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Predicting patient body weight and volumes changes using machine 

learning for head and neck adaptive radiotherapy

การทำนายการเปลี่่�ยนแปลงน้้ำหนักัตัวัและปริิมาตรของผู้้�ป่่วยมะเร็ง็ศีรีษะและ

ลำคอระหว่่างการรักษาด้้วยการฉายรังัสีชีนิิดปรับัแต่่งได้้
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Abstract

Background: Patient anatomical change is the most challenging aspect of head and neck cancer 

(HNC) patients treated with adaptive radiotherapy (ART) techniques. These can lead to  

dosimetric deviations and result in an increase in severe radiation toxicity.

Objectives: To use machine learning (ML) in predicting anatomical changes and indicating the 

optimal time to modify plans in HNC patients for decision-making.

Materials and methods: Volumes of interest (VOI) of 183 Cone-beam computed tomography 

(CBCT) image datasets were defined based on planning Computed tomography (CT) images. The 

percentage of body weight (BW), Gross target volume (GTV), Clinical target volume (CTV)70, 

CTV59.4, Planning target volume (PTV)70, PTV59.4, left parotid gland (PG), and right PG volume 

changes were retrieved. 143 datasets (78.14%) were applied for training with various ML algorithms; 

support vector machines (SVMs), kernel approximation regression (KAR), gaussian process  

regression, Ensembles of trees (ETs), linear regression (LR), regression trees (RTs), and neural  

networks (NNs). Five and ten-fold cross-validation techniques were applied to select the best 

prediction model for each specific target. The selected model accuracy for a specific target was 

tested using the blind testing data set (40 plans or 21.86%) using root mean square error (RMSE) 

and R-square value (R2).

Results: The selected prediction model (k-fold cross validation, RMSE and R2) were RTs  

(5-fold, 4.10, 0.49), SVMs (5-fold, 7.40, 0.26), SVMs (5-fold, 5.74, 0.27), GPR (5-fold, 4.88, 0.13),  

SVMs (5-fold, 5.30, -0.04), ETs (5-fold, 3.19, 0.37), ETs (5-fold, 11.56, 0.57), and RTs (5-fold, 8.31, 

0.7), respectively. The system generated the predicted data after the first 11th fractions.

Conclusion: This ML-based patient anatomical change model can provide useful information, 

which could benefit decision-making in treatment plan modification for HN-ART. 

Keywords: Adaptive radiation therapy (ART), Head and neck cancer (HNC), Machine learning (ML), 

Patient anatomical change

บทคััดย่่อ

หลักัการและเหตุผุล: การเปลี่่�ยนแปลงทางร่า่งกายของผู้้�ป่ว่ยระหว่า่งการรักัษาเป็น็ความท้้าทายในการรักัษาผู้้�ป่ว่ย

มะเร็ง็ศีรีษะและลำคอด้้วยวิธิีกีารฉายรังัสีชีนิดิปรับัแต่ง่ได้้ การเปลี่่�ยนแปลงดังักล่า่วสามารถนำไปสู่่�การเปลี่่�ยนแปลง

ของปริิมาณรัังสีีในแต่่ละอวััยวะ ซึ่่�งอาจนำไปสู่่�ผลข้้างเคีียงรุุนแรงจากการฉายรัังสีีที่่�เพิ่่�มขึ้้�นได้้

วััตถุุประสงค์์: ใช้้การเรีียนรู้้�ของเครื่่�อง (Machine learning) ในการทำนายการเปลี่่�ยนแปลงทางร่่างกายเพื่่�อ 

การเลืือกช่่วงเวลาที่่�เหมาะสมในการปรัับแผนการรัักษาสำหรัับผู้้�ป่่วยมะเร็็งศีีรษะและลำคอ
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วัสัดุและวิิธีการ: ใช้้บริเิวณที่่�สนใจจำนวณ 183 ชุดุข้้อมููลจากภาพ Cone-beam computed tomography (CBCT) 

