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Optimal hyperparameters of CBCT-based synthetic CT using U-net 

deep learning to improve image quality for adaptive radiotherapy in 

the H&N region

ไฮเปอร์พารามิเิตอร์ที่่�เหมาะสมของการสร้้างภาพเอกซเรย์์คอมพิวเตอร์สังัเคราะห์์จาก

ภาพเอกซเรย์์คอมพิวเตอร์ลำรัังสีีกรวยด้้วยการเรีียนรู้้�เชิิงลึึกชนิิดยููเน็็ตเพื่่�อเพิ่่�ม

คุณุภาพของภาพสำหรัับการรัักษาเทคนิคิรัังสีีแบบปรัับแผนในบริิเวณศีีรษะและลำคอ
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Abstract 

Background: Cone-beam CT (CBCT) imaging is used for adaptive radiation therapy (ART) in  

head and neck cancer (HNC) due to its more convenient image acquisition and no additional 

dose. However, CBCT limitations in Hounsfield (HU) accuracy and image quality have emerged 

for treatment planning. Recently, several studies have proposed using deep learning to  

generate synthetic CT (sCT) images from CBCT images. However, the quality of images depends 

on the hyperparameter setting.

Objective: To determine the optimal hyperparameters of the U-net deep learning (DL) for  

generating sCT images for ART in HNC.

Materials and methods: To generate sCT images, U-net DL with a mean absolute error loss 

function was used in this study. A total of 3491 image pairs from planning CT (pCT) and CBCT 

datasets from 40 HNC patients were split into 80% (2976 images from 32 patients) and 20% (515 

images from 8 patients) for training and testing, respectively. Each parameter for tuning the  

U-net model, consisting of learning rates, batch sizes, and epochs, was investigated with various 

hyperparameter settings in a total of 45 conditions. The best model was assessed using four 

metrics, including a mean absolute error (MAE) and root mean square error (RMSE) for HU  

accuracy, peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) for image  

quality between sCT and pCT images, as well as a training time.

Results: For optimal hyperparameters, we found that the learning rate was set to 1e-3, batch 

size of 8, and  epoch of 200. According to this setting, MAE, RMSE, and PSNR improved 

 from 53.15±40.09, 153.99±79.78, and 47.91±4.98 to 41.47±30.59, 130.39±78.06, and 49.93±6.00, 

respectively, while SSIM remained constant. The learning rate played an essential role in the 

training model. All models with various hyperparameters enhanced the reduction of artifacts  

and noise. The edges of the bone and the soft tissue boundary were clearly visible. The  

average training time of an optimal hyperparameter was 6 hours and 36.6 minutes (398 ms/step), 

while it took less than 10 seconds to generate sCT images.

Conclusion: Hyperparameter optimization can improve the quality of sCT images for treatment 

planning. This study demonstrates the potential of U-net to use CBCT images for ART in HNC.

  

Keywords: synthetic CT, cone-beam CT, deep learning, U-net, hyperparameters  
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บทคััดย่่อ

หลักัการและเหตุผุล: การนำภาพเอกซเรย์ค์อมพิิวเตอร์ชนิิดลำรัังสีีกรวย (Cone-beam computed tomography: 

CBCT) มาใช้้ในการรัักษาด้้วยรังสีีแบบปรัับแผนสำหรัับมะเร็็งศีีรษะและลำคอ สามารถทำได้้ง่่ายและไม่่มีีการเพิ่่�ม

ปริิมาณรัังสีี แต่่อย่่างไรก็็ตามยัังมีีข้้อจำกััดด้้านความถููกต้้องของค่่า HU และคุุณภาพของภาพ เมื่่�อเร็็วๆนี้้�  

หลายงานวิิจััยได้้เสนอให้้ใช้้การเรีียนรู้้�เชิิงลึึก (Deep learning: DL) เพื่่�อสร้้างภาพเอกซเรย์์คอมพิิวเตอร์์สัังเคราะห์์ 

(Synthetic CT: sCT) ซึ่่�งคุุณภาพของภาพจากวิิธีีการนี้้�ขึ้้�นอยู่่�กัับการตั้้�งค่่าไฮเปอร์์พารามิิเตอร์์

