Optimal hyperparameters of CBCT-based synthetic CT using U-net
deep learning to improve image quality for adaptive radiotherapy in
the H&N region
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Abstract
Background: Cone-beam CT (CBCT) imaging is used for adaptive radiation therapy (ART) in
head and neck cancer (HNC) due to its more convenient image acquisition and no additional
dose. However, CBCT limitations in Hounsfield (HU) accuracy and image quality have emerged
for treatment planning. Recently, several studies have proposed using deep learning to
generate synthetic CT (sCT) images from CBCT images. However, the quality of images depends
on the hyperparameter setting.
Objective: To determine the optimal hyperparameters of the U-net deep learning (DL) for
generating sCT images for ART in HNC.
Materials and methods: To generate sCT images, U-net DL with a mean absolute error loss
function was used in this study. A total of 3491 image pairs from planning CT (pCT) and CBCT
datasets from 40 HNC patients were split into 80% (2976 images from 32 patients) and 20% (515
images from 8 patients) for training and testing, respectively. Each parameter for tuning the
U-net model, consisting of learning rates, batch sizes, and epochs, was investigated with various
hyperparameter settings in a total of 45 conditions. The best model was assessed using four
metrics, including a mean absolute error (MAE) and root mean square error (RMSE) for HU
accuracy, peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) for image
quality between sCT and pCT images, as well as a training time.
Results: For optimal hyperparameters, we found that the learing rate was set to le-3, batch
size of 8, and epoch of 200. According to this setting, MAE, RMSE, and PSNR improved
from 53.15+40.09, 153.99+79.78, and 47.91+4.98 to 41.47+30.59, 130.39+78.06, and 49.93+6.00,
respectively, while SSIM remained constant. The learning rate played an essential role in the
training model. All models with various hyperparameters enhanced the reduction of artifacts
and noise. The edges of the bone and the soft tissue boundary were clearly visible. The
average training time of an optimal hyperparameter was 6 hours and 36.6 minutes (398 ms/step),
while it took less than 10 seconds to generate sCT images.
Conclusion: Hyperparameter optimization can improve the quality of sCT images for treatment

planning. This study demonstrates the potential of U-net to use CBCT images for ART in HNC.
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Introduction

In radiation therapy, head and neck cancer
(HNQ) is generally treated with complex
techniques, such as intensity-modulated radiation
therapy (IMRT) and volumetric-modulated arc
therapy (VMAT) due to numerous organs at risk
(OARs) near the treatment volume. However,
these techniques are highly sensitive to
uncertainties, especially anatomical changes™ .
This results in error in the actual delivery that
does not correspond to the planned dose. To
solve this problem, adaptive radiation therapy
(ART) has been proposed to reduce the effect of
anatomical changes™”.

Generally, the images used for ART can be
achieved by re-scanned a patient from a
computed tomography (CT) simulator. This
approach requires more staffing and time.
Recently, several studies have proposed using
cone-beam CT (CBCT) images obtained from
treatment rooms for ART®. However, CBCT
images cannot be directly used for treatment
planning due to the limitations of CBCT image
characteristics, including consistency of CT
numbers (Hounsfield units: HU) and image
quality in CBCT with scattered artifacts and
noise® ™. Therefore, before using CBCT images
in ART, the improvement of HU accuracy and
image quality is needed to meet the require-
ments of clinical treatment.

Currently, many studies use deep learning
(DL) to generate synthetic CT (sCT) images from
CBCT images"” ", One of the most popular ones

is the U-net model, the U-shaped convolutional

neural network (CNN) architecture. The U-net has
a convolution encoder-decoder (CED) network
structure where the encoder and decoder parts

119 To achieve the

are directly skip-connected'
best model in the U-net, the parameter setting
is an important step for model training. These
parameters, the so-called hyperparameters,
significantly impact the model training in terms
of predictive image quality, training time, and
computer memory space. For the U-net model,
the hyperparameters include learning rate,
batch size, and epoch. Therefore, this study
aims to determine the optimal value of the

hyperparameters of the U-net model for

generating sCT images for ART in HNC.

Materials and methods
Patient selection and image dataset

This study is a retrospective study. The CBCT
and planning CT (pCT) images of 3,720 image
pairs from 40 paired pCT datasets and CBCT
images of HNC treated with VMAT between
January 2018 and December 2021 at the
Radiation Oncology Department, Chulabhorn
Hospital were enrolled in this study. A
dedicated 16-slice helical big-bore CT simulator
(Phillips Medical Systems, Andover, MA) and a
TrueBeam linear accelerator (Varian Medical
Systems, Pala Alto, CA) were used to acquire
the pCT and CBCT image datasets, respectively.
To minimize the difference in anatomical
structure, only the first fraction of all patients’
CBCT images before treatment were selected.