โดยแต่่ละอวััยวะถููกกำหนดตามภาพเอกซเรย์์คอมพิิวเตอร์์ (Computed tomography, CT) ของการวางแผน 

การรักษา แล้้วทำการการคำนวณร้้อยละความแตกต่่างของน้้ำหนัักตััว (BW),  Gross target volume (GTV), 

Clinical target volume (CTV)70, CTV59.4, Planning target volume (PTV)70, PTV59.4, ต่่อมน้้ำลาย 

หน้้ากกหูู (Parotid gland, PG) ข้้างซ้้าย และ PG ข้้างขวา จากนั้้�นใช้้ 143 ชุุดข้้อมููล (78.14%) เพ่ื่�อนำมาให้้

โปรแกรมเรียีนรู้้� โดยใช้้อัลักอริทิึึม ดังันี้้� support vector machines (SVMs), kernel approximation regression 

(KAR), gaussian process regression, Ensembles of trees (ETs), linear regression (LR), regression trees 

(RTs) และ neural networks (NNs) ซ่ึ่�งใช้้ร่่วมกัับเทคนิิค Five และ ten-fold cross-validation ในการเลืือก 

แบบจำลอง (Model) ที่่�ดีีที่่�สุุดของแต่่ละตััวแปร จากนั้้�นนำแบบจำลองมาทดสอบด้้วยชุุดข้้อมููลทดสอบจำนวน  

40 ชุุด (21.86%) แล้้วทำการประเมิินผลด้้วยค่่า root mean square error (RMSE) และ R-square (R2)

ผลการศึกษา: ผลการทดสอบแบบจำลองที่่�เหมาะสมของแต่่ละตััวแปรมีีดัังนี้้� RTs (5-fold, 4.10, 0.49), SVMs 

(5-fold, 7.40, 0.26), SVMs (5-fold, 5.74, 0.27), GPR (5-fold, 4.88, 0.13), SVMs (5-fold, 5.30, -0.04), ETs 

(5-fold, 3.19, 0.37), ETs (5-fold, 11.56, 0.57) และ RTs (5-fold, 8.31, 0.7) ตามลำดัับ (ลำดัับการแสดงผล 

ได้้แก่่ k-fold cross validation, RMSE และ R2) จากนั้้�นระบบทำการสร้้างการทำนายหลัังจากการฉายแสง 

ครั้้�งที่่� 11

ข้้อสรุุป: แบบจำลองการเปลี่่�ยนแปลงทางร่่างกายโดยใช้้การเรีียนรู้้�ด้้วยเคร่ื่�องสามารถให้้ข้้อมููลการเปลี่่�ยนแปล 

งทางร่า่งกายที่่�เป็น็ประโยชน์ต์่อ่การช่ว่ยตัดัสินิใจในการปรับัแผนการรักัษาของผู้้�ป่ว่ยมะเร็ง็ศีรีษะและลำคอระหว่า่ง

การรัักษาด้้วยการฉายรัังสีีชนิิดปรัับแต่่งได้้

คำสำคัญั: การฉายรัังสีชีนิดิปรัับแต่่งได้้, การเปลี่่�ยนแปลงทางร่่างกายของผู้้�ป่่วย, การเรียีนรู้้�ด้้วยเครื่่�อง, มะเร็ง็ศีรีษะ

และลำคอ

J Thai Assoc Radiat Oncol 2023; 29(1): R67-R88

Introduction

	 Due to the target volume surrounded by 

several critical organs at risk (OARs [1], advanced 

radiotherapy (RT) techniques, such as volumetric 

modulated arc therapy (VMAT), are widely used 

for treating head and neck cancer (HNC). This 

technique allows highly conformal doses to 

target volumes while reducing toxicity to  

OARs[2,3]. However, treatment deviations obtain 

significant anatomical changes that can lead to 

severe toxicity to OARs. These changes resulted 

from patient weight loss, tumor location shift, or 
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shrinkage during the treatment course[4–6]. The 

toxicity investigation after VMAT treatment  

revealed that the most prevalent acute  

toxicities were mucositis, dysphagia, and  

dermatitis. Meanwhile, late toxicities included 

xerostomia, laryngeal stiffness, and skin  

fibrosis [7].  Several studies indicated that  

anatomical changes impact dosimetric changes 

in target volumes and OARs (e.g., spinal cord, 

brainstem, and parotid gland)[6,8–11]. These  

can result in a tumor underdose or OARs  

overdose [10,12,13].

