

Optimal pressure of Continuous Positive Airway Pressure (CPAP) for reduction mean heart dose in left-sided breast cancer radiotherapy

แรงดันที่เหมาะสมของ การรักษาด้วยแรงดันบวกต่อเนื่องทางเดินหายใจ (CPAP) เพื่อลดปริมาณรังสีเฉลี่ยที่หัวใจได้รับในการฉายรังสีรักษามะเร็งเต้านมด้านซ้าย

Sawanya Suwandee¹, Jiraporn Setakoranukul¹, Ukrit Choochinprakarn¹, Kullathorn Thephamongkhon¹

¹Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University

Corresponding author

Sawanya Suwandee

¹Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2, Wanglang Road, Bangkoknoi, Bangkok 10700

Email: sawanya.suw@mahidol.ac.th

สรรยา สุวรรณดี¹, จิราพร เสตกรณกุล¹, อุกฤษ ชูчинปราการ¹, กุลธร เทพมงคล¹

¹สาขาวิชารังสีรักษา ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

ผู้นิพนธ์ประสานงาน

สรรยา สุวรรณดี

สาขาวิชารังสีรักษา ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

เลขที่ 2 ถนนวังหลัง แขวงศิริราช เขตบางกอกน้อย กรุงเทพฯ 10700

อีเมล: sawanya.suw@mahidol.ac.th

Submitted: Jul 11, 2024

Revised: Oct 22, 2024

Accepted: Nov 11, 2024

Abstract

Backgrounds: Although deep inspiration breath hold (DIBH) method is beneficial for improving left-sided breast radiotherapy, this technique has limited availability and some patients have poor compliance. Continuous positive airway pressure (CPAP) has been introduced as an alternative to DIBH for reproducing patient anatomy and managing tumor motion. This technique can increase lung volume, thereby displacing the heart from the treatment fields.

Objective: This study aimed to evaluate the relationship between CPAP positive pressure and mean heart dose (MHD) in the DIBH technique. Additionally, we investigated the optimal positive pressure of the CPAP method to reduce heart and lung doses in radiotherapy for left-sided breast cancer patients.

Materials and methods: Left-sided breast cancer patients were trained prior to CT simulation by wearing the CPAP mask and acclimatizing to positive pressure. Automated breast planning in breath hold-CT images was planned. The dosimetric data of MHD, heart V25%, mean left anterior descending artery (LAD), max LAD, CPAP pressure, and left lung volume were collected.

Results: In 23 left-sided breast cancer patients who successfully utilized the CPAP technique, the MHD decreased from 5.28 Gy (free breath, FB) to 3.46 Gy (CPAP). We found that CPAP pressure should not exceed 14 cmH₂O. For patients who were unable to tolerate a deep breath hold with high pressure, our study determined that a CPAP pressure of 12 cmH₂O was sufficient to control the MHD. In addition heart V25, mean LAD, and max LAD were also decreased from 7.25% (FB) to 3.57% (CPAP), 25.27 Gy (FB) to 16.99 Gy (CPAP), and 44.84Gy (FB) to 31.69 Gy (CPAP), respectively.

Conclusion: CPAP is an effective tool for reducing MHD in DIBH patients. CPAP positive pressure values 12 to 14 cmH₂O is a sufficient breathing pressure to use in left-sided breast radiotherapy.

Keywords: continuous positive airway pressure (CPAP), deep inspiration breath hold (DIBH), mean heart dose

บทคัดย่อ

หลักการและเหตุผล: เมื่่าวิธีการหายใจเข้าลึกแล้วกลับใจนิ่งจะสามารถเพิ่มประสิทธิภาพในการฉายรังสีเมะเริง เต้านมด้านซ้ายก์ตาม วิธีนี้มีใช้แค่ในบางโรงพยาบาลและบางกรณีไม่สามารถทำได้เนื่องจากความหนืดอยู่ล้ำใน การกลับใจลึกของผู้ป่วยเอง ปัจจุบันจึงมีการประยุกต์นำอุปกรณ์เครื่องอัดอากาศแรงดันบวกมาใช้ในการช่วยให้ ผู้ป่วยสามารถหายใจเข้าลึกและกลับใจนิ่งได้ โดยสามารถเพิ่มปริมาตรปอดและตันหัวใจห่างออกไปจากขอบเขต การฉายรังสี

