Predicting patient body weight and volumes changes using machine

learning for head and neck adaptive radiotherapy
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Abstract
Background: Patient anatomical change is the most challenging aspect of head and neck cancer
(HNC) patients treated with adaptive radiotherapy (ART) techniques. These can lead to
dosimetric deviations and result in an increase in severe radiation toxicity.
Objectives: To use machine learning (ML) in predicting anatomical changes and indicating the
optimal time to modify plans in HNC patients for decision-making.
Materials and methods: Volumes of interest (VOI) of 183 Cone-beam computed tomography
(CBCT) image datasets were defined based on planning Computed tomography (CT) images. The
percentage of body weight (BW), Gross target volume (GTV), Clinical target volume (CTV)70,
CTV59.4, Planning target volume (PTV)70, PTV59.4, left parotid gland (PG), and right PG volume
changes were retrieved. 143 datasets (78.14%) were applied for training with various ML algorithms;
support vector machines (SVMs), kernel approximation regression (KAR), gaussian process
regression, Ensembles of trees (ETs), linear regression (LR), regression trees (RTs), and neural
networks (NNs). Five and ten-fold cross-validation techniques were applied to select the best
prediction model for each specific target. The selected model accuracy for a specific target was
tested using the blind testing data set (40 plans or 21.86%) using root mean square error (RMSE)
and R-square value (R2).
Results: The selected prediction model (k-fold cross validation, RMSE and R2) were RTs
(5-fold, 4.10, 0.49), SVMs (5-fold, 7.40, 0.26), SVMs (5-fold, 5.74, 0.27), GPR (5-fold, 4.88, 0.13),
SVMs (5-fold, 5.30, -0.04), ETs (5-fold, 3.19, 0.37), ETs (5-fold, 11.56, 0.57), and RTs (5-fold, 8.31,
0.7), respectively. The system generated the predicted data after the first 11th fractions.
Conclusion: This ML-based patient anatomical change model can provide useful information,

which could benefit decision-making in treatment plan modification for HN-ART.
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Patient anatomical change
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Introduction

Due to the target volume surrounded by
several critical organs at risk (OARs M advanced
radiotherapy (RT) techniques, such as volumetric
modulated arc therapy (VMAT), are widely used
for treating head and neck cancer (HNC). This

technique allows highly conformal doses to
target volumes while reducing toxicity to
OARs®??. However, treatment deviations obtain
significant anatomical changes that can lead to
severe toxicity to OARs. These changes resulted

from patient weight loss, tumor location shift, or
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shrinkage during the treatment course®®. The
toxicity investigation after VMAT treatment
revealed that the most prevalent acute
toxicities were mucositis, dysphagia, and
dermatitis. Meanwhile, late toxicities included
xerostomia, laryngeal stiffness, and skin
fibrosis'. Several studies indicated that
anatomical changes impact dosimetric changes
in target volumes and OARs (e.g., spinal cord,
brainstem, and parotid gland)®*'". These
can result in a tumor underdose or OARs
overdose "2,

There are many approaches to deal with dose
deviation from anatomical changes. For example,
adaptive radiotherapy (ART) is a modification
plan based on anatomical changes. This
approach is promising due to the reduction of
dosimetric changes and toxicities"*'”. There are
three strategies of ART: offline ART processed
before the following fraction of treatment; online
ART occurring prior to each treatment fraction;
and inline (real-time) ART adapted during treat-
ment delivery. The therapeutic aim, accessible
technology, and available resources influence
the choice of an ART timescale™. However, ART
implementation is time-consuming and requires
resources because there are four main processes
in clinical offline ART workflows: image acquisi-
tion, evaluation, replanning, and quality
assurance (QA)'** " Before treatment delivery,
image-guided radiotherapy (IGRT), such as
cone-beam computed tomography (CBCT), has
been essential for position verification. In
addition, some studies have indicated that CBCT