	 There are many approaches to deal with dose 

deviation from anatomical changes. For example, 

adaptive radiotherapy (ART) is a modification  

plan based on anatomical changes. This  

approach is promising due to the reduction of 

dosimetric changes and toxicities[10,14]. There are 

three strategies of ART: offline ART processed 

before the following fraction of treatment; online 

ART occurring prior to each treatment fraction; 

and inline (real-time) ART adapted during treat-

ment delivery. The therapeutic aim, accessible 

technology, and available resources influence 

the choice of an ART timescale[15]. However, ART 

implementation is time-consuming and requires 

resources because there are four main processes 

in clinical offline ART workflows: image acquisi-

t ion, evaluation, replanning, and quality  

assurance (QA)[10,15–19]. Before treatment delivery, 

image-guided radiotherapy (IGRT), such as  

cone-beam computed tomography (CBCT), has 

been essential for position verification. In  

addition, some studies have indicated that CBCT 

is used to investigate dosimetric and volumetric 

changes through registration planning CT (pCT) 

with CBCT images[8,10]. Additionally, these images 

include anatomical change data that may be 

utilized to identify anatomical trends[8]. 

	 According to ART, some cases need to be 

replanned because of significant anatomical 

changes. In addition, a study using ART for HNC 

reported dosimetric benefits of the target  

volume. Moreover, the doses to target volume 

were more homogeneous than the non- 

replanned plans[20]. Anatomical and dosimetric 

changes during treatment courses are influenced 

by a number of factors. Numerous researchers 

have attempted to investigate the variables  

that indicate the requirement of HNC patients  

for ART. There have been studies comparing 

patients with and without replans. According to 

the findings, the replanned group substantially 

had a larger ipsilateral parotid gland dosage than 

the re-CT group without replanning. The dosages 

to the brainstem and spinal cord were also  

nearly dramatically raised[21,22]. Another study 

used deformable image registration (DIR) with 

Dice Similarity Coefficient (DSC) index, a method 

for assessing the similarity between two groups, 

to compare pCT and rescan images to forecast 

the optimal time between rescanning and ART. 

In the planning target volume (PTV), brain stem, 

and body outl ine, the replanning group  

substantially had DSC values lower than the 

non-replanning group (p < 0.05). The replanning 

group had fewer overlapping volumes than the 

non-replanning group because the reduced DSC 

value corresponds to the smaller overlapping 

volume[23]. Research on the use of ART for HNC 
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also discussed the dosimetric advantages of 

target volume and OARs. Some studies revealed 

dose differences of target volume below 1% for 

the D2% and between 5% and 9% for the D95% 

and 1.9 Gray (Gy) to gross tumor volume (GTV). 

In addition, ART helped lower OAR dosages, 

particularly for the parotid gland and spinal  

cord [8,10,11]. The dosages reaching the target  

volume were more homogenous than the 

non-replanned plans[24]. The recommendation for 

the frequency of replanning was 1 to 3 times over 

the treatment course, such as replanning at the 

first, second, fifth week, or after the fourth 

week[20,25]. However, CBCT imaging requires more 

acquisition time and provides more accumulated  

imaging dose than 2-dimensional orthogonal  

kV imaging[26,27]. Therefore, trends of predicting 

anatomical change, including weight change  

and volumetric change, can assist in quantifying 

the optimized replanning time.