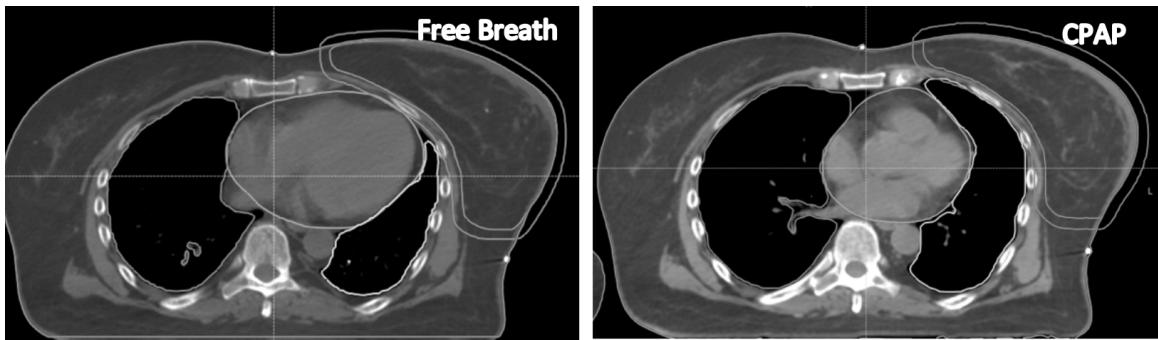
วัตถุประสงค์: เพื่อศึกษาประเมินความสัมพันธ์ของค่าแรงดันบวกกับค่าปริมาณรังสีเฉลี่ยที่หัวใจได้รับและศึกษา หาค่าแรงดันบวกที่เหมาะสมในการใช้งานเพื่อลดปริมาณรังสีที่หัวใจและปอดได้รับในผู้ป่วยฉายรังสีเมะเริงเต้านม ด้านซ้าย

วัสดุและวิธีการ: ผู้ป่วยมะเริงเต้านมด้านซ้ายทำการจำลองการฉายรังสีโดยวิธีหายใจเข้าลึกแล้วกลับใจนิ่งด้วย เครื่องอัดอากาศแรงดันบวก โดยภาพเอกซเรย์คอมพิวเตอร์ที่ได้จากการจำลองการรักษาจะนำไปใช้วางแผน การรักษาด้วยโปรแกรมการวางแผนการรักษาแบบอัตโนมัติบริเวณผนังห้องรองอก โดยผู้ทดลองจะศึกษาผลการ กระจายปริมาณรังสีที่วิวัฒนาข้างเคียงต่างๆ ได้แก่ ปริมาณรังสีเฉลี่ยที่หัวใจได้รับ ปริมาตรหัวใจได้รับรังสีปริมาณ 25 เกรย์ ปริมาณรังสีเฉลี่ยและปริมาณรังสีสูงที่สุดที่หลอดเลือดหัวใจได้รับ ปริมาณแรงดันอากาศ ปริมาตรของหัวใจ และปอดด้านซ้าย

ผลการศึกษา: ในผู้ป่วยมะเริงเต้านมด้านซ้ายจำนวน 23 รายที่สามารถใช้การเพิ่มความดันเครื่องอัดอากาศ แรงดันบวกในการจำลองการรักษา ปริมาณรังสีเฉลี่ยที่หัวใจได้รับลดลงจากการหายใจปกติ 5.28 เกรย์ เหลือ 3.46 เกรย์ และพบว่าการใช้ค่าแรงดันบวกไม่ควรเกิน 14 เซนติเมตรปอร์ท ส่วนในผู้ป่วยรายที่ไม่สามารถหายใจ เข้าลึกแล้วกลับใจนิ่งด้วยค่าแรงดันบวกที่สูง พบว่าการใช้ค่าแรงดันบวกปริมาณ 12 เซนติเมตรปอร์ทนั้นเพียงพอ ต่อการลดปริมาณรังสีที่หัวใจจะได้รับ เทคนิคนี้ยังสามารถลดปริมาตรหัวใจได้รับรังสีปริมาณ 25 เกรย์จาก 7.25 เปอร์เซ็นต์เหลือ 3.57 เปอร์เซ็นต์และลดค่าปริมาณรังสีเฉลี่ยที่หลอดเลือดหัวใจจาก 25.27 เกรย์เหลือ 16.99 เกรย์ และลดลดค่าปริมาณรังสีสูงสุดที่หลอดเลือดหัวใจจาก 44.84 เกรย์ลดลงเหลือ 31.69 เกรย์

