) (BPM)
	Breathing period (s) (Visualization)	Breathing period (s) ± 0.5 SD	(Est. respiration time) (BPM)	Breathing period (s) +0.5 SD		
PT01	9.0	11.07 ± 0.72	>9	11.78	7.14	>6
PT02	7.1	7.20 ± 0.46	>9	7.66	7.14	>6
PT03	7	6.97 ± 0.89	>9	7.86	7.14	>6
PT04	8.4	8.18 ± 0.59	>9	8.77	7.14	>6
PT05	7.1	6.91 ± 0.53	>9	7.44	7.14	>6
PT06	9.3	8.57 ± 0.81	>9	9.38	7.14	>6

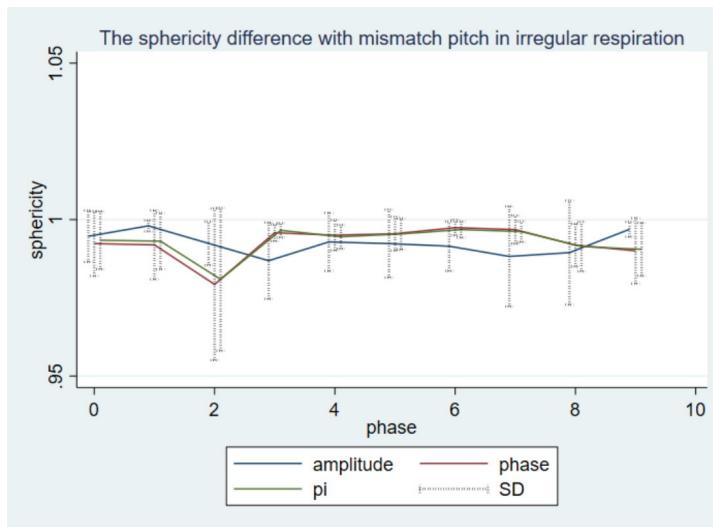
Table 3 The absolute volume differences with mismatched pitch in irregular respiration.

Phase	Absolute Volume Difference			AB-PB (95%CI)	p-value	PB-Pi (95%CI)	p-value	AB-Pi (95%CI)	p-value
	AB \pm SD	PB \pm SD	Pi \pm SD						
0%	0.21 \pm 0.40	0.18 \pm 1.07	0.17 \pm 1.07	-0.03 (-0.63 to 0.57)	0.93	-0.01 (-0.61 to 0.59)	0.98	-0.04 (-0.64 to .56)	0.90
10%	0.62 \pm 0.29	1.16 \pm 1.04	1.11 \pm 1.05	0.54 (0.05 to 1.04)	0.03	-0.05 (-0.54 to 0.45)	0.86	0.50 (0.00 to 0.99)	0.05
20%	0.77 \pm 0.36	0.86 \pm 0.59	0.85 \pm 0.56	0.10 (-0.12 to 0.32)	0.37	-0.02 (-0.12 to 0.32)	0.37	0.08 (-0.14 to 0.30)	0.46
30%	1.18 \pm 0.70	0.78 \pm 0.64	0.77 \pm 0.63	-0.41 (-0.65 to -0.16)	<0.01	-0.01 (-0.25 to 0.24)	0.97	-0.41 (-0.66 to -0.17)	<0.01
40%	1.23 \pm 0.66	0.44 \pm 0.07	0.44 \pm 0.08	-0.79 (-1.18 to -0.40)	<0.01	0.00 (-0.39 to 0.39)	1.00	-0.79 (-1.18 to -0.40)	<0.01
50%	0.18 \pm 1.07	0.27 \pm 0.56	0.29 \pm 0.52	0.09 (-0.36 to 0.55)	0.69	0.02 (-0.44 to 0.47)	0.94	0.11 (-0.34 to 0.56)	0.64
60%	0.20 \pm 1.26	0.46 \pm 0.56	0.44 \pm 0.61	0.27 (-0.18 to 0.71)	0.24	-0.02 (-0.46 to 0.43)	0.94	0.25 (-0.19 to 0.69)	0.27
70%	0.35 \pm 1.16	0.62 \pm 0.96	0.60 \pm 0.94	0.28 (-0.32 to 0.88)	0.36	-0.03 (-0.63 to 0.57)	0.93	0.25 (-0.35 to 0.85)	0.41
80%	0.54 \pm 0.68	0.46 \pm 1.29	0.46 \pm 1.26	-0.09 (-0.50 to 0.32)	0.67	0.00 (-0.41 to 0.41)	0.99	-0.08 (-0.49 to 0.32)	0.68
90%	0.71 \pm 0.43	0.15 \pm 1.42	0.19 \pm 1.38	-0.56 (-1.17 to 0.04)	0.07	0.04 (-0.57 to 0.64)	0.91	-0.53 (-1.14 to 0.08)	0.09

Abbreviation: AB= Amplitude-based sorting, PB= Phase-based sorting, Pi= Percent Pi-based sorting

Figure 4 The AVD including amplitude-based (blue line), phase-based (red line), and percent Pi-based (green line) sorting with mismatch pitch in irregular respiration. The red circle at the phase of 0% and 50% showed similarities to the static volume in all three sorting methods. Dotted lines represent data within standard deviations.

Additionally, when assessing shape differences, which are evaluated through sphericity values, a value close to 1 indicates that the shape closely resembles the ideal roundness. As depicted in **Table 4**, the sphericity values of the three sorting methods demonstrated differences not exceeding 0.02. Particularly, during the 0% and 50% respiratory phases, the sphericity exhibited variations ranging from 0.001 to 0.003. Both the phase-based and percent Pi-based sorting methods displayed sphericity in a similar direction, with no statistically significant differences noted ($p>0.05$).


In **Figure 5**, the phase-based and percent Pi-based sorting methods are closer to reality shape than the amplitude-based sorting method

observed at respiratory phase 30% to 70%. However, at the 20% respiratory phase, the sphericity appeared similar for all three sorting methods. Even though there were no significant differences in AVD during this phase, it's notable that the sphericity of the amplitude-based sorting method significantly differed from that of the phase-based and percent Pi-based methods ($p=0.02$ and $p=0.04$, respectively).

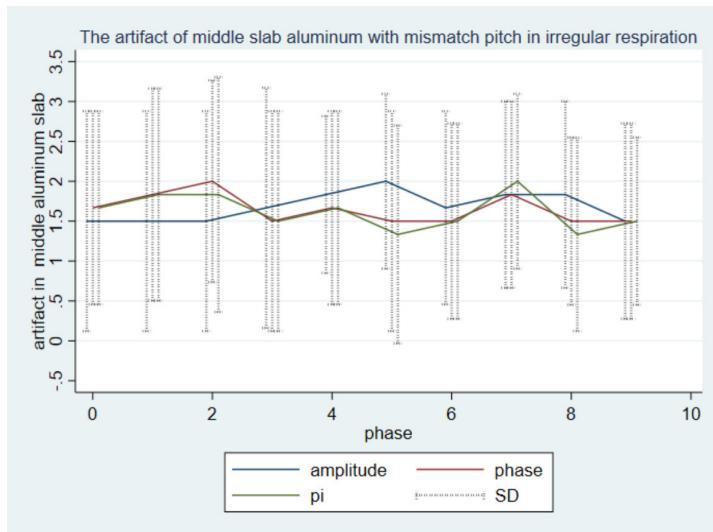

For the artifacts present in the 4DCT image, assessed through the continuity of the aluminum middle slab, the resulting artifacts exhibited a severity level close to 2 (two artifacts on the aluminum plate), as depicted in **Figure 6**. However, the artifact severity did not exhibit a correlation with either volume or sphericity.

Table 4 The sphericity differences with mismatch pitch in irregular respiration.

Phase	Absolute Volume			AB-PB (95%CI)	p-value	PB-Pi (95%CI)	p-value	AB-Pi (95%CI)	p-value						
	Difference														
	AB	PB	Pi												
0%	0.995	0.992	0.993	-0.002 (-0.010 to 0.005)	0.538	0.001 (-0.006 to 0.009)	0.778	-0.001 (-0.009 to 0.006)	0.739						
10%	0.998	0.992	0.993	-0.006 (-0.012 to -0.001)	0.033	0.001 (-0.004 to 0.007)	0.675	-0.005 (-0.010 to 0.001)	0.086						
20%	0.992	0.979	0.981	-0.013 (-0.024 to -0.002)	0.020	0.002 (-0.009 to 0.013)	0.774	-0.011 (-0.023 to 0.000)	0.041						
30%	0.987	0.996	0.997	0.009 (0.002 to 0.016)	0.010	0.001 (-0.006 to 0.008)	0.822	0.010 (0.003 to 0.017)	0.005						
40%	0.993	0.995	0.995	0.002 (-0.004 to 0.009)	0.513	-0.001 (-0.007 to 0.006)	0.877	0.002 (-0.005 to 0.008)	0.618						
50%	0.992	0.995	0.995	0.003 (-0.004 to 0.010)	0.360	0.000 (-0.007 to 0.007)	0.984	0.003 (-0.004 to 0.010)	0.371						
60%	0.991	0.997	0.997	0.006 (0.002 to 0.010)	0.007	-0.001 (-0.005 to 0.004)	0.777	0.005 (0.001 to 0.010)	0.016						
70%	0.988	0.997	0.996	0.009 (-0.001 to 0.019)	0.095	-0.001 (-0.011 to 0.009)	0.900	0.008 (-0.002 to 0.018)	0.122						
80%	0.989	0.992	0.991	0.002 (-0.006 to 0.011)	0.594	0.000 (-0.009 to 0.008)	0.923	0.002 (-0.007 to 0.011)	0.663						
90%	0.997	0.990	0.991	-0.007 (-0.013 to -0.001)	0.021	0.000 (-0.005 to 0.006)	0.870	-0.006 (-0.012 to -0.001)	0.033						

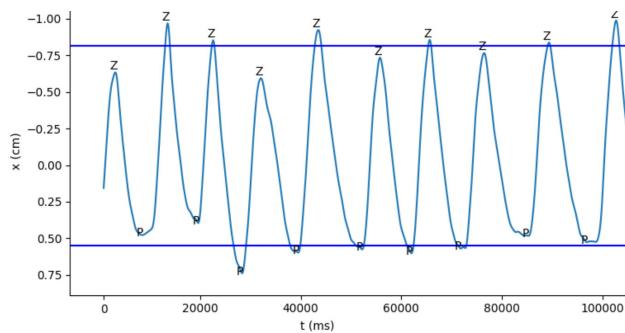
Figure 5 The sphericity difference including amplitude-based (blue line), phase-based (red line), and percent Pi-based (green line) sorting with mismatch pitch in irregular respiration. Dotted lines represent data within standard deviations.

Figure 6 The artifact in middle slab aluminum including amplitude-based (blue line), phase-based (red line), and percent Pi-based (green line) sorting with mismatch pitch in irregular respiration. Dotted lines represent data within standard deviations.

Furthermore, when examining the phase-based and percent Pi-based sorting methods in **Table 5**, it was observed that at the 0% respiratory phase, there were 1.18 times more artifacts compared to the amplitude-based sorting method. For the 50% respiratory phase, the artifacts were 0.61 and 0.51 times less than the amplitude-based sorting method, respectively. Nonetheless, the artifacts identified by the three sorting methods exhibited no statistically significant differences, except during the 20% respiratory phase. Notably, during this phase, both the phase-based and percent Pi-based sorting methods displayed a higher artifact, with values 1.65 and 1.4 times greater than the amplitude-based method, respectively ($p=0.22$).

Discussion

After an examination of three sorting techniques employing the 4DCT scanner, it was determined that when acquisition parameters were improperly configured, none of the sorting methods yielded favorable outcomes in either amplitude-based, phase-based or percent Pi-based sorting. This significantly impacts the amplitude-based sorting method due to its reliance on precise amplitude-level positioning for sorting. Concurrently, both phase-based sorting and percent-Pi sorting exhibit comparable results.


Furthermore, the presence of interpolated or incomplete artifacts was attributed to a respiratory waveform characterized by a

breathing period value shorter than the rotation time per pitch. For example (**Figure 7a**), the slow respiratory rate was 5.42, indicating a reduced number of cycles. Moreover, an incorrect estimation of the respiratory rate occurred, involving the selection of a rate exceeding 9 BPM instead of the suitable rate, which should have been greater than 6 BPM. This error became evident when reviewing the stack bar CT for each phase within the three sorting methods, as presented in **Figures 7b-7d**. Typically, the stack interval in sorting takes 250ms per bar, so selecting a fast respiratory rate instead of a slower one, resulted in a significant expansion of the data range. This discrepancy reconstruction method led to data interpolation due to missing information between stacks in all three sorting methods especially in amplitude-based sorting. Nevertheless, it's crucial to consider the rotation per pitch to prevent missing information when using the amplitude-based sorting method. Missing data can lead to interpolation and compensation for absent respiratory phases, resulting in image blurriness, elongation, and incompleteness.

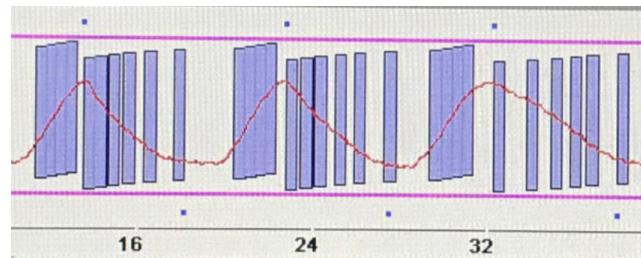
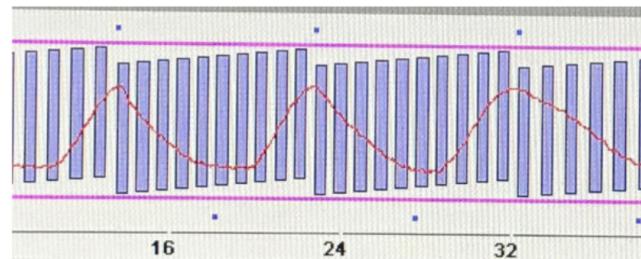
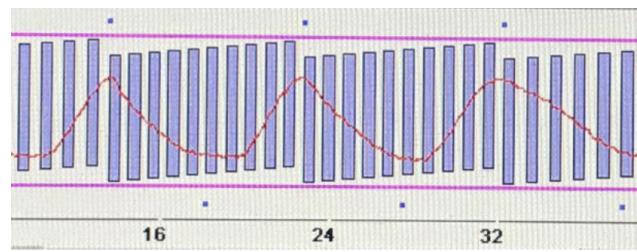
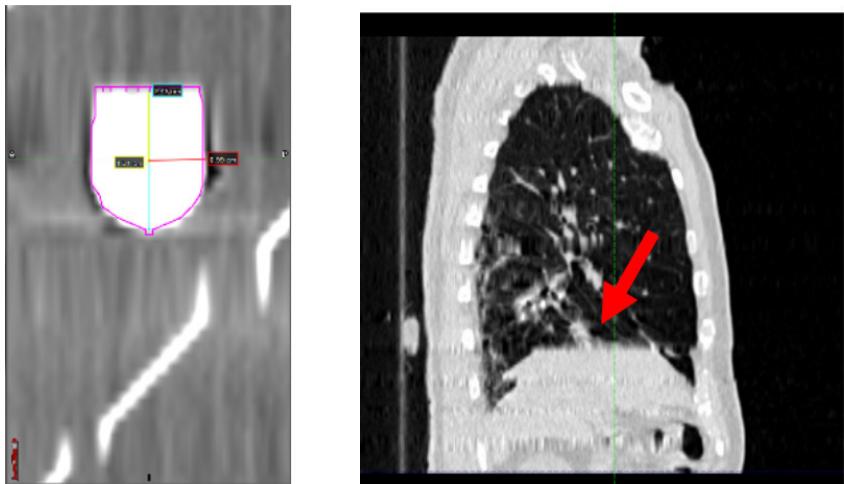

The upper portion of the volume appears elongated and truncated, leading to an increase in AVD. Consequently, severe artifacts are observed in the anatomical images on the 4DCT image of the patient, characterized by image blurring and missing anatomical details, as illustrated in **Figure 8**. Consequently, the contour delineation does not encompass the tumor.

Table 5 Artifact of middle slab aluminum with mismatch pitch in irregular respiration.


Phase	Odd ratio (95%CI, p-value)	Global p-value
0%: Amplitude	Reference	
Phase	1.18 (0.93-1.51, 0.18)	0.301
Pi	1.18 (0.93-1.51, 0.18)	
10%: Amplitude	Reference	
Phase	1.40 (1.03-1.90, 0.034)	0.050
Pi	1.40 (1.03-1.90, 0.034)	
20%: Amplitude	Reference	
Phase	1.65 (1.15-2.37, 0.007)	0.022
Pi	1.40 (0.97-2.00, 0.07)	
30%: Amplitude	Reference	
Phase	0.85 (0.66-1.08, 0.18)	0.301
Pi	0.85 (0.66-1.08, 0.18)	
40%: Amplitude	Reference	
Phase	0.85 (0.66-1.08, 0.18)	0.301
Pi	0.85 (0.66-1.08, 0.18)	
50%: Amplitude	Reference	
Phase	0.61 (0.36-1.02, 0.061)	0.864
Pi	0.51 (0.30-0.87, 0.012)	
60%: Amplitude	Reference	
Phase	0.85 (0.42-1.70, 0.639)	0.770
Pi	0.85 (0.42-1.70, 0.639)	
70%: Amplitude	Reference	
Phase	1.00 (0.59-1.69, 1.000)	0.235
Pi	1.18 (0.7-1.99, 0.532)	
80%: Amplitude	Reference	
Phase	0.72 (0.40-1.29, 0.265)	1.000
Pi	0.61 (0.34-1.09, 0.095)	
90%: Amplitude	Reference	
Phase	1.00 (0.69-1.46, 1.00)	0.864
Pi	1.00 (0.69-1.46, 1.00)	


(a)

(b)



(c)

(d)

Figure 7 The impact of shallow or flat breathing on the respiratory waveform (a) and presents the stack bar CT images sorted by phase in the (b) amplitude-based, (c) phase-based, and (d) Pi-based sorting methods.

Figure 8 The presented artifact in the phantom (left) correlated with the patient (right) in the sagittal plane.

Respiratory waveforms, featuring low amplitudes, particularly in the amplitude-based sorting method, rendered it challenging to determine the phase position, leading to missing data. Li H et al.^[15] revealed similar findings where irregular breathing patterns resulted in a smaller volume in amplitude-based sorting method compared to phase-based sorting method, leading to image artifacts. Furthermore, Hilgers G et al.^[3] was associated with an inappropriate pitch value with breathing frequency, particularly when the selected estimated respiratory time does not correspond to the breathing period. Thus, it is recommended to appropriately adjust the rotation time per pitch, following the guidance of Keall PJ et al.^[4], to ensure a sufficient amount of cycle data for sorting and to prevent missing data.

One limitation of this research involves the evaluation of artifacts aimed at reducing interobserver variability. To address this limitation, a third party was employed to determine artifact scores. However, it's important to note that this method may not be universally applicable. Additionally, it's worth mentioning that this assessment solely focuses on the continuity of the aluminum slab and does not take into account elongation or curvature.

In practical implementations in improper acquisition parameter settings, it's crucial to assess the accuracy of respiratory volume. Therefore, in clinical practice when utilizing 4DCT images, it is advisable for target contouring to rely on respiratory phases at 0% and 50% since shown target volumes were closest to static volume (Figure 4). Additionally, it's import-

ant to avoid using Maximum Intensity Projection (MIP) images for contouring, as combining artifacts present in all phases can result in significant errors. Furthermore, it's essential to ensure the regularity of breathing and match the breathing period to the pitch value during data acquisition.

Conclusion

In clinical practice, when a patient has difficulty with regular breathing during a 4DCT scan, radiologists often utilize phase-based or percent Pi-based sorting methods to accurately ascertain the size and shape of a tumor. This technique is beneficial even if a patient is hesitant to undergo multiple 4DCT scans, as it effectively reduces artifacts, especially in phases 0% and 50%. During these phases, radiologists are typically able to more precisely evaluate the extent of the tumor.

Furthermore, oncologists can combine data from phases 0% and 50%, which correspond to the end-inhale and end-exhale phases, respectively, to calculate the range of tumor movement during treatment. Nonetheless, the ideal approach is to train patients in consistent breathing techniques prior to conducting the 4DCT to achieve the highest quality results.

For patients with irregular breathing amplitude and a discrepancy between respiratory rate and breathing period, phase or percent Pi-based sorting methods are recommended for 4DCT reconstruction in clinical settings. Additionally, radiotherapists should carefully select the rotation time per pitch value that aligns with the patient's breathing period. This choice of the appropriate auto pitch at the CT scanner is crucial for enhancing image quality.

References

1. Pan T. Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. 2005;32:627-34.
2. Caines R, Sisson NK, Rowbottom CG. 4DCT and VMAT for lung patients with irregular breathing. J Appl Clin Med Phys 2022;23:e13453.
3. Hilgers G, Nuver T, Minken ACMP. Helical 4D CT pitch management for the Brilliance CT Big Bore in clinical practice. J Appl Clin Med Phys 2015;16:389-98.
4. Keall PJ, Starkschall G, Shukla H, Forster KM, Ortiz V, Stevens C, et al. Acquiring 4D thoracic CT scans using a multislice helical method. Phys in Med 2004;49: 2053-67.
5. Werner R, Hofmann C, Mücke E, Gauer T. Reduction of breathing irregularity-related motion artifacts in low-pitch spiral 4D CT by optimized projection binning. J Radia Oncol 2017;12:1-8.