	 Machine learning is moving forward in the 

radiation therapy field. Applications include  

image fusion, auto-segmentation, planning  

optimization, treatment outcome, toxicity  

predictions, QA, ART, and clinical decision  

support systems[28–33]. Models for predicting  

anatomical change in HNC treatment have 

focused on weight loss and volumetric tumor 

change. The methods, which were utilized to 

create predictive models to analyze anatomical 

change over treatment courses, included curve 

fitting tools (exponential and linear models), 

logistic regression, and classification and regres-

sion tree (CART) analysis[34–37]. For weight loss 

prediction models, logistic regression was applied 

to determine the major factors of crucial weight 

loss. The significant factors were concurrent 

chemoradiotherapy (CCRT) status, treatment site, 

prescription dosage, RT on the neck, and RT 

method[35,36].

	 The pCT and CBCT with OAR segmentations 

were registered to quantify the difference  

between tumor and OAR volumes, including  

GTV, clinical target volume (CTVs), PTVs, and the 

parotid gland (PG). The absolute and percentage 

differences of GTV and PG were acquired  

and evaluated. Curve fitting with exponential  

and linear models was used to fit the GTV  

and PGs volume data across fractions (treatment 

days). According to the results, GTV change  

derived from the exponential model while PG 

change fitted to the linear model. The R-squared 

values of both models were > 0.9 for both GTV 

and PG changes[34]. Displacement field (DF) be-

tween pCT and CBCT using B-spline and 

Demon DIR algorithms can be applied to evaluate 

the significant patient anatomical change based 

on DSC[37]. Instead of tracking the patient  

anatomical change, DF was applied to estimate 

the dose distribution change based on pCT and 

CBCT at specific treatment fractions towards the 

development of ART trigger[37]. 

	 This study aims to develop the prediction 

model of target volume change using various 

machine learning algorithms to determine the 

optimal time for replanning in HN ART after 11 

fractions of treatment delivery. Because most 

cases in our center underwent CBCT image  

acquisitions at the 1st, 11th, 16th, and 21st  

fractions, there were only 1 to 2 CBCT image 
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datasets within the second week of treatment. 
Therefore, we used the image dataset between 
the 1st and 11th fractions to represent trend 
change. The optimal time point can assist staff 
in replan decision-making and/or the frequency 
of CBCT image acquisition.

Materials and methods
Patient selection and data acquisition
	 This study was authorized by the Human 
Research Ethics Committee of Chulabhorn  
Research Institute, Thailand (026/2565, Apr 22 
2022). This research is a retrospective analysis of 
anonymized radiological and clinical data in the 
Radiation Oncology department at Chulabhorn 
Hospital, Bangkok, Thailand. One hundred  
eighty-three datasets from 25 diagnosed patients 
with primary HNC were included. These patients 
were treated with RT or CCRT for HNC. Planning 
CT images, organ contours, and daily CBCT  
images of HNC patients were collected from  
2018 to 2021. All cases had curative aims, had 
CBCT images greater than or equal to 5 series, 
and were treated with VMAT using a simultaneous 
integrated boost technique. In addition, the  
clinical data, including tumor staging, age,  
prescription dose for radiotherapy, and concur-
rent chemotherapy status, were recruited for 
analysis. The summary of patient demographic 
is summarized in Table 1.

Treatment planning system
	 All treatment planning processes took within 
a week after the CT-sim scan with a supine  
position immobilized with a thermoplastic  
mask. Radiation oncologists delineated the  

tumors. CTV and PTV were defined as extending 
5 mm, and GTV was 10 mm extension. The  
prescription dose to PTV was 66-70 Gy in 33 
fractions, and the dose per fraction was 2 – 2.121 
Gy. The radiation dose calculations were  
computed by the Eclipse treatment planning 
system version 16.1 (Varian Medical Systems, Palo 
Alto, CA).