ข้อสรุป: การใช้เครื่องอัดอากาศแรงดันบวกเป็นอีกหนึ่งวิธีที่มีประโยชน์และมีประสิทธิภาพในการรักษาผู้ป่วยมะเริง เต้านมด้านซ้ายด้วยวิธีการหายใจเข้าลึกแล้วกลับใจนิ่ง โดยค่าแรงดันอากาศในช่วง 12 ถึง 14 เซนติเมตรปอร์ท เป็นค่าแรงดันที่เหมาะสม สามารถลดปริมาณรังสีเฉลี่ยที่หัวใจจะได้รับ

คำสำคัญ: เครื่องอัดอากาศแรงดันบวก, การหายใจเข้าลึกแล้วกลับใจนิ่ง, ปริมาณรังสีเฉลี่ยที่หัวใจได้รับ


Introduction

Postoperative radiotherapy in breast cancer patients is an essential treatment to reduce the risk of locoregional recurrences and improve long term survival^[1]. With the benefit of survival improvement, breast radiotherapy become a standard treatment for early-stage breast cancer. However, radiotherapy for left-sided breast cancer with high mean heart dose (MHD) could result in increased mortality and secondary cardiac events. Previous study showed a significant linear increase in the rate of major coronary events with the mean dose to the heart increasing by 7.4% per Gray (Gy)^[2, 3]. Furthermore, RTOG 1005 phase III trial protocol recommended the MHD should be less than 4 Gy with an acceptable dose threshold of less than 5 Gy to minimize cardiac exposure to radiation for whole breast irradiation^[4]. Several studies have developed techniques to improve the dosimetry in left breast radiotherapy. The most common method that has been used is deep inspiration breath hold (DIBH). This method utilizes voluntary breathing which increases the lung volume to separate the heart from the chest wall. DIBH technique has been used in reduce the heart dose and ipsilateral lung without compromising target coverage^[5-7]. Although DIBH method is a helpful technique, some patients, especially elderly or anxiety personality patients, are unable to achieve success with this method. This results in poor compliance and longer treatment time

due to stress during operator which can increase a higher heart dose.

Recently, an alternative technique to reproduce patient anatomy and tumor motion management using continuous positive airway pressure (CPAP) was introduced. The system uses a CPAP accessory to administer positive pressure to airways during breathing entire respiratory cycle. This technique can increase lung volume which leads to pushing the heart out of treatment fields. The CT images show the effects of free breathing (FB) compared to CPAP breath hold (**Figure 1**). Previous study reported that CPAP was significantly decreased dose to critical organs, and reduced toxicity in thorax radiotherapy^[8]. Their study showed that the CPAP method increased lung volume in most patients which led the heart out of the treatment field. Moreover, this method can also decrease tumor motion and reduce margin of planning target volume (PTV). Another pilot study in breast radiotherapy also demonstrated the ability of CPAP to decrease the mean heart volume by 12% and increase the lung volume by 16% compared with patients without CPAP. The MHD also decreased from 3.02 Gy to 1.6 Gy with CPAP^[9]. However, the positive pressure used in CPAP is an individual's maximal tolerable air pressure with an undetermined heart dose at that time.

This study aimed to evaluate the relationship between CPAP positive pressure with MHD in the CPAP-breathing control technique. We also

Figure 1 CT images show effect of free breathing compared to CPAP breath hold

investigated the appropriate positive pressure of the CPAP method to reduce heart and lung doses in radiotherapy for left-sided breast cancer patients.