6. Werner R, Sentker T, Madesta F, Gauer T, Hofmann C. Intelligent 4D CT sequence scanning (i4DCT): concept and performance evaluation. *Med Phys* 2019;46:3462-74.
7. Rietzel E, Chen GT. Improving retrospective sorting of 4D computed tomography data. *Med Phys* 2006;33:377-9.
8. Li R, Lewis JH, Cervino LI, Jiang SB, Biology. 4D CT sorting based on patient internal anatomy. *Phys Med Biol* 2009;54: 4821-33.
9. Freislederer P, Heinz C, von Zimmern H, Gerum S, Roeder F, Reiner M, et al. Clinical workflow optimization to improve 4DCT reconstruction for Toshiba Aquilion CT scanners. *Z Med Phys* 2018; 28:88-95.
10. Pollock S, O'Brien R, Makhija K, Hegi-Johnson F, Ludbrook J, Rezo A, et al. Audiovisual biofeedback breathing guidance for lung cancer patients receiving radiotherapy: a multi-institutional phase II randomised clinical trial. *BMC cancer* 2015;15:1-8.
11. Keall PJ, Starkschall G, Shukla H, Forster KM, Ortiz V, Stevens C, et al. Acquiring 4D thoracic CT scans using a multislice helical method. *Phys Med Biol* 2004;49: 2053-67.
12. Wink N, Panknin C, Solberg TD. Phase versus amplitude sorting of 4D-CT data. *J Appl Clin Med Phys* 2006;7:77-85.
13. Wikipedia contributors. Sphericity: Wikipedia, The Free Encyclopedia.; [updated 21 October 2023; cited 2022 12 October 2022]. Available from: <https://en.wikipedia.org/w/index.php?title=Sphericity&oldid=1177772003>.
14. Zheng J, Hryciw RD. Traditional soil particle sphericity, roundness and surface roughness by computational geometry. *Geotechnique* 2015;65:494-506.
15. Li H, Noel C, Garcia-Ramirez J, Low D, Bradley J, Robinson C, et al. Clinical evaluations of an amplitude-based binning algorithm for 4DCT reconstruction in radiation therapy. *Med Phys* 2012;39: 922-32.

Benefit of radiation therapy in stage III-IV Hodgkin lymphoma after chemotherapy

ประโยชน์ของการฉายรังสีในผู้ป่วยมะเร็งต่อมน้ำเหลืองชนิด Hodgkin ระยะลุกลาม หลังรักษาด้วยเคมีบำบัด

*Ruja Vichitvejpaisal¹, Thitiwan Prachanukul¹, Manassamon Navinpipat²,
Pannee Praditsuktavorn³, Kanyanee Laebua¹, Pornwaree Trirussapanich¹, Sunanta Tungfung¹,
Thong Chotchutipan¹, Sarinya Bawornpatarapakorn¹, Sasikarn Chamchod¹*

¹*Department of Radiation Oncology, Chulabhorn Hospital, Bangkok, Thailand*

²*Hematology Unit, Chulabhorn Hospital, Bangkok, Thailand*

³*Princess Srisavangadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand*

Corresponding author

Sasikarn Chamchod

*Division of Radiation Oncology, Department of Radiation Oncology, Chulabhorn Hospital,
906 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand*

Email: sasikarn.cha@cra.ac.th

รุจा วิจิตรเวชไฟศาล¹, ทิติวรรณ ประชานุกูล¹, มนัสมนต์ นาวินพิพัฒน์², พรรดา ประดิษฐ์สุขดาวย³, กัญญาณีร์ แลบว¹,
พรรดา ตีร์สสพานนิช¹, สนันทา ถึงผ่อง¹, รัง โชติชุติพันธุ¹, ศรินยา บวรภัทรปกรณ์¹, ศศิกาญจน์ จำจด¹

¹งานรังสีรักษามะเร็งวิทยา โรงพยาบาลจุฬาภรณ์

²งานโลหิตวิทยาและเซลล์บำบัดโรงพยาบาลจุฬาภรณ์

³วิทยาลัยแพทยศาสตร์ศรีสวางค์วัฒน ราชวิทยาลัยจุฬาภรณ์

ผู้นิพนธ์ ประสานงาน

ศศิกาญจน์ จำจด

งานรังสีรักษามะเร็งวิทยา โรงพยาบาลจุฬาภรณ์

906 ถนนกำแพงเพชร 6 ตalaดบางเขน เขตหลักสี่ กรุงเทพฯ 10120

Email: sasikarn.cha@cra.ac.th

Submitted: Apr 7, 2023

Revised: Jan 9, 2024

Accepted: Jan 26, 2024

Abstract

Background: The benefit of radiation therapy as a consolidation therapy after chemotherapy in advanced-stage Hodgkin lymphoma remains controversial, especially after the widespread use of positron emission tomography (PET)/computed tomography (CT) or Ga-67 scintigraphy.

Objective: We conducted a retrospective review in our institute to evaluate the benefit of consolidative radiotherapy in patients who received a modern chemotherapy regimen.

Materials and methods: Between January 2010 and December 2019, 33 patients with newly diagnosed stage III or IV Hodgkin lymphoma were identified from the Chulabhorn Hospital database. After excluding 15 patients who did not meet our inclusion criteria (1 HIV infection, 5 early-stage after reviewed, 5 did not used PET-CT or Ga-67 scintigraphy and 4 with incomplete medical history), the remaining 18 patients were enrolled.

Results: After a median follow-up of 48 months, the 3-year disease-free survival rate was 66.7% in patients who received radiation therapy, versus 55.6% in patients who did not receive radiation therapy ($p = 0.391$). The 3-year overall survival rate was 100% in both groups. In total, 11 patients (61%) had complete metabolic response (CMR) after first-line chemotherapy, whereas three (16.7%), one (5.6%), and three (16.7%) had a partial response, stable disease, and disease progression, respectively. Seven patients (38.9%) experienced relapse after treatment, and 71.4% of relapses occurred at the original disease site. Of 7 patients who had residual after first-line chemotherapy, three received further radiotherapy whereas four did not. Relapse occurred in all four patients who did not received radiotherapy after residual disease. No patients who achieved CMR in both the interim and post-treatment evaluations experienced relapse. Four of nine patients with bulky masses more than 7 cm in size had CMR after first-line chemotherapy. Interestingly, in this group, no relapse occurred in patients who did not receive radiation therapy, whereas one of three patients (33.3%) who received radiation therapy exhibited relapse. No grade 3–4 acute radiation toxicities occurred in this study, but two of nine patients (22.2%) had grade 3 late pneumonitis that required hospitalization. No secondary malignancy was observed.

Conclusion: Using functional imaging as an evaluation method, consolidation radiation therapy may not be necessary in advanced Hodgkin lymphoma.

Keywords: Bulky disease, Consolidation radiation therapy, Hodgkin lymphoma, Modern chemotherapy

บทคัดย่อ

หลักการและเหตุผล: ประโยชน์ของการฉายรังสีในมะเร็งต่อมน้ำเหลืองยอดจีนระยะลุกลามหลังเคมีบำบัดยังไม่เป็นที่สรุปแน่ชัดโดยเฉพาะในยุคที่มีการใช้ PET/CT หรือ Ga-67อย่างแพร่หลาย

วัตถุประสงค์: เพื่อศึกษาประโยชน์ของการฉายรังสีในผู้ป่วยมะเร็งต่อมน้ำเหลืองยอดจีนระยะลุกลามหลังได้รับเคมีบำบัดยุคปัจจุบัน

วัสดุและวิธีการ: ศึกษาผู้ป่วยที่ได้รับการวินิจฉัยเป็นมะเร็งต่อมน้ำเหลืองยอดจีนระยะสามและสี่ในโรงพยาบาลจุฬาภรณ์ย้อนหลังระหว่างปี พ.ศ.2553 ถึง 2562 จำนวน 33 ราย ผู้ป่วย 15 รายถูกคัดออก (1 มีเชื้อHIV, 5 เป็นระยะเริ่มต้น, 5 ไม่ได้ทำ PET/CT หรือ Ga-67 และ4ประวัติไม่ครบถ้วน) คงเหลือผู้ป่วย 18 ราย

ผลการศึกษา: ที่ค่ามรณะนานระยะเวลาติดตาม 48 เดือน อัตราการควบคุมโรคที่ 3 ปีเท่ากับร้อยละ 66.7 ในกลุ่มที่ได้รับการฉายรังสี และร้อยละ 55.6 ในผู้ป่วยที่ไม่ได้รับ ($p = 0.391$) อัตราการรอดชีวิตที่ 3 ปีเป็นร้อยละ 100 ทั้งสองกลุ่ม ผู้ป่วย 11 ราย (ร้อยละ 61) ตอบสนองต่อเคมีบำบัดอย่างสมบูรณ์ 3 ราย (16.7%) ตอบสนองบางส่วน 1 ราย (5.6%) ไม่เปลี่ยนแปลง และ 3 ราย (16.7%) มีโรคลุกลาม มีผู้ป่วย 7 ราย (38.9%) ที่พบการกลับเป็นช้ำของโรค โดยร้อยละ 71.4% ของการกลับเป็นช้ำเกิดที่ตำแหน่งเดิมของโรคก่อนรักษา ในผู้ป่วย 7 รายที่มีรอยโรคเหลือหลังรับยาเคมีบำบัด 4 ใน 7 รายที่ไม่ได้รับการฉายรังสีมีการกลับเป็นช้ำทั้งหมด ไม่พบการกลับเป็นช้ำในผู้ป่วยที่ตอบสนองอย่างสมบูรณ์ทั้งในระหว่างและหลังรับยาเคมีบำบัด ผู้ป่วย 4 ใน 9 รายที่มีก้อนขนาดใหญ่มากกว่า 7 ซม. มีการตอบสนองอย่างสมบูรณ์ ผู้ป่วย 1 รายที่ไม่ได้รับการฉายรังสีในกลุ่มนี้ไม่พบการกลับเป็นช้ำ ในขณะที่ผู้ป่วย 1 ใน 3 รายที่ได้รับการฉายรังสีมีการกลับเป็นช้ำ (33.3%) ไม่พบพิษจากการรังสีรัมย์เฉียบพลันระดับ 3-4 แต่มีผู้ป่วย 2 รายเกิดพิษของรังสีเรื้อรังระดับ 3 ในปอดและจำเป็นต้องรักษาในโรงพยาบาล ไม่พบมะเร็งทุกภูมิในการศึกษานี้

ข้อสรุป: การฉายรังสีในผู้ป่วยมะเร็งต่อมน้ำเหลืองยอดจีนระยะลุกลามอาจไม่มีความจำเป็น หากผู้ป่วยได้รับการประเมินการตอบสนองด้วย PET/CT หรือ Ga-67

คำสำคัญ: การฉายรังสี, เคมีบำบัดยุคปัจจุบัน, มะเร็งต่อมน้ำเหลืองชนิดยอดจีน, รอยโรคขนาดใหญ่

J Thai Assoc Radiat Oncol 2024; 30(1): R38 - R57

1. Introduction

Hodgkin lymphoma is a relatively rare disease, comprising only 0.4% of newly diagnosed cancers globally in 2020^[1]. However, its incidence is increasing in adolescents and young adults, and it is one of the most common malignancies in this patient group. Hodgkin lymphoma has a bimodal age distribution with two peaks at 25–34 and 60–70 years. Moreover, the incidence also differs by geographic location and ethnicity^[2].

The treatment paradigm for Hodgkin lymphoma depends on the stage of the disease. In early-stage disease (stage I–II), the standard treatment is combined chemotherapy and radiation therapy. In comparison, the mainstay of advanced-stage treatment is systemic chemotherapy with or without radiation therapy and autologous stem cell transplantation. The development of intense systemic chemotherapy has substantially improved survival in patients with stage III–IV Hodgkin lymphoma, including an estimated 5-year survival rate of up to 80%–90% and a complete metabolic response (CMR) rate of 60–70% in recent decades^[3,4,5,6].

Although chemotherapy is considered the primary treatment for advanced-stage Hodgkin lymphoma, the role of radiation therapy as a consolidation therapy for bulky disease and after partial remission after chemotherapy remains controversial. Many randomized studies and meta-analyses recorded conflicting results^[4,7].

In the UK Lymphoma Group study^[5], patients with advanced-stage (stage III–IV or early-stage

disease with systemic symptoms or bulky disease) were randomly assigned to receive the ABVD regimen or two multidrug regimens (ChIVPP/PABIOE or hybrid ChIVPP/EVA). Radiation therapy was recommended for patients with initial bulky disease or incomplete responses to chemotherapy. The analysis revealed that consolidation radiation therapy significantly improved progression-free and overall survival^[6]. In another prospectively randomized multicenter trial^[3], despite an improvement of the freedom from treatment failure rate in patients who received radiation therapy, the benefit was limited to only patients who had residual disease after chemotherapy, whereas patients with bulky disease after a complete response to chemotherapy experienced no benefit.

Moreover, previous clinical trials did not use 18F-fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) as the standard imaging modality for staging and treatment response monitoring. The German Hodgkin Study Group HD 15 study was one of the earliest clinical trials that used 18F-fluorodeoxyglucose PET/CT to guide the use of radiation therapy^[8]. In this study, consolidation radiation therapy (30 Gy) was delivered only in patients with a positive 18F-fluorodeoxyglucose PET/CT scan and a residual mass greater than 2.5 cm in size on CT. Only 4.5% of patients with negative 18F-fluorodeoxyglucose PET/CT scans who did not receive consolidation radiation therapy experienced disease progression or relapse.

With conflicting results concerning the benefits of consolidation radiation therapy, especially after the widespread use of 18F-fluorodeoxyglucose PET/CT in the modern era, and concerns about increasing the risk of late radiation-induced toxicity and secondary malignancy, we conducted a retrospective review in our institute to analyze whether consolidation radiation therapy is beneficial in patients with advanced-stage Hodgkin lymphoma, particularly after a complete response to modern chemotherapy regimens, among patients who underwent 18F-fluorodeoxyglucose PET/CT.

2. Materials and Methods

2.1. Patient selection

The medical records of patients newly diagnosed with stage III or IV Hodgkin lymphoma between January 2010 and December 2019 were identified from our hospital database. This trial was approved by the ethics committee of Chulabhorn Hospital, Bangkok, Thailand (Ethical number was EC086/2563)

The eligibility criteria were as follows: age of 15–70 years, diagnosed with previously untreated stage III or IV Hodgkin lymphoma according to the Lugano classification, a follow-up time of at least 2 years and at least one evaluation by 18F-fluorodeoxyglucose PET/CT or Ga-67 scintigraphy during treatment with chemotherapy. Patients with other cancers excluding nonmelanoma skin cancer or cervical carcinoma in situ were excluded. Patients with nodular

lymphocyte predominant histology and HIV infection were also excluded.

According to our protocol, the first-line chemotherapy regimen consists of doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD regimen) for 6 cycles. Because there was no clear protocol of adapted treatment guide using interim response before 2017, not all of patients who had residual disease after 2-4 cycles of ABVD received more intense chemotherapy regimen at that time.

Radiotherapy was considered in patients who had bulky mass more than 7 cm or residual disease after first-line chemotherapy treatment. In patients who received radiotherapy, we used either IMRT/VMAT or 3DCRT technique. A dose ranges between 30-46 Gy was given in daily fraction of 1.8-2.0 Gy. We assessed the response of treatment using the International Working Group consensus response evaluation criteria in lymphoma. All PET/CT scan or Ga-67 scintigraphs were centrally reviewed by the tumor board conference. The Deauville score of 4 and 5 was considered positive.

2.2. Statistical analysis

The primary endpoint was disease-free survival, which was defined as the time from diagnosis to disease progression. The secondary endpoints were overall survival, the pattern of relapse, and the complete response rate. Overall survival was defined as the time from diagnosis to death or last follow-up. The pattern of relapse

was categorized as in-field relapse or out-field relapse in patients who received radiation therapy. Complete response was defined as the disappearance of all detectable evidence of disease as evaluated by CT or negativity on PET/CT or Ga-67 scintigraphy even if post-treatment residual disease was detected by CT.

Survival outcomes were analyzed using the Kaplan–Meier method. The pattern of relapse and the complete response rate were determined using descriptive statistics and presented as percentages. Patients were divided into two groups based on the receipt of consolidation radiation therapy. Differences between the groups were compared using the Fisher's exact test, and an independent-samples t-test. Disease-free survival and overall survival were compared between groups using the log-rank test. Univariate analysis was analyzed using Cox regression model to retrieve the hazard ratio (HR), 95% confidence interval, and p-value. $p < 0.05$ denoted significance. Analyses was conducted with the use of Stata/SE 16.1 software (StataCorp LP, College Station, TX, USA).

3. Results

3.1. Patient characteristics

In total, 33 patients with newly diagnosed stage III or IV Hodgkin lymphoma were identified from the Chulabhorn Hospital database. After excluding 15 patients who did not meet our inclusion criteria (1 was diagnosed with HIV infection, 5 were early-stage after reviewed, 5 did

not used PET-CT or Ga-67 scintigraphy and 4 with incomplete medical history), the remaining 18 patients were enrolled (Figure 1). The mean age at diagnosis was 38.28 ± 20.63 years (range, 17–77), and five patients (27.8%) were older than 45 years. One-third of patients had an International Prognostic Score of 0–1. The majority of patients had mixed cellularity and a nodular sclerosis subtype (55.6% and 22.2%, respectively). Epstein–Barr virus infection was only tested in six patients, three of whom were positive, including two patients in the radiation therapy arm and one patient who did not receive radiation therapy (Table 1). All patients received complete radiation therapy and chemotherapy treatment as planned.

3.2. Outcomes

After a median follow-up of 48 months (range, 6–94 months), the 3-year disease-free survival rate was 66.7% among patients who received radiation therapy, versus 55.6% among patients who did not receive radiation therapy ($p = 0.391$). The 3-year overall survival rate was 100% in both groups (Figure 2). In univariate analysis, no factor significantly affected disease-free survival in this study (Table 2).

After complete treatment with first-line chemotherapy, all patients were evaluated response by functional imaging. Of all the 18 patients 11 (61%) had a CMR after first-line chemotherapy regimen, whereas 3 (16.7%), 1 (5.6%), and 3 (16.7%) had a partial response,

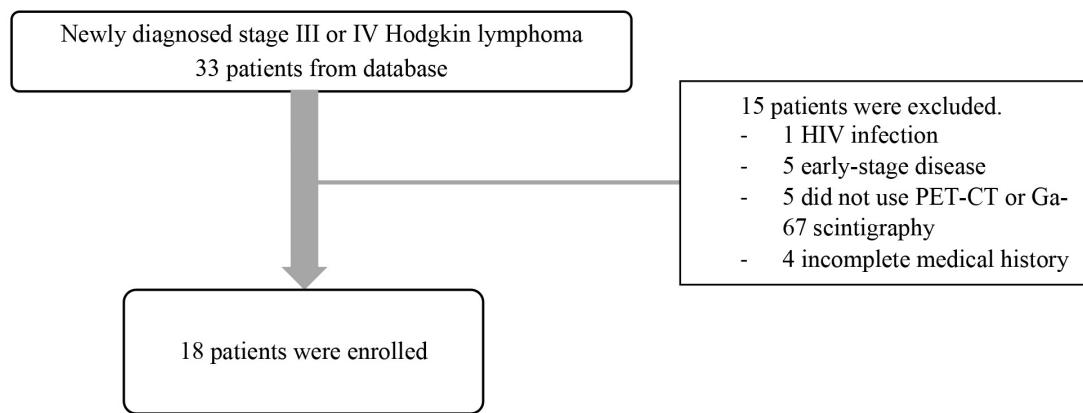


Figure 1. Consort diagram

Table 1. Patients' characteristics

Characteristics	Radiation therapy, n (%) n=9	No radiation therapy, n (%) n=9	P-value
Age, years (Mean \pm SD)	43.4 \pm 24.3	33.1 \pm 15.9	0.302 ²
Age, years			>0.999 ¹
<45	7 (77.8)	6 (66.7)	
>45	2 (22.2)	3 (33.3)	
Sex			>0.999 ¹
Male	3 (33.3)	4 (44.4)	
Female	6 (66.7)	5 (55.6)	
Staging			>0.999 ¹
III	2 (22.2)	3 (33.3)	
IV	7 (77.8)	6 (66.7)	
ECOG			0.576 ¹
0	7 (77.8)	6 (66.7)	
1	1 (11.1)	3 (33.3)	
2	0 (0.0)	0 (0.0)	
>2	1 (11.1)	0 (0.0)	

Characteristics	Radiation therapy, n (%)		P-value
	n=9	n=9	
IPS			0.259 ¹
0–1	3 (33.3)	3 (33.3)	
2–3	4 (44.5)	1 (11.1)	
>3	2 (22.2)	5 (55.6)	
Subtype			0.689 ¹
MC	4 (44.5)	6 (66.7)	
NS	3 (33.3)	1 (11.1)	
LR	1 (11.1)	1 (11.1)	
LD	1 (11.1)	0 (0.0)	
Unknown	0 (0.0)	1 (11.1)	
EBV			0.169 ¹
Positive	2 (22.2)	1 (11.1)	
Negative	3 (33.3)	0 (0.0)	
Bulky lesion size			0.030 ¹
<5 cm	2 (22.2)	5 (62.5)	
5–7 cm	1 (11.1)	0 (0.0)	
7–10 cm	5 (55.6)	0 (0.0)	
>10 cm	1 (11.1)	3 (37.5)	
Bone marrow evaluation			0.352 ¹
PET/Ga-67	1 (11.1)	0 (0.0)	
Biopsy	6 (66.7)	3 (33.3)	
Concordance	1 (11.1)	4 (44.5)	
Discordance	1 (11.1)	2 (22.2)	

Abbreviations: ECOG: Eastern Cooperative Oncology Group, IPS: International Prognostic Score, EBV: Epstein–Barr virus, PET: positron emission tomography, Ga-67: Ga-67 scintigraphy, MC: Mixed cellularity, NS: Nodular sclerosis, LR: Lymphocyte-rich, LD: Lymphocyte-depleted

