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การฉายรังสีดวยลําอนุภาค (Particle beams) I :
คุณสมบัติทางฟสิกสและชีวรังสี
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แผนกรังสีรักษาและมะเร็งวิทยา โรงพยาบาลวัฒโนสถ

รังสีชนิดแตกตัว (ionizing radiations) แบงเปน 2 กลุม คือ 

1. รังสีคลื่นแมเหล็กไฟฟา (Electromagnetic radiations) ซึ่งไดแก รังสีเอ็กซ (X-rays) และรังสีแกมมา (Gamma-rays)

2. อนุภาครังสี (Particulate radiations) ซึ่งไดแก อิเลคตรอน (Electrons), โปรตอน (protons), อนุภาคแอลฟา (alpha 

particles), นิวตรอน (Neutrons), อนุภาคหนักที่มีประจุ (heavy charged particles) เชน ฮีเลียม (Helium), คารบอน 

(Carbon), นีออน (Neon)  เปนตน (รูปที่ 1)

รูปที่ 1 แสดงรังสีชนิดตางๆ (1)

การฉายรังสีดวยลําอนุภาค (Particle beams) เชน 

โปรตอน หรืออิออนหนัก เชน คารบอนซึ่งมีคุณสมบัติทาง
ฟสิกสและชีวรังสีแตกตางจากรังสีโฟตอนที่ใชกันอยางแพร

หลายในปจจุบัน เน่ืองจากมีการกระจายของปริมาณรังสี 
(dose distribution) ที่ดีกวาการใชรังสีโฟตอน และ
คุณสมบัติทางชีวรังสีตางกัน

คุณสมบัติทางฟสิกส (Physical basis)

ความลกึของการทะลุทะลวง (depths of penetration) 

ของรังสีลําอนุภาคขึ้นกับพลังงานตั้งตนของลํารังสี (initial 

energy of the beams) ความหนาแนนและเลขอะตอม 

(density and atomic composition) ของเนื้อเย่ือที่รังสีผาน 

สิ่งสําคัญที่ทําใหลําอนุภาคโปรตอนและคารบอนมีการ 

กระจายของปริมาณรังสี (dose distribution) ดีกวารังสี 
โฟตอน คือเมื่อลํารังสีผานเขาไปในเนื้อเย่ือลึกถึงระดับหนึ่ง 

ปริมาณรังสีก็จะลดลงเฉียบพลัน (steep dose) ทําใหเกิด

เปนกราฟที่เปนลักษณะหัวแหลมและแคบ เรียกคุณสมบัติ
นีว้า แบรกพีค (Bragg peak)(2) รปูที ่2 แสดงถึง ปรมิาณรังสี

ทีร่ะดบัความลึกตางๆ สวนทีต่างกนัของกราฟของลําอนภุาค
โปรตอนกับลําอนุภาคคารบอน คือ สวนปลายของกราฟลํา
อนุภาคคารบอนจะมีชวงปลายของกราฟท่ียังมีปริมาณรังสี

ระดับตํ่าอยูแลวคอยๆลดลง ที่เรียกกันวา fragmentation 
tail(3) ที่ระดับความลึกที่มากขึ้น ความกวางของสวนที่เปน 
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Bragg peak จะกวางขึน้และความสูงจะลดลง (ปรมิาณรงัสี
ลดลง) ดังรูปที่ 3

รูปที่ 2 แสดงถึงปริมาณรังสีของลําอนุภาคโปรตอนและคารบอน 
ที่ระดับความลึกตางๆ

รูปที่ 3 แสดงปริมาณรังสีที่ความลึกตางๆ

การสรางลํารังสีจากโปรตอนและคารบอน
สามารถทําได 2 วิธี คือ 

1. Passive-beam shaping 

เปนวธิแิรกทีถ่กูคดิคนขึน้ และมกีารใชอยางแพรหลาย 

วิธีการคือ ใช degrader มาปรับลํารังสีที่มีพลังงานเดียว 
(monoenergitic beam) ตัวกรองไดแก ลอหมุนที่มีความ