วัตัถุปุระสงค์:์ เพื่่�อหาค่า่ไฮเปอร์พ์ารามิเิตอร์ท์ี่่�เหมาะสมของแบบจำลองการเรียีนรู้้�เชิงิลึกึชนิดิยูเูน็ต็ (U-net) สำหรับั

การสร้้างภาพ sCT ในการรัักษาด้้วยรัังสีีแบบปรัับแผนสำหรัับ HNC

วััสดุุและวิิธีีการ: การศึึกษานี้้�ใช้้แบบจำลอง U-net โดยใช้้ภาพทั้้�งหมด 3,491 คู่่�จากชุุดข้้อมููลภาพเอกซเรย์์

คอมพิิวเตอร์์วางแผนการรัักษา (pCT) และ CBCT ของ HNC 40 ราย โดยแบ่่งข้้อมููลเป็็น 80% และ 20% สำหรัับ

การฝึึกและทดสอบตามลำดัับ เพ่ื่�อหาค่่าไฮเปอร์์พารามิิเตอร์ที่่�เหมาะสม ค่่าอััตราการเรีียนรู้้�, ขนาดแบทช์์, และ 

รอบในการฝึึก ได้้มีีการปรัับแต่่งทั้้�งหมด 45 เงื่่�อนไข และมีีการประเมิินคุุณภาพของภาพระหว่่างภาพ pCT และ 

sCT ดัังนี้้� ค่่าผิิดพลาดสััมบููรณ์์เฉลี่่�ย (MAE) และค่่าผิิดพลาดกำลัังสองเฉลี่่�ยของราก (RMSE), อััตราส่่วนสััญญาณ

ต่่อสััญญาณรบกวนสููงสุุด (PSNR) และดััชนีีความคล้้ายคลึึงกัันของโครงสร้าง (SSIM) รวมถึึงเวลาในการฝึึก 

แบบจำลอง

ผลการศึึกษา: ไฮเปอร์์พารามิิเตอร์์ที่่�เหมาะสมประกอบด้้วยค่่าอััตราการเรีียนรู้้�ที่่� 1e-3, ขนาดแบทช์์ที่่� 8, และ 

รอบการฝึึกแบบจำลองที่่� 200 ค่่า MAE, RMSE และ PSNR มีีค่่าที่่�ดีีขึ้้�นจาก 53.15±40.09, 153.99±79.78  

และ 47.91±4.98 เป็็น 41.47±30.59, 130.39±78.06 และ 49.93±6.00 ตามลำดัับ ขณะที่่�ค่่า SSIM มีีค่่าคงที่่� 

งานวิิจััยนี้้�พบว่่าค่่าอััตราการเรีียนรู้้�คืือค่าที่่�มีีความสำคััญในการฝึึกแบบจำลอง โดยแบบจำลอง U-net สามารถ 

ลดสิ่่�งแปลกปลอมและสััญญาณรบกวนได้้เป็็นอย่างดีี เวลาการฝึึกแบบจำลองมีีค่่าเฉลี่่�ยที่่� 6 ชั่่�วโมง 36.6 นาทีี  

(398 มิิลลิิวิินาทีี/ขั้้�น) โดยใช้้เวลาการสร้้างภาพ sCT น้้อยกว่่า 10 วิินาทีี

ข้้อสรุุป: การปรัับไฮเปอร์์พารามิิเตอร์์ที่่�เหมาะสมสามารถช่่วยเพิ่่�มคุุณภาพของภาพ sCT ให้้ดีีขึ้้�น การศึึกษานี้้� 

แสดงให้้เห็็นว่่าภาพ CBCT สามารถนำมาใช้้สำหรัับการรัักษาด้้วยรัังสีีแบบปรัับแผนใน HNC ได้้

คำสำคััญ: เอกซเรย์์คอมพิิวเตอร์์สัังเคราะห์์, เอกซเรย์์คอมพิิวเตอร์์ลำรัังสีีกรวย, การเรีียนรู้้�เชิิงลึึก, ยููเน็็ต, ไฮเปอร์์

พารามิิเตอร์์
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Introduction

	 In radiation therapy, head and neck cancer 

(HNC) is generally treated with complex  

techniques, such as intensity-modulated radiation 

therapy (IMRT) and volumetric-modulated arc 

therapy (VMAT) due to numerous organs at risk 

(OARs) near the treatment volume. However, 

these techniques are highly sensit ive to  

uncertainties, especially anatomical changes[1–3]. 