¹Fisher's exact, ²Independent t test

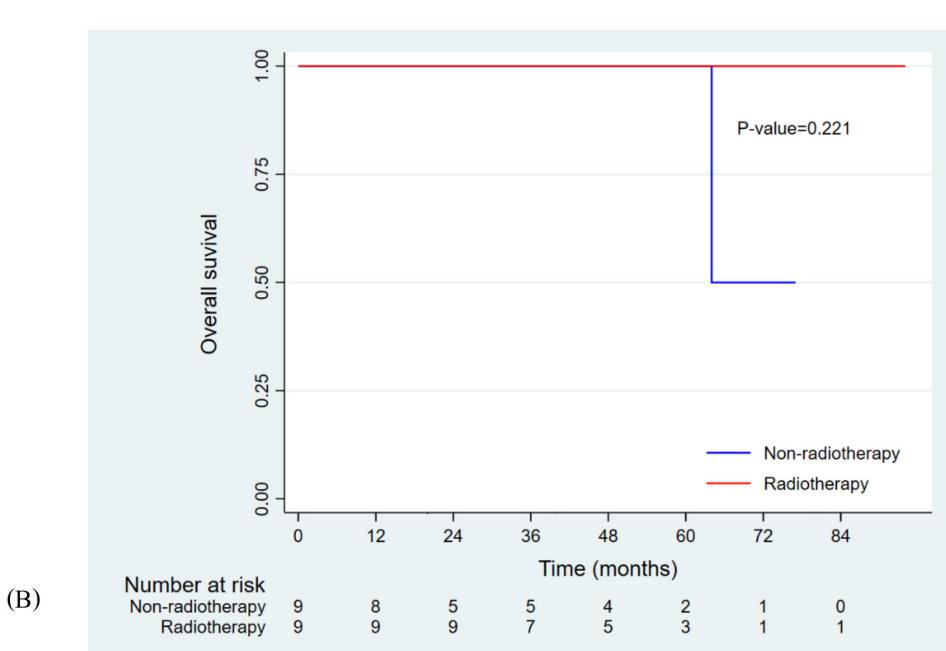
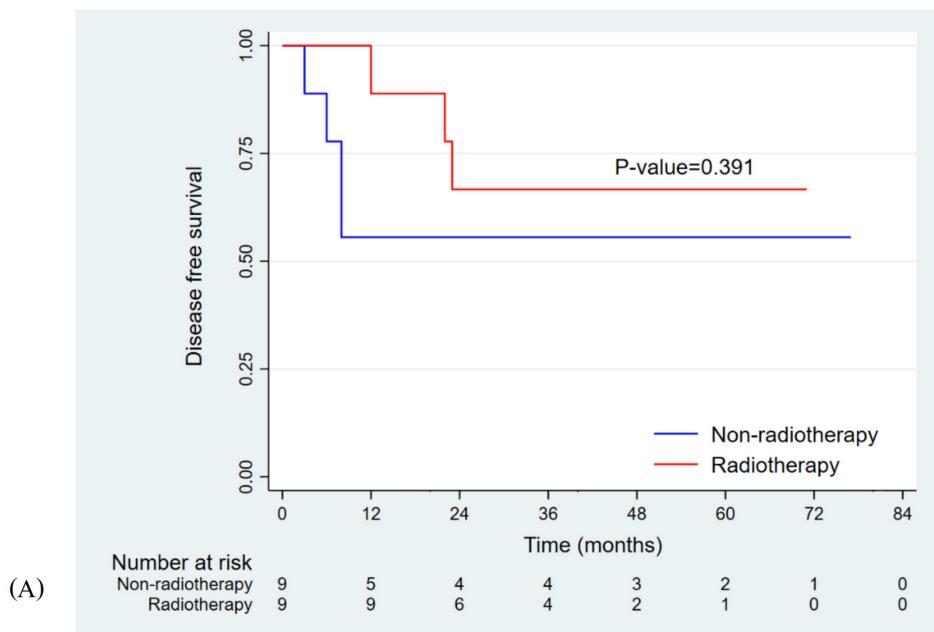



Figure 2. Disease-free survival (A) and overall survival (B) according to the receipt of radiation therapy

Table 2. An unadjusted hazard ratio using cox regression analysis for disease-free survival

Variables	HR (95% CI)	p-Value
Age, years	0.94 (0.88, 1.01)	0.092
Sex		
Male	1	
Female	2.34 (0.52, 10.44)	0.267
Staging		
III	1	
IV	1.37 (0.26, 7.18)	0.703
ECOG		
0	1	
1	-	-
2	-	-
>2	2.03 (0.24, 17.49)	0.520
IPS		
0–1	1	
2–3	1.19 (0.17, 8.50)	0.861
>3	1.54 (0.25, 9.38)	0.638
Subtype		
MC	1	
NS	2.22 (0.49, 10.07)	0.302
LR	-	-
LD	-	-
Unknown	-	-
EBV		
Negative	1	
Positive	1.00 (0.06, 15.99)	>0.999
Unknown	1.45 (0.17, 12.40)	0.737

Variables	HR (95% CI)	p-Value
Bulky lesion size		
<5 cm	1	
5–7 cm	-	-
7–10 cm	1.77 (0.29, 10.60)	0.533
>10 cm	1.92 (0.27, 13.73)	0.512
Radiation therapy		
No	1	
Yes	0.53 (0.12, 2.37)	0.403
Radiation therapy field		
IFRT	1	
ISRT	1.96 (0.17, 22.08)	0.586

Abbreviations: HR: hazard ratio, CI:confidence interval, ECOG: Eastern Cooperative Oncology Group, IPS:International Prognostic Score, EBV: Epstein–Barr virus, MC: Mixed cellularity, NS: Nodular sclerosis, LR: Lymphocyte-rich, LD: Lymphocyte-depleted, IFRT: Involved-field radiotherapy, ISRT: Involved-site radiotherapy

stable disease, and disease progression, respectively. Seven patients (38.9%) experienced relapse after treatment. Most relapses occurred at the original site of the disease (5/7 patients, 71.4%). No relapse was observed within the radiated field in any patient who received radiation therapy (**Table 3**).

Two of three patients who achieved CMR by functional imaging in both the interim and post-treatment evaluations received radiation therapy. None of these three patients experienced relapse. Four of eight patients who had a partial response but achieved CMR after treatment received radiation therapy. The only relapse in this group (1/8 patients, 12.5%)

occurred in a patient who received radiation therapy (**Table 4**).

Seven patients had residual disease after first-line chemotherapy. In this group, 2 received salvage chemotherapy and radiotherapy, 4 received salvage chemotherapy alone and 1 received only salvage radiotherapy. Median size of residual mass before salvage radiotherapy was 3.8 cm (range 1.1 cm – 4.5 cm). Relapses occurred in two of three patients who received radiation therapy (66.7%) and all four patients who did not receive radiation therapy (100%). The description of treatment response in each patient was shown in **Table 5**.

Table 3. Treatment outcomes

	Radiation therapy, n (%)	No radiation therapy, n (%)	p-Value
Recurrence/Relapse in all patients			>0.999 ¹
Recurrence	3 (33.3)	4 (44.4)	
No recurrence	6 (66.7)	5 (55.6)	
Pattern of recurrence/relapse in all patients			>0.999 ¹
Original site	2 (66.7)	3 (75.0)	
New site	1 (33.3)	0 (0.0)	
Both original site and new site	0 (0.0)	1 (25.0)	
Pattern of recurrence/relapse in radiation therapy group			-
In-field recurrence	0 (0.0)	N/A	
Out of field recurrence	2 (66.7)	N/A	
Both in-field and out of field recurrence	1 (33.3)	N/A	
Interim response			>0.999 ¹
CMR	2 (25.0)	2 (22.2)	
PR	5 (62.5)	6 (66.7)	
SD	1 (12.5)	0 (0.0)	
PD	0 (0.0)	1 (11.1)	
Response to first-line treatment			>0.999 ¹
CMR	6 (66.7)	5 (55.6)	
PR	2 (22.2)	1 (11.1)	
SD	0 (0.0)	1 (11.1)	
PD	1 (11.1)	2 (22.2)	
Secondary malignancy	None	None	

Abbreviations: CMR: complete metabolic response by functional imaging, PR: partial response, SD: stable disease, PD: progressive disease, N/A: not applicable

¹Fisher's exact test

Table 4. Treatment responses

	Total number (n=18)	Radiation therapy, n (%)	No radiation therapy, n (%)	Total number	Recurrence/Relapse (%)	
					Radiation therapy	No radiation therapy
CMR both interim and after first-line treatment	3	2/3 (66.7%)	1/3 (33.3%)	0/3 (0.0%)	0/2 (0.0%)	0/1 (0.0%)
CMR only after first-line treatment	8	4/8 (50.0%)	4/8 (50.0%)	1/8 (12.5%)	1/4 (25.0%)	0/4 (0.0%)
Residual disease after first-line treatment	7	3/7 (42.9%)	4/7 (57.1%)	6/7 (85.7%)	2/3 (66.7%)	4/4 (100.0%)

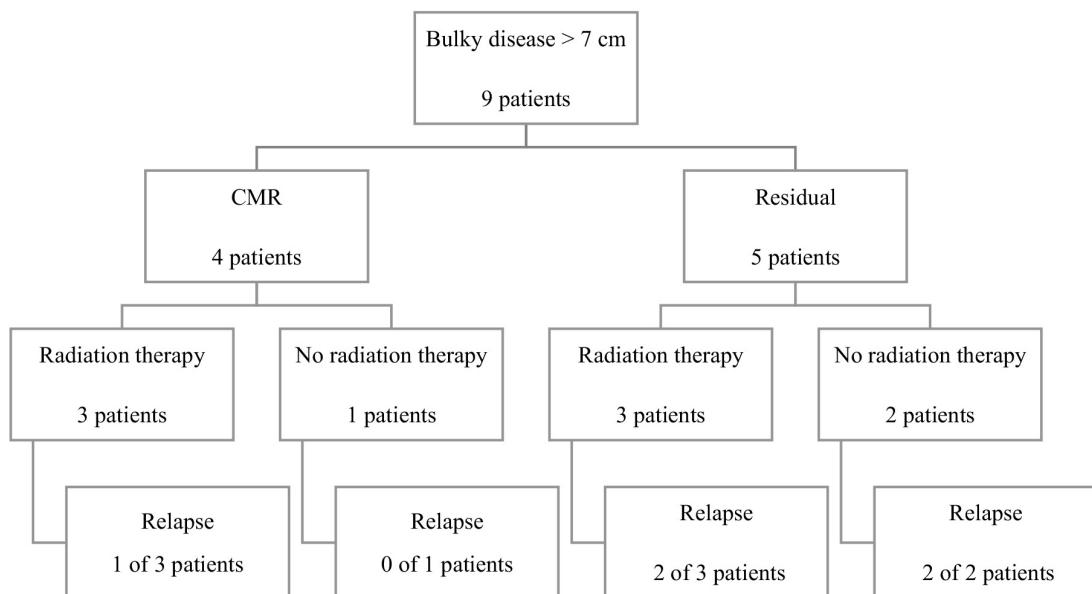
Abbreviations: CMR: complete metabolic response by functional imaging

Table 5. Description of treatment and response in each patient

Patient No.	Age	IPS	Subtype	Stage	Bulky size (cm)	1 st Regimen	Interim Response	1 st line Response	Radiotherapy	Dose RT	Field	Technique	Pattern of Relapse
1	60	>3	MC	IV	7.1	ABVD	CMR*	CMR*	yes	36 Gy	IFRT	VMAT	-
2	41	>3	NS	IV	9.4	ABVD>escBEACOPP	SD*	PD*	yes	34Gy	IFRT	IMRT	Primary (Not in field)
3	73	0-1	LR	III	2.7	ABVD	PR*	CMR*	no	-	-	-	-
4	20	2-3	NS	IV	7.2	ABVD	PR*	PR*	yes	36	ISRT	IMRT	Primary (Not in field)
5 [†]	36	0-1	MC	III	2.5	ABVD>escBEACOPP	PR*	SD*	no	-	-	-	-
6 [†]	22	>3	NS	IV	15	ABVD>escBEACOPP	PR*	PR*	no	-	-	-	-
7 [†]	17	>3	MC	IV	14.7	ABVD	PD*	PD*	no	-	-	-	-
8	21	0-1	MC	III	7.4	ABVD	PR*	CMR*	yes	36 Gy	IFRT	IMRT	Primary
9	33	0-1	LR	IV	2.2	ABVD	No evaluation	CMR*	yes	36 Gy	ISRT	3D	Distant
10	78	>3	MC	IV	3.5	CVPa	PR*	CMR*	no	-	-	-	-
11 [†]	41	>3	Unknown	IV	13.6	ABVD	PR*	CMR*	no	-	-	-	-
12	56	2-3	NS	III	4.9	ABVD	PR*	CMR*	yes	36Gy	IFRT	IMRT/3DCRT	-
13 [†]	25	2-3	MC	IV	2.5	ABVD	CMR*	PD*	no	-	-	-	-
14	73	0-1	MC	III	2.7	ABVD	PR*	CMR*	no	-	-	-	-
15	25	2-3	MC	IV	8.6	ABVD	PR*	PR*	yes	36 Gy	IFRT	VMAT	-
16	18	2-3	LD	IV	6.3	ABVD>escBEACOPP	PR*	CMR*	yes	46 Gy	IFRT	IMRT	-
17	29	0-1	MC	IV	10.7	ABVD	CMR*	CMR*	yes	30 Gy	IFRT	unknown	-
18	29	>3	MC	IV	4.9	ABVD	CMR*	CMR*	no	-	-	-	-

Abbreviations: MC: Mixed cellularity, NS: Nodular sclerosis, LR: Lymphocyte-rich, LD: Lymphocyte-depleted, CMR: complete metabolic response by functional imaging, PR: partial response, SD: stable disease, PD: progressive disease, IFRT: Involved-field radiotherapy, ISRT: involved-site radiotherapy, VMAT: Volumetric Modulated Arc Therapy, IMRT: Intensity Modulated Radiation Therapy

*Evaluated by functional imaging [†]Evaluated by CT scan


[†]Changed to CVP regimen due to severe pneumonitis after 1st cycle of bleomycin

[†]According to our protocol, patients with residual disease after first-line chemotherapy could receive either salvage radiotherapy or a second-line chemotherapy regimen

[†]Patient No. 11 did not undergo radiotherapy consultation based on the hematologist's personal decision.

Based on our institutional criteria of a mass greater than 7 cm in size, nine patients in our cohort had bulky masses. Among these patients, three did not receive radiotherapy (two were switched to second-line chemotherapy, and one did not undergo radiotherapy consultation due to the individual decision of the hematologist). Of the six patients who received radiation therapy, three experienced relapses, while two of the three who did not receive radiation

therapy experienced relapses (50% vs. 66.7%). Four of five patients with bulky disease who experienced relapse had residual disease after first-line chemotherapy. Interestingly, in four patients who achieved CMR, the one who did not receive radiation therapy had no relapse. Meanwhile, one of three patients who received radiation therapy experienced a relapse (Figure 3).

Figure 3. Treatment outcomes in patients with bulky disease

3.3. Radiation toxicity

Grade 1–2 acute radiation toxicity occurred in five of nine patients (55.6%), including three, one, and one case of mucositis, xerostomia, and gastrointestinal toxicity, respectively. No grade 3–4 acute radiation toxicity was noted in this study. However, two patients experienced grade 3 late pneumonitis that required hospitalization. The first patient with late grade 3 pneumonitis was Patient No. 1 in **Table 5**. This patient received consolidation radiotherapy to the bulky site at SPC and mediastinum after CMR. The dose

administered was 36 Gy in 18 fractions, with V20 of the total lung at 30% and V5 of the total lung at 64%, which did not exceed the constraints of our protocol. The second patient was Patient No. 17 in **Table 5**. This patient also received consolidative radiotherapy after CMR to the neck and mediastinal area with 30 Gy in 15 fractions. However, since the latter patient had been radiated at another hospital, we cannot assess the lung dose in this case. No secondary malignancy was observed (**Tables 6**).

Table 6. Acute and late radiation toxicity in irradiated patients based on the criteria of the Radiation Therapy Oncology Group and the European Organization for Research and Treatment of Cancer

Acute radiation toxicity		
Organ	Grade 1–2	Grade 3–4
Mucous membrane	3/9 (33.3%)	0/9 (0.0%)
Salivary gland	1/9 (11.1%)	0/9 (0.0%)
Gastrointestinal	1/9 (11.1%)	0/9 (0.0%)

Late radiation toxicity		
Organ	Grade 1–2	Grade 3–4
Lung	0/9 (0.0%)	2/9 (22.2%)

4. Discussion

Despite the detection of residual disease by CT after treatment, which occurs in up to 80% of patients with Hodgkin lymphoma, only some patients have evidence of disease relapse or progression^[16]. This challenge has been overcome by the use of functional imaging such as Ga-67 scintigraphy and 18F-fluorodeoxyglucose PET/CT. 18F-fluorodeoxyglucose PET/CT proved superior to CT for assessing the response to treatment in Hodgkin lymphoma^[17,18]. Regarding Ga-67 scintigraphy, one study described its superiority to CT in terms of restaging^[19]. Based on the published literature, these functional imaging modalities have been used as standard imaging modalities for initial staging and response evaluation in both Hodgkin and non-Hodgkin lymphoma for a decade. In this study, we only included patients who underwent at least one evaluation by functional imaging, which is difficult to perform in most intuitions in Thailand because of financial problems and a lack of resources.

Our study revealed that consolidation radiation therapy might not be necessary for advanced Hodgkin lymphoma due to no difference in 3-year disease-free survival and overall survival rate. Regarding patients of bulky masses at the initial staging, the phase 3 GITIL HD0607 study enrolled 783 patients with advanced Hodgkin lymphoma, and 296 patients with a bulky mass greater than 5 cm in size at baseline who had negative PET in both the interim and end-of-treatment evaluations were

randomly assigned to consolidation radiation therapy or no further treatment. The results revealed no differences in 6-year progression-free survival (91% vs. 95%, $p = 0.62$) and 6-year overall survival (99% vs. 98%, $p = 0.61$) between the groups^[20]. In the phase 3 FIL HD0801 study, 116 patients with advanced Hodgkin lymphoma with bulky masses at least 5 cm in size at baseline who had CMR after two and six cycles of ABVD were randomly assigned to consolidation radiation therapy or observation. The intention-to-treat analysis also revealed no differences in 2-year event-free survival (87.8% vs. 85.8%, $p = 0.34$) and 2-year progression-free survival (91.3% vs. 85.8%, $p = 0.7$)^[21]. In subgroup analysis, bulky masses greater than 7 cm in size had no influence on the efficacy of consolidation radiation therapy in both studies^[20,21]. Our findings support the results of both phase 3 trials. This is evidenced by the absence of relapse in one patient with bulky disease who achieved CMR after first-line chemotherapy and did not receive radiotherapy (Figure 3). Additionally, among the three patients who achieved complete metabolic response (CMR) on both interim and end-of-treatment PET scans, no relapse was observed in one patient who did not receive radiotherapy (**Table 4**).

The current study had several limitations. First, as a retrospective study, several confounding factors could have affected the outcomes. Second, the number of patients enrolled was much smaller than expected according to the

required sample size. This affected the power of statistical analysis. Third, subgroup analysis with only univariate analysis might not be reliable because of the small sample size. Fourth, there may be selection bias in this study because some patients did not receive radiotherapy despite the presence of bulky disease or residual disease after first-line chemotherapy treatment. This was because, according to our protocol, patients with residual disease after first-line chemotherapy could receive either salvage radiotherapy or a second-line chemotherapy regimen, depending on the decisions of radiation oncologists and hematologists in the tumor board. For example, if the residual site was beyond the radiotherapy field, the second-line chemotherapy was more favorable.

5. Conclusions

In summary, our study revealed that by using functional imaging as an evaluation method, consolidation radiation therapy may not be necessary in advanced Hodgkin lymphoma.

Acknowledgment

We thank Joe Barber Jr., PhD, from Edanz (www.edanz.com/ac) for editing a draft of this manuscript.

Conflicts of interest

None

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71: 209-49.
2. Tepper JE, Foote RL, Michalski JM. Gunderson & Tepper's Clinical Radiation Oncology (5th edition). Philadelphia, PA: Elsevier; 2021.
3. Borchmann P, Haverkamp H, Diehl V, Cerny T, Markova J, Ho AD, et al. Eight cycles of escalated-dose BEACOPP compared with four cycles of escalated-dose BEACOPP followed by four cycles of baseline-dose BEACOPP with or without radiation therapy in patients with advanced-stage Hodgkin's lymphoma: final analysis of the HD12 trial of the German Hodgkin Study Group. J Clin Oncol. 2011; 29:4234-42.

4. Aleman BM, Raemaekers JM, Tirelli U, Bortolus R, van't Veer MB, Lybeert ML, et al. Involved-field radiation therapy for advanced Hodgkin's lymphoma. *N Engl J Med* 2003; 348:2396-2406.
5. Johnson PW, Radford JA, Cullen MH, Sydes MR, Walewski J, Jack AS, et al. Comparison of ABVD and alternating or hybrid multidrug regimens for the treatment of advanced Hodgkin's lymphoma: results of the United Kingdom Lymphoma Group LY09 Trial (ISRCTN97144519). *J Clin Oncol*. 2005; 23:9208-18.
6. Johnson PW, Sydes MR, Hancock BW, Cullen M, Radford JA, Stenning SP, et al. Consolidation radiation therapy in patients with advanced Hodgkin's lymphoma: survival data from the UKLG LY09 randomized controlled trial (ISRCTN97144519). *J Clin Oncol*. 2010; 28:3352-9.
7. Loeffler M, Brosteanu O, Hasenclever D, Sextro M, Assouline D, Bartolucci AA, et al. Meta-analysis of chemotherapy versus combined modality treatment trials in Hodgkin's disease. International Database on Hodgkin's Disease Overview Study Group. *J Clin Oncol*. 1998; 16: 818-29.
8. Engert A, Haverkamp H, Kobe C, Markova J, Renner C, Ho A, et al. Reduced-intensity chemotherapy and PET-guided radiation therapy in patients with advanced stage Hodgkin's lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial [published correction appears in *Lancet*. 2012 May 12;379(9828):1790]. *The Lancet*. 2012; 379:1791-9.
9. Kriz J, Reinartz G, Dietlein M, Kobe C, Kuhnert G, Haverkamp H, et al. Relapse analysis of irradiated patients within the HD15 trial of the German Hodgkin Study Group. *Int J Radiat Oncol Biol Phys*. 2015; 92:46-53.
10. Kobe C, Dietlein M, Franklin J, Markova J, Lohri A, Amthauer H, et al. Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first-line chemotherapy in advanced-stage Hodgkin lymphoma. *Blood*. 2008; 112:3989-94.
11. Lister TA, Crowther D, Sutcliffe SB, Glatstein E, Canellos GP, Young RC, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin's disease: Cotswolds meeting. *J Clin Oncol*. 1989; 7:1630.
12. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. *J Clin Oncol*. 2014; 32:3059.