A voxel spacing was 1.00x1.00x3.00 mm3 and
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0.51x0.51x2.00 mm3 for pCT and CBCT images,
respectively. Both dimensions of the pCT and
CBCT images were 512x512.

Image preparation

Rigid registration was performed to align
the pCT images with the CBCT images using an
open-sourced registration graphical user interface
(OpenREGGUI), a MATLAB-based medical image
processing software. During image registration,
the number of pixels pCT images was resampled
to the CBCT images (0.51x0.51x2.00 mm3).
Due to the incomplete field of view (FOV) of
CBCT images in HNC, images with uncompleted
body outlines were not included in the image

datasets. Furthermore, a structure outside the

input

body was created and assigned to the air
density (-1000 HU) for both pCT and CBCT

images.

Model generation

The proposed model in this study is based
on the U-net architecture, as shown in Figure 1.
The network model was developed using Keras
and TensorFlow 2.9.0 with Python version 3.8,
NVIDIA CUDA® Deep Neural Network library
version 8.1, and Compute Unified Device
Architecture version 11.2. All experiments were
implemented on an NVIDIA Quadro RTX 8000
GPU with 48 GB of memory (training was done in

a JetBrains PyCharm anaconda environment).
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Figure 1 U-net network architecture.

Journal of Thai Association of Radiation Oncology
Vol. 29 No.1 January - June 2023



Model architecture

The U-net model (Figure 1), which has a CED
network structure, comprises two networks:
encoders and decoders"®. Because of its
excellent performance, CED has been widely
used in the DL literature. During the encoding
phase, low-level feature maps are downsampled
to high-level ones. In the decoding phase, the
prediction image is constructed by up-sampling,
utilizing the transposed convolutional layer, and
the high-level feature maps are converted to
low-level feature maps. The encoder network
employs a set of 2D convolution filters with
normalization (batch normalization)™”; a
non-linear activation function (rectified linear
unit: ReLU), and maximum pooling for identifying
image features. The decoder network uses
transposed convolutional layers with concate-
nating layers and convolutional layers with a
RelLU"™ for combining features and spatial
information.

The inputs of the model are pairs of CBCT
and pCT images. A max-pooling layer and two
convolutional layers are placed before each of
the six down-sampling blocks in the encoder,
which is the 3x3 convolution kernel with a
RelU as the activation function. The convolu-
tional layers (down-sampling blocks) have a
beginning feature number of 32 and grow by
2 with each following block number. The pooling
size in the max-pooling layers is 2x2. As a result,
as the encoder continuously increases the depth,
the image size decreases from 512x512x2 to
4x4x1024. With a kernel size of 3x3 and feature

numbers of both 2048, the final two encoder

convolutional layers concentrate the input image
information into 4x4x2048.

For the decoder, two convolutional layers
follow the up-sampling blocks (convolution
transpose) layers of the decoder. One transposed
convolutional layer, one concatenate layer, and
two convolutional layers are present in each
up-sampling block. To obtain more precise
location information at the same level, the
concatenates layer combines the feature maps
from the encoder with the output of the
transposed convolution layers. Following
the concatenates layer, two convolutional layers
let the model develop a more exact output.
The transposed convolutional layers have a
kernel size of 2x2 and a stride size of 2x2.
The kernel size of each convolutional layer in
the decoder is 3x3. The convolutional layers
(up-sampling blocks) start with a feature number
of 2048 and decrease by 2 with each following
block number. Then, apply the kernel size of
3x3 and the corresponding feature numbers
of 32 and 1 to keep the size of sCT images
generated as input images. By reducing the loss
error from an average absolute difference
between the CBCT to sCT images and the
corresponding pCT images, the mean absolute

error (MAE) loss function is optimized.

Model training

The 3,491 image pairs of pCT and CBCT image
datasets from 40 HNC patients were split into
80% (2,976 images from 32 patients) and 20%
(515 images from 8 patients) for training and

testing, respectively. For the training stage,
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20% of the dataset was used for validation, with
a different number of slices depending on each
batch size.