is used to investigate dosimetric and volumetric
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changes through registration planning CT (pCT)
with CBCT images™®'”. Additionally, these images
include anatomical change data that may be
utilized to identify anatomical trends™.
According to ART, some cases need to be
replanned because of significant anatomical
changes. In addition, a study using ART for HNC
reported dosimetric benefits of the target
volume. Moreover, the doses to target volume
were more homogeneous than the non-
replanned plans®. Anatomical and dosimetric
changes during treatment courses are influenced
by a number of factors. Numerous researchers
have attempted to investigate the variables
that indicate the requirement of HNC patients
for ART. There have been studies comparing
patients with and without replans. According to
the findings, the replanned group substantially
had a larger ipsilateral parotid gland dosage than
the re-CT group without replanning. The dosages
to the brainstem and spinal cord were also
nearly dramatically raised”"*?. Another study
used deformable image registration (DIR) with
Dice Similarity Coefficient (DSC) index, a method
for assessing the similarity between two groups,
to compare pCT and rescan images to forecast
the optimal time between rescanning and ART.
In the planning target volume (PTV), brain stem,
and body outline, the replanning group
substantially had DSC values lower than the
non-replanning group (p < 0.05). The replanning
group had fewer overlapping volumes than the
non-replanning group because the reduced DSC
value corresponds to the smaller overlapping

volume®'. Research on the use of ART for HNC



also discussed the dosimetric advantages of
target volume and OARs. Some studies revealed
dose differences of target volume below 1% for
the D2% and between 5% and 9% for the D95%
and 1.9 Gray (Gy) to gross tumor volume (GTV).
In addition, ART helped lower OAR dosages,
particularly for the parotid gland and spinal

8,10,11

cord ! ! The dosages reaching the target
volume were more homogenous than the
non-replanned plans””. The recommendation for
the frequency of replanning was 1 to 3 times over
the treatment course, such as replanning at the
first, second, fifth week, or after the fourth

%) However, CBCT imaging requires more

week'
acquisition time and provides more accumulated
imaging dose than 2-dimensional orthogonal

621 Therefore, trends of predicting

kV imaging
anatomical change, including weight change
and volumetric change, can assist in quantifying
the optimized replanning time.

Machine learning is moving forward in the
radiation therapy field. Applications include
image fusion, auto-segmentation, planning
optimization, treatment outcome, toxicity
predictions, QA, ART, and clinical decision
support systems® ¥, Models for predicting
anatomical change in HNC treatment have
focused on weight loss and volumetric tumor
change. The methods, which were utilized to
create predictive models to analyze anatomical
change over treatment courses, included curve
fitting tools (exponential and linear models),
logistic regression, and classification and regres-
sion tree (CART) analysis”* ", For weight loss

prediction models, logistic regression was applied

to determine the major factors of crucial weight
loss. The significant factors were concurrent
chemoradiotherapy (CCRT) status, treatment site,
prescription dosage, RT on the neck, and RT
method™*",

The pCT and CBCT with OAR segmentations
were registered to quantify the difference
between tumor and OAR volumes, including
GTV, clinical target volume (CTVs), PTVs, and the
parotid gland (PG). The absolute and percentage
differences of GTV and PG were acquired
and evaluated. Curve fitting with exponential
and linear models was used to fit the GTV
and PGs volume data across fractions (treatment
days). According to the results, GTV change
derived from the exponential model while PG
change fitted to the linear model. The R-squared
values of both models were > 0.9 for both GTV
and PG changes™. Displacement field (DF) be-
tween pCT and CBCT using B-spline and
Demon DIR algorithms can be applied to evaluate
the significant patient anatomical change based
on DSCP". Instead of tracking the patient
anatomical change, DF was applied to estimate
the dose distribution change based on pCT and
CBCT at specific treatment fractions towards the
development of ART trigger™"”.

This study aims to develop the prediction
model of target volume change using various
machine learning algorithms to determine the
optimal time for replanning in HN ART after 11
fractions of treatment delivery. Because most
cases in our center underwent CBCT image
acquisitions at the 1%, 11", 16", and 21*

fractions, there were only 1 to 2 CBCT image
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datasets within the second week of treatment.
Therefore, we used the image dataset between
the 1 and 11" fractions to represent trend
change. The optimal time point can assist staff
in replan decision-making and/or the frequency

of CBCT image acquisition.