This results in error in the actual delivery that 

does not correspond to the planned dose. To 

solve this problem, adaptive radiation therapy 

(ART) has been proposed to reduce the effect of 

anatomical changes[4,5].

	 Generally, the images used for ART can be 

achieved by re-scanned a patient from a  

computed tomography (CT) simulator. This  

approach requires more staffing and time.  

Recently, several studies have proposed using 

cone-beam CT (CBCT) images obtained from 

treatment rooms for ART[6–8]. However, CBCT 

images cannot be directly used for treatment 

planning due to the limitations of CBCT image 

characteristics, including consistency of CT  

numbers (Hounsfield units: HU) and image  

quality in CBCT with scattered artifacts and  

noise[9–11]. Therefore, before using CBCT images 

in ART, the improvement of HU accuracy and 

image quality is needed to meet the require-

ments of clinical treatment.

	 Currently, many studies use deep learning 

(DL) to generate synthetic CT (sCT) images from 

CBCT images[12–14]. One of the most popular ones 

is the U-net model, the U-shaped convolutional 

neural network (CNN) architecture. The U-net has 

a convolution encoder-decoder (CED) network 

structure where the encoder and decoder parts 

are directly skip-connected[15,16]. To achieve the 

best model in the U-net, the parameter setting 

is an important step for model training. These 

parameters, the so-called hyperparameters,  

significantly impact the model training in terms 

of predictive image quality, training time, and 

computer memory space. For the U-net model, 

the hyperparameters include learning rate,  

batch size, and epoch. Therefore, this study  

aims to determine the optimal value of the  

hyperparameters of the U-net model for  

generating sCT images for ART in HNC.

Materials and methods 

Patient selection and image dataset

 	 This study is a retrospective study. The CBCT 

and planning CT (pCT) images of 3,720 image  

pairs from 40 paired pCT datasets and CBCT 

images of HNC treated with VMAT between  

January 2018 and December 2021 at the  

Radiation Oncology Department, Chulabhorn 

Hospital were enrolled in this study. A  

dedicated 16-slice helical big-bore CT simulator 

(Phillips Medical Systems, Andover, MA) and a 

TrueBeam linear accelerator (Varian Medical 

Systems, Pala Alto, CA) were used to acquire  

the pCT and CBCT image datasets, respectively. 

To minimize the difference in anatomical  

structure, only the first fraction of all patients’ 

CBCT images before treatment were selected.  

A voxel spacing was 1.00×1.00×3.00 mm3 and 
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0.51×0.51×2.00 mm3 for pCT and CBCT images, 

respectively. Both dimensions of the pCT and 

CBCT images were 512×512.

Image preparation

	 Rigid registration was performed to align  

the pCT images with the CBCT images using an  

open-sourced registration graphical user interface 

(OpenREGGUI), a MATLAB-based medical image 

processing software. During image registration, 

the number of pixels pCT images was resampled 

to the CBCT images (0.51×0.51×2.00 mm3).  

Due to the incomplete field of view (FOV) of 

CBCT images in HNC, images with uncompleted 

body outlines were not included in the image 

datasets. Furthermore, a structure outside the 

body was created and assigned to the air  

density (-1000 HU) for both pCT and CBCT  

images.

Model generation

 	 The proposed model in this study is based 

on the U-net architecture, as shown in Figure 1. 

The network model was developed using Keras 

and TensorFlow 2.9.0 with Python version 3.8, 

NVIDIA CUDA® Deep Neural Network library  

version 8.1, and Compute Unified Device  

Architecture version 11.2. All experiments were 

implemented on an NVIDIA Quadro RTX 8000 

GPU with 48 GB of memory (training was done in 

a JetBrains PyCharm anaconda environment). 

Figure 1 U-net network architecture. 
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Model architecture 

 	 The U-net model (Figure 1), which has a CED 

network structure, comprises two networks:  

encoders and decoders[16]. Because of its 

 excellent performance, CED has been widely 

used in the DL literature. During the encoding 

phase, low-level feature maps are downsampled 

to high-level ones. In the decoding phase, the 

prediction image is constructed by up-sampling, 

utilizing the transposed convolutional layer, and 

the high-level feature maps are converted to 

low-level feature maps. The encoder network 

employs a set of 2D convolution filters with 

normalization (batch normalization)[17], a  

non-linear activation function (rectified linear 

unit: ReLU), and maximum pooling for identifying 

image features. The decoder network uses 

transposed convolutional layers with concate-

nating layers and convolutional layers with a 

ReLU[18] for combining features and spatial  

information.  