13. Younes A, Hilden P, Coiffier B, Hagenbeek A, Salles G, Wilson W, et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). *Ann Oncol.* 2017; 28: 1436-47.
14. Engert A, Schiller P, Josting A, Herrmann R, Koch P, Sieber M, et al. Involved-field radiation therapy is equally effective and less toxic compared with extended-field radiation therapy after four cycles of chemotherapy in patients with early-stage unfavorable Hodgkin's lymphoma: results of the HD8 trial of the German Hodgkin's Lymphoma Study Group. *J Clin Oncol.* 2003; 21:3601-8.
15. Sasse S, Klimm B, Görgen H, Fuchs M, Heyden-Honerkamp A, Lohri A, et al. Comparing long-term toxicity and efficacy of combined modality treatment including extended- or involved-field radiation therapy in early-stage Hodgkin's lymphoma. *Ann Oncol.* 2012; 23:2953-9.
16. Radford JA, Cowan R, Flanagan M, Dunn G, Crowther D, Johnson RJ, et al. The significance of residual mediastinal abnormality on the chest radiograph following treatment for Hodgkin's disease. *J Clin Oncol.* 1988; 6:940-6.
17. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin's disease and non-Hodgkin's lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. *Blood.* 1999; 94: 429-33.
18. Zaucha JM, Chauvie S, Zaucha R, Biggi A, Gallamini A. The role of PET/CT in the modern treatment of Hodgkin lymphoma. *Cancer Treat Rev.* 2019; 77:44-56.
19. Devizzi L, Maffioli L, Bonfante V, Viviani S, Balzarini L, Gasparini M, et al. Comparison of gallium scan, computed tomography, and magnetic resonance in patients with mediastinal Hodgkin's disease. *Ann Oncol.* 1997; 8:53-6.
20. Gallamini A, Rossi A, Patti C, Picardi M, Romano A, Cantonetti M, et al. Consolidation Radiation therapy Could Be Safely Omitted in Advanced Hodgkin Lymphoma With Large Nodal Mass in Complete Metabolic Response After ABVD: Final Analysis of the Randomized GITIL/FIL HD0607 Trial. *J Clin Oncol.* 2020; 38:3905-13.
21. Ricardi U, Levis M, Evangelista A, Gioia DM, Sacchetti GM, Gotti M, et al. Role of radiation therapy to bulky sites of advanced Hodgkin lymphoma treated with ABVD: final results of FIL HD0801 trial. *Blood Adv.* 2021; 5:4504-1

ปัจจัยทางคลินิกและการรักษาที่มีผลต่อการรอดชีพของผู้ป่วยมะเร็งปากมดลูก ในโรงพยาบาลสวรรค์ประชาธิรักษ์

Identifying clinical and treatment factors on survival outcomes of
cervical cancer: Sawanpracharak Hospital

ณัชชา เสนาวิน, กีรตี ไตรคีรีสกิต

หน่วยรังสีรักษาและมะเร็งวิทยา กลุ่มงานรังสีวิทยา โรงพยาบาลสวรรค์ประชาธิรักษ์

Natcha Senawin, Kyrhatii Trikhirhisthit

Division of radiation oncology, Department of radiology, Sawanpracharak Hospital

ผู้นิพนธ์ประสานงาน

ณัชชา เสนาวิน

หน่วยรังสีรักษาและมะเร็งวิทยา กลุ่มงานรังสีวิทยา โรงพยาบาลสวรรค์ประชาธิรักษ์

999 ตำบลครสรรค์อุก อำเภอเมือง จังหวัดนครสวรรค์ 60000

อีเมล : natchas889@gmail.com

Corresponding author

Natcha Senawin

Division of Radiation Oncology, Department of Radiology, Sawanpracharak Hospital

999 Nakhon Sawan Ok, Mueang Nakhon Sawan District, Nakhon Sawan 60000

E-mail: natchas889@gmail.com

Submitted: Jan 3, 2024

Revised: May 19, 2024

Accepted: May 20, 2024

บทคัดย่อ

หลักการและเหตุผล: มะเร็งปากมดลูกเป็นมะเร็งที่พบมากอันดับ 4 ของสตรีทั่วโลกและประเทศไทย โดยพบผู้เสียชีวิตด้วยโรคมะเร็งปากมดลูกในประเทศไทยเพิ่มขึ้น การฉายรังสีร่วมกับเคมีบำบัดและการใส่แร่เป็นการรักษาหลักในผู้ป่วยมะเร็งระยะลุกลามเฉพาะที่ มีหลายปัจจัยที่มีผลต่อการพยากรณ์อัตราการรอดชีพ

วัตถุประสงค์: เพื่อศึกษาปัจจัยทางคลินิกของผู้ป่วย พยาธิวิทยาของโรคมะเร็งและปัจจัยทางการรักษาที่อาจเป็นปัจจัยที่สัมพันธ์กับอัตราการรอดชีพรวมและอัตราการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็ง

วัสดุและวิธีการ: เก็บข้อมูลย้อนหลังในผู้ป่วยมะเร็งปากมดลูกที่ได้รับการรักษาโดยการฉายรังสีจากภายนอกร่วมกับเคมีบำบัดเพื่อห่วงหายาด ตั้งแต่เดือน มกราคม 2560 ถึง ธันวาคม 2562 วิเคราะห์ข้อมูลการรอดชีพโดย Kaplan-Meier method และ Log-rank test วิเคราะห์ตัวแปร โดยใช้วิธี Cox regression analysis โดยกำหนดนัยสำคัญทางสถิติ p -value < 0.05

ผลการศึกษา: ผู้ป่วยมะเร็งปากมดลูกจำนวน 179 ราย อายุเฉลี่ย 53 ปี อัตราการรอดชีพรวมที่ 3 ปี ของระยะ I, II, III และ IVA เท่ากับ 75%, 72.2%, 44.4-66.7% และ 46.2% และอัตราการรอดชีพโดยปราศจาก การลุกลามของโรคมะเร็งที่ 3 ปี เท่ากับ 93%, 74%, 33.3-80% และ 38.5% ตามลำดับ ระดับ Hb แรกเริ่ม ก่อนการรักษาที่ < 10 g/dl (HR 2.63; 95% CI, 1.41-4.89, $p=0.002$) เชลล์มะเร็งชนิด non-squamous (HR 2.07; 95% CI, 1.09-3.93, $p=0.026$) และก้อนที่มีขนาด ≥ 4 เซนติเมตร (HR 2.42; 95% CI, 1.05-5.58, $p=0.038$) เป็นปัจจัยพยากรณ์อัตราการรอดชีพรวมที่แย่ลง เชลล์มะเร็งชนิด non-squamous (HR 2.40; 95% CI, 1.31-4.39, $p=0.004$) และก้อนที่มีขนาด ≥ 4 เซนติเมตร (HR 3.59; 95% CI, 1.34-9.63, $p=0.011$) เป็นปัจจัยพยากรณ์อัตราการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็งที่แย่ลงอย่างมีนัยสำคัญทางสถิติ ระยะเวลารวมรักษาและจำนวนครั้งของยาเคมีบำบัดที่ให้ร่วมกับรังสีรักษาไม่มีผลต่อการรอดชีพของผู้ป่วยมะเร็งปากมดลูก

ข้อสรุป: ระดับ Hb แรกเริ่มก่อนการรักษา ที่ < 10 g/dl เป็นปัจจัยที่มีผลต่ออัตราการรอดชีพรวม ในขณะที่ชนิดของเชลล์มะเร็งและขนาดของก้อนมะเร็ง เป็นปัจจัยพยากรณ์ที่สำคัญที่สุดในอัตราการรอดชีพรวมและอัตราการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็ง

คำสำคัญ: มะเร็งปากมดลูก, อัตราการรอดชีพรวม, อัตราการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็ง, ปัจจัยพยากรณ์

Abstract

Backgrounds: Cervical cancer is the fourth most common cancer in women globally, including Thailand. The main treatments for locally advanced cervical cancer are concurrent chemoradiation and brachytherapy. Several risk factors are associated with survival outcomes.

Objectives: To identify clinical, pathology, and treatment factors that impact on overall survival (OS) and progression-free survival (PFS) in locally advanced cervical cancer.

Materials and Methods: A retrospective study of an explorative prognostic factor research was conducted in locally advanced cervical cancer patients treated in Sawanpracharak Hospital from 2017 to 2019. Kaplan-Meier and Log-rank test were used for survival analysis. Cox regression was used for univariate and multivariate analysis to identify the prognostic factors. P-value <0.05 was considered statistically significant.

Result: There were 179 patients. The mean age was 53 years old. The 3-year overall survival (OS) was 75%, 72.2%, 44.4-66.7% and 46.2% and the 3-year progression-free survival (PFS) was 93%, 74%, 33.3-80% and 38.5% for stage I, II, III and IVA respectively. Multivariable analysis identified risk factors for poor OS included initial hemoglobin level < 10 g/dl (HR 2.63; 95% CI, 1.41-4.89, p=0.002) non-squamous cell histology (HR 2.07; 95% CI, 1.09-3.93, p=0.026) and tumor size ≥ 4 cm (HR 2.4; 95% CI, 1.05-5.58, p=0.038). Factors associated with worse PFS included non-squamous cell histology (HR 2.40; 95% CI, 1.31-4.39, p=0.004) and tumor size ≥ 4 cm (HR 3.59; 95% CI, 1.34-9.63, p=0.011). There was no statistically significant difference in the PFS or OS between those who received 5 cycles or less chemotherapy and total treatment time 56 or more days.

Conclusion: Initial hemoglobin level < 10 g/dl was a factor associated with worse overall survival, whereas histological cell type and tumor size were prognostic factors associated with overall survival and progression-free survival outcomes in cervical cancer.

Keywords: Cervical cancer, overall survival rate, progression-free survival, prognostic factors

J Thai Assoc Radiat Oncol 2024; 30(1): R58 - R75

ບໍ່ທຳນຳ

มะเร็งปากมดลูก (cervical Cancer) เป็นมะเร็งที่พบมากอันดับ 4 ของสตรีทั่วโลกและของประเทศไทย^[1] ยังเป็นปัญหาสาธารณสุขที่สำคัญโดยเฉพาะอย่างยิ่ง ประเทศไทยที่กำลังพัฒนาและมีทรัพยากรน้อย ในปี 2020 ข้อมูลจากการอนามัยโลก(WHO)^[2] พบผู้ป่วยมะเร็งปากมดลกรายใหม่และเสียชีวิต ในประเทศไทยมีรายได้ต่อสำหรับปี 2018 ถึงปี 2018 90 ชีวิตราย จากรายงานอุบัติการณ์มะเร็งทุกชนิดในประเทศไทย ในปี 2016-2018 ของสถาบันมะเร็งแห่งชาติ พบว่า ค่าอัตราอุบัติการณ์ปรับอายุมาตรฐาน (Age-standardized incidence Rate, ASR) ของมะเร็งปากมดลูก เท่ากับ 11.1 ต่อประชากรแสนคนต่อปี และประกอบกับข้อมูลของ กรมอนามัย กระทรวงสาธารณสุข ที่พบผู้เสียชีวิตด้วยโรคมะเร็งปากมดลูกในประเทศไทยประมาณ 4,500 รายต่อปี

มีปัจจัยต่างๆ ที่มีผลต่อการรักษา ทั้งปัจจัยด้านผู้ป่วย ได้แก่ อายุ เชื้อชาติ สถานะสภานผู้ป่วย ภาระการติดเชื้อ HIV เป็นต้น ปัจจัยด้านโรคมะเร็ง ได้แก่ ชนิดของเซลล์มะเร็ง ระยะของโรคมะเร็ง (FIGO Stage) ขนาดของก้อนมะเร็ง การลุกลามไปยังต่อมน้ำเหลือง เป็นต้น และปัจจัยด้านการรักษา ได้แก่ การได้รับยาเคมีบำบัดและระยะเวลาที่ใช้ในการรักษา ซึ่งปัจจัยเหล่านี้มีความสัมพันธ์กับอัตราการรอดชีพรวม (Overall Survival, OS) และการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็ง (Progression-Free Survival, PFS)^[3-11] โดยอัตราการรอดชีพรวมที่ 3 ปี (3-year OS) เท่ากับ 82% อัตราการรอดชีพรวมที่ 5 ปี (5-year OS) อยู่ระหว่าง 65%- 74% การรอดชีพโดยปราศจากการลุกลามที่ 3 ปี (3-year Disease-Free Survival, DFS) อยู่ระหว่าง 80%-84% อัตราการควบคุมโรคเฉพาะที่ที่ 5 ปี (5-year Local Control, LC) อยู่ระหว่าง 89%-92%

ดังนั้นการวิจัยนี้จึงมีวัตถุประสงค์เพื่อศึกษาลักษณะทางคลินิกของผู้ป่วยและพยาธิสภาพของโรคมะเร็ง รวมทั้งปัจจัยด้านการรักษาที่อาจเป็นปัจจัยที่สัมพันธ์กับอัตราการรอดชีพรวมและอัตราการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็ง และเปรียบเทียบอัตราการรอดชีพรวมและอัตราการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็งในแต่ละระยะของโรคของผู้ป่วยมะเร็งปากมดลูก ในโรงพยาบาลสุรศรีประชาธิรักษ์

វេសត្តុនិងវិធីការ

งานวิจัยนี้เป็นการศึกษาแบบ explorative prognostic factor research, retrospective (observational) cohort design เก็บข้อมูลจากการทบทวนเวชระเบียนของโรงพยาบาลสวรรค์ประชาธิรัชช์ ประชากรและกลุ่มตัวอย่างที่ผ่านเกณฑ์การคัดเลือก อาสาสมัครเข้าร่วมโครงการ คือ ผู้ป่วยมะเร็งปากมดลูกที่ได้รับการวินิจฉัยครั้งแรกระยะที่ I-IVA รักษาเพื่อหวังหายขาด (curative aim) และเข้ารับการรักษาโดยการฉายรังสีร่วมกับเคมีบำบัดรวมทั้งการใส่แร่ทางซ่องคลอด (brachytherapy) เป็นการรักษาหลัก ตั้งแต่เดือน มกราคม 2560 ถึง ธันวาคม 2562 ระยะเวลาตามอาการ 36 เดือนหลังจากผู้ป่วยฉายรังสีครบ โดยเก็บรวบรวมข้อมูลการตรวจทางคลินิกและลักษณะทั่วไปของผู้ป่วย ได้แก่ อายุ สถานะสภาพผู้ป่วย (Karnofsky Performance Status, KPS) ค่าการทำงานของไต (GFR) ระดับฮีโมโกลบิน (hemoglobin, Hb) แรกเริ่มก่อนการรักษา ภาวะการติดเชื้อ HIV ขนาดของก้อนมะเร็ง (tumor size) การกระจายไปต่อมน้ำเหลือง และระยะของโรค ตาม FIGO 2018 stage system รวมทั้งประวัติการคัดกรองมะเร็งปากมดลูก ผลการตรวจทางพยาธิวิทยา ได้แก่ เซลล์มะเร็งชนิด และ grade differentiation ส่วนข้อมูลการรักษา ได้แก่ เทคนิคการฉายรังสี

ปริมาณรังสีรวมที่ได้รับ ปริมาณรังสีและจำนวนครั้งที่ใส่แล้ว ระยะเวลาการรักษารวม (total treatment time, TTT) การฉายรังสีร่วมกับเคมีบำบัด ที่มีสัมพันธ์กับอัตราการรอดชีวภาพ (overall survival) และการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็ง (progression-free survival) เป็นต้น โดยเกณฑ์การคัดอาสาสมัครออกจากงานวิจัยนี้ ได้แก่ ผู้ป่วยที่มีประวัติเป็นมะเร็งอื่นมา ก่อน ได้รับการผ่าตัดก่อนการรักษาด้วยรังสีรักษา มีประวัติการรักษาด้วยรังสีรักษามาก่อน

รังสีรักษา

ผู้ป่วยทุกรายได้รับการวางแผนการรักษาแบบ 2 มิติ (2-Dimension, 2D) ด้วยเครื่อง conventional simulation และฉายรังสีด้วยเครื่องเร่งอนุภาค Varian รุ่น Clinac CX (Varian Clinac CX:Varian Medical Systems, Inc., Palo Alto, CA) ฉายรังสีชนิดฟ็อต่อน พลังงาน 6 และ 10 เมกะโวลต์ (Megavolt, MV) โดยปริมาณรังสีรวมภายนอกที่ได้รับบริเวณอุ้งเชิงกราน (whole pelvic radiotherapy, WPRT) และการฉายรังสีบริเวณอุ้งเชิงกรานร่วมกับต่อมน้ำเหลืองบริเวณ para-aortic (extended-field radiotherapy, EFRT) เท่ากับ 5000- 5040 เชนติเกรย์ (cGy) (ปริมาณรังสี 180-200 cGy ต่อครั้ง) โดยไม่ได้ทำการ nodal boost และผู้ป่วยได้รับการส่งต่อเพื่อทำการใส่แร่ทางช่องคลอด (brachytherapy) ไปยังสถานพยาบาลอื่นซึ่งเป็นการใส่แร่แบบ 2 มิติ และได้รับปริมาณรังสีและจำนวนครั้งที่แตกต่างกัน เช่น 600-700 cGy ต่อครั้ง จำนวน 3-4 ครั้ง

เคมีบำบัด

ยาเคมีบำบัดที่ให้ร่วมกับรังสีรักษา ในการฉายรังสีร่วมกับเคมีบำบัด (concurrent chemoradiation, CCRT) ได้แก่ กลุ่ม Platinum-based chemotherapy

single agent therapy (Cisplatin 40 mg/m²/day หรือ Carboplatin (Area Under the Curve, AUC2)) สัปดาห์ละครั้งระหว่างฉายรังสี โดยพิจารณาจากค่า GFR ในผู้ป่วยแต่ละราย

การศึกษานี้ได้ผ่านการรับรองจากคณะกรรมการพิจารณาจริยธรรมการวิจัยในมนุษย์โรงพยาบาลสวรรค์ประชาธิรักษ์ เลขที่ 31/2565

สถิติ

วิเคราะห์ข้อมูลใช้สถิติประมวลข้อมูลทางสถิติโดยใช้โปรแกรม STATA version 16 ใช้สถิติเชิงพรรณนา (descriptive statistics) อธิบายข้อมูลทั่วไป ด้วย ค่าเฉลี่ย (mean) คู่กับส่วนเบี่ยงเบนมาตรฐาน (standard deviation, SD) สำหรับข้อมูลที่มีการแจกแจงเป็นแบบบ้างปกติ และค่ามาร์ยฐาน (median) คู่กับค่าพิสัยระหว่างควาโอล์ (interquartile range, IQR) หรือค่าต่ำสุด (minimum), ค่าสูงสุด (maximum) สำหรับข้อมูลที่มีการแจกแจงไม่เป็นแบบปกติ แจกแจงความถี่ เป็นจำนวนและร้อยละของข้อมูลตัวแปร วิเคราะห์ข้อมูลการรอดชีพ โดย Kaplan-Meier method และวิเคราะห์ตัวแปรโดยใช้วิธี Cox regression analysis โดยวิเคราะห์ตัวแปรอิสระด้วย univariable analysis จากนั้นพิจารณาเลือกตัวแปรอิสระที่มีผลต่ออัตราการรอดชีพอย่างมีนัยสำคัญทางสถิติ และตัวแปรที่เป็นปัจจัยสำคัญ ตามการศึกษาทางคลินิกที่ผ่านมา นำมาวิเคราะห์ความสัมพันธ์แบบ multivariable analysis ซึ่งการศึกษานี้ได้พิจารณาจำนวนประชากรของโรค มาเป็นปัจจัยวิเคราะห์ความสัมพันธ์แบบ multivariable analysis แทนการกระจายของต่อมน้ำเหลือง pelvic และ para-aortic เนื่องจากทั้งสองปัจจัยเป็นส่วนหนึ่งของการจัดกลุ่ม ระยะของโรคตาม FIGO 2018 stage system โดยกำหนดนัยสำคัญทางสถิติ p-value < 0.05

ผลการศึกษา

จากการศึกษาพบว่า ผู้ป่วยมะเร็งปากมดลูกที่ได้รับการรักษาโดยการฉายรังสีจากภายนอกร่วมกับเคมีบำบัด เพื่อหวังหายขาด ตั้งแต่เดือน มกราคม 2560 ถึง ธันวาคม 2562 ที่ได้นำเข้าสู่การศึกษาจำนวน 179 ราย โดย

มีระยะเวลาในการติดตามการรักษา (median follow-up time) เท่ากับ 36 เดือน ซึ่งมีลักษณะทางคลินิกของผู้ป่วยและพยาธิวิทยาของโรคมะเร็งปากมดลูก รายละเอียดดังตารางที่ 1 และลักษณะทั่วไปของการรักษา รายละเอียดดังตารางที่ 2

ตารางที่ 1 แสดงลักษณะทั่วไปของผู้ป่วยมะเร็งปากมดลูก

Patient Characteristics		Number	%
Number of patients		179	
Age (year)	Mean \pm SD	53.05 \pm 12.34	
	Range	25 - 88	
	< 50	67	37.4
	\geq 50	112	62.6
KPS	Range	60 - 90	
	\geq 80	67	37.4
	< 80	112	62.6
GFR (ml/min)	Median (IQR)a	95.0 (81.87-107.63)	
	\geq 60	162	90.5
	< 60	17	9.5
Initial Hemoglobin (g/dl)	Mean \pm SD	11.38 \pm 1.94	
	Range	4.1 - 17	
	\geq 10	146	81.6
	< 10	33	18.4
Anti- HIV testing	Negative	154	86
	Positive	8	4.5
	Unspecified	17	9.5