Materials and methods
Patient selection and data acquisition

This study was authorized by the Human
Research Ethics Committee of Chulabhorn
Research Institute, Thailand (026/2565, Apr 22
2022). This research is a retrospective analysis of
anonymized radiological and clinical data in the
Radiation Oncology department at Chulabhorn
Hospital, Bangkok, Thailand. One hundred
eighty-three datasets from 25 diagnosed patients
with primary HNC were included. These patients
were treated with RT or CCRT for HNC. Planning
CT images, organ contours, and daily CBCT
images of HNC patients were collected from
2018 to 2021. All cases had curative aims, had
CBCT images greater than or equal to 5 series,
and were treated with VMAT using a simultaneous
integrated boost technique. In addition, the
clinical data, including tumor staging, age,
prescription dose for radiotherapy, and concur-
rent chemotherapy status, were recruited for
analysis. The summary of patient demographic

is summarized in Table 1.

Treatment planning system

All treatment planning processes took within
a week after the CT-sim scan with a supine
position immobilized with a thermoplastic

mask. Radiation oncologists delineated the
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tumors. CTV and PTV were defined as extending
5 mm, and GTV was 10 mm extension. The
prescription dose to PTV was 66-70 Gy in 33
fractions, and the dose per fraction was 2 — 2.121
Gy. The radiation dose calculations were
computed by the Eclipse treatment planning
system version 16.1 (Varian Medical Systems, Palo
Alto, CA).

Auto-contouring of CBCT images and their
verification

Before each treatment fraction, all patients
underwent position verification before treatment
delivery using CBCT. In our center, CBCT image
acquisitions were usually acquired at the 1%, 11",
16", and 21* fractions. In addition, some patients
underwent CBCT acquisition more frequently
than required by this protocol due to the rapid
tumor volume change. With the axial length of
full fan mode, the field of view (FOV) of CBCT
images obtained TrueBeam (Varian Medical
System, Palo Alto, CA) was 28 cm in diameter.
The isocenter of the CBCT image was in the same
position as the treatment plan. The CBCT dataset
of each patient was transferred to MIM (MIM
Software, Cleveland, Ohio, USA), a commercial
software used for Digital Imaging and Communi-
cations in Medicine (DICOM) image registration,
manipulation, and reading. MIM was used for
auto-segmentation into the GTV, CTV70, CTV59.4,
PTV70, PTV59.4, and left and right parotid glands.
Then, the contours were verified and amended
by two radiation oncologists. After that, the
volumes outside the FOV of CBCT images were
excluded from this study. This means that only

the volumes within the FOV were investigated.



Table 1. Summary of patient demographics and characteristics.

Characteristics Detail

Gender (# patient)

Male 17

Female 8
Median age (years) 58 (28 - 86)
Diagnosis (# patient)

Nasopharynx 10

Oropharynx 9

Oral cavity 6
T classification (# patient)

1 3

2 7

3 8

4 7
N classification (# patient)

0 4

1 6

2 12

3 3
M Classification (# patient)

0 25
Treatment method (# patient)

Radiotherapy alone 2

Concurrent chemoradiotherapy 23
Median prescription dose (Gy) 70 (66 — 70)
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Machine learning model
The model construction workflow is outlined
in Figure 1. A random sampling technique was
applied in this study. All the datasets (183 sets)
were divided into 143 datasets (20 patients) for
the model training and 40 datasets (5 patients)
for the model testing. The five patients from
the testing dataset included two cases of
nasopharyngeal cancer, two cases of
oropharyngeal cancer, and one case of oral
cancer. These five cases had at least two CBCT
datasets within the first 11th fraction for training
and the datasets after the 11th fraction for
testing the accuracy of the models. In this study,
seven different algorithms were used, including
Linear regression models (LR), Regression trees
(RTs), Support vector machines (SVM), Gaussian
process regression models (GPR), Kernel
Approximation Regression Models (KAR),
Ensembles of trees (ETs), and Neural Networks
(NNs). To train the model, 17 features were
extracted consisting of age, T classification,
N classification, M classification , gender, treat-
ment site, concurrent chemotherapy status,
fraction, day difference from planning date,
the initial value of patient weight, GTV volume,
CTV70 volume, CTV59.4 volume, PTV70 volume,
PTV59.4 volume, left PG, and right PG. A feature
ranking for regression using the F-tests function
for machine learning calculates the f-test score.
This score is defined as -ln (p-value). From this
equation, the score of the features must be more
than 2.996 to fulfil the significance level of 0.05.
The response variable was the percentage