 	 The inputs of the model are pairs of CBCT 

and pCT images. A max-pooling layer and two 

convolutional layers are placed before each of 

the six down-sampling blocks in the encoder, 

which is the 3×3 convolution kernel with a  

ReLU as the activation function. The convolu-

tional layers (down-sampling blocks) have a 

beginning feature number of 32 and grow by  

2 with each following block number. The pooling 

size in the max-pooling layers is 2×2. As a result, 

as the encoder continuously increases the depth, 

the image size decreases from 512×512x2 to 

4×4×1024. With a kernel size of 3×3 and feature 

numbers of both 2048, the final two encoder 

convolutional layers concentrate the input image 

information into 4×4×2048.

 	 For the decoder, two convolutional layers 

follow the up-sampling blocks (convolution 

transpose) layers of the decoder. One transposed 

convolutional layer, one concatenate layer, and 

two convolutional layers are present in each 

up-sampling block. To obtain more precise  

location information at the same level, the  

concatenates layer combines the feature maps 

from the encoder with the output of the  

transposed convolution layers. Following  

the concatenates layer, two convolutional layers 

let the model develop a more exact output.  

The transposed convolutional layers have a 

kernel size of 2×2 and a stride size of 2×2.  

The kernel size of each convolutional layer in 

the decoder is 3×3. The convolutional layers 

(up-sampling blocks) start with a feature number 

of 2048 and decrease by 2 with each following 

block number. Then, apply the kernel size of  

3x3 and the corresponding feature numbers  

of 32 and 1 to keep the size of sCT images  

generated as input images. By reducing the loss 

error from an average absolute difference  

between the CBCT to sCT images and the  

corresponding pCT images, the mean absolute 

error (MAE) loss function is optimized.

Model training

	 The 3,491 image pairs of pCT and CBCT image 

datasets from 40 HNC patients were split into 

80% (2,976 images from 32 patients) and 20% 

(515 images from 8 patients) for training and 

testing, respectively. For the training stage,  
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20% of the dataset was used for validation, with 

a different number of slices depending on each 

batch size. 

 	 To determine the optimal hyperparameter, 

each parameter for tuning the U-net model, 

consisting of learning rates, batch sizes, and  

epochs, was varied, as shown in Figure 2. The 

detail of the parameters are as follows:

	 1)	The learning rates

		  The learning rate is a hyperparameter  

that controls how much weight of the neural 

network is adjusted in one step of the  

training by setting the learning rate through the 

Stochastic Gradient Descent Algorithm Adam 

(Adaptive Moment Estimation) Optimizer[19,20].

	 2)	Batch sizes 

		  Batch size is the sample number of training 

datasets divided into the number of batches in 

one epoch[20,21]. 

	 3)	Epochs

		  The number of epochs is a hyperparameter 

specifying how often the learning algorithm  

will iterate over the training dataset[22]. 

Model testing

 	 After model training, eight independent CBCT 

patient datasets were fed to the model to  

generate sCT images. The performance of  

predictive sCT images generated with different 

hyperparameters was evaluated in terms of 

quality metrics and time. For quality metrics,  

pCT (ground truth images) and sCT images were 

measured and compared as follows:

	 1)	HU accuracy

 		  The image intensity was evaluated in  

terms of HU differences between the pCT and 

Figure 2  Setting conditions by adjusting various hyperparameters.
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the sCT images. Mean absolute error (MAE) and 

root mean square error (RMSE) were used in this 

study. Both terms can be described as follow:

		  MAE: the mean absolute difference of all 

the pixel values between two images in which 

the image with lower MAE values shows more 

accurate pixel-wise HU values.

	

		  RMSE: the root mean square difference 

between the two images. Lower RMSE indicates 

a lower noise level in the image because pCT 

images are less noisy than CBCT images.

		  Where N = the total number of pixels

		  pCTi and sCTi = the HU in each pixel of the 

pCT and sCT images, respectively.