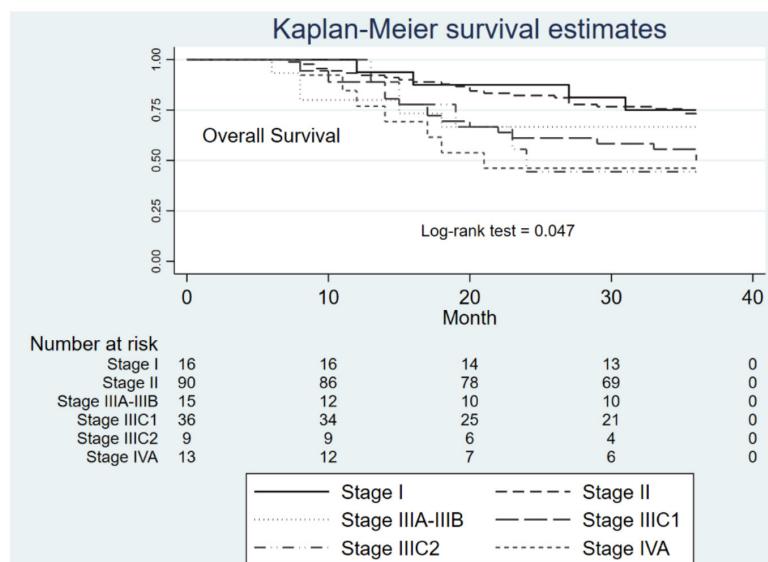
Patient Characteristics		Number	%
FIGO Stage (2018)	I	16	8.9
	II	90	50.3
	IIIA-IIIB	15	8.4
	IIIC1	36	20.1
	IIIC2	9	5
	IVA	13	7.3
Histology	Squamous	137	76.5
	Non-squamous	42	23.5
Differentiation of tumor cells	Well	18	10.1
	Moderately	58	32.4
	Poorly	19	10.6
	Unspecified	84	46.9
Tumor size	< 4 cm.	46	25.7
	≥ 4 cm.	133	74.3
Pelvic Lymph node metastasis	Yes	52	29.1
Paraaoortic Lymph node metastasis	Yes	14	7.8

คำย่อ KPS = Karnofsky performance status, GFR = Glomerular filtration rate, HIV= Human immunodeficiency virus, FIGO = International Federation of Gynecology and Obstetrics, a IQR = Interquartile range, SD = Standard deviation

ตารางที่ 2 แสดงลักษณะทั่วไปด้านการรักษา

Treatment factors		Number	%
Number of patients		179	
Field	WPRT	170	95
	EFRT	9	5
Total Dose (cGy)	5000	99	55.3
	5040	80	44.7
Schedule of Brachytherapy	600 cGy x 4 fractions	14	7.8
	650 cGy x 4 fractions	14	7.8
	700 cGy x 4 fractions	131	73.3
	Others	20	11.1
Total treatment Time (Days)	Median (IQR)	71 (63– 84)	
	≤ 56 days	23	12.8
	> 56 days	157	87.2
Neoadjuvant Chemotherapy	No	170	95
	Yes	9	5
Concurrent Chemoradiation	No	14	7.8
	Yes	165	92.2
Regimen of chemotherapy	Cisplatin	131	79.5
	Carboplatin	28	16.9
	Switch regimen	6	3.6
Number of chemotherapy cycles	Range	1-7	
	≥ 5	122	73.9
	< 5	43	26.1
Adjuvant chemotherapy	No	174	97.2
	Yes	5	2.8

คำย่อ WPRT = Whole pelvic radiotherapy, EFRT = Extended-field radiotherapy, IQR = Interquartile range, FIGO = International Federation of Gynecology and Obstetrics, SD = Standard deviation, cGy = Centigray


อัตราการรอดชีพรวม 3 ปี (3-year OS) เท่ากับ 64.2% และค่ามัธยฐานระยะเวลาการรอดชีพ (median survival time) ของผู้ป่วยมะเร็งปากมดลูก แบ่งตามระยะ FIGO Stage (2018) โดยระยะ IIIA1, IIIA2 และ IVA

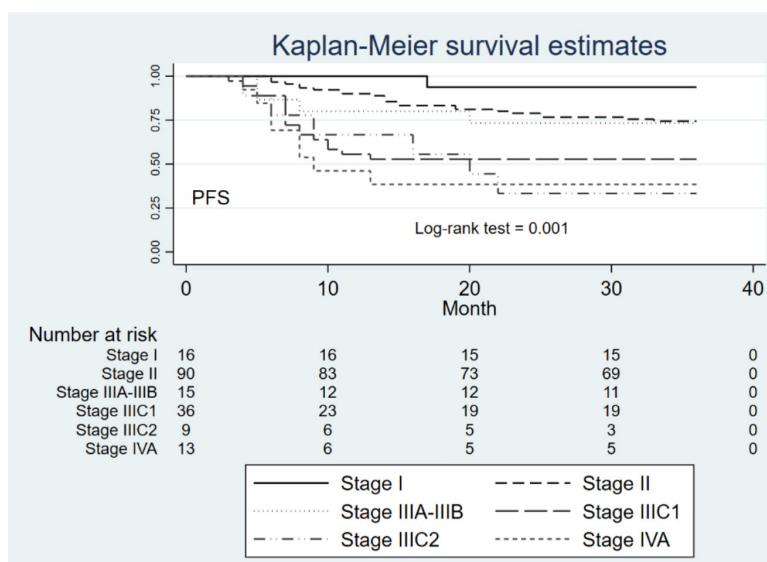
เท่ากับ 36, 24 และ 21 เดือน ตามลำดับ เมื่อพิจารณาแยกตามระยะ พบร่วมว่า 3-year OS ของแต่ละระยะมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ $p=0.047$ รายละเอียดดังตารางที่ 3 และ แสดงดังภาพที่ 1

ตารางที่ 3 Overall Survival และ Median Survival time ของผู้ป่วยมะเร็งปากมดลูก

FIGO Stage (2018)	3-year OS		Median Survival time (months)
	I	II	III
IIIA-IIIIB	66.7 (37.5-84.6)		not reach
IIIC1	50.0 (32.9-64.9)		36
IIIC2	44.4 (13.6-71.9)		24
IVA	46.2 (19.2-69.6)		21

คำย่อ OS = Overall Survival, FIGO = International Federation of Gynecology and Obstetrics

ภาพที่ 1 แสดง Overall survival ตามระยะของโรค


อัตราการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็ง 3 ปี (3-year PFS) เท่ากับ 67.6% เมื่อพิจารณาแยกตามระยะ พบร่วม 3-year PFS ของแต่ละระยะมี

ความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ $p=0.001$ ตามรายละเอียดดังตารางที่ 4 และแสดงดังภาพที่ 2

ตารางที่ 4 Progression-free survival และ Median Survival time ของผู้ป่วยมะเร็งปากมดลูก

FIGO Stage (2018)	3-year PFS		Median Survival time(months)
	I	II	
IIIA-IIIB	80.0 (49.9-93.1)	74.0 (64.1-82.2)	not reach
IIIC1	52.7 (35.4-67.4)	not reach	not reach
IIIC2	33.3 (7.8-62.3)	not reach	20
IVA	38.5 (14.1-62.3)	not reach	13

คำย่อ PFS = Progression-free survival, FIGO = International Federation of Gynecology and Obstetrics

ภาพที่ 2 แสดง Progression-free survival ตามระยะของโรค

จากการวิเคราะห์ตัวแปรแบบ univariable analysis พบว่า ระดับ hemoglobin (Hb) แรกเริ่มก่อนการรักษา ขนาดของก้อนมะเร็ง และการกระจายของต่อมน้ำเหลือง pelvic เป็นปัจจัยทางคลินิกที่มีความเสี่ยงต่ออัตราการเสียชีวิตสูงขึ้นอย่างมีนัยสำคัญทางสถิติ และปัจจัยที่มีความสัมพันธ์ต่ออัตราการรอดชีพโดยปราศจาก การลุกคามของโรคมะเร็ง (progression-free survival) พบว่า กลุ่มอายุที่มากกว่าเท่ากับ 50 ปี ค่าการทำงานของไต (GFR) ชนิดของเซลล์มะเร็ง ขนาดของก้อนมะเร็ง การกระจายของต่อมน้ำเหลือง pelvic และ para-aortic และ ระยะของโรคที่เพิ่มขึ้น ทำให้อัตราการลุกคามของโรคมะเร็งสูงขึ้นอย่างมีนัยสำคัญทางสถิติในระยะ III C1, III C2 และ IV A ตามลำดับ เมื่อวิเคราะห์ความสัมพันธ์แบบ multivariable analysis พบว่า ชนิดของเซลล์มะเร็ง non-squamous และก้อนมะเร็งที่มีขนาดมากกว่าเท่ากับ 4 เซนติเมตร เป็นปัจจัยทางคลินิกที่มีผลต่ออัตราการ

รอดชีพรวมและอัตราการรอดชีพโดยปราศจากการลุกคามของโรคมะเร็งอย่างมีนัยสำคัญทางสถิติและพบว่า ระดับ Hb แรกเริ่มก่อนการรักษาที่น้อยกว่า 10 g/dl เป็นปัจจัยทางคลินิกที่มีผลต่ออัตราการรอดชีพรวมอย่างมีนัยสำคัญทางสถิติ โดยไม่มีผลต่ออัตราการรอดชีพโดยปราศจากการลุกคามของโรคมะเร็ง จากการศึกษานี้พบว่าระยะของโรคไม่สามารถวิเคราะห์ความสัมพันธ์แบบ multivariable analysis ได้เนื่องจาก มีข้อจำกัดของจำนวนผู้ป่วย และไม่พบความสัมพันธ์ของปัจจัยด้านการรักษา ทั้งระยะเวลารวมรักษาระหว่างมากกว่าหรือน้อยกว่า 56 วันและจำนวนครั้งของเคมีบำบัดที่ได้รับร่วมกับการฉายรังสีที่น้อยกว่า 5 ครั้ง ต่ออัตราการรอดชีพรวมและอัตราการรอดชีพโดยปราศจากการลุกคามของโรคมะเร็ง รายละเอียดดังตารางที่ 5 และ 6

ตารางที่ 5 วิเคราะห์ Univariable และ Multivariable analysis สำหรับ Overall Survival

Factor	Univariable analysis		Multivariable analysis	
	HR (95%CI)	p-value	HR (95%CI)	p-value
Age group (year)	< 50	1		1
	≥ 50	0.77 (0.46-1.26)	0.302	1.17 (0.66-2.08)
KPS group	< 80	1		
	≥ 80	1.54 (0.90-2.64)	0.112	
GFR group (ml/min)	≥ 60	1		
	< 60	1.29 (0.89-1.87)	0.174	
Hemoglobin group (g/dl)	≥ 10	1		1
	< 10	2.23 (1.29-3.85)	0.004	2.63 (1.41-4.89)
Histology	Squamous	1		1
	Non-squamous	1.51 (0.88-2.58)	0.130	2.07 (1.09-3.93)

Factor	Univariable analysis		Multivariable analysis		
		HR (95%CI)	p-value	HR (95%CI)	p-value
Differentiation of tumor cells	Well	1		1	
	Moderately	1.00 (0.42-2.36)	0.994	10.7 (0.42-2.68)	0.884
	Poorly	0.66 (0.21-2.10)	0.489	0.56 (0.16-2.04)	0.385
	Unspecified	1.01 (0.44-2.30)	0.972	1.07 (0.43-2.62)	0.880
FIGO Stage (2018)	I	1		1	
	II	1.14 (0.39-3.28)	0.804	0.83 (0.166-4.17)	0.825
	IIIA-IIIB	1.61 (0.43-6.00)	0.477	1.72 (0.28-10.51)	0.553
	IIIC1	2.39 (0.80-7.06)	0.115	2.26 (0.44-11.62)	0.326
	IIIC2	2.72 (0.73-10.14)	0.136	1.21 (0.19-7.73)	0.839
	IVA	2.97 (0.86-10.16)	0.082	1.89 (0.336-10.66)	0.469
Tumor size	< 4 cm.	1		1	
	≥ 4 cm.	2.52 (1.24-5.11)	0.010	2.42 (1.05-5.58)	0.038
Pelvic lymph node metastasis	No	1			
	Yes	2.40 (1.46-3.94)	<0.001		
Paraaortic lymph node metastasis	No	1			
	Yes	2.01 (0.95-4.23)	0.065		
Total Treatment Time	≤ 56 days	1		1	
	> 56 days	0.76 (0.39-1.50)	0.440	0.56 (0.26-1.22)	0.149
Neoadjuvant Chemotherapy	No	1			
	Yes	1.35 (0.49-3.72)	0.557		
Concurrent Chemoradiation	No	1			
	Yes	1.01 (0.40-2.52)	0.976		
Number of chemotherapy cycles	≥ 5	1		1	
	< 5	1.40 (0.80-2.44)	0.231	1.39 (0.72-2.68)	0.320
Salvage chemotherapy	No	1			
	Yes	1.70 (0.55-5.67)	0.331		

คำย่อ KPS = Karnofsky Performance Status GFR = Glomerular Filtration Rate, FIGO = International Federation of Gynecology and Obstetrics, HR= Hazard ratio, CI = Confidence interval

ตารางที่ 6 วิเคราะห์ Univariable และ Multivariable analysis สำหรับ Progression-free survival

Factor	Univariable analysis		Multivariable analysis	
	HR (95%CI)	P-value	HR (95%CI)	P-value
Age group (year)	< 50	1		1
	≥ 50	0.57 (0.34-0.96)	0.035	0.72 (0.40-1.30) 0.289
KPS group	< 80	1		
	≥ 80	1.38 (0.79-2.41)	0.253	
GFR group (ml/min)	≥ 60	1		
	< 60	2.21 (1.08-4.50)	0.028	
Hemoglobin group (g/dL)	≥ 10	1		1
	< 10	1.72 (0.95-3.09)	0.069	1.52 (0.77-2.97) 0.522
Histology	Squamous	1		1
	Non-squamous	2.19 (1.29-3.12)	0.004	2.40 (1.31-4.39) 0.004
Differentiation of tumor cells	Well	1		1
	Moderately	0.53 (0.23-1.20)	0.131	0.83 (0.33-2.04) 0.381
	Poorly	0.71 (0.26-1.91)	0.502	0.93 (0.30-2.91) 0.542
	Unspecified	0.55 (0.25-1.18)	0.128	0.76 (0.32-1.79) 0.332
FIGO Stage (2018)	I	1		
	II	4.43 (0.59-32.82)	0.145	
	IIIA-IIIB	5.04 (0.56-45.14)	0.148	
	IIIC1	10.86 (1.44-81.70)	0.020	
	IIIC2	15.21 (1.82-126.47)	0.012	
	IVA	16.79 (2.09-134.50)	0.008	
Tumor size	< 4 cm.	1		1
	≥ 4 cm.	4.58 (1.83-11.45)	0.001	3.59 (1.34-9.63) 0.011
Pelvic lymph node metastasis	No	1		
	Yes	3.31 (1.98-5.53)	<0.001	
Paraaoortic lymph node metastasis	No	1		
	Yes	3.46 (1.74-6.85)	<0.001	

Factor	Univariable analysis		Multivariable analysis	
	HR (95%CI)	P-value	HR (95%CI)	P-value
Group Total Treatment Time	≤ 56 days	1		1
	>56 days	0.63 (0.32-1.24)	0.184	0.48 (0.21-1.09) 0.080
Neoadjuvant Chemotherapy	No	1		
	Yes	1.80 (0.72-4.51)	0.207	
Concurrent Chemoradiation	No	1		
	Yes	0.81 (0.32-2.04)	0.666	
Group number of chemotherapy cycle	≥ 5	1		1
	< 5	1.53 (0.87-2.71)	0.135	1.51 (0.76-2.99) 0.229
Salvage chemotherapy	No	1		
	Yes	2.08 (0.65-6.68)	0.214	

คำย่อ KPS = Karnofsky performance status GFR = Glomerular filtration rate, FIGO = International Federation of Gynecology and Obstetrics, HR= Hazard ratio, CI = Confidence interval

บทวิจารณ์

การฉายรังสีร่วมกับเคมีบำบัดรวมทั้งการใส่แร่ทางช่องคลอด (brachytherapy) เป็นการรักษาหลักในมะเร็งปากมดลูกหรือในกรณีมีข้อห้ามหรือความเสี่ยงในการผ่าตัด ซึ่งการรักษาในโรงพยาบาลส่วนรักษาชาวรักษาผู้ป่วยทุกรายเมื่อได้รับการฉายรังสีจากภายนอกปริมาณรังสีรวม 5000-5040 เกรย์ ครบแล้ว ได้ทำการส่งต่อไปยังสถานพยาบาลอื่นเพื่อทำการใส่แร่ทางช่องคลอดในปริมาณรังสีและจำนวนครั้งที่แตกต่างกัน

การศึกษานี้ได้เปรียบเทียบอัตราการรอดชีวภาพและอัตราการรอดชีพโดยปราศจากการลุกลามของโรคใน 3 ปี ในแต่ละระยะของโรคของผู้ป่วยมะเร็งปากมดลูกพบว่า อัตราการรอดชีวภาพ 3 ปี (3-year OS) เท่ากับ 64.2% โดยแยกตามระยะของโรค พบร่วม ระยะ I เท่ากับ

75% ระยะ II 72.2% ระยะ III 44.4-66.7% และ ระยะ IVA 46.2% และ อัตราการรอดชีพโดยปราศจาก การลุกลามของโรคใน 3 ปี (3-year PFS) เท่ากับ 67.6% โดยแยกตามระยะของโรค พบร่วม ระยะ I, II, III และ IVA เท่ากับ 93%, 74%, 33.3-80% และ 38.5% ตามลำดับ ซึ่งต่ำกว่าในหลายการศึกษา ดังเช่นการศึกษาของภรรรนา และคณู^[3] ที่แสดงข้อมูลของประเทศไทย ระหว่างปี 2549-2558 พบร่วม 5-year OS ของระยะ I เท่ากับ 91-100% ระยะ II 89-100% ระยะ III 62-92% และ ระยะ IVA 23% และ 5-year PFS เท่ากับ 83-84%, 80-84%, 62-89.3% และ 19.2% ตามลำดับ และ จากการหลายการศึกษาในต่างประเทศ^[4-9] พบร่วม 3-year OS เท่ากับ 82% , 5-year OS อยู่ระหว่าง 65%- 74% และ 3-year DFS อยู่ระหว่าง 80%-84% เป็นต้น

ปัจจัยทางคลินิก ทั้งลักษณะทั่วไปของผู้ป่วยและพยาธิวิทยาของโรคมะเร็ง รวมทั้งปัจจัยด้านการรักษาที่เป็นปัจจัยที่สัมพันธ์ต่ออัตราการรอดชีพรวมและอัตราการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็งจากการศึกษาที่พบว่า ระดับ Hb แรกเริ่มก่อนการรักษาที่น้อยกว่า 10 g/dl เป็นปัจจัยทางคลินิกที่มีโอกาสเสี่ยงทำให้อัตราการเสียชีวิตสูงขึ้นอย่างมีนัยสำคัญทางสถิติ ซึ่งสอดคล้องกับการศึกษาของ Kunos และคณะ^[12] และ Monk และคณะ^[10] ในขณะที่การศึกษาของ Serkies และคณะ^[13] พบว่า ระดับ Hb แรกเริ่มที่มากกว่าหรือเท่ากับ 12 g/dl เป็นปัจจัยพยากรณ์การตอบสนองต่อการรักษาในการรอดชีพโดยปราศจากโรค (DFS) และควบคุมโรคเฉพาะที่ (local control) ที่สูงกว่าอย่างมีนัยสำคัญทางสถิติ โดยพบการแพร่กระจายของโรคไปยังอวัยวะอื่น (distant metastases) ต่ำกว่าอย่างมีนัยสำคัญทางสถิติ เช่นกัน

ขนาดก้อนมะเร็งก่อนการรักษาที่มากกว่า 4 เซนติเมตร เป็นปัจจัยทางคลินิกที่มีโอกาสเสี่ยงต่ออัตราการรอดชีพรวมและอัตราการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็งที่ที่สูงขึ้นอย่างมีนัยสำคัญทางสถิติ เช่นเดียวกับผลการศึกษาของภานุภัทร และคณะ^[8] พบว่าขนาดก้อนมะเร็งก่อนการรักษาที่มากกว่า 4 เซนติเมตร มีโอกาสเสี่ยงเสียชีวิตเนื่องจากการลับบ้ามานเป็นมะเร็งซ้ำถึง 3.2 เท่า และขนาดก้อนมะเร็งก่อนการรักษาสามารถยังใช้เป็นปัจจัยในการพยากรณ์อัตราการอยู่รอดโดยปราศจากโรคได้

ความแตกต่างของเซลล์มะเร็งและ grade differentiation พบว่าเซลล์มะเร็งชนิด non-squamous มีโอกาสเสี่ยงที่ทำให้อัตราการเสียชีวิตสูงขึ้นอย่างมีนัยสำคัญทางสถิติเมื่อเทียบกับชนิด squamous แต่ไม่พบความแตกต่างกันระหว่าง grade differentiation ซึ่งในทางกลับกันการศึกษาของ Monk และคณะ^[10] แสดงข้อมูลว่าไม่พบความแตกต่างระหว่างชนิดของเซลล์มะเร็ง ชนิด non-squamous cell และ squamous

แต่พบว่ามีความแตกต่างกันของ grade differentiation ซึ่งจากการศึกษาดังกล่าวพบว่า poorly differentiated หรือ grade 3 มีพยากรณ์โรคที่แย่กว่าอย่างมีนัยสำคัญทางสถิติ เมื่อเปรียบเทียบกับ grade differentiation อื่นๆ