difference between the initial value and the
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value in that fraction of body weight (BW), GTV,
CTV70, CTV59.4, PTV70, PTV59.4, left PG, and right
PG. These features of 143 training data sets were
entered into the Regression Learner of MATLAB
R2022a (Mathworks Inc., Natick, MA, USA) with
5- and 10-fold cross-validation to improve the
performance of the models. After training,
the results were compared to find the best
model for each output using RMSE, and R% Then,
the best-performing model was selected and

extracted into functions.

Model performance evaluation using blind
tests

All the models were tested with the indepen-
dent 40 datasets in terms of RMSE, and R? using

the following equations:

_ /im I
RMSE = m;(xi Y) (1)

(X,-Y,)?

I

7
I

— )
(Y-Y,)?

M

Where m is the observation number, Xiis the
predicted value, Yiis the actual value, and is the
average of the actual values.

After that, the best performance models of
body weight and all volumes were extracted and
generated to be functions. These functions were
trained with the 143 training datasets and the
independent datasets within the first 11" fraction.
Then, the trends of anatomical changes were

illustrated in line graphs
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Figure 1. Model construction workflow.

Results
Patient selection

Figure 2 illustrates the percentage differences
between the initial and final values of the body
weight and volume. The results showed that the
average values for body weight, GTV, CTV70,
CTV59.4, PTVT70, PTV59.4, left and right PG were
-6.58 (range: -16.40 to 1.96), -8.16 (range: -42.72
to 26.41), -7.30 (range: -37.14 to 28.92), -4.28
(range: -38.25 to 14.04), -7.09 (range: -31.80 to
20.33), -4.04 (range: -30.99 to 13.13), -21.25 (rang:
-57.71 10 9.47), and -15.96 (range: -43.43 to 18.07),
respectively. The outliers were found in the GTV,
CTV, and PTV in areas below -40 and above 60.

Model construction

Before the training model, the features were
ranked by F-test score. Table shows the F-test
score ranking of BW, GTV, CTV70, CTV59.4, PTV70,
PTV59.4, and left and right PG models. The
feature selection eliminated the predictors with
an f-test score of less than 2.996. Thus, the
features selected for body weight, GTV, CTV70,
CTV59.4, PTVT70, PTV59.4, left and right PG had
12,13,13,11, 13, 11,12, and 12 features, respec-
tively. The feature with an F-test score of more
than 2.996 was chosen for training. For example,
the total of 12 features consists of initial PTV70

volume, initial weight, initial GTV volume, age,
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OAR.

initial PTV59.4 volume, initial CTV70 volume,
initial left PG volume, initial CTV59.4 volume, day
difference from planning date, fraction, T classi-
fication, and initial right PG volume were utilized
for BW model training. After that, the selected
features were fed into the models for training.
The prediction model results of GTV, CTV70,
PTV70, BW, left PG, right PG, CTV59.4, and
PTV59.4 are shown in Table 2, respectively.
Moreover, there was no significant difference
between the 5-fold and 10-fold cross-validation.

Therefore, Table 2-3 indicates only the

Journal of Thai Association of Radiation Oncology
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performance of the 5-fold cross-validation
technique. From these results, the best models
of each response variable (k-fold cross validation,
RMSE, R2) were RTs (5-fold, 4.10, 0.49) for body
weight, SVMs (5-fold, 7.40, 0.26) for GTV, SVMs
(5-fold, 5.74, 0.27) for CTV70, GPR (5-fold, 4.88,
0.13) for CTV59.4, SVMs (5-fold, 5.30, -0.04) for
PTV70, ETs (5-fold, 3.19, 0.37) for PTV59.4, ETs
(5-fold, 11.56, 0.57) for left PG, and RTs (5-fold,
8.31, 0.7) for right PG. These models were gener-
ated into functions and evaluated with blind

testing.
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Model evaluation

After training the data, blind independent
testing cases were performed for model evalua-
tion. The testing datasets and the first 11" fraction
data were trained with the best model of each
response variable to predict the anatomical

changes of the 12" fraction until the end of

treatment. The results of the five testing cases
are shown in Table . The average RMSEs of body
weight, GTV, CTV70, CTV59.4, PTV70, PTV59.4,
and left and right PG were 3.74, 4.23, 3.80, 5.83,
5.00, 3.52, 11.65, 10.29, respectively. While the
R*were -4.06, 0.53, 0.36, -3.62, -0.76, -0.69, -0.87,
0.19, respectively.