	 2) Image quality

		  The performance of the image quality of 

sCT was determined via two image quality  

accepted metrics: peak-signal-noise-ratio (PSNR) 

and structural similarity index (SSIM). The details 

of each term can be described as follows:

		  PSNR: the ratio of a maximal pixel value to 

the noise of the images degrades the represen-

tation of its quality. This term can calculate using 

the ground truth (pCT) image’s maximum inten-

sity value and the mean squared error. PSNR is 

the standard metric used to evaluate image 

quality for noise reduction.

 

	 Where MAX = the maximum intensity for pCT 

and sCT images.

	 SSIM: a standard metric for comparing the 

structural similarity of two images. The SSIM close 

to 1 indicates similar images. 

	 Where μsCT and μpCT = the mean values of 

HU of the sCT and pCT images, respectively.   

	 σsCT and σpCT = the variance of HU values 

of the sCT and pCT images, respectively. 

	 σsCT,pCT = the covariance, the parameters 

C1 = (k1L)2 and C2 = (k2L)2are two variables to 

stabilize the division with weak denominators, L 

is the range of HU values in the CT image. k1 = 

0.01, k2 = 0.02.

Results

	 Table 1 shows the MAE, RMSE, PSNR, SSIM, 

and training time from 45 different hyperpara- 

meter settings. There was no pattern relationship 

for MAE, RMSE, and PSNR when learning rate and 

batch size were increased. At the same learning 

rate and batch size, MAE and RMSE tended to 

decline, PSNR increased and SSIM remained 

constant as epoch increased.
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Table 1 MAE, RMSE, PSNR, SSIM, and training time for various hyperparameters from eight independent 
test datasets based on 3D images compared with pCT as ground truth images.

Learning rate Batch size Epoch MAE 
(HU)

RMSE
 (HU)

PSNR 
(dB) SSIM Training time 

(hr.)