ส่วนปัจจัยด้านการรักษาในการศึกษานี้ ไม่พบความความสัมพันธ์อย่างมีนัยสำคัญทางสถิติต่ออัตราการรอดชีพรวมและอัตราการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็ง ทั้งด้านรังสีรักษาและเคมีบำบัดในการศึกษานี้ได้ศึกษาถึงระยะเวลารวมของการรักษาพบว่า ระยะเวลารวมอยู่ระหว่าง 38-175 วัน โดยมีค่ามรณะของระยะเวลารวมเท่ากับ 71 วัน ซึ่งส่าเหตุของระยะเวลาการรวมที่เพิ่มขึ้นในการศึกษานี้ พบว่าเกิดภาวะแทรกซ้อนจากการรักษา ทำให้ผู้ป่วยหยุดการรักษาเป็นระยะ ซึ่งส่งผลให้ระยะเวลารวมการฉายรังสีมากกว่าแผนการรักษาที่กำหนด นอกเหนือนี้ระยะเวลาการส่งต่อเพื่อการใส่แร่ทางช่องคลอดไปยังสถานพยาบาลอื่นและปัญหาเรื่องการการเดินทางของผู้ป่วยเพื่อการรักษา เป็นอีกสาเหตุที่ทำให้เพิ่มระยะเวลาการรักษารวม ซึ่งระยะเวลาการรวมที่ยาวนานนี้อาจส่งผลต่ออัตราการรอดชีพจากโรคมะเร็งในการศึกษานี้ต่ำกว่าการศึกษาอื่นๆ ดังที่กล่าวข้างต้น โดยจำนวนผู้ป่วยที่มีระยะเวลาการรักษารวมที่มากกว่า 56 วัน คิดเป็นร้อยละ 87.2 ดังนั้น จึงทำให้จากการวิเคราะห์ความสัมพันธ์ จึงไม่พบความแตกต่างอย่างมีนัยสำคัญทางสถิติ ซึ่งสอดคล้องกับการศึกษาของ ภานุภัทร และคณะ^[8] ที่พบว่าระยะเวลารวมการรักษาไม่มีความสัมพันธ์ต่อผลการรักษา แต่ในทางกลับกันจากการศึกษา พบว่า ระยะเวลาการรักษารวมที่มากกว่า 8 สัปดาห์ เป็นปัจจัยพยากรณ์สำคัญที่ทำให้โรคที่แย่ลง แต่ยังไร้ตาม NCCN Guidelines แนะนำว่าระยะเวลาใน การรักษาของรังสีรักษา ซึ่งรวมทั้งการฉายรังสีจากภายนอกและใส่รังสีทางช่องคลอด ในผู้ป่วยมะเร็งปากมดลูก ควรเสริจสมบูรณ์ภายใน

8 สัปดาห์ ซึ่งพบว่าระยะเวลารวมที่มากกว่า 6-8 สัปดาห์ ทำให้อัตราครุภูมิโรคภัยในอุ้งเชิงกรานและการรอดชีพ จากโรคมะเร็งลดลง 0.5-1 % ต่อวัน และ ตามการศึกษาของ EMBRACE II แนะนำระยะเวลารวมในการรักษาของรังสีรักษาภายใน 50 วัน^[6]

จำนวนครั้งของยาเคมีบำบัดที่ให้ร่วมกับรังสีรักษาจากการศึกษานี้ไม่มีผลกระเทศต่ออัตราการรอดชีพรวม และอัตราการรอดชีพโดยปราศจากการลุกลามของโรคมะเร็ง ซึ่งยาเคมีบำบัดให้ร่วมกับรังสีรักษา เป็นกลุ่ม Platinum-based chemotherapy single agent therapy (Cisplatin 40 mg/m²/day หรือ Carboplatin (AUC2)) สัปดาห์ละครั้งระหว่างฉายรังสี โดยพิจารณาจากค่าการทำงานของไต (GFR) ในผู้ป่วยแต่ละราย แต่จากการศึกษาพบว่า มีจำนวนผู้ป่วยที่ได้รับยาเคมีบำบัดมากกว่าเท่ากับ 5 ครั้ง คิดเป็นร้อยละ 73.5 ซึ่งใกล้เคียงกับผลการศึกษาของ EMBRACE-I^[14] ที่พบว่า มีจำนวนผู้ป่วยที่ได้รับยาเคมีบำบัดมากกว่าเท่ากับ 5 ครั้ง คิดเป็นร้อยละ 70 ซึ่งมีส่งผลให้มีอัตราการรอดชีพรวมที่สูงกว่า เมื่อเทียบกับผู้ป่วยที่ได้รับรังสีรักษาเคมีบำบัดน้อยกว่า 5 ครั้ง อย่างมีนัยสำคัญทางสถิติ

ข้อจำกัดในการศึกษานี้ คือ เป็นการศึกษาแบบย้อนหลัง และระยะเวลาในการติดตามการรักษา เท่ากับ 36 เดือน ส่งผลให้มีจำนวนประชากรค่อนข้างน้อย ทั้งนี้ ผู้ป่วยทุกรายได้รับการฉายรังสีแบบ 2 มิติ โดยมีการตรวจวินิจฉัยทางรังสีด้วยเครื่องเอกซเรย์คอมพิวเตอร์ (Computerized Tomography, CT) หรือ การตรวจด้วยคลื่นแม่เหล็กไฟฟ้า (Magnetic Resonance Imaging, MRI) ก่อนการวางแผนรักษาทุกราย เพื่อใช้การวินิจฉัยและวางแผนการรักษา ซึ่งการเลือกผู้ป่วยและวางแผนการฉายรังสีตามขอบเขตของก้อนมะเร็ง และการกระจายของมะเร็งไปต่อมน้ำเหลือง (pelvic, para-aortic) ขึ้นกับดุลพินิจของแพทย์แต่ละท่านที่แตกต่างกันออกไป รวมทั้งไส้เรื่องทางช่องคลอดในการ

ศึกษานี้เป็นเทคนิคการใส่เร่แบบ 2 มิติ ซึ่งเป็นการคำนวณกำหนดปริมาณรังสีรวม (Equivalent Dose in 2 Gy Fractions, EQD2) ที่ point A เท่ากับ 80-90 เกรย์

ซึ่งในปัจจุบันโรงพยาบาลสหราชค์ประชาธิรักษ์ได้ทำการวางแผนการรักษาแบบ 3 มิติ (3D Conformal Radiotherapy, 3D- CRT) ฉายรังสีด้วยเทคนิคปรับความเข้ม (intensity modulated radiation therapy, IMRT) และการฉายรังสีเทคนิคปรับความเข้มแบบหัวเครื่องหมุนรอบตัวผู้ป่วย (volumetric modulated arc therapy, VMAT) เป็นการวางแผนการรักษาด้วยระบบคอมพิวเตอร์ (CT-based treatment planning) ซึ่งสามารถเห็นรายละเอียดอวัยวะภายในได้ดีกว่าในผู้ป่วยทุกราย และสถานพยาบาลที่ส่งต่อเพื่อการใส่เร่ทางช่องคลอด มีการใส่เร่แบบ 3 มิติ (Three-dimensional-image-guided Adaptive BT: 3D-IGABT) ด้วยวิธี MRI-based Image-guided Adaptive Brachytherapy (IGBT) ซึ่งจากหลายการศึกษาพบว่า การใส่เร่ด้วยเทคนิค 3D-IGABT ส่งผลให้อัตราการรอดชีพรวมที่สูงขึ้น การกลับมาเป็นซ้ำในอุ้งเชิงกราน (pelvic recurrence) ต่ำลง และสามารถลดภาวะแทรกซ้อน (adverse events) ได้อย่างมีนัยสำคัญทางสถิติ เมื่อเปรียบเทียบกับใส่เร่ด้วยเทคนิค 2 มิติ^[11, 14, 15] ซึ่งนำไปสู่การพัฒนาด้านการรักษาด้านรังสีรักษา รวมทั้งการเตรียมความพร้อมของผู้ป่วยก่อนการรักษาและประเมินค่าฮีโนโลกลบิน แรกเริ่มและระหว่างการฉายรังสี ที่มีค่ามากกว่าหรือเท่ากับ 10 g/dl จึงเป็นสิ่งสำคัญ

ข้อสรุป

ปัจจัยทางคลินิกสัมพันธ์กับอัตราการรอดชีพรวม คือ ระดับ Hb แรกเริ่มก่อนการรักษาที่น้อยกว่า 10 g/dl ในขณะที่ชนิดของเซลล์มะเร็งและขนาดของก้อนมะเร็ง เป็นปัจจัยพยากรณ์ที่สำคัญทั้งในอัตราการรอดชีพรวม และอัตราการรอดชีพโดยปราศจากการลุกลามของ

โรคมะเร็ง โดยปัจจัยด้านการรักษาไม่มีผลต่อการรอดชีพของผู้ป่วยมะเร็งปากมดลูก

ผลประโยชน์ทับซ้อน (Conflicts of Interest)

การศึกษานี้ ไม่มีผลประโยชน์ทับซ้อน

ทุนวิจัย (Research funding)

ได้รับทุนอุดหนุนการวิจัยจากศูนย์แพทยศาสตรศึกษาชั้นคลินิก โรงพยาบาลสรรค์ประชากร

References

1. Rojanamatin J, Ukanun W, Supaattagorn P, Chaiwiriyabunya I, Wongsena M, Chaiwerawattana A, et al. Cancer in Thailand Volume X, 2016-2018. Bangkok; 2021.
2. WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention [Internet]. 2nd edition. Geneva: World Health Organization; 2021. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK572317/>
3. Bangsomboon P, Kittisiam T, Chaowawanit W. Survival Rate of Cervical Cancer Patients According to the 2018 FIGO Staging System: A Tertiary Hospital Based Study, Vajira Hospital, Bangkok. Thai J Obstet Gynaecol. 2022;30:60-67.
4. Morris M, Eifel PJ, Lu J, Grigsby PW, Levenback C, Stevens RE, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med. 1999;340:1137-43.
5. Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999; 340:1144-53.
6. Pötter R, Tanderup K, Kirisits C, de Leeuw A, Kirchheiner K, Nout R, et al. The EMBRACE II study: The outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies. Clin Transl Radiat Oncol. 2018;9:48-60.
7. Perez CA, Grigsby PW, Castro-Vita H, Lockett MA. Carcinoma of the uterine cervix. I. Impact of prolongation of overall treatment time and timing of brachytherapy on outcome of radiation therapy. Int J Radiat Oncol Biol Phys. 1995;32: 1275-88.

8. ภาณุภัทร รักพงษ์, นิสา ชวัพนธุ์, เอกสิทธิ ธรรมวิจิตรกุล. The Impact of overall treatment time on treatment outcome of radiotherapy in cervical cancer. *J Thai Assoc of Radiat Oncol.* 2016;22:20-9.
9. Serkies K, Jassem J. Concurrent weekly cisplatin and radiotherapy in routine management of cervical cancer: a report on patient compliance and acute toxicity. *Int J Radiat Oncol Biol Phys.* 2004;60:814-21.
10. Monk BJ, Tewari KS, Koh WJ. Multimodality therapy for locally advanced cervical carcinoma: state of the art and future directions. *J Clin Oncol.* 2007; 25:2952-65.
11. Sturdza A, Pötter R, Fokdal LU, Haie-Meder C, Tan LT, Mazeron R, et al. Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. *Radiother Oncol.* 2016;120:428-433.
12. Kunos CA, Fabian D, Fredericks T, Baldwin L, Dietrich C, Miller RW, et al. Hemoglobin level associates with survival in women from Appalachian Kentucky with uterine cervix cancer. *Front Oncol.* 2023;13:1132135.
13. Serkies K, Badzio A, Jassem J. Clinical relevance of hemoglobin level in cervical cancer patients administered definitive radiotherapy. *Acta Oncol.* 2006;45:695-701.
14. Pötter R, Tanderup K, Schmid MP, Jürgenliemk-Schulz I, Haie-Meder C, Fokdal LU, et al. MRI-guided adaptive brachytherapy in locally advanced cervical cancer [EMBRACE-I]: a multicentre prospective cohort study. *Lancet Oncol.* 2021;22:538-547.
15. Rijkmans EC, Nout RA, Rutten IH, Ketelaars M, Neelis KJ, Laman MS, et al. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy. *Gynecol Oncol.* 2014;135:231-238.

การศึกษาปัจจัยที่มีผลต่อระบบภาพพื้นผิวสามมิติแบบตรวจจับตลอดเวลา

สำหรับจัดท่าผู้ป่วยฉายรังสี

Factors influencing real-time 3D surface image-guided

for patient setup in radiotherapy

เมทินี วิเศรินทอง, จาเรก ก้านเพ็ชร

สาขาวิชารังสีรักษาและมะเร็งวิทยา ฝ่ายรังสีวิทยา โรงพยาบาลจุฬาลงกรณ์ สถาบันราชดำเนิน กรุงเทพมหานคร

Metinee Wisetrintong, Jaruek Kanphet

*Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital,
Thai Red Cross Society*

ผู้นิพนธ์ประจำงาน

เมทินี วิเศรินทอง

สาขาวิชารังสีรักษาและมะเร็งวิทยา ฝ่ายรังสีวิทยา โรงพยาบาลจุฬาลงกรณ์ สถาบันราชดำเนิน กรุงเทพมหานคร

อีเมล: metinee32@gmail.com

Corresponding author

Metinee Wisetrintong

*Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital,
Thai Red Cross Society*

Email: metinee32@gmail.com

Submitted: Sep 9, 2023

Revised: Mar 21, 2024

Accepted: May 22, 2024

บทคัดย่อ

หลักการและเหตุผล: ระบบจำลองภาพสามมิติแบบตรวจจับตลอดเวลา (AlignRT) เป็นระบบภาพนำวิถีที่ใช้ ช่วยจัดท่าของผู้ป่วยฉายรังสี และสามารถตรวจจับค่าความคลาดเคลื่อนได้ตลอดเวลา

วัตถุประสงค์: เพื่อศึกษาคุณสมบัติและปัจจัยที่มีผลต่อการทำงานของระบบ AlignRT

วัสดุและวิธีการ: AlignRT ติดตั้งในห้องฉายรังสี ยี่ห้อ Varian รุ่น TrueBeam โดยทำการหาความคลาดเคลื่อน ของหุ่นจำลองจากการปรับเปลี่ยนค่าปัจจัยต่างๆ ได้แก่ การหมุนของหัวเครื่อง ความสว่างภายในห้องฉายรังสี หมวด โทนสีผิวของผู้ป่วย ขอบเขตที่สนใจ การหมุนของเตียงฉายรังสี และระยะเวลาที่ใช้เครื่อง

ผลการศึกษา: จากการศึกษาพบว่า gantry rotation มีผลของความคลาดเคลื่อนเพียงเล็กน้อย ไม่เกิน ± 0.3 มม. ในช่วง 100-260 องศาของการหมุน gantry กรณีแสงภายในห้องน้อยความคลาดเคลื่อนสูงขึ้น สูงถึง 0.9 มม. และพบว่าการเลือกโทนสีผิวให้ตรงกับสีผิวของผู้ป่วยทำให้ระบบแสดงค่าความคลาดเคลื่อนลดลง การเลือก ขอบเขตที่สนใจที่มีขนาดเล็กกว่า 10×10 ซม² เช่น small at center จะทำให้ค่าความคลาดเคลื่อนมากกว่าขอบเขต ที่สนใจที่มีขนาดใหญ่กว่า เช่นชนิด total body, half left หรือ half right เป็นต้น และค่าความคลาดเคลื่อน ของการหมุนเตียงมีค่ามากที่สุดในช่วง -40 ถึง 60 องศา และ 40 ถึง 60 องศาของการหมุนเตียง ซึ่งมีค่าอยู่ใน ช่วง -1.3 ถึง 1.1 มม. ในส่วนระยะเวลาในการใช้เครื่องไม่มีผลต่อความถูกต้องของระบบ

ข้อสรุป: ทุกปัจจัยมีค่าผลต่อระบบอย่าง โดยปัจจัยที่มีผลต่อระบบ AlignRT มากที่สุดคือ couch angle และปัจจัยที่มีผลต่อระบบ AlignRT น้อยที่สุด คือ gantry angle และเวลา ขณะที่ความคลาดเคลื่อนจากปัจจัยอื่น มีค่าน้อย สรุปว่าระบบมีความน่าเชื่อถือเนื่องจากมีค่าความคลาดเคลื่อนอยู่ในระดับน้อยกว่า 1.5 มิลลิเมตร จึงสามารถใช้เป็นระบบภาพนำวิถีในการจัดท่าผู้ป่วยในทุกตำแหน่งให้ถูกต้องยิ่งขึ้นได้

คำสำคัญ: ระบบภาพสามมิติแบบตรวจจับตลอดเวลา, รังสีชนิดไม่ก่อให้เกิดไอออน, ระบบภาพนำวิถี

Abstract

Background: The real-time 3D surface image-guide system (AlignRT) is applied to verify the patient position before treatment and can monitor the patient movement during treatment.

Objective: To study the characteristics and contributing factors of AlignRT.

Materials and Methods: The AlignRT system was installed at Varian TrueBeam linac room. The position errors of phantom were used to study in various parameters such as the effect of gantry angle, room light, skin tone protocol, region of interest, couch angle and time.

Results: From the study, it was found that the gantry angle effect was within 0.3 mm for the range of 100-260 degree. The uncertainty increased in case of dim light in the room with maximum of 0.9 mm. For skin tone protocol, the uncertainty reduced if the matching skin tone was

selected. A smaller ROI than 10 x10 cm², small at center, displayed less errors compared with large ROI such as total body, half left or half right. For couch angle effect, the uncertainties were high in the range -40 to 60 degrees and 40 to 60 degrees with the uncertainty range from -1.3 to 1.1 mm. The time of using machine did not affect the accuracy of the system.

Conclusions: The characteristics of AlignRT system were in good condition with small uncertainty. The highest uncertainty was found at couch angle effect, while the gantry angle and time of used had the smallest effect. The other parameters showed small effect. In conclusion, the AlignRT was a good system because the uncertainties were within 1.5 mm from all factors. It was possible to increase the accuracy of patient positioning.

Keywords: Real-time 3D surface tracking, non-ionizing radiation, IGRT

J Thai Assoc Radiat Oncol 2024; 30(1): R75 - R90

บทนำ

เครื่องมือและเทคนิคในการฉายรังสีรักษาผู้ป่วยมะเร็งได้พัฒนาขึ้นมาอย่างมาก การตรวจสอบตำแหน่งของรังสีภาพหลังการจัดท่าผู้ป่วยให้เหมือนกับขณะจำลองการรักษาโดยใช้อุปกรณ์ยึดตัวผู้ป่วย เป็นตัวช่วยในการจัดตำแหน่งให้เหมือนเดิมทุกครั้ง จึงมีความสำคัญ ซึ่งโดยทั่วไป จะจัดท่าผู้ป่วยโดยใช้ตำแหน่งที่จัดเส้นบนตัวผู้ป่วยตรงกับแนวเส้นเอซอร์ และตรวจสอบตำแหน่งผู้ป่วยโดยใช้ Image-guided radiotherapy (IGRT) ที่ใช้รังสีในระดับ Megavoltage (MV) หรือ kilovoltage (kV) เพื่อใช้ตรวจสอบตำแหน่งของผู้ป่วยหลังการจัดท่าเปรียบเทียบกับภาพอ้างอิงที่เป็นภาพที่ใช้วางแผนการรักษาที่ได้จากการจำลองการรักษา เพื่อให้ตำแหน่งที่ใช้ในการฉายรังสีตรงกับตำแหน่งที่วางแผนการรักษา ทั้งนี้ เพื่อให้สามารถบรรลุจุดมุ่งหมายในการฉายรังสี คือ

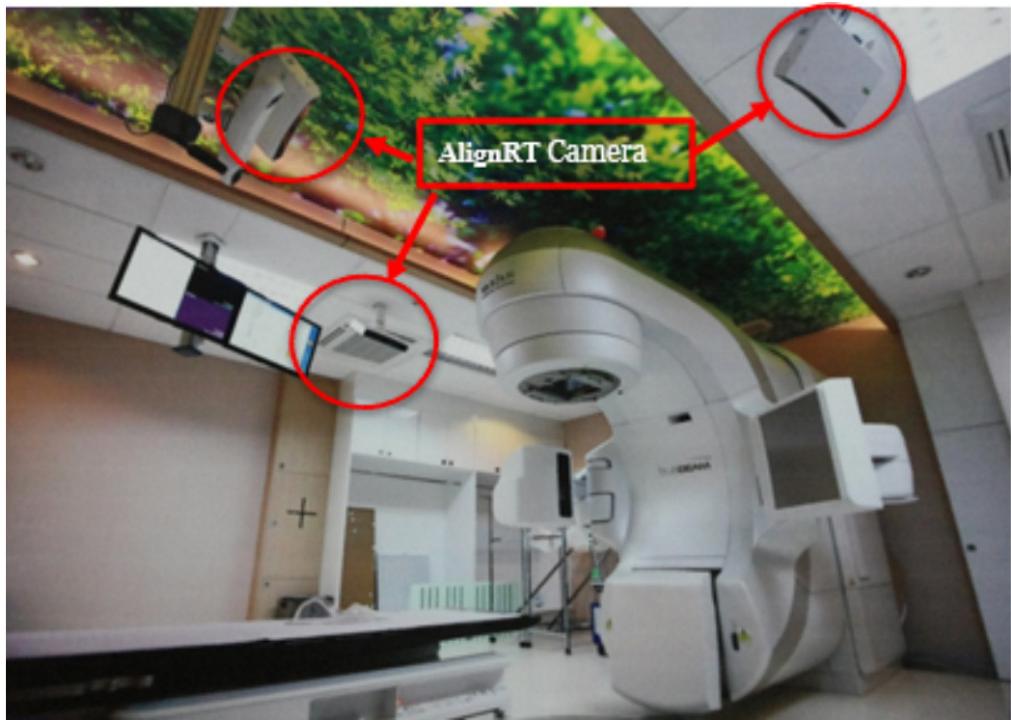
สามารถลดปริมาณรังสีและผลข้างเคียงของเนื้อเยื่อที่อยู่รอบ ๆ ก้อนมะเร็ง ในขณะเดียวกันยังสามารถเพิ่มปริมาณรังสีที่ก้อนมะเร็งได้^[3,4]

ระบบ AlignRT (VisionRT, Ltd, London, UK) เป็น non ionizing IGRT สำหรับช่วยในการจัดท่าผู้ป่วย ด้วยเครื่องประกอบด้วยชุดกล้องทั้งหมด 3 ชุดกล้อง ติดอยู่บนเพดานห้องฉายรังสี บริเวณปลายเท้าผู้ป่วยและทำมุม 60 องศาไปทางด้านซ้ายและขวาอีกด้านละ 1 ชุดกล้อง แต่ละชุดกล้องประกอบด้วย stereovision camera, texture camera, แสง flash สีขาว, แสงสีแดงมีลายจำเพาะ ซึ่งใช้ในการสร้างภาพพื้นผิวจำลองของผู้ป่วย^[5] ระบบ AlignRT มี software ที่ออกแบบมาใช้ในการสร้างภาพจำลองพื้นผิวของผู้ป่วยขึ้นมาใหม่ มีขนาดครอบคลุมพื้นที่ใหญ่ที่สุดมากกว่า 1 ตารางเมตร ($>1 \text{ m}^2$) และขนาดเล็กสุดเท่ากับขอบเขตใบหน้าของทุนจำลอง ($< 0.04 \text{ m}^2$)^[5,6] นำไปเปรียบเทียบกับภาพอ้างอิงซึ่งได้มา