To determine the optimal hyperparameter,
each parameter for tuning the U-net model,
consisting of learning rates, batch sizes, and
epochs, was varied, as shown in Figure 2. The
detail of the parameters are as follows:

1) The learning rates

The learning rate is a hyperparameter
that controls how much weight of the neural
network is adjusted in one step of the
training by setting the learning rate through the
Stochastic Gradient Descent Algorithm Adam
(Adaptive Moment Estimation) Optimizer"**”.

2) Batch sizes
Batch size is the sample number of training

datasets divided into the number of batches in

Batch size
2
Learning rate
le-4 . 4
1e:3 Bl A 8
1 16
32

one epoch®?,

3) Epochs
The number of epochs is a hyperparameter
specifying how often the learning algorithm

will iterate over the training dataset”.

Model testing

After model training, eight independent CBCT
patient datasets were fed to the model to
generate sCT images. The performance of
predictive sCT images generated with different
hyperparameters was evaluated in terms of
quality metrics and time. For quality metrics,
pCT (ground truth images) and sCT images were
measured and compared as follows:

1) HU accuracy

The image intensity was evaluated in

terms of HU differences between the pCT and

o el

T

Epoch
100 Total conditions:
45 Various
150
hyperparameters
200

Figure 2 Setting conditions by adjusting various hyperparameters.
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the sCT images. Mean absolute error (MAE) and
root mean square error (RMSE) were used in this
study. Both terms can be described as follow:
MAE: the mean absolute difference of all
the pixel values between two images in which
the image with lower MAE values shows more

accurate pixel-wise HU values.

N
1
MAE(pCT, SCT) = NZ |pCTl - SCTi|
i=1

RMSE: the root mean square difference
between the two images. Lower RMSE indicates
a lower noise level in the image because pCT

images are less noisy than CBCT images.
1 N
RMSE (pCT, sCT) = \/NZ |pCT; — sCT;|?
i=1

Where N = the total number of pixels
pCTi and sCTi = the HU in each pixel of the
pCT and sCT images, respectively.

2) Image quality

The performance of the image quality of
sCT was determined via two image quality
accepted metrics: peak-signal-noise-ratio (PSNR)
and structural similarity index (SSIM). The details
of each term can be described as follows:

PSNR: the ratio of a maximal pixel value to
the noise of the images degrades the represen-
tation of its quality. This term can calculate using
the ground truth (pCT) image’s maximum inten-

sity value and the mean squared error. PSNR is

the standard metric used to evaluate image

quality for noise reduction.

MAX (pCT)

PSNR(pCT,sCT) = 20 - logyo (m

Where MAX = the maximum intensity for pCT
and sCT images.

SSIM: a standard metric for comparing the
structural similarity of two images. The SSIM close

to 1 indicates similar images.

(uscriper + C1) + Qoserper + C2)

SSIM (pCT,sCT) =
@ ) (scr® + uper? + C1) + (0ser? + oper? + C2)

Where usCT and ppCT = the mean values of
HU of the sCT and pCT images, respectively.

0sCT and opCT = the variance of HU values
of the sCT and pCT images, respectively.

0sCT,pCT = the covariance, the parameters
C1 = (k1L)2 and C2 = (k2L)2are two variables to
stabilize the division with weak denominators, L
is the range of HU values in the CT image. k1 =
0.01, k2 = 0.02.

Results

Table 1 shows the MAE, RMSE, PSNR, SSIM,
and training time from 45 different hyperpara-
meter settings. There was no pattern relationship
for MAE, RMSE, and PSNR when learning rate and
batch size were increased. At the same learning
rate and batch size, MAE and RMSE tended to
decline, PSNR increased and SSIM remained

constant as epoch increased.
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Table 1 MAE, RMSE, PSNR, SSIM, and training time for various hyperparameters from eight independent
test datasets based on 3D images compared with pCT as ground truth images.

Learning rate Batch size Epoch ?fA-iTJF; R('\HALSJE TZE? SSIM Train(ir?f)time
CBCT 53.15 +40.09  153.99 + 79.78 4791 +4.98 0.97 +0.02 -

100 4582 + 27.85  142.69 + 81.54 48.94 + 5.64 0.98 + 0.02 5.00

2 150 44.75 + 27.23  141.02 + 79.60 48.99 + 5.55 0.98 + 0.02 7.50
200 4390 +26.77  141.13 + 78.74 48.94 + 5.47 0.98 + 0.02 10.00