Materials and methods

Patients with left-sided breast cancer who required postoperative radiotherapy from February to November 2021 were enrolled in this study. The study was conducted in Siriraj Hospital, Bangkok, Thailand and ethics approval was obtained by the Siriraj Institutional Review Board.

For the study protocols, all patients were in preparation room to train with CPAP accessory prior to CT simulation by wearing the CPAP mask and acclimatizing to positive pressure. The initial CPAP pressure was started from 4 cmH₂O and gradually increased by 2 cmH₂O for 2 minutes until reaching the target pressure of 10 to 14 cmH₂O with the patient tolerance.

The final CPAP pressure was recorded. The patient then lay down on a breast board in the supine position and underwent CT simulation (Phillips Big Bore RT, Philips Healthcare, Andover, MA, USA) under free breathing (FB) conditions. After that, the patient, wearing a CPAP mask with the pressure gradually increased to 10 to 14 cmH₂O, underwent a CT simulation using the CPAP-breathing control technique. To minimize variations in contouring and treatment planning, automated atlas-based contouring was utilized to delineate the clinical target volume (CTV) for the left breast, with a planning target volume (PTV) expansion of 5 mm. The treatment plan was generated using the automated breast planning function (Raystation, Raysearch laboratory AB, Stockholm, Sweden). Two tangential fields with subfields were employed to improve dose homogeneity and avoid hot spots within the PTV, ensuring that 95% of the

PTV received 95% of the prescribed dose (50 Gy in 25 fractions). The dosimetric data of MHD, heart V25%, mean LAD, max LAD, CPAP positive pressure, left lung V20%, heart and left lung volume on both FB and DIBH plans were collected.

Results

A total of 23 cases, 40-70 years old, were enrolled in this study. Most patients (19 people) could tolerate CPAP pressure up to 14 cmH₂O. Three patients could tolerate CPAP pressure up to 12 cmH₂O and only 1 patient could tolerate pressure with 10 cmH₂O. Patient characteristics are shown in **table 1**.

Table 2 demonstrates the MHD of the patients who succeeded in DIBH with CPAP

method compared to FB technique. Not only MHD was reduced by using high CPAP pressure in DIBH but heart V25, mean LAD, and max LAD were also decreased. The MHD using CPAP pressure 10 cmH₂O (5.28 Gy) was slightly higher than the MHD of the patients with CPAP pressure 12 and 14 cmH₂O, 2.86 (1.89-3.43) Gy and 3.45 (1.1-7.55) Gy, respectively. The maximum MHD difference between CPAP pressure 10 cmH₂O and CPAP pressure 12 cmH₂O and 14 cmH₂O, using the minimum value, were 3.39 Gy and 4.18 Gy respectively. Moreover, heart V25%, mean LAD, and max LAD were also decreased from 7.11% (FB) to 3.57% (CPAP), 25.27 Gy (FB) to 16.99 Gy (CPAP), and 44.84 Gy (FB) to 31.69 Gy (CPAP), respectively.

Table 1. Patient characteristics

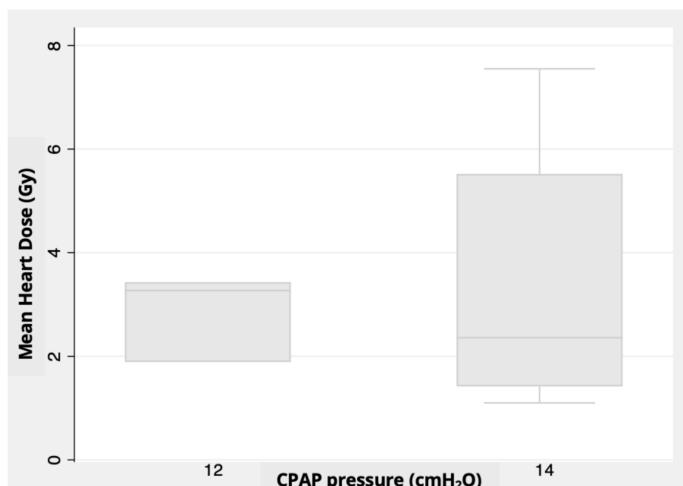

Patient characteristics (n=23)	Overall (Range)
Median age (year)	55 (40-70)
Age ≤50 years	6 patients
>50 years	17 patients
Median BMI (kg/m ²)	25 (16-34.08)
Median body weight (kg)	59.9 (42-95)
CPAP pressure (cmH ₂ O)	
14	19 patients (82.6%)
12	3 patients (13%)
10	1 patient (4.4%)