Auto-contouring of CBCT images and their 
verification
	 Before each treatment fraction, all patients 
underwent position verification before treatment 
delivery using CBCT. In our center, CBCT image 
acquisitions were usually acquired at the 1st, 11th, 
16th, and 21st fractions. In addition, some patients 
underwent CBCT acquisition more frequently 
than required by this protocol due to the rapid 
tumor volume change. With the axial length of 
full fan mode, the field of view (FOV) of CBCT 
images obtained TrueBeam (Varian Medical  
System, Palo Alto, CA) was 28 cm in diameter. 
The isocenter of the CBCT image was in the same 
position as the treatment plan. The CBCT dataset 
of each patient was transferred to MIM (MIM 
Software, Cleveland, Ohio, USA), a commercial 
software used for Digital Imaging and Communi-
cations in Medicine (DICOM) image registration, 
manipulation, and reading. MIM was used for 
auto-segmentation into the GTV, CTV70, CTV59.4, 
PTV70, PTV59.4, and left and right parotid glands. 
Then, the contours were verified and amended 
by two radiation oncologists. After that, the  

volumes outside the FOV of CBCT images were 

excluded from this study. This means that only 

the volumes within the FOV were investigated.
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Table 1. Summary of patient demographics and characteristics.

Characteristics Detail

Gender (# patient) 

      Male 17

      Female 8

Median age (years) 58 (28 – 86)

Diagnosis (# patient)

      Nasopharynx 10

      Oropharynx 9

      Oral cavity 6

T classification (# patient)

      1 3

      2 7

      3 8

      4 7

N classification (# patient)

      0 4

      1 6

      2 12

      3 3

M Classification (# patient)

      0 25

Treatment method (# patient)

      Radiotherapy alone 2

      Concurrent chemoradiotherapy 23

Median prescription dose (Gy) 70 (66 – 70)
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Machine learning model 

	 The model construction workflow is outlined 

in Figure 1. A random sampling technique was 

applied in this study. All the datasets (183 sets) 

were divided into 143 datasets (20 patients) for 

the model training and 40 datasets (5 patients) 

for the model testing. The five patients from 

 the testing dataset included two cases of  

nasopha ryngea l  cance r ,  two cases  o f  

oropharyngeal cancer, and one case of oral  

cancer. These five cases had at least two CBCT 

datasets within the first 11th fraction for training 

and the datasets after the 11th fraction for  

testing the accuracy of the models. In this study, 

seven different algorithms were used, including 

Linear regression models (LR), Regression trees 

(RTs), Support vector machines (SVM), Gaussian 

process regression models (GPR), Kernel  

Approximation Regression Models (KAR),  

Ensembles of trees (ETs), and Neural Networks 

(NNs). To train the model, 17 features were  

extracted consisting of age, T classification,  

N classification, M classification , gender, treat-

ment site, concurrent chemotherapy status, 

fraction, day difference from planning date, 

the initial value of patient weight, GTV volume, 

CTV70 volume, CTV59.4 volume, PTV70 volume, 

PTV59.4 volume, left PG, and right PG. A feature 

ranking for regression using the F-tests function 

for machine learning calculates the f-test score. 

This score is defined as -ln (p-value). From this 

equation, the score of the features must be more 

than 2.996 to fulfil the significance level of 0.05. 

The response variable was the percentage  

difference between the initial value and the 

value in that fraction of body weight (BW), GTV, 

CTV70, CTV59.4, PTV70, PTV59.4, left PG, and right 

PG. These features of 143 training data sets were 

entered into the Regression Learner of MATLAB 

R2022a (Mathworks Inc., Natick, MA, USA) with 

5- and 10-fold cross-validation to improve the 

performance of the models. After training, 

 the results were compared to find the best 

model for each output using RMSE, and R2. Then, 

the best-performing model was selected and 

extracted into functions. 

Model performance evaluation using blind 

tests 

	 All the models were tested with the indepen-

dent 40 datasets in terms of RMSE, and R2 using 

the following equations:

	 Where m is the observation number, Xi is the 

predicted value, Yi is the actual value, and is the 

average of the actual values.

	 After that, the best performance models of 

body weight and all volumes were extracted and 

generated to be functions. These functions were 

trained with the 143 training datasets and the 

independent datasets within the first 11th fraction. 

Then, the trends of anatomical changes were 

illustrated in line graphs

(1)

(2)
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Figure 1. Model construction workflow.