Table 3. Test results of the model prediction with blind independent cases.

Response Patient no.1 Patient no.2 Patient no.3 Patient no.4 Patient no.5
variables  RMSE  R*  RMSE R* RMSE R® RMSE R* RMSE R’
Weight 2.55 070 274 -194 374 067 314 059 652 -19.15
GTV 272 0.69 9.11 028 355 074 373 042 203 0.52
CTV70 2.26 0.63 772 032 519 037 1.42 090 240 -045
CTv59.4 0.45 0.97 6.28 -1.52 1511 -4.68 2.04 0.46 526  -13.33
PTV70 4.46 -1.20 6.66 -0.66 9.73 -1.90 2.14 0.59 2.00 -0.62
PTV59.4 3.41 -0.52 1.13 0.66  10.45 -3.57 1.51 0.38 1.12 -0.39
Lt. PG 9.58 -0.53 8.01 0.31 13.82 0.03 6.32 0.77 2051 -4.93
Rt. PG 9.48 0.10 7.82 043 16.08 -0.17 1501 -0.02 3.06 0.63

abbreviation: GTV = gross tumer volume, CTV = clinical target volume, PTV = planning target volume,

PG = paroted gland, LT = left, RT = right

Discussion

For this study, there were some problems
with the auto-segmentation of MIM software as
follows: There was a significant error in adding a
margin to target volumes, particularly near the
shoulder region. In addition, the overestimated
CTV auto-segmentations were also detected in

38-40

the other studies®*”. Furthermore, CBCT images

of each fraction were not scanned at the same

Journal of Thai Association of Radiation Oncology
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position exactly. This situation caused the lower
part of the PTV to have many variations in
contouring. Moreover, the PTV59.4 volumes were
usually more extensive than the FOV of CBCT
scanning. As a result, only the parts of the
PTV59.4 volumes within the FOV of CBCT
scanning could be analyzed.

From the results of this study, the body
weight, CTV59.4, and PTV 59.4 prediction



models provided quite desirable performance
(RMSE < 5%, and R2 > 0.12). Since almost all
the data for training was non-linear and some
datasets had high variations, the RTs, SVMs, ETs,
and GPR algorithms were appropriate for these
response changes ",

However, there were terrible performance
models, including left and right PG volumes with
RMSE > 8%. Because these volume sizes were
too small, minor errors in prediction could result
in a large RMSE. In addition, another study used
exponential and linear curve fitting to predict
GTV and PG shrinkages. The results showed that
the exponential curve was proper with GTV and
linear regression was optimal with PG with R* of
more than 0.9%". Moreover, as shown in Figure
2, there were significant variations in the final
volumes. In addition, some target volumes
increased in size at the end of treatment.
These occurrences were probably multifactorial
and may be related to edema, inflammation,
physiology, and dynamic cell processes”. The
large variations and small sample size caused
training machine learning models more difficult
and resulted in high errors.

Recently, there were no exact criteria to
replan for head and neck cancer. The trends of
anatomical change can be a part of the decision
support to generate the trigger point for
replanning. There is a relative paucity of studies
investigating the criteria to make ART. Most of
these studies analyzed anatomical changes from
weight loss, tumor shrinkage, and parotid gland
volume change. The comparison between

planning CT and rescanning CT was 9.5%, 5.3%,

8.4%, 20.5%, and 20.9% for GTV, CTV of primary
tumors (CTV1), CTV of nodal diseases (CTV2),
left PG, and right PG, respectively™™. In addition,
a study indicated that the CTV1 and CTV2
volumes decreased in week two by 3.2% and
10%, respectively. These findings resulted in a
2 Gy and 3.9 Gy decrease in the minimum doses
of PTV1 and PTV2, respectively. Furthermore,
these volume reductions may result from

chemotherapy induction™®

. Therefore, adjusting
the model to predict dose change can increase
the impact on clinical workflow.