CBCT 53.15 ± 40.09 153.99 ± 79.78 47.91 ± 4.98 0.97 ± 0.02 -

1e-4

2

100 45.82 ± 27.85 142.69 ± 81.54 48.94 ± 5.64 0.98 ± 0.02 5.00

150 44.75 ± 27.23 141.02 ± 79.60 48.99 ± 5.55 0.98 ± 0.02 7.50

200 43.90 ± 26.77 141.13 ± 78.74 48.94 ± 5.47 0.98 ± 0.02 10.00

4

100 43.81 ± 29.20 137.70 ± 80.30 49.34 ± 5.80 0.98 ± 0.02 3.89

150 44.03 ± 31.03 139.75 ± 83.30 49.31 ± 5.97 0.98 ± 0.02 5.78

200 44.78 ± 30.30 139.28 ± 85.32 49.47 ± 6.193 0.98 ± 0.02 7.78

8

100 51.22 ± 36.87 148.31 ± 89.09 48.83 ± 6.03 0.98 ± 0.02 3.25

150 50.33 ± 35.24 147.83 ± 88.09 48.82 ± 5.96 0.98 ± 0.02 4.88

200 47.80 ± 33.00 144.38 ± 85.68 49.00 ± 5.93 0.98 ± 0.02 6.50

16

100 45.26 ± 31.67 133.94 ± 76.57 49.49 ± 5.65 0.98 ± 0.02 2.67

150 45.91 ± 32.00 130.72 ± 87.18 49.29 ± 5.75 0.98 ± 0.02 4.00

200 43.52 ± 29.53 130.39 ± 73.25 49.65 ± 5.52 0.98 ± 0.02 5.33

32

100 48.13 ± 33.17 140.06 ± 84.07 49.32 ± 6.02 0.98 ± 0.02 2.53

150 47.21 ± 32.04 135.77 ± 80.83 49.50 ± 6.00 0.98 ± 0.02 3.79

200 46.43 ± 32.39 136.62 ± 81.58 49.51 ± 5.98 0.98 ± 0.02 5.06

1e-3

2

100 46.21 ± 35.03 143.24 ± 87.66 49.23 ± 6.12 0.98 ± 0.02 5.19

150 47.57 ± 34.79 143.25 ± 86.92 49.18 ± 6.11 0.98 ± 0.02 7.79

200 44.97 ± 32.15 138.21 ± 80.99 49.33 ± 5.83 0.98 ± 0.02 10.39

4

100 42.94 ± 31.53 133.71 ± 79.90 49.70 ± 5.99 0.98 ± 0.02 3.92

150 44.46 ± 31.91 137.05 ± 78.97 49.32 ± 5.70 0.98 ± 0.02 5.88

200 43.52 ± 31.19 132.40 ± 79.23 49.80 ± 6.00 0.98 ± 0.02 7.83

8

100 42.81 ± 31.58 135.20 ± 78.57 49.48 ± 5.77 0.98 ± 0.02 3.31

150 45.21 ± 30.61 133.89 ± 76.10 49.47 ± 5.60 0.98 ± 0.02 4.96

200 41.47 ± 30.59 130.39 ± 78.06 49.93 ± 6.00 0.98 ± 0.02 6.61

16

100 42.56 ± 30.54 139.30 ± 73.20 48.83 ± 5.07 0.98 ± 0.02 2.67

150 44.41 ± 31.21 130.26 ± 86.67 48.80 ± 5.22 0.98 ± 0.02 4.00

200 46.23 ± 32.79 139.68 ± 74.89 48.88 ± 5.20 0.98 ± 0.02 5.33

32

100 49.20 ± 33.40 152.28 ± 89.39 48.49 ± 5.85 0.98 ± 0.02 2.56

150 47.06 ± 29.97 148.45 ± 83.19 48.51 ± 5.50 0.98 ± 0.02 3.38

200 48.34 ± 28.69 150.97 ± 86.81 48.47 ± 5.69 0.98 ± 0.02 5.11

Abbreviations: CBCT=cone-beam computed tomography; MAE = mean absolute error; RMSE = root-mean-square error; SSIM = structural 

similarity index; PSNR = peak signal-to-noise ratio; HU = Hounsfield units; dB = decibel; hr = hours.
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	 The best sCT images in this study indicated 

the optimal hyperparameter (OptHyper)  

when the learning rate was set to 1e-3, batch 

size was 8, and epoch was 200. When compared 

to CBCT images, these metrics improved the 

values of MAE, RMSE, and PSNR, from 53.15 ± 

40.09, 153.99 ± 79.78, and 47.91 ± 4.98 to  

41.47 ± 30.59, 130.39 ± 78.06, and 49.93 ± 6.00, 

respectively. On the other hand, sCT was  

generated by setting the hyperparameter to the 

lowest value, called the minimal hyperparameter 

(MinHyper) setting, with a set learning rate of  

1e-4, batch size of 2, and epoch of 100. With  

this setting, the MAE, RMSE, and PSNR were  

45.82 ± 27.85, 142.69 ± 81.54, and 48.94 ± 5.64, 

respectively. The highest value of hyperpara- 

meter configuration, called maximal hyperpara- 

meter (MaxHyper) setting, with a set learning rate 

of 1e-3, batch size of 32, and epoch of 200. This 

condition provided the MAE, RMSE, and PSNR of 

48.34 ± 28.69, 150.97 ± 86.81, and 48.47 ± 5.69, 

respectively. The SSIM of sCT images from all 

hyperparameter conditions was 0.98 ± 0.02, 

higher than 0.97 ± 0.02 for CBCT images.

	 Figure 3 depicts the axial image and HU  

line profile of pCT, CBCT, and three sCT images 

obtained from the test datasets (MinHyper,  

OptHyper, and MaxHyper). This profile crosses 

through bone and soft tissue structures. The blue 

line represents the HU profile of OptHyper sCT 

images, setting optimal hyperparameters as a 

learning rate of 1e-3, batch size of 8, and epoch 

200. The sCT images improved in HU value, with 

an increase in HU smoothness and accuracy close 

to pCT images in the area of soft tissue, bone, 

and closer to the body boundary. In contrast, 

both MinHyper sCT images, represented by the 

red line as setting minimal hyperparameters, and 

the magenta line representing of MaxHyper sCT 

images as setting maximal hyperparameters, were 

less close to pCT images in any area. However, 

all sCT images were of better quality than the 

HU profile in the CBCT image, which was noisy 

and inaccurate.

	 From the results in Table 1, the training time 

for the minimal hyperparameters setting was 5 

hours, the training time for the maximal hyper-

parameters setting was 5 hours and 7 minutes, 

and the training time for the optimal hyper- 

parameters setting was 6 hours and 36.6 minutes. 