Table 2. The dosimetric results from patients with CPAP method

Parameters	FB (n=23)	All CPAP pressure (n=23)	CPAP pressure 10 cmH ₂ O	CPAP pressure 12 cmH ₂ O (min-max)	CPAP pressure 14 cmH ₂ O (min-max)
MHD (Gy)	5.28	3.46	5.28	2.86 (1.89-3.43)	3.45 (1.1-7.55)
Heart V ₂₅ (%)	7.11	3.57	6.01	2.44 (0.79-3.76)	3.63 (0-11.4)
Mean LAD (Gy)	25.27	16.99	30.74	15.35 (3.84-25.98)	16.53 (2.35-40.33)
Max LAD (Gy)	44.84	31.69	50.4	34.37(8.55-49.07)	30.29(3.72-51.15)
Heart volume (cc)	592.04	560.68	627.84	494.93(459.51-536.15)	567.53(408.59-801.93)
Lung volume (cc)	945.51	1301.05	1282.71	1313.33(1085.07-1575.54)	1300.07(584.4-071.91)
Left lung V ₂₀ (%)	25.29	24.92	27.08	26.66(9.24-38.11)	24.53(5.7-50.1)

We found that the patient tolerance in CPAP pressure should not exceed 14 cmH₂O which was dependent on individual patient tolerance. The difference of CPAP pressure level could lead a difference in all dosimetric parameters, and the

level of CPAP pressure related to the dose overlayed to the heart. From **figure 2**, the CPAP pressure between 12 to 14 cmH₂O was also effective in controlling mean heart dose within 4 Gy.

Figure 2 The relation of mean heart dose (Gy) with CPAP pressure 12 and 14 cmH₂O

Discussion

CPAP is a well-known therapeutic modality for sleep apnea as well as reducing the high mortality in children with severe pneumonia^[10]. Nowadays, CPAP has been reported to impact chest anatomy, tumor motion, and heart sparing in radiotherapy. Goldstein et al. showed the potential benefits of CPAP in stereotactic body radiotherapy in lung cancer. Their study demonstrated significant difference in decreasing tumor motion which reduced both lung and heart dose[8]. The results were similar to previous study from Jacobson et al. which showed decreasing tumor motion in lungs as reflected in a mean reduction of PTV. The mean lung dose was reduced by 15%, and heart volume at 5 Gy was reduced by 16%^[11]. Also, Kil et al. reported that CPAP was a practical technique for heart sparing in breast radiotherapy by reducing the absolute MHD 2.8 Gy and 82% dose reduction in V25 of heart^[12]. All patients tolerated CPAP positive pressure with an air pressure of 8 to 15 cmH₂O regardless of patient's age.

CPAP is a method that passively pressurizes the patient's lungs into a certain pressure and then takes a deep breath to separate heart from chest wall by increasing lung volume. Moreover, this method was more reliable, especially in the groups of elderly patients or patients who fail DIBH. Our study demonstrated the ability to decrease the MHD by increasing lung volume using CPAP method. The optimal

CPAP positive pressure level to reduce the MHD to less than 4 Gy could be 12 to 14 cmH₂O. From our results, the MHD between two groups, 12 cmH₂O and 14 cmH₂O, showed a similar result. Not only the MHD, but heart V25, mean LAD and max LAD dose also showed the same outcome. Even though the dosimetric result demonstrated the reduction of MHD between CPAP pressure 10 cmH₂O and 12 to 14 cmH₂O, unfortunately, we could not demonstrate statistical difference because of the limitations of sample size in CPAP pressure 10 cmH₂O. Our CPAP positive pressure level report was similar to Kil et al. in terms of patient tolerance and dosimetric results such as MHD and lung dose^[12]. However, the high-pressure level of CPAP positive pressure should be aware and can be adjusted to individual patients due to patients' tolerance and comfort. From our dosimetric results, we found that the CPAP pressure 12 cmH₂O was suitable for patients' tolerance throughout treatment. Moreover, the capability of this method was able to reduce MHD and increase lung volume which are beneficial to reduce the lung dose.