100 43.81 +£29.20  137.70 + 80.30 49.34 + 5.80 0.98 + 0.02 3.89

a4 150 44.03 £ 31.03  139.75 + 83.30 49.31 + 5.97 0.98 + 0.02 5.78
200 44.78 + 30.30  139.28 + 85.32  49.47 + 6.193 0.98 + 0.02 7.78

100 51.22 + 36.87  148.31 + 89.09 48.83 + 6.03 0.98 + 0.02 3.25

le-d4 8 150 50.33 + 35.24  147.83 + 88.09 48.82 + 5.96 0.98 + 0.02 4.88
200 47.80 + 33.00  144.38 + 85.68 49.00 + 5.93 0.98 + 0.02 6.50

100 45.26 + 31.67  133.94 + 76.57 49.49 + 5.65 0.98 + 0.02 2.67

16 150 4591 +32.00 130.72 + 87.18 49.29 + 5.75 0.98 + 0.02 4.00
200 43.52 £ 29.53  130.39 + 73.25 49.65 + 5.52 0.98 + 0.02 5.33

100 48.13 + 33.17  140.06 + 84.07 49.32 + 6.02 0.98 + 0.02 2.53

32 150 47.21 +32.04 13577 + 80.83 49.50 + 6.00 0.98 + 0.02 3.79
200 46.43 + 3239  136.62 + 81.58 49.51 + 5.98 0.98 + 0.02 5.06

100 46.21 +£35.03  143.24 + 87.66 49.23 + 6.12 0.98 + 0.02 5.19

2 150 4757 £34.79  143.25 + 86.92 49.18 + 6.11 0.98 + 0.02 7.79
200 4497 +32.15 13821 + 80.99 49.33 + 5.83 0.98 + 0.02 10.39

100 4294 +31.53 13371 + 79.90 49.70 + 5.99 0.98 + 0.02 3.92

4 150 44.46 +31.91  137.05 + 78.97 49.32 £ 5.70 0.98 + 0.02 5.88
200 4352 +31.19  132.40 + 79.23 49.80 + 6.00 0.98 + 0.02 7.83

100 42.81 +31.58 13520 + 78.57 49.48 + 5.77 0.98 + 0.02 3.31

le-3 8 150 4521 +£30.61  133.89 + 76.10 49.47 + 5.60 0.98 + 0.02 4.96
200 41.47 +£30.59  130.39 + 78.06 49.93 + 6.00 0.98 + 0.02 6.61

100 4256 +30.54  139.30 + 73.20 48.83 + 5.07 0.98 + 0.02 2.67

16 150 44.41 +31.21  130.26 + 86.67 48.80 + 5.22 0.98 + 0.02 4.00
200 46.23 +£32.79  139.68 + 74.89 48.88 + 5.20 0.98 + 0.02 5.33

100 49.20 +33.40  152.28 + 89.39 48.49 + 5.85 0.98 + 0.02 2.56

32 150 47.06 £ 2997  148.45 + 83.19 48.51 + 5.50 0.98 + 0.02 3.38
200 48.34 + 28.69  150.97 + 86.81 48.47 + 5.69 0.98 + 0.02 5.11

Abbreviations: CBCT=cone-beam computed tomography; MAE = mean absolute error; RMSE = root-mean-square error; SSIM = structural

similarity index; PSNR = peak signal-to-noise ratio; HU = Hounsfield units; dB = decibel; hr = hours.
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The best sCT images in this study indicated
the optimal hyperparameter (OptHyper)
when the learning rate was set to le-3, batch
size was 8, and epoch was 200. When compared
to CBCT images, these metrics improved the
values of MAE, RMSE, and PSNR, from 53.15 +
40.09, 153.99 + 79.78, and 47.91 = 4.98 to
41.47 + 30.59, 130.39 + 78.06, and 49.93 + 6.00,
respectively. On the other hand, sCT was
generated by setting the hyperparameter to the
lowest value, called the minimal hyperparameter
(MinHyper) setting, with a set learning rate of
le-4, batch size of 2, and epoch of 100. With
this setting, the MAE, RMSE, and PSNR were
45.82 + 27.85, 142.69 + 81.54, and 48.94 + 5.64,
respectively. The highest value of hyperpara-
meter configuration, called maximal hyperpara-
meter (MaxHyper) setting, with a set learning rate
of 1le-3, batch size of 32, and epoch of 200. This
condition provided the MAE, RMSE, and PSNR of
48.34 + 28.69, 150.97 + 86.81, and 48.47 + 5.69,
respectively. The SSIM of sCT images from all
hyperparameter conditions was 0.98 + 0.02,
higher than 0.97 + 0.02 for CBCT images.