Most of the training time was reduced to 9%, 8%, 

and 53%, respectively, when the batch size  

increased from 2 to 4, 8 to 16, and 16 to 32,  

while only the batch size increased from 4 to 8, 

increasing 3% training time when the learning  

rate had risen from 1e-4 to 1e-3. This demon-

strated less training time when the batch size 

and learning rate were higher.

	 Three axial slices of pCT, CBCT, and OptHyper 

sCT are shown in Figure 4. The OptHyper sCT 

images improved HU values close to pCT images 

while preserving the geometrical information of 

CBCT images. Moreover, The OptHyper sCT  

images could also reduce streak artifacts found 

in CBCT images (Red arrow in Figure 4).
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Figure 3  The axial images (a) and HU line profiles (b) of pCT, CBCT, and three sCT images obtained test 

datasets. Comparing of the pCT (orange), CBCT (green), MinHyper sCT (red), OptHyper sCT (blue), and 

MaxHyper sCT (magenta).
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Figure 4 Three axial slices of pCT, CBCT, and OptHyper sCT images with  -1000 to 1000 HU window width.

	 Figure 5 shows the HU line profile through 

the body of pCT (orange), CBCT (green), and 

OptHyper sCT (blue) images. According to the 

line profiles, OptHyper sCT images had an HU 

line closer to pCT images than the CBCT images, 

especially at the body boundaries. There was a 

peak reduction and a smoothness in OptHyper 

sCT images. At the soft tissue-air interface, the 

OptHyper sCT images provided a smooth edge 

than the CBCT images.
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Figure 5  The axial images (a) and HU line profiles (b) of pCT (orange), CBCT (green), and OptHyper sCT 

(blue) images obtained from test datasets.

Discussion

 	 The purpose of this study was to determine 

the optimal value of the hyperparameters of the 

U-net model for generating sCT images for ART 

in HNC. The head and neck region are extremely 

sensitive to anatomical variations, such as weight 

loss and tumor shrinkage. This study concentrated 

on three hyperparameters: learning rate, batch 

size, and epochs. There were four acceptable 

metrics for evaluating the quality of sCT with a 
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different set of hyperparameters. These evalua-

tion metrics were assessed in terms of MAE and 

RMSE for HU accuracy and PSNR and SSIM for 

image quality. Moreover, the time during model 

training was collected as well. Since acquisition 

at the same time for pCT and CBCT images was 

difficult, first-fraction CBCT images of HNC  

patients were used and then registered to pCT 

images for generating synthesis CT images from 

a model based on a U-net architecture for  

anatomical structure mismatch. 

 	 The advantage of the U-net model is reducing 

global scattering and improving local HU due to 

applying in the spatial domain of an image both 

global and local features[13,23]. To resolve this  

issue, a trained model using MAE as a loss  

function was used to learn the anatomical  

structures of CBCT images through image prepro-

cessing and the HU value of pCT images. Further-

more, the U-net can generate an output the 

same size as its input. However, the disadvantage 

of the model is the unknown number of optimal 

depths of an encoder-decoder network based 

on the task complexity for training. In addition, 

there is a robust theory for the design of skip 

connections between encoder-decoder networks 

operating at the same level. Because these  

feature maps are semantically different, it is  

not guaranteed that they are the perfect fit for 

feature fusion[24]. 

	 This study investigated only three hyperpa-

rameters, including the learning rate, batch size, 

and epoch. We did not include weight decay due 

to less effect on model performance[25]. Further-

more, these agree with Bergstra et al.[26], who 

compared a careful combination of manual and 

grid searches of deep belief networks with varied 

these three hyperparameters.

	 According to the results of the study, it was 

found that the learning rate had a significant 

impact on the image quality in terms of MAE, 

RMSE, and PSNR, except SSIM, while the batch 

size and epoch had less effect on the image 

quality. Where SSIM is invariant, this may be due 

to the high accuracy of alignment of pCT and 

CBCT images by rigid image registration and  

selection of images with FOV encompassing  

body parts. According to Table 1, the learning 

rate impacts the image quality of almost 45  

setting conditions across various hyperpara- 

meters for the training model to generate sCT.  

Obviously, when increasing the learning rate to 

10e-3, almost all the results had better image 

quality than the learning rate of 10e-4.