Results

Patient selection

	 Figure 2 illustrates the percentage differences 

between the initial and final values of the body 

weight and volume. The results showed that the 

average values for body weight, GTV, CTV70, 

CTV59.4, PTV70, PTV59.4, left and right PG were 

-6.58 (range: -16.40 to 1.96), -8.16 (range: -42.72 

to 26.41), -7.30 (range: -37.14 to 28.92), -4.28 

(range: -38.25 to 14.04), -7.09 (range: -31.80 to 

20.33), -4.04 (range: -30.99 to 13.13), -21.25 (rang: 

-57.71 to 9.47), and -15.96 (range: -43.43 to 18.07), 

respectively. The outliers were found in the GTV, 

CTV, and PTV in areas below -40 and above 60.

Model construction

	 Before the training model, the features were 

ranked by F-test score. Table   shows the F-test 

score ranking of BW, GTV, CTV70, CTV59.4, PTV70, 

PTV59.4, and left and right PG models. The  

feature selection eliminated the predictors with 

an f-test score of less than 2.996. Thus, the  

features selected for body weight, GTV, CTV70, 

CTV59.4, PTV70, PTV59.4, left and right PG had 

12, 13, 13, 11, 13, 11, 12, and 12 features, respec-

tively. The feature with an F-test score of more 

than 2.996 was chosen for training. For example, 

the total of 12 features consists of initial PTV70 

volume, initial weight, initial GTV volume, age, 
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Figure 2. Boxplot of the percentage differences between the initial and final volume of the targets and 

OAR.

initial PTV59.4 volume, initial CTV70 volume, 

initial left PG volume, initial CTV59.4 volume, day 

difference from planning date, fraction, T classi-

fication, and initial right PG volume were utilized 

for BW model training. After that, the selected 

features were fed into the models for training. 

The prediction model results of GTV, CTV70, 

PTV70, BW, left PG, right PG, CTV59.4, and 

PTV59.4 are shown in Table 2, respectively.  

Moreover, there was no significant difference 

between the 5-fold and 10-fold cross-validation. 

Therefore, Table 2-3 indicates only the  

performance of the 5-fold cross-validation  

technique. From these results, the best models 

of each response variable (k-fold cross validation, 

RMSE, R2) were RTs (5-fold, 4.10, 0.49) for body 

weight, SVMs (5-fold, 7.40, 0.26) for GTV, SVMs 

(5-fold, 5.74, 0.27) for CTV70, GPR (5-fold, 4.88, 

0.13) for CTV59.4, SVMs (5-fold, 5.30, -0.04) for 

PTV70, ETs (5-fold, 3.19, 0.37) for PTV59.4, ETs 

(5-fold, 11.56, 0.57) for left PG, and RTs (5-fold, 

8.31, 0.7) for right PG. These models were gener-

ated into functions and evaluated with blind 

testing. 
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Model evaluation

	 After training the data, blind independent 

testing cases were performed for model evalua-

tion. The testing datasets and the first 11th fraction 

data were trained with the best model of each 

response variable to predict the anatomical 

changes of the 12th fraction until the end of 

treatment. The results of the five testing cases 

are shown in Table . The average RMSEs of body 

weight, GTV, CTV70, CTV59.4, PTV70, PTV59.4, 

and left and right PG were 3.74, 4.23, 3.80, 5.83, 

5.00, 3.52, 11.65, 10.29, respectively. While the 

R2 were -4.06, 0.53, 0.36, -3.62, -0.76, -0.69, -0.87, 

0.19, respectively.

Table 3. Test results of the model prediction with blind independent cases.