Conclusion

The use of CPAP application was associated with reducing MHD compared with FB. The CPAP pressure 12 cmH₂O was suitable for patients tolerate throughout treatment. CPAP method could be an effective, simple, and safe option to implement in most left-sided breast cancer radiation.

Acknowledgement

We would like to thank division of Radiation Oncology, department of Radiology, Siriraj hospital, Mahidol university, Bangkok, Thailand.

References

1. Ebctcg, McGale P, Taylor C, Correa C, Cutter D, Duane F, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. *Lancet*. 2014;383:2127-35.
2. Yeboa DN, Evans SB. Contemporary Breast Radiotherapy and Cardiac Toxicity. *Semin Radiat Oncol*. 2016;26:71-8.
3. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. *N Engl J Med*. 2013;368:987-98.
4. Vicini FA, Winter K, Freedman GM, Arthur D, Hayman JA, Rosenstein B, et al. NRG RTOG 1005: A Phase III Trial of Hypo Fractionated Whole Breast Irradiation with Concurrent Boost vs. Conventional Whole Breast Irradiation Plus Sequential Boost Following Lumpectomy for High Risk Early-Stage Breast Cancer. *Int J Radiat Oncol Biol Phys*. 2022;114:S1.
5. Lai J, Hu S, Luo Y, Zheng R, Zhu Q, Chen P, et al. Meta-analysis of deep inspiration breath hold (DIBH) versus free breathing (FB) in postoperative radiotherapy for left-side breast cancer. *Breast Cancer*. 2020;27:299-307.
6. Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, Wertz H, Stieler F, Jahnke A, et al. Deep Inspiration Breath Hold-Based Radiation Therapy: A Clinical Review. *Int J Radiat Oncol Biol Phys*. 2016;94:478-92.
7. Ledsom D, Reilly AJ, Probst H. Assessment of deep inspiration breath hold (DIBH) amplitude and reduction in cardiac dose in left breast cancer patients. *Radiography (Lond)*. 2018;24:98-103.
8. Goldstein JD, Lawrence YR, Appel S, Landau E, Ben-David MA, Rabin T, et al. Continuous Positive Airway Pressure for Motion Management in Stereotactic Body Radiation Therapy to the Lung: A Controlled Pilot Study. *Int J Radiat Oncol Biol Phys*. 2015;93:391-9.

9. Allen AM, Ceder YK, Shochat T, Fenig E, Popovtzer A, Bragilofsky D, et al. CPAP (Continuous Positive Airway Pressure) is an effective and stable solution for heart sparing radiotherapy of left sided breast cancer. *Radiat Oncol.* 2020;15:59.
10. Wilkes C, Subhi R, Graham HR, Duke T, group ARIR. Continuous Positive Airway Pressure (CPAP) for severe pneumonia in low- and middle-income countries: A systematic review of contextual factors. *J Glob Health.* 2022;12:10012.
11. Jacobson G, Lawrence YR, Appel S, Weiss I, Ben Ayun M, Akiva Ben-David M, et al. Benefits of Continuous Positive Airway Pressure (CPAP) During Radiation Therapy: A Prospective Trial. *Int J Radiat Oncol Biol Phys.* 2021;110:1466-72.
12. Kil WJ, Lee IJ, Pham T, Cho IH. Practical Heart Sparing Breast Cancer Radiation Therapy Using Continuous Positive Airway Pressure (CPAP) in Resource-Limited Radiation Oncology Clinics. *Am J Clin Oncol.* 2019;42:797-801.