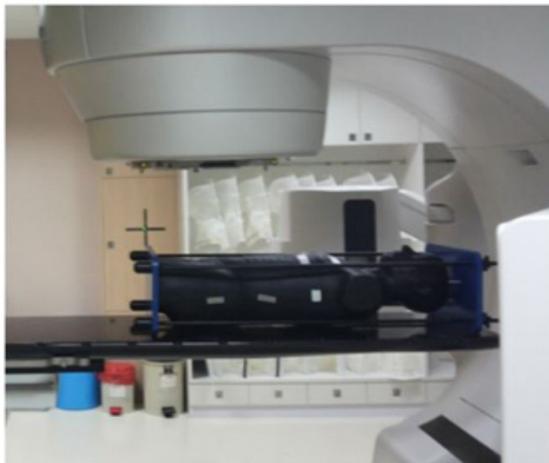
จากข้อมูลภาพ surface contour จากภาพ planning CT (CT_S) หรือภาพที่ได้จากระบบ AlignRT ใน การฉายรังสีครั้งแรก (ART_S) ซึ่งจะเป็นภาพอ้างอิง^[7,8] ที่ถูกใช้ในการจัดท่าผู้ป่วยต่อไป สามารถแสดงค่า ความคลาดเคลื่อนของการจัดท่าผู้ป่วยได้แบบตลอดเวลา (real-time) ไม่เป็นอันตรายต่อผู้ป่วยเนื่องจากใช้ non-ionizing IGRT และมีความละเอียดสูงสามารถหา ค่าความคลาดเคลื่อนได้ถ้ากว่าระยะตับมิลลิเมตร (submillimeter) จึงสามารถความมั่นใจว่าค่าความคลาดเคลื่อนที่ ได้จากระบบภาพสามารถมิติร่วงจับแบบตลอดเวลาันนี้ มี ความถูกต้องและมีความน่าเชื่อถือที่สามารถนำมาใช้หา ค่าความคลาดเคลื่อนทั้งก่อนและขณะฉายรังสีผู้ป่วยได้

การศึกษาครั้งนี้วิเคราะห์ประสิทธิภาพการทำงานของระบบ AlignRT ซึ่งเป็น ระบบภาพนำวิถี (IGRT) ชนิดหนึ่งที่ใช้สำหรับหาค่า ความคลาดเคลื่อนของผู้ป่วยก่อนฉายรังสี

วัสดุและวิธีการ


การศึกษาครั้งนี้เก็บข้อมูลค่าความคลาดเคลื่อนที่ แสดงจากการตรวจจับตำแหน่งของหุ่นจำลอง (phantom) เปรียบเทียบกับภาพอ้างอิงโดยระบบ AlignRT (V5.0) ที่ติดตั้งอยู่กับเครื่องเร่งอนุภาค ยี่ห้อ Varian รุ่น TrueBeam (Varian Medical System, Palo Alto, CA, USA)^[9] ดังแสดงในภาพที่ 1 ทดสอบการทำงาน ของระบบ AlignRT โดยทดสอบหัวข้อต่าง ๆ ที่ได้จาก การสังเกตว่าจะมีผลต่อการทำงานของ AlignRT คือ ความสว่างของห้อง (room light), หมวดโนนสีผิว (skin tone protocol), ขอบเขตที่สนใจ (region of interest), การหมุนของเตียง (couch angle), ระยะเวลาที่ใช้งาน (time) โดยทำการทดลองโดยใช้ Anderson RANDO phantom (The phantom Laboratory, Greenwich, NY, USA) และ Surface Phantom of AlignRT เป็น

หุ่นทดลองโดยนำ rando phantom ไปตัดภาพ CT ที่ห้องจำลองการรักษา ใช้ 120 kVp, 0.5 ซม. slice thickness สำหรับ CT เข้าระบบวางแผนการรักษา Eclipse (Varian Medical System, Palo Alto, CA, USA) จากนั้นสร้าง body เพื่อใช้เป็นภาพอ้างอิง CT_S และจัดตำแหน่งของหุ่นจำลองในทุกๆ การทดลองให้อยู่ ในจุดที่ทำสัญลักษณ์ (marker) ไว้บนเตียงผู้ป่วยที่ผ่านการ สอบเทียบ (calibrate) ตำแหน่งของเตียงให้ถูกต้องแล้ว เพื่อให้มั่นใจว่าหุ่นจำลองจะอยู่บนเตียงในตำแหน่งเดิม ทุกครั้งโดยตำแหน่งค่า couch rotation และ gantry rotation อยู่ที่ 0 องศาและจุดตัดของ laser บนหุ่นจำลอง อยู่ตรงกับตำแหน่งที่ทำ marker ไว้จากห้องจำลองการ รักษาทั้งสามด้านคือ AP Lateral ทั้งสองด้าน ให้ตำแหน่ง นี้เป็นตำแหน่งอ้างอิง ในขณะที่ surface phantom of AlignRT ไม่ต้องตัดภาพ CT แต่ใช้การ mark ตำแหน่งบน เตียงเช่นเดียวกับ rando phantom เมื่อจากเป็น phantom บางและโปร่งใช้เป็นภาพอ้างอิง ชนิด ART_S เท่านั้น ดังแสดงในภาพที่ 2


การศึกษาปัจจัยที่มีอิทธิพลต่อประสิทธิภาพการทำงาน ของระบบ AlignRT แบ่งตามหัวข้อ ดังต่อไปนี้

1. Gantry angle effect

เพื่อศึกษาความสามารถในการสร้างภาพสามารถมิติ จำลองพื้นผิวของผู้ป่วยของระบบ AlignRT ภายใต้การ หมุนของหัวเครื่อง (gantry) ที่อาจมีมุมที่บดบังมุมของ กล้อง โดยจัดท่าหุ่นจำลอง (rando phantom) บนเตียง ฉายรังสีให้เสมือนเป็นผู้ป่วย ใช้ระบบ AlignRT สร้างภาพ พื้นผิวหุ่นจำลองและวัดค่าความคลาดเคลื่อนของตำแหน่ง หุ่นจำลองโดยเปรียบเทียบกับภาพอ้างอิง CT_S และ ART_S ทำการวัดค่าความคลาดเคลื่อนทุกๆ 10 องศาจน ครบรอบการหมุนที่ 360 องศาของ gantry

ภาพที่ 1 ระบบ AlignRT ติดตั้งร่วมกับเครื่องฉายรังสี Varian รุ่น TrueBeam

(ก)

(ข)

ภาพที่ 2 หุ่นจำลองที่ใช้ในการศึกษา (ก) Random phantom และ
(ข) surface phantom of AlignRT

2. Room light effect

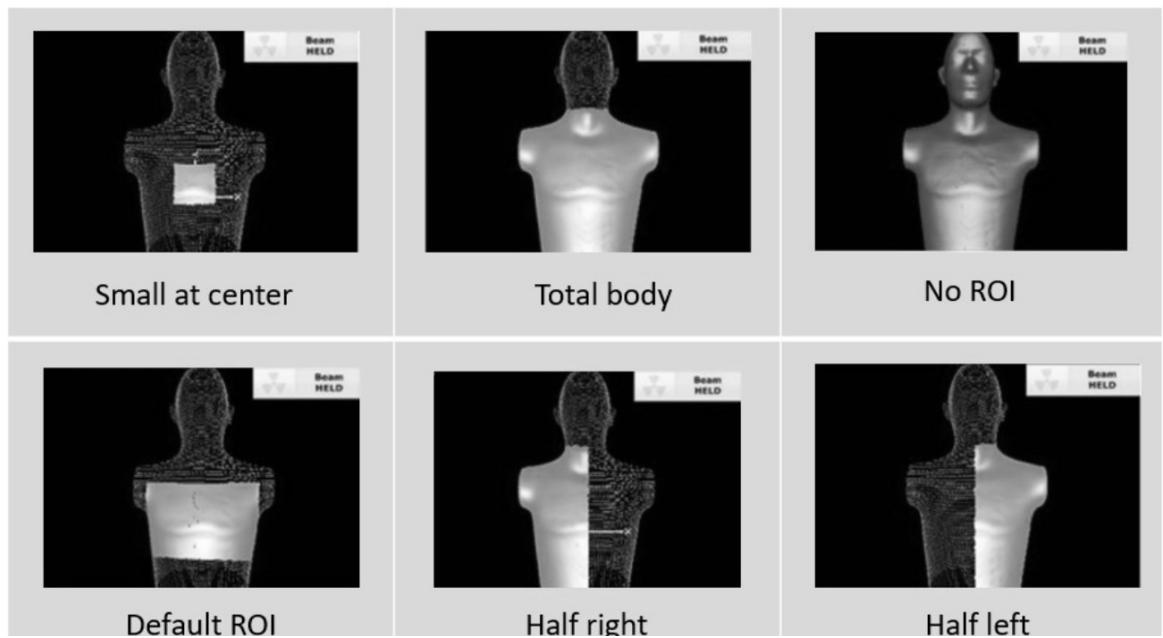
เพื่อศึกษาผลของแสงสว่างต่อการสร้างภาพจำลองพื้นผิวของผู้ป่วยของระบบ AlignRT ทำการศึกษาโดยตรวจจับตำแหน่งของหุ่นจำลองการรักษาโดยใช้ระบบภาพสามมิติแบบตรวจจับตลอดเวลา ในสภาวะของแสงมีมากไปจนถึงสว่างมากตามเงื่อนไขของการเปิดไฟตามจำนวนสวิทช์ไฟในห้องฉายรังสี โดยใช้ light meter (Unfors RaySafe, Sweden) วัดแสงตามการปิดไฟจากสว่างมากไปสว่างน้อย ดังนี้ Type 1=131.4 lux, Type 2=125.3 lux, Type 3=123.0 lux, Type 4 = 5.60 lux, Type 5 = 4.78 lux

3. Skin tone protocol effect

ระบบ AlignRT สร้างภาพโดยการใช้กล้องจับภาพแสงอินฟราเรดที่สะท้อนจากตัวผู้ป่วย เพื่อป้องกันการสูญเสียสัญญาณข้อมูลในผู้ป่วยที่มีสีผิวเข้ม ระบบจึงมีตัวเลือกปรับความเข้มของแสง infrared โดยมีหมวด fair, mid และ dark ให้เหมาะสมกับผิวของผู้ป่วยซึ่งขึ้นอยู่กับดุลยพินิจของผู้ใช้ โดยภาพสามมิติจำลองผิวหนังของผู้ป่วยจะมีผลเปลี่ยนแปลงไปตามความเข้มของแสง infrared ทำการศึกษาผลของ skin tone protocol โดยใช้ rando phantom และ surface phantom ซึ่งมีสีผิวที่แตกต่างกันเป็นสีดำและสีขาวตามลำดับ โดยใช้ skin tone protocol ทั้งสามหมวดมาหาค่าความคลาดเคลื่อนของหุ่นจำลองหัวด้านในภาพที่ 3

4. Region of interest effect

ระบบ AlignRT ใช้ค่าความเปลี่ยนแปลงของภาพสามมิติตรวจจับแบบตลอดเวลาจำลองพื้นผิวในบริเวณจุดที่สนใจเปรียบเทียบกับภาพอ้างอิงแสดงเป็นค่าความคลาดเคลื่อนตำแหน่งของหุ่นจำลองการรักษา ดังนั้นขนาดและตำแหน่งของจุดที่สนใจ (ROI) จึงมีผลต่อค่าความคลาดเคลื่อนที่ได้ จึงจำเป็นต้องศึกษาตัวแปรนี้ด้วยโดยจัดทำหุ่นจำลองบนเตียงวัดค่าความคลาดเคลื่อน


โดยระบบ AlignRT จากนั้นเปลี่ยนแปลงขอบเขตที่สนใจเป็น 6 แบบ คือ ROI ขนาด 10×10 ซม.2 คลุมบริเวณจุดตรวจจับหุ่นจำลอง (small at center), ROI ขนาด 40×40 ซม.2 คลุมบริเวณตัวทั้งหมดยกเว้นศีรษะของหุ่นจำลอง (total body), ROI ขนาด 50×50 ซม.2 คลุมทุกส่วนของหุ่นจำลองโดยไม่นั่นจุดใดจุดหนึ่ง (no ROI), ROI ขนาด 20×30 ซม.2 คลุมบริเวณซึ่งออกหุ่นจำลอง (default ROI), ROI ขนาด 20×40 ซม.2 คลุมทั้งตัวด้านซ้ายของหุ่นจำลอง (half left) และ ROI ขนาด 20×40 ซม.2 คลุมทั้งตัวด้านขวาของหุ่นจำลอง (half right) ดังแสดงในภาพที่ 3

5. Couch angle effect

ระบบ AlignRT ใช้กล้องในการสร้างภาพสามมิติอย่างน้อยสองกล้อง แต่ละกล้องทำมุม 120 องศาซึ่งกันและกัน ในขณะที่กล้องตัวที่สามจะถูกติดตั้งบริเวณปลายเท้าของผู้ป่วยเพื่อป้องกันการบดบังจากหัวเครื่องฉายรังสี ในขณะเดียวกันการหมุนของเตียงอาจมีผลต่อการสร้างภาพสามมิติเนื่องจากระยะการหมุนของกล้องจะถูกผิดหวังของผู้ป่วยเบลี่ยนแปลงไป ดังนั้นจึงจำเป็นต้องศึกษาผลกระทบจากการหมุนของเตียงโดยตรวจจับความคลาดเคลื่อนของหุ่นจำลองบนเตียงฉายรังสีที่หมุนไปทางด้านซ้ายและทางด้านขวาทุกๆ 10 องศาจนถึง 90 องศา ทั้งสองด้านดังแสดงในภาพที่ 4

6. Time effect

การใช้กล้อง infrared จากระบบ AlignRT ในการสร้างภาพจำลองพื้นผิวแบบสามมิติเป็นเวลานานอาจทำให้อุณหภูมิของกล้องเพิ่มสูงขึ้นซึ่งจะทำให้ความสามารถในการสร้างแสง infrared ไม่คงที่ซึ่งอาจมีผลต่อการสร้างภาพสามมิติได้ เพื่อศึกษาผลของเวลาในการใช้งานต่อระบบ AlignRT จึงทำการศึกษาโดยวางหุ่นจำลองการรักษาบนเตียงฉายรังสีและทำการตรวจจับค่าความคลาดเคลื่อนจากค่าเฉลี่ยของการอ่านค่าที่

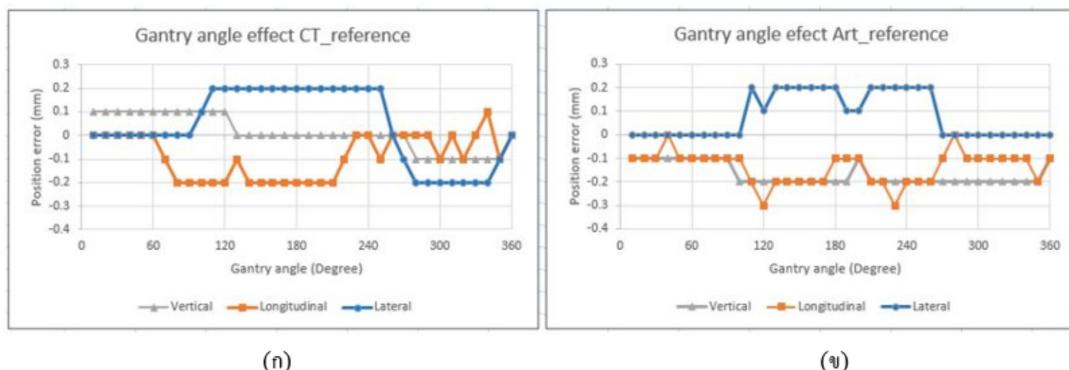
ภาพที่ 3 ROI ขนาดต่างๆ ที่ใช้ในการศึกษา

ภาพที่ 4 การศึกษาผลของ couch angle ต่อความถูกต้องของระบบ AlignRT
โดย (ก) couch angle เท่ากับ 135 องศา (ข) couch angle เท่ากับ 270 องศา

เปลี่ยนไปโดยระบบ AlignRT ทุกๆ 30 นาทีซึ่งเป็นเวลาที่ใช้งานในแต่ละเคส เป็นเวลาทั้งหมด 330 นาที ซึ่งเป็นเวลาที่มากกว่าที่ใช้ในทางคลินิกในแต่ละวัน ซึ่งทางโรงพยาบาลของเราใช้เวลาไม่เกิน 300 นาทีต่อวัน โดยใช้ภาพอ้างอิงที่ได้จากการสร้างของระบบ AlignRT ในขณะทำการทดลอง (ART_S) ภายหลังจากการจัดท่าหุ่นจำลองเพื่อลดค่าความคลาดเคลื่อนจากการจัดท่าของหุ่นจำลอง

ผลการศึกษา

ผลการศึกษาคุณลักษณะของระบบจำลองภาพสามมิติแบบตรวจจับตลอดเวลา แสดงผลในหัวข้อต่อๆ ได้ดังนี้


1. Gantry angle effect

ค่าความคลาดเคลื่อนระหว่างภาพจำลองพื้นผิวแบบสามมิติจากระบบ AlignRT กับภาพอ้างอิง ART_S และ CT_S ระหว่างการหมุนของ gantry ทุกๆ 10 องศาจนครบรอบ แสดงในภาพที่ 5

เมื่อใช้ภาพ ART_S เป็นภาพอ้างอิงพบค่าความคลาดเคลื่อนอยู่ระหว่าง -0.3 ถึง 0.2 มม. ค่าความคลาดเคลื่อนที่มากถูกพบอยู่ในช่วงครึ่งล่างของการหมุนของ gantry คือในช่วง 100 ถึง 260 องศา ในทุกๆ ทิศทางอย่างไรก็ตีค่าความคลาดเคลื่อนนี้ถือว่ามีผลน้อยมากและเมื่อใช้ภาพ CT_S เป็นภาพอ้างอิงก็เป็นไปในทิศทางเดียวกันกับการใช้ภาพ ART_S เป็นภาพอ้างอิง โดยที่ทุกทิศทางมีค่าความคลาดเคลื่อนสูงสุดเพียง 0.2 มม.

2. Room light effect

เนื่องจากข้อจำกัดของการปิดไฟในห้องฉายรังสี จึงสามารถแบ่งระดับของแสงไฟในห้องฉายรังสีได้เป็นแบบมีความเข้มสูงและต่ำเท่านั้น โดยในกรณีที่ห้องมีความเข้มของแสงสูง ห้องจะมีความสว่างมาก (ระดับที่ 1-3) มีความเข้มแสง เท่ากับ 131.4-123.0 lux ไม่พบค่าความคลาดเคลื่อน เนื่องจากเป็นค่าความสว่างที่ใกล้เคียงกับค่าความสว่างที่ใช้ในการทำประกันคุณภาพ

ภาพที่ 5 ค่าความคลาดเคลื่อนของตำแหน่งหุ่นจำลอง rando phantom ตรวจจับได้โดยระบบ AlignRT ตลอดการหมุนของ gantry โดยใช้ (ก) CT_S และ (ข) Art_S เป็นภาพอ้างอิง

ประจำเดือนของระบบ AlignRT และเมื่อห้องอยู่ในสภาวะแสงน้อย (ระดับ 4-5) โดยมีค่าความเข้มของแสงเท่ากับ 5.6-4.78 lux ค่าความคลาดเคลื่อนถูกพบมากที่สุด

เท่ากับ 0.9 มิลลิเมตร ในแนว vertical ที่มีความเข้มแสงเท่ากับ 4.78 lux ซึ่งเป็นระดับแสงที่มีความมืดที่สุด โดยใช้ ART_S เป็นภาพอ้างอิง ดังแสดงในตารางที่ 1

ตารางที่ 1 ค่าความคลาดเคลื่อนของตำแหน่งหุ่นจำลองที่ตรวจจับได้โดยระบบ AlignRT ในสภาวะของแสงภายในห้องประภากต่างๆ เมื่อใช้ภาพ Art_S และ CT_S เป็นภาพอ้างอิง

Room Light Intensity (Lux)	ART_S			CT_S		
	Vert. (mm)	Long. (mm)	Lat. (mm)	Vert. (mm)	Long. (mm)	Lat. (mm)
131.4	0.0	0.0	0.0	0.0	0.0	0.0
125.3	0.0	0.0	0.0	0.0	0.0	0.0
123.0	0.0	0.0	0.0	0.0	0.0	0.0
5.60	0.8	0.6	0.5	0.4	0.3	0.4
4.78	0.9	0.6	0.7	0.5	0.5	0.4

3. Skin tone protocol effect

ตารางที่ 2 แสดงผลการศึกษาผลของ skin tone protocol ต่อการเบรียบเทียบภาพระหว่าง ภาพจำลองพื้นผิวสามมิติแบบตรวจจับตลอดเวลา กับภาพอ้างอิง ART_S และ CT_S ตามลำดับ โดยใช้ rando phantom และ surface phantom of AlignRT เป็นหุ่นจำลองแทนผู้ป่วยที่มีผิวสีดำและสีขาวตามลำดับ โดยค่าความคลาดเคลื่อนของตำแหน่งหุ่นจำลองที่ถูกตรวจจับได้อยู่ในช่วง ± 1 mm. ในทุกทิศทาง เมื่อใช้หุ่นจำลองเป็น rando phantom ที่มีผิวสีดำ ค่าความคลาดเคลื่อนจะพบได้มากที่สุดเมื่อใช้ fair skin tone protocol เมื่อเปลี่ยน skin tone protocol เป็น medium หรือ dark ค่าความคลาดเคลื่อนของตำแหน่งหุ่นจำลองที่ถูกตรวจจับได้ส่วนใหญ่มีค่ามากขึ้นตามลำดับในการใช้ภาพอ้างอิงทั้งสองแบบ ซึ่งเป็นไปในทางตรงกันข้ามกับการใช้ Rando phantom ที่มีผิวสีดำเป็นหุ่นจำลอง ดังนั้นการเลือกโหมดของ skin tone protocol ควรใช้ให้เหมาะสมกับสีผิวของผู้ป่วยแต่ละราย