Response 

variables

Patient no.1 Patient no.2 Patient no.3 Patient no.4 Patient no.5

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

Weight 2.55 0.70 2.74 -1.94 3.74 0.67 3.14 -0.59 6.52 -19.15

GTV 2.72 0.69 9.11 0.28 3.55 0.74 3.73 0.42 2.03 0.52

CTV70 2.26 0.63 7.72 0.32 5.19 0.37 1.42 0.90 2.40 -0.45

CTV59.4 0.45 0.97 6.28 -1.52 15.11 -4.68 2.04 0.46 5.26 -13.33

PTV70 4.46 -1.20 6.66 -0.66 9.73 -1.90 2.14 0.59 2.00 -0.62

PTV59.4 3.41 -0.52 1.13 0.66 10.45 -3.57 1.51 0.38 1.12 -0.39

Lt. PG 9.58 -0.53 8.01 0.31 13.82 0.03 6.32 0.77 20.51 -4.93

Rt. PG 9.48 0.10 7.82 0.43 16.08 -0.17 15.01 -0.02 3.06 0.63

abbreviation: GTV = gross tumer volume, CTV = clinical target volume, PTV = planning target volume, 

PG = paroted gland, LT = left, RT = right

Discussion

	 For this study, there were some problems 

with the auto-segmentation of MIM software as 

follows: There was a significant error in adding a 

margin to target volumes, particularly near the 

shoulder region. In addition, the overestimated 

CTV auto-segmentations were also detected in 

the other studies[38–40]. Furthermore, CBCT images 

of each fraction were not scanned at the same 

position exactly. This situation caused the lower 

part of the PTV to have many variations in  

contouring. Moreover, the PTV59.4 volumes were 

usually more extensive than the FOV of CBCT 

scanning. As a result, only the parts of the 

PTV59.4 volumes within the FOV of CBCT  

scanning could be analyzed. 

	 From the results of this study, the body 

weight, CTV59.4, and PTV 59.4 prediction  
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models provided quite desirable performance 

(RMSE < 5%, and R2 > 0.12). Since almost all  

the data for training was non-linear and some 

datasets had high variations, the RTs, SVMs, ETs, 

and GPR algorithms were appropriate for these 

response changes[41,42]. 

	 However, there were terrible performance 

models, including left and right PG volumes with 

RMSE > 8%. Because these volume sizes were 

too small, minor errors in prediction could result 

in a large RMSE. In addition, another study used 

exponential and linear curve fitting to predict 

GTV and PG shrinkages. The results showed that 

the exponential curve was proper with GTV and 

linear regression was optimal with PG with R2 of 

more than 0.9[34]. Moreover, as shown in Figure 

2, there were significant variations in the final 

volumes. In addition, some target volumes  

increased in size at the end of treatment.  

These occurrences were probably multifactorial 

and may be related to edema, inflammation, 

physiology, and dynamic cell processes[43]. The 

large variations and small sample size caused 

training machine learning models more difficult 

and resulted in high errors. 

	 Recently, there were no exact criteria to  

replan for head and neck cancer. The trends of 

anatomical change can be a part of the decision 

support to generate the trigger point for  

replanning. There is a relative paucity of studies 

investigating the criteria to make ART. Most of 

these studies analyzed anatomical changes from 

weight loss, tumor shrinkage, and parotid gland 

volume change. The comparison between  

planning CT and rescanning CT was 9.5%, 5.3%, 

8.4%, 20.5%, and 20.9% for GTV, CTV of primary 

tumors (CTV1), CTV of nodal diseases (CTV2),  

left PG, and right PG, respectively[44]. In addition, 

a study indicated that the CTV1 and CTV2  

volumes decreased in week two by 3.2% and 

10%, respectively. These findings resulted in a  

2 Gy and 3.9 Gy decrease in the minimum doses 

of PTV1 and PTV2, respectively. Furthermore, 

these volume reductions may result from  

chemotherapy induction[45]. Therefore, adjusting 

the model to predict dose change can increase 

the impact on clinical workflow. 

	 In this study, new datasets from the 1st to  

the 11th fractions were fed into the generated 

model function along with the training data set. 