In this study, new datasets from the 1* to
the 11" fractions were fed into the generated
model function along with the training data set.
Then, the model predicted the percentage
volume difference of the GTV, CTVs, and PTVs,
which starts at the 12" fraction to the end of
treatment. Figure 3 shows an example of the
percentage difference of prediction models
between the initial and each fraction response
variables. The x-axis indicates the fraction of the
treatment. While the y-axis indicates the
difference in these response variables in
percentage. The legend is shown at the bottom
left corner, including the actual and predicted
values of body weight, GTV, CTVs, PTVs, and PGs.
The trained line shows that the actual values
are in this fraction, which is the 11" fraction.
The blue zone represents the actual values at
the 1° to 11" fraction. The yellow zone
represents the predicted values at the 12"
fraction until the end of the treatment course.
In addition, the plot shows the warning point

for each variable, consisting of the significant
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Figure 3. The example of using the percentage difference prediction models.

change point and the CBCT recommendation
point. The cut points were -12.24%, -9.5%, -3.2%,
-10%, and -26 for BW, GTV, CTV70, CTV59.4, and
PGs, respectively™ .

In this case, the first CBCT dataset was
acquired after the patients underwent CT
simulation for 14 days. As shown in the first
week of treatment, the GTV volume increased
by about 10%. The Schwartz formula can
describe this situation: DT = [In2 x AT]/[ln(XZ/Xl)].
Where DT is the doubling time of the tumor
volume (days), AT is the time between the two
scans (days), and X1 and X2 are the initial and
final volumes, respectively™®”. Additionally, from

a study of tumor progression, they found that

R80
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the average DT of HNC was 99 days“®. Thus, the
AT was 14 days for this case, which resulted in
the ><1/><2 value being 1.103 according to the
Schwartz formula. This means the tumor volume
may increase the size by about 10% after a
waiting time of 14 days.

Moreover, the graph shows that predicted
tumor volume change trends were usually
higher than the actual values before the 12"
fraction. The reason is that the values of the
training dataset impacted the predicted values.
If most cases had higher values than this example
case, the predicted values might be higher than
the actual values. It can be seen that the body

weight trend after the 11" fraction was constant,



and the algorithm used for this prediction was
RTs. Moreover, the ranks of predictors in
Table 1S show that the day difference from the
planning date and fraction was in the 9" and 10"
orders, respectively. Therefore, these predictors
impact the calculation less than the others.
Because the other predictors were the same,
the results frequently showed constant values.
However, the other graphs of the other cases
showed the body weight change more
obviously than the graph of this case. In addition,
the PG predictions suddenly decreased during
the fourth week of treatment. These reductions
can result from ongoing reductions between
the third and fourth weeks. Furthermore, the right
PG prediction indicated a more rapid decline than
the left PG because the algorithms used for
the right and left PGs were RTs and ETs, respec-
tively. ETs produced smoother results than RTs,
which frequently change abruptly after the input
is in the conditions of the other branch of the
RTs

The limitations of this study are the accuracy
and precision of the target volumes, which were
affected by the quality of CBCT images and
the auto-contouring software. Furthermore,
the data set was too small and had high variation,
which caused the training results to provide high
error. Moreover, after the model can predict dose
change and dose-volume histograms (DVHs) and
the warning cut-off points of each organ are
defined, these can develop a clinical decision

support system (DSS). The DSS will provide the

data trends and trigger points for staff to make

their decision.

Conclusion

This model development from machine
learning was a pilot approach for developing
anatomical change prediction. The trends of
body weight, GTVs, CTVs, PTVs, and PG volume
changes for HNC patients can be predicted.
According to Table , the model of BW, CTV59.4,
and PTV59.4 provided the predicted values that
resemble the actual values. If the model
accuracy can be improved, the models would
be useful for providing decision support before
treatment delivery in the following fraction.
Further studies on volume changes in other OARs
and dosimetric changes in targets and OARs
should be investigated. This establishes the tool
as a decision support system to trigger the

optimal time to replan.
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