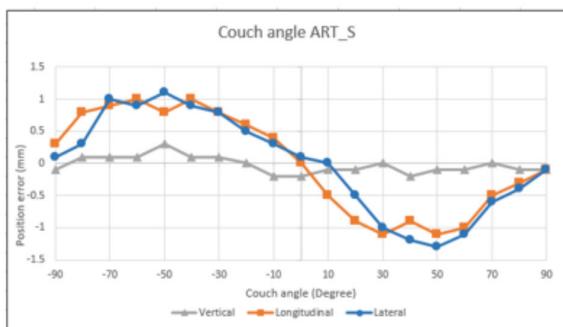
ส่วนใหญ่จะมีมากขึ้น ตามลำดับในการใช้ภาพอ้างอิงทั้งสองแบบ ในขณะที่การใช้ dark skin tone protocol จะให้ค่าความคลาดเคลื่อนที่น้อยกว่าและเมื่อเปลี่ยนหุ่นจำลองการรักษาเป็นหุ่นจำลองพื้นผิวของ AlignRT ซึ่งมีผิวเป็นสีขาว พบร่วม fair skin tone protocol แสดงค่าความคลาดเคลื่อนน้อย เมื่อเปลี่ยน skin tone protocol เป็น medium หรือ dark ค่าความคลาดเคลื่อนของตำแหน่งหุ่นจำลองที่ถูกตรวจจับได้ส่วนใหญ่มีค่ามากขึ้นตามลำดับในการใช้ภาพอ้างอิงทั้งสองแบบ ซึ่งเป็นไปในทางตรงกันข้ามกับการใช้ Rando phantom ที่มีผิวสีดำเป็นหุ่นจำลอง ดังนั้นการเลือกโหมดของ skin tone protocol ควรใช้ให้เหมาะสมกับสีผิวของผู้ป่วยแต่ละราย

ตารางที่ 2 ค่าความคลาดเคลื่อนของตำแหน่งหุ่นจำลอง rando phantom ที่มีสีผิวโทนมืดและphantom of AlignRT ที่มีสีผิวโทนสว่าง ตรวจจับได้โดยระบบ AlignnRT ในการเลือกใช้ Skin tone protocol ต่างๆ ของระบบ โดยใช้ ART_S และ CT_S เป็นภาพอ้างอิง

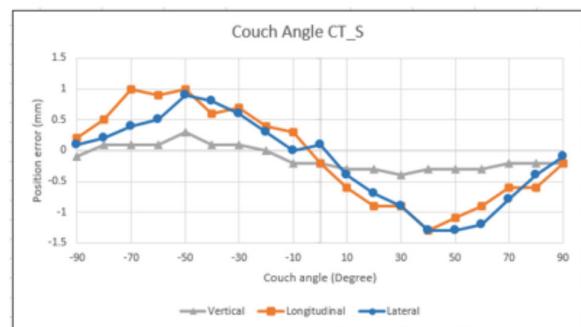
Rando phantom (black surface)					Phantom of AlignRT (white surface)				
Protocol	ART_S			CT_S			ART_S		
	Skin tone	Vert. (mm)	Long. (mm)	Lat. (mm)	Vert. (mm)	Long. (mm)	Lat. (mm)	Vert. (mm)	Long. (mm)
Fair	-0.2	-0.4	-0.8	-0.2	-0.5	-0.5	-0.1	-0.3	-0.6
Medium	-0.4	-0.6	0.4	-0.5	-0.3	0.2	-0.1	-0.5	0.7
Dark	-0.3	-0.2	0.2	-0.3	-0.3	0.3	-0.1	-0.6	-0.9

4. Region of interest effect

ค่าความคลาดเคลื่อนที่ตรวจจับได้โดยใช้ระบบ AlignRT บน ROI ที่มีรูปแบบต่างๆ กันแสดงในตารางที่ 3 โดยแบ่ง ROI เป็น 6 รูปแบบ และใช้ ART_S และใช้ CT_S เป็นภาพอ้างอิง พบว่า ค่าความคลาดเคลื่อนมีการเปลี่ยนแปลงไปในช่วง -0.5 ถึง 1.2 มม. เมื่อเปลี่ยนแปลง ROI และค่าความคลาดเคลื่อนที่ตรวจจับได้มีค่ามากที่สุด ในขณะที่ใช้รูปแบบ small at center และ Default เป็น ROI


5. Couch angle effect

ผลการศึกษา couch angle effect แสดงในภาพที่ 6 ค่าความคลาดเคลื่อนของตำแหน่ง rando phantom ที่ถูกตรวจจับได้ ทุกๆ การหมุนเตียง 10 องศา ไปตลอด


ทางซ้ายและทางขวา 90 องศา โดยระบบ AlignRT เปรียบเทียบกับภาพ ART_S และ CT_S ที่ถูกใช้เป็นภาพอ้างอิง ค่าการเปลี่ยนแปลงของตำแหน่งที่ถูกจับได้อยู่ระหว่าง -1.3 ถึง 1.1 มม. เมื่อใช้ภาพ ART_S เป็นภาพอ้างอิง ในขณะที่ ค่าการเปลี่ยนแปลงของตำแหน่งหุ่นจำลองจะมีค่าอยู่ระหว่าง -1.3 ถึง 1.0 มม. เมื่อใช้ CT_S เป็นภาพอ้างอิง จะเห็นว่าแนวโน้มของค่าความคลาดเคลื่อนคล้ายกันในการใช้ภาพอ้างอิงทั้งสองภาพ คือ ค่าความคลาดเคลื่อนจะเพิ่มมากขึ้นเมื่อเตียงอยู่ในมุม -70 ถึง -30 องศาและ 20-70 องศา โดยค่าความคลาดเคลื่อนในแนว Longitudinal และ Lateral มีค่ามากที่สุดในขณะที่ค่าความคลาดเคลื่อนในแนว vertical จะมีค่าน้อยหรืออาจกล่าวได้ว่า แนว vertical แบบไม่ได้รับผลกระทบจากการหมุนเตียงเลย

ตารางที่ 3 ค่าความคลาดเคลื่อนของตำแหน่งหุ่นจำลอง ที่มี ROI ขนาดต่างๆ ตรวจจับได้โดยระบบ AlignRT โดยใช้ ART_S และ CT_S เป็นภาพอ้างอิง

Types of ROI	ART_S			CT_S		
	Vert. (mm)	Long. (mm)	Lat. (mm)	Vert. (mm)	Long. (mm)	Lat. (mm)
Small at center	-0.3	-0.5	0.7	-0.5	-0.3	1.2
Cover all phantom	0.1	0.0	0.0	0.0	-0.1	-0.2
No ROI	0.0	0.0	0.0	-0.1	-0.1	-0.1
Default	-0.3	-0.1	0.1	-0.3	-0.2	0.1
Half left	0.0	-0.1	0.0	0.1	-0.3	0.2
Half right	0.0	0.1	0.0	-0.1	0.3	0.2

(ก)

(ข)

ภาพที่ 6 ค่าความคลาดเคลื่อนของตำแหน่งหุ่นจำลอง rando phantom ที่ตรวจจับได้โดยระบบ AlignRT ตลอดการหมุนของ couch โดยใช้ (ก) CT_S และ (ข) Art_S เป็นภาพอ้างอิง

6.Time effect

เมื่อเวลาการใช้เครื่องมากขึ้น ไม่พบร์ค่าความคลาดเคลื่อนที่มากขึ้น โดยค่าความคลาดเคลื่อนมากที่สุด เท่ากับ ± 0.2 มม. ในแนว vertical และ lateral ในขณะที่ค่าความคลาดเคลื่อนมากที่สุดในแนว longitudinal เท่ากับ -0.5 มม. ดังแสดงในตารางที่ 4

บทวิจารณ์

จากการศึกษา gantry angle effect พบว่า จากการใช้ทั้งภาพ ART_S และ CT_S เป็นภาพอ้างอิง มีค่าความคลาดเคลื่อนเกิดขึ้นจากการบดบังของ gantry ค่อนข้างน้อย โดยค่าความคลาดเคลื่อนในทุกๆ ทิศทางมีเพียง 0.2 มม. ผลของการคลาดเคลื่อนนี้ สอดคล้องกับการทดลองของ Peng และคณะ^[10] ที่พบว่า ค่าความคลาดเคลื่อนมีน้อยกว่า 0.4 มิลลิเมตร จากการ

ใช้ ART_S และ CT_S เป็นภาพอ้างอิง ซึ่งสามารถสรุปได้ว่า เมื่อนำกล้องตัวที่ 3 มาติดตั้งเพิ่มบริเวณปลายเตียง จาก AlignRT version 1 ที่มีกล้องเพียงสองตัว สามารถช่วยแก้ปัญหาการถูกบดบังของกล้องจาก gantry ได้จึงไม่ส่งผลกระทบการสร้างภาพจำลองพื้นผิวแบบสามมิติ

จากการศึกษา room light effect พบว่า ค่าความคลาดเคลื่อนถูกพบมากที่สุดที่ระดับแสงน้อยที่สุด มีค่าเท่ากับ 0.9 มม. ในแนว vertical ที่ระดับแสง 4.8 lux ซึ่งเป็นระดับแสงที่มีดีที่สุดโดยการใช้ภาพ ART_S เป็นภาพอ้างอิง อย่างไรก็ตาม สามารถลดค่าความคลาดเคลื่อนให้น้อยที่สุดเท่าที่จะทำได้ โดยการใช้ความสว่างภายในห้องให้เท่ากับขั้นตอนการสอบเทียบ ระบบของการทำประกันคุณภาพประจำวันและประจำเดือน ผลการทดลองของ Peng และคณะ^[10] ที่ได้ทำการศึกษาค่าความคลาดเคลื่อนของการเบรียบเทียบภาพ

ตารางที่ 4 ค่าความคลาดเคลื่อนของตำแหน่งทุนจำลอง rando phantom ตรวจจับได้โดยระบบ AlignRT ตามระยะเวลาทุกๆ 30 นาที เป็นเวลาทั้งหมด 330 นาที โดยใช้ ART_S เป็นภาพอ้างอิง

Time (min.)	ART_S		
	Vert. (mm)	Long. (mm)	Lat. (mm)
30	-0.1	0	0.2
60	-0.1	-0.4	0.1
90	-0.2	-0.4	0.2
120	-0.1	-0.5	0.1
150	-0.2	-0.2	0
180	-0.1	-0.2	0.1
210	-0.2	-0.2	0.2
240	-0.1	-0.2	0.1
270	-0.2	-0.4	0.2
300	-0.1	-0.4	0.2
330	-0.1	-0.5	0.2

(registration) ในระดับความเข้มแสงที่ต่างกันมีค่า น้อยกว่า 0.2 mm. ซึ่งผลการศึกษานี้มีความแตกต่างจาก การศึกษาของ Peng และคณะ เนื่องจากข้อจำกัดของ การปรับระดับแสงภายในห้องที่แตกต่างกัน

เนื่องจาก skin tone protocol ของ AlignRT ถูกออกแบบมาเพื่อปรับความเข้มของแสง infrared ให้ เหมาะสมกับลักษณะของสีผิวของผู้ป่วยเพื่อให้แสดง ค่าความคลาดเคลื่อนได้ถูกต้องมากที่สุด ดังนั้นควรปรับ skin tone protocol ให้ตรงกับลักษณะสีผิวของผู้ป่วย เพื่อให้ AlignRT สามารถหาค่าความคลาดเคลื่อนได้ ถูกต้องมากที่สุด

ค่าความคลาดเคลื่อนจะน้อยเมื่อใช้ ROI ที่มีขนาดใหญ่ หรืออยู่ในบริเวณที่มีพื้นผิวราบรื่น ในทางกลับกันค่า ความคลาดเคลื่อนจะมาก เมื่อ ROI มีขนาดเล็กหรืออยู่ บริเวณที่มีความลาดชันสูง เนื่องจากค่าความคลาดเคลื่อน ถูกคำนวณเฉลี่ยจากค่าความคลาดเคลื่อนในพื้นที่ ROI ทั้งหมด ดังนั้นเมื่อ ROI มีขนาดเล็กจะมีผลมากกว่า ค่าความคลาดเคลื่อนที่เท่ากันใน ROI ที่มีขนาดใหญ่ กว่าและในบริเวณพื้นผิวที่มีความลาดชัน การสร้างภาพ จำลองพื้นผิวแบบ 3 มิติจึงมีความถูกต้องน้อยกว่าบริเวณ ที่มีพื้นที่ราบรื่น เนื่องจากมีข้อจำกัดในการเข้าถึง ของแสง infrared จึงทำให้บริเวณพื้นผิวที่มีความลาดชัน มีค่าความคลาดเคลื่อนมากกว่าบริเวณพื้นผิวที่มีความ ราบรื่น ดังนั้นควรเลือก ROI ให้ครอบคลุมบริเวณ ที่มีรอยโรคอยู่และเลือก ROI ที่มีขนาดใหญ่และอยู่ใน บริเวณพื้นที่ที่มีความราบรื่นเพื่อเพิ่มความถูกต้องของ การแสดงค่าความคลาดเคลื่อนของระบบ AlignRT เมื่อ เปรียบเทียบกับการศึกษาของ Peng และคณะ^[10] ที่แสดง ค่าเฉลี่ยของการเปรียบเทียบภาพมีค่าความแปรปรวนจาก ผลกระทบของการเลือก ROI เท่ากับ 0.32 ± 0.2 mm. ซึ่งผลการศึกษาแสดงให้เห็นว่า การเลือก ROI ที่เหมาะสม จะสามารถลดค่าความคลาดเคลื่อนของการเปรียบเทียบ ภาพได้ จะเห็นว่าเมื่อใช้ภาพ ART_S เป็นภาพอ้างอิงให้ ค่าความคลาดเคลื่อนน้อยกว่าใช้ภาพ CT_S เป็นภาพ

อ้างอิงเนื่องจากภาพ ART_S เป็นภาพที่เก็บในห้อง ฉายรังสีในสถานการณ์จริงโดยใช้ระบบ AlignRT เองจะมี ความเหมือนกับภาพจำลองพื้นผิวที่สร้างมากกว่าภาพ CT_S ที่สร้างจากเครื่องเอกซเรย์คอมพิวเตอร์ที่จำลอง การรักษา (CT simulator) ที่ต้องผ่านการสร้าง Body โดยกระบวนการ contouring จากระบบ planning ก่อน จึงทำให้เมื่อใช้ภาพอ้างอิงจาก ART_S เป็นภาพอ้างอิง จะมีค่าความคลาดเคลื่อนน้อยกว่าเมื่อใช้ภาพ CT_S เป็นภาพอ้างอิง และจะยิ่งเห็นความแตกต่างชัดมากขึ้น เมื่อเลือกใช้ ROI ที่มีขนาดเล็กและมีพื้นที่อยู่ในบริเวณ ลาดชัน

ค่าความคลาดเคลื่อนเกิดขึ้นมากที่สุดในแนว longitudinal และ lateral เมื่อหมุนเตียงไปในมุม ± 45 องศาจากแนวกึ่งกลางในขณะที่ค่า couch vertical ไม่ได้รับผลกระทบจากการหมุนเตียงเป็นไปในทิศทาง เดียวกันเมื่อใช้ CT_S และ ART_S เป็นภาพอ้างอิง ซึ่งจากการศึกษาพบว่า ค่าความคลาดเคลื่อนของ ความคลาดเคลื่อนมีค่ามากที่สุดอยู่ในช่วง -70 ถึง -30 องศา และ 20 ถึง 70 องศาของการหมุนเตียง เนื่องจาก การสร้างภาพจำลองพื้นผิว 3 มิติ จำเป็นต้องใช้สัญญาณ จากการเก็บข้อมูลภาพทั้งสามมุมกล้องและในทั้งสอง ช่วงของเตียงนี้มีระยะไกลจากกล้องด้านข้างจากด้าน ตรงกันข้ามของการหมุนเตียงมากที่สุดทำให้ภาพด้าน ข้างฝั่งเดียวกับกล้องที่อยู่ไกลมีสัญญาณในการสร้างภาพ ที่ไม่สมบูรณ์ ประกอบกับเป็นมุมแนวตรงกับการติดตั้ง กล้องด้านข้างอีกด้านที่ไม่สามารถให้สัญญาณชดเชยจากกล้อง ด้านเดียวกับมุมที่หมุนไปเก็บภาพที่ขาดไปได้ไม่สมบูรณ์ เช่นกัน แต่เมื่อระยะการหมุนมากขึ้น กล้องตัวที่อยู่ ด้านเดียวกับมุมที่หมุนไปจะสามารถเก็บสัญญาณได้มาก ขึ้นทำให้ค่าความคลาดเคลื่อนที่มีค่าน้อยลงอีกรั้ง

การศึกษาของ Peng และคณะ^[10] สรุปว่า การใช้ กล้องตรวจจับตำแหน่งติดต่อกันเป็นเวลานานทำให้ อุณหภูมิของกล้องเพิ่มสูงขึ้น ทำให้หลอดภาพที่สร้างแสง อินฟราเรดทำงานไม่ค่ำที่ซึ่งอาจมีผลต่อการสร้างภาพ

จำลองพื้นผิวสามมิติ ในการศึกษานี้ พบร่วมเมื่อเวลาเพิ่มขึ้นไม่พบการเพิ่มขึ้นของค่าความคลาดเคลื่อนในทุกทิศทาง ค่าความคลาดเคลื่อนมากที่สุดที่ตรวจจับได้มากที่สุด เท่ากับ ± 0.2 มม. เท่านั้นในแนว vertical และ lateral ในขณะที่ตรวจพบค่าความคลาดเคลื่อนเท่ากับ -0.5 มม. ในแนว longitudinal จากผลการทดลองพบว่า ระยะเวลาการใช้เครื่องไม่มีผลต่อการสร้างภาพจำลองพื้นผิวแบบสามมิติ ซึ่งการศึกษานี้เป็นการศึกษาเครื่องทุกๆ 30 นาที จนครบเวลา 330 นาทีโดยไม่มีการใช้เครื่องแบบต่อเนื่อง

อย่างไรก็ได้การศึกษาทั้งหมดทำการทดลองในทุนจำลองที่อยู่นิ่ง ดังนั้นการนำระบบ AlignRT ไปทดลองในทุนจำลองที่มีการเคลื่อนไหวหรือนำไปใช้ในผู้ป่วยจริงอาจให้ผลการทดลองที่แตกต่างกัน จำเป็นต้องทำการศึกษาต่อไป

ข้อสรุป

การศึกษาคุณลักษณะของระบบ AlignRT เพื่อตรวจสอบปัจจัยที่มีผลกระทบต่อระบบพบว่า ทุกปัจจัยมีค่าผลต่อระบบต่อระบบน้อย (ค่าความคลาดเคลื่อน < 1.5 มม.) โดยปัจจัยที่มีผลต่อระบบ AlignRT มากที่สุดคือ Couch angle (ค่าความคลาดเคลื่อน > 1 มม.) ปัจจัยที่มีผลต่อระบบ AlignRT น้อย คือ room light, Skin tone Protocol และ ROI (ค่าความคลาดเคลื่อน < 1 มม.) และปัจจัยที่มีผลต่อระบบ AlignRT น้อยที่สุดคือ gantry angle และ time (ค่าความคลาดเคลื่อน < 0.5 มม.) ระบบมีความน่าเชื่อถือเนื่องจากมีค่าความคลาดเคลื่อนอยู่ในระดับน้อยกว่า 1.5 มม. จึงสามารถใช้เป็นระบบพาหนะวิถีในการจัดทำผู้ป่วยในทุกตำแหน่งให้ถูกต้องยิ่งขึ้นได้

เอกสารอ้างอิง

1. Laaksomaa M, Kapanen M, Skyttä T, Peltola S, Hyödynmaa S, et al. Estimation of optimal matching position for orthogonal kV setup images and minimal setup margins in radiotherapy of whole breast and lymph node areas. *Rep Pract Oncol Radiother* 2014;19: 369–75.
2. Laaksomaa M, Kapanen M, Haltamo M, Skyttä T, Peltola S, et al. Determination of the optimal matching position for setup images and minimal setup margins in adjuvant radiotherapy of breast and lymph nodes treated in voluntary deep inhalation breath-hold. *Radiat Oncol* 2015;10:76.
3. Wikstrom K, Isacsson U, Nilsson K, Ahnesjo A. Reproducibility of heart and thoracic wall position in repeated deep inspiration breath holds for radiotherapy of left-sided breast cancer patients. *Acta Oncol* 2018;57:1318–24.
4. Skyttä T, Kapanen M, Laaksomaa M, Peltola S, Haltamo M, et al. Improving the reproducibility of voluntary deep inspiration breath hold technique during adjuvant left-sided breast cancer radiotherapy. *Acta Oncol* 2016;55:970–5.

5. Li G, Ballanrud A, Chan M, Ma R, Beal K, et al. Clinical experience with two frameless stereotactic radiosurgery (fSRS) systems using optical surface imaging for motion monitoring. *J Appl Clin Med Phys* 2015;16:149-62.
6. Willoughby T, Lehmann J, Bencomo JA, Jani SK, Sanranam L, et al. Quality assurance for nonradiographic radiotherapy localization and positioning systems: report of Task Group 147. *Med Phys* 2012;39:1728-47.
7. Gierga DP, Riboldi M, Turcotte JC, Sharp GC, Jiang SB, et al. Comparison of target registration errors for multiple image-guided techniques in accelerated partial breast irradiation. *Int J Radiat Oncol Biol Phys* 2008;70:1239-46.
8. Bert C, Methane KG, Doppke K, Chen GT. A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup. *Med Phys* 2005;32:2753-62.
9. สาขาวิชารังสีรักษาและมะเร็งวิทยา คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย จาก <http://www.chulacancer.net/>.
10. Peng JL, Kahler D, Li JG, Samant S, Yan G, Amdur R, et al. Characterization of a real-time surface image -guided stereotactic positioning system. *Med Phys* 2010;37:5421-33.

สมาคมรังสีรักษากาและมะเร็งวิทยาแห่งประเทศไทย

<https://www.thastro.org>