Then, the model predicted the percentage  

volume difference of the GTV, CTVs, and PTVs, 

which starts at the 12th fraction to the end of 

treatment. Figure 3 shows an example of the 

percentage difference of prediction models  

between the initial and each fraction response 

variables. The x-axis indicates the fraction of the 

treatment. While the y-axis indicates the  

difference in these response variables in  

percentage. The legend is shown at the bottom 

left corner, including the actual and predicted 

values of body weight, GTV, CTVs, PTVs, and PGs. 

The trained line shows that the actual values  

are in this fraction, which is the 11th fraction.  

The blue zone represents the actual values at 

the 1st to 11th fraction. The yellow zone  

represents the predicted values at the 12th  

fraction until the end of the treatment course. 

In addition, the plot shows the warning point  

for each variable, consisting of the significant 
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change point and the CBCT recommendation 

point. The cut points were -12.24%, -9.5%, -3.2%, 

-10%, and -26 for BW, GTV, CTV70, CTV59.4, and 

PGs, respectively[44–46].

	 In this case, the first CBCT dataset was  

acquired after the patients underwent CT  

simulation for 14 days. As shown in the first  

week of treatment, the GTV volume increased 

by about 10%. The Schwartz formula can  

describe this situation: DT = [ln2 × ΔT]/[ln(X
2
/X

1
)]. 

Where DT is the doubling time of the tumor 

volume (days), ∆T is the time between the two 

scans (days), and X
1
 and X

2
 are the initial and 

final volumes, respectively[47]. Additionally, from 

a study of tumor progression, they found that 

the average DT of HNC was 99 days[48]. Thus, the 

∆T was 14 days for this case, which resulted in 

the X
1
/X

2
 value being 1.103 according to the 

Schwartz formula. This means the tumor volume 

may increase the size by about 10% after a  

waiting time of 14 days.  

	 Moreover, the graph shows that predicted 

tumor volume change trends were usually  

higher than the actual values before the 12th 

fraction. The reason is that the values of the 

training dataset impacted the predicted values. 

If most cases had higher values than this example 

case, the predicted values might be higher than 

the actual values. It can be seen that the body 

weight trend after the 11th fraction was constant, 

Figure 3. The example of using the percentage difference prediction models.
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and the algorithm used for this prediction was 

RTs. Moreover, the ranks of predictors in  

Table 1S show that the day difference from the  

planning date and fraction was in the 9th and 10th 

orders, respectively. Therefore, these predictors 

impact the calculation less than the others.  

Because the other predictors were the same,  

the results frequently showed constant values. 

However, the other graphs of the other cases 

showed the body weight change more  

obviously than the graph of this case. In addition, 

the PG predictions suddenly decreased during 

the fourth week of treatment. These reductions 

can result from ongoing reductions between  

the third and fourth weeks. Furthermore, the right 

PG prediction indicated a more rapid decline than 

the left PG because the algorithms used for  

the right and left PGs were RTs and ETs, respec-

tively. ETs produced smoother results than RTs, 

which frequently change abruptly after the input 

is in the conditions of the other branch of the 

RTs

	 The limitations of this study are the accuracy 

and precision of the target volumes, which were 

affected by the quality of CBCT images and  

the auto-contouring software. Furthermore, 

the data set was too small and had high variation, 

which caused the training results to provide high 

error. Moreover, after the model can predict dose 

change and dose-volume histograms (DVHs) and 

the warning cut-off points of each organ are 

defined, these can develop a clinical decision 

support system (DSS). The DSS will provide the 

data trends and trigger points for staff to make 

their decision.

Conclusion

	 This model development from machine 

learning was a pilot approach for developing 

anatomical change prediction. The trends of 

body weight, GTVs, CTVs, PTVs, and PG volume 

changes for HNC patients can be predicted.  

According to Table , the model of BW, CTV59.4, 

and PTV59.4 provided the predicted values that 

resemble the actual values. If the model  

accuracy can be improved, the models would 

be useful for providing decision support before 

treatment delivery in the following fraction.  

Further studies on volume changes in other OARs 

and dosimetric changes in targets and OARs 

should be investigated. This establishes the tool 

as a decision support system to trigger the  

optimal time to replan.
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