	 The conditions with the learning rate of 1e-3, 

the batch size of 8, and the epoch of 200 were 

the optimal hyperparameters for the U-net 

model to generate sCT due to the highest PSNR 

and lowest MAE and RMSE. All various hyper- 

parameters for sCT generation enhanced the 

reduction of artifacts and noise. The edges of the 

bone and the soft tissue boundary were clearly 

visible. The sCT images can improve HU 

accuracy and image quality compared to the 

original CBCT images. 

	 According to the HU line profiles of pCT, 

CBCT, and sCT images with three different  

hyperparameter settings, OptHyper sCT images 
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had an HU line closer to pCT images than the 

others, especially at the body boundaries. At the 

thyroid cartilage region, all sCT images showed 

better intensity with the reduction from the peak 

of CBCT images. The smoothness of soft tissue 

had improved in all sCT images, the closest to 

pCT images being MinHyper sCT, MaxHper  

sCT, and OptHyper sCT images, respectively. 

Although when the HU line crosses through the 

surrounding edge of the air region, such as the 

outside of the body and subglottic larynx, it  

indicates that sCT images had rounded corners 

close to pCT images. In contrast, CBCT images 

had square corners, the closest to pCT images 

being OptHyper sCT, MinHyper sCT, and MaxHper 

sCT images, respectively. Furthermore, the  

MinHyper sCT images had a tail at the bottom of 

the image. In contrast, the MaxHper sCT images 

had an inaccurate HU value, especially in air 

density at the end edge of the body part  

(intensity higher than -1000 HU). As a result, 

OptHyper sCT was the best hyperparameter,  

with an HU profile line that crossed soft tissue, 

bone, and body boundaries closer to pCT  

images than the other MinHyper sCT, MaxHper 

sCT, and the original CBCT images. It also provides 

OptHyper sCT images with good image detail of 

bone structure and structure boundaries, soft 

tissue contrast, and reduces artifacts and noise 

in CBCT images.

	 The average training time of an optimal  

hyperparameter was 6 hours and 36.6 minutes 

(398 ms/step), while it took less than 10 seconds 

to generate sCT images. From the results, the 

consumed training time depends on the number 

of images and the setting of the hyperparameter 

value. The model’s answer converges slowly 

when the learning rate is too low. It takes longer 

to train because each trained model changes the 

weight and bias incrementally, requiring several 

epochs. On the other hand, when the learning 

rate is set too high, the model’s answer stays 

consistent with the correct or expected answer 

because each training cycle improves weight and 

bias rapidly, requiring fewer epochs. The batch 

size determination directly affected the train 

speed. The larger the batch size, the faster the 

training model, but the more memory needs to 

be processed.

	 This study reported similar results to Kida  

et al.[12]. They used the same U-net model struc-

ture without ReLU in transpose convolution and 

used MAE as a loss function in the pelvic regions. 

Furthermore, our results showed better MAE, 

RMSE, PSNR, SSIM, and train time than Li et al.’s 

work[27], which developed the U-net architecture 

with a residual block using MAE as the loss  

function in the H&N region. However, the study 

of Chen et al.[13] provided better HU accuracy 

metrics results than ours because of an improved 

loss function that combines structure dissimi- 

larity and MAE. Although this study shows better 

image quality, the training time was shorter.

	 Although our results showed improvements 

in HU accuracy and image quality, there are  

several limitations to keep in mind. Firstly, 

the FOV of CBCT images was limited to 250 mm, 

which cannot provide the anatomy information, 



R49Journal of Thai Association of Radiation Oncology
Vol. 29 No.1 January - June 2023

especially the low-risk target volume of HNC  

in the shoulder region. Secondly, anatomical 

changes may occur between a pair of pCT-CBCT 

images due to the different times of image  

acquisition (taken on separate days). This could 

impact the model training due to using a pair 

image of the U-net algorithm. Finally, this study 

had a small sample size of image data for  

training and testing, and a larger sample size 

might lead to better results.

	 Further research suggests that these limits 

could be improved by creating an advanced loss 

function for optimization, such as extracting  

image features more precisely. Furthermore, 

using an unsupervised model or employing  

another DL algorithm, such as the generative 

adversarial network (GAN)[14] might be improved 

the model due to the difference in using the 

unpair images for model training.
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