Figure 3 depicts the axial image and HU
line profile of pCT, CBCT, and three sCT images
obtained from the test datasets (MinHyper,
OptHyper, and MaxHyper). This profile crosses
through bone and soft tissue structures. The blue
line represents the HU profile of OptHyper sCT
images, setting optimal hyperparameters as a
learning rate of le-3, batch size of 8, and epoch

200. The sCT images improved in HU value, with

an increase in HU smoothness and accuracy close
to pCT images in the area of soft tissue, bone,
and closer to the body boundary. In contrast,
both MinHyper sCT images, represented by the
red line as setting minimal hyperparameters, and
the magenta line representing of MaxHyper sCT
images as setting maximal hyperparameters, were
less close to pCT images in any area. However,
all sCT images were of better quality than the
HU profile in the CBCT image, which was noisy
and inaccurate.

From the results in Table 1, the training time
for the minimal hyperparameters setting was 5
hours, the training time for the maximal hyper-
parameters setting was 5 hours and 7 minutes,
and the training time for the optimal hyper-
parameters setting was 6 hours and 36.6 minutes.
Most of the training time was reduced to 9%, 8%,
and 53%, respectively, when the batch size
increased from 2 to 4, 8 to 16, and 16 to 32,
while only the batch size increased from 4 to 8,
increasing 3% training time when the learning
rate had risen from le-4 to le-3. This demon-
strated less training time when the batch size

and learning rate were higher.

Three axial slices of pCT, CBCT, and OptHyper
sCT are shown in Figure 4. The OptHyper sCT
images improved HU values close to pCT images
while preserving the geometrical information of
CBCT images. Moreover, The OptHyper sCT
images could also reduce streak artifacts found

in CBCT images (Red arrow in Figure 4).
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Figure 3 The axial images (a) and HU line profiles (b) of pCT, CBCT, and three sCT images obtained test

datasets. Comparing of the pCT (orange), CBCT (green), MinHyper sCT (red), OptHyper sCT (blue), and
MaxHyper sCT (magenta).
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Figure 4 Three axial slices of pCT, CBCT, and OptHyper sCT images with -1000 to 1000 HU window width.

Figure 5 shows the HU line profile through especially at the body boundaries. There was a
the body of pCT (orange), CBCT (green), and peak reduction and a smoothness in OptHyper
OptHyper sCT (blue) images. According to the sCT images. At the soft tissue-air interface, the
line profiles, OptHyper sCT images had an HU OptHyper sCT images provided a smooth edge
line closer to pCT images than the CBCT images, than the CBCT images.
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Figure 5 The axial images (a) and HU line profiles (b) of pCT (orange), CBCT (green), and OptHyper sCT

(blue) images obtained from test datasets.

Discussion sensitive to anatomical variations, such as weight

The purpose of this study was to determine loss and tumor shrinkage. This study concentrated
the optimal value of the hyperparameters of the on three hyperparameters: learning rate, batch
U-net model for generating sCT images for ART size, and epochs. There were four acceptable
in HNC. The head and neck region are extremely metrics for evaluating the quality of sCT with a
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different set of hyperparameters. These evalua-
tion metrics were assessed in terms of MAE and
RMSE for HU accuracy and PSNR and SSIM for
image quality. Moreover, the time during model
training was collected as well. Since acquisition
at the same time for pCT and CBCT images was
difficult, first-fraction CBCT images of HNC
patients were used and then registered to pCT
images for generating synthesis CT images from
a model based on a U-net architecture for
anatomical structure mismatch.

The advantage of the U-net model is reducing
global scattering and improving local HU due to
applying in the spatial domain of an image both
global and local features™?”. To resolve this
issue, a trained model using MAE as a loss
function was used to learn the anatomical
structures of CBCT images through image prepro-
cessing and the HU value of pCT images. Further-
more, the U-net can generate an output the
same size as its input. However, the disadvantage
of the model is the unknown number of optimal
depths of an encoder-decoder network based
on the task complexity for training. In addition,
there is a robust theory for the design of skip
connections between encoder-decoder networks
operating at the same level. Because these
feature maps are semantically different, it is
not guaranteed that they are the perfect fit for
feature fusion®.

This study investigated only three hyperpa-
rameters, including the learning rate, batch size,
and epoch. We did not include weight decay due

to less effect on model performance™. Further-

more, these agree with Bergstra et al.””, who
compared a careful combination of manual and
grid searches of deep belief networks with varied
these three hyperparameters.

According to the results of the study, it was
found that the learning rate had a significant
impact on the image quality in terms of MAE,
RMSE, and PSNR, except SSIM, while the batch
size and epoch had less effect on the image
quality. Where SSIM is invariant, this may be due
to the high accuracy of alignment of pCT and
CBCT images by rigid image registration and
selection of images with FOV encompassing
body parts. According to Table 1, the learning
rate impacts the image quality of almost 45
setting conditions across various hyperpara-
meters for the training model to generate sCT.
Obviously, when increasing the learning rate to
10e-3, almost all the results had better image
quality than the learning rate of 10e-4.

The conditions with the learning rate of 1le-3,
the batch size of 8, and the epoch of 200 were
the optimal hyperparameters for the U-net
model to generate sCT due to the highest PSNR
and lowest MAE and RMSE. All various hyper-
parameters for sCT generation enhanced the
reduction of artifacts and noise. The edges of the
bone and the soft tissue boundary were clearly
visible. The sCT images can improve HU
accuracy and image quality compared to the
original CBCT images.

According to the HU line profiles of pCT,
CBCT, and sCT images with three different
hyperparameter settings, OptHyper sCT images
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had an HU line closer to pCT images than the
others, especially at the body boundaries. At the
thyroid cartilage region, all sCT images showed
better intensity with the reduction from the peak
of CBCT images. The smoothness of soft tissue
had improved in all sCT images, the closest to
pCT images being MinHyper sCT, MaxHper
sCT, and OptHyper sCT images, respectively.
Although when the HU line crosses through the
surrounding edge of the air region, such as the
outside of the body and subsglottic larynx, it
indicates that sCT images had rounded corners
close to pCT images. In contrast, CBCT images
had square corners, the closest to pCT images
being OptHyper sCT, MinHyper sCT, and MaxHper
sCT images, respectively. Furthermore, the
MinHyper sCT images had a tail at the bottom of
the image. In contrast, the MaxHper sCT images
had an inaccurate HU value, especially in air
density at the end edge of the body part
(intensity higher than -1000 HU). As a result,
OptHyper sCT was the best hyperparameter,
with an HU profile line that crossed soft tissue,
bone, and body boundaries closer to pCT
images than the other MinHyper sCT, MaxHper
sCT, and the original CBCT images. It also provides
OptHyper sCT images with good image detail of
bone structure and structure boundaries, soft
tissue contrast, and reduces artifacts and noise
in CBCT images.

The average training time of an optimal
hyperparameter was 6 hours and 36.6 minutes
(398 ms/step), while it took less than 10 seconds

to generate sCT images. From the results, the
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consumed training time depends on the number
of images and the setting of the hyperparameter
value. The model’s answer converges slowly
when the learning rate is too low. It takes longer
to train because each trained model changes the
weight and bias incrementally, requiring several
epochs. On the other hand, when the learning
rate is set too high, the model’s answer stays
consistent with the correct or expected answer
because each training cycle improves weight and
bias rapidly, requiring fewer epochs. The batch
size determination directly affected the train
speed. The larger the batch size, the faster the
training model, but the more memory needs to
be processed.

This study reported similar results to Kida
et al."?. They used the same U-net model struc-
ture without RelLU in transpose convolution and
used MAE as a loss function in the pelvic regions.
Furthermore, our results showed better MAE,
RMSE, PSNR, SSIM, and train time than Li et al.’s
work?”, which developed the U-net architecture
with a residual block using MAE as the loss
function in the H&N region. However, the study
of Chen et al."” provided better HU accuracy
metrics results than ours because of an improved
loss function that combines structure dissimi-
larity and MAE. Although this study shows better
image quality, the training time was shorter.

Although our results showed improvements
in HU accuracy and image quality, there are
several limitations to keep in mind. Firstly,
the FOV of CBCT images was limited to 250 mm,

which cannot provide the anatomy information,



especially the low-risk target volume of HNC
in the shoulder region. Secondly, anatomical
changes may occur between a pair of pCT-CBCT
images due to the different times of image
acquisition (taken on separate days). This could
impact the model training due to using a pair
image of the U-net algorithm. Finally, this study
had a small sample size of image data for
training and testing, and a larger sample size
might lead to better results.

Further research suggests that these limits
could be improved by creating an advanced loss

function for optimization, such as extracting
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