หนาตางๆ กัน (rotating wheel) หรือ จานกรองท่ีมีรอง 
(wobbling plate with wedge shaped engravings (ridge 
filter)) เพือ่ใหได depth dose ทีต่องการ และใชคอลลเิมเตอร

(collimator) เพื่อทําใหไดขอบลํารังสีเปนรูปรางที่ตองการ 
ขั้นตอมาใชคอมเพนเซเตอร (compensator) เพื่อปรับแก 

tissue inhomogeneity และความโคงเวาท่ีผิวของคนไข 
(รูปที่ 4)

ขอเสียของ Passive-beam shaping คือ 

1. กําหนด depth dose ไดที่ distal edge ไมสามารถ
กําหนด depth dose ไดที่ proximal edge ของบริเวณที่จะ
ใหรงัสี (target) ไดทาํใหเกิดบรเิวณทีม่รีงัสีมากทีบ่รเิวณหนา
ตอ target ได โดยเฉพาะบริเวณขอบของลํารังสี

2. เกดิปฏกิริยิาระหวางลํารงัสีกบันวิเคลยีรสของ beam 

modifier ทําใหเกิด nuclear fragment (รวมถึงนิวตรอน) 

ทําใหเกิดการเพิ่ม Biological Effective Dose ที่บริเวณขา

เขา (entrance region) ของลํารังสีได

รูปที่ 4 แสดงการสรางลํารังสีแบบ Passive-beam shaping

รูปที่ 5 แสดงการสรางลํารังสีแบบ Active-beam shaping

2. Active-beam shaping

ใชแมเหล็ก 2 ขั้ว (2 magnetic dipole) สงพลังงานไป

ยังลํารังสี เพื่อใหไดปริมาณรังสีที่จุดตางๆ ใน target ตาม

ตองการซ่ึงวิธีนี้สามารถกําหนดปริมาณรังสีไดทุกจุด ทั้ง 3 

มติ ิในบริเวณ่ีมคีวามลึกตางๆกัน โดยไมตองใชคอลลิเมเตอร 
(collimator) หรอื คอมเพนเซเตอร (compensator)(4) (รปูที ่5)
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Spread-Out Bragg Peak (SOBP)

การทีจ่ะไดปรมิาณรงัสทีีเ่ทากนั (uniform dose; [±1%] ) 
ครอบคลุมบริเวณที่ตองการโดยใช Bragg peak ของลํา
อนุภาคโปรตอนมาเรียงซอนตอๆ กัน (array) ดังรูปที่ 6 ซึ่ง
ชองระหวาง Bragg peak ของลําอนุภาคโปรตอนมักจะอยู
ในชวง 2-5 มิลลิเมตร จากรูปที่ 3 จะเห็นไดวาสวนปลาย 
ของกราฟปริมาณรังสีของลําอนุภาคโปรตอนน้ันใกล 
ปริมาณรังสีที่ลดลงเขาใกลศูนยอยางรวดเร็ว Lomax และ

คณะไดคํานวณพบวาปริมาณรังสีรวมท่ีรางกายไดรับจาก

ลําอนุภาคโปรตอนนั้น เปนเพียงครึ่งหนึ่งของปริมาณรังสี

เอ็กซแบบ ปรับความเขม (intensity modulated X-ray 

therapy [IMXT])(5) แตสําหรับลําอนุภาคคารบอนนั้นลํารังสี

มีการ กระจายตัว (straggle) นอยกวาจึงตองอาศัยตัวกรอง 

(ridge filters) เพื่อใหสรางเปนเหมือน Bragg peak ที่เรียง

กัน และทําใหเกิดเสมือนมีชองวางแคบๆ ระหวาง Bragg 

peak(6) และการสราง SOBP ของลําอนุภาคคารบอนยัง 

ตองใชขั้นตอนที่ซับซอนกวาลําอนุภาคโปรตอนเนื่องจาก

ลําอนุภาคคารบอนมี Relative Biological Effectiveness 

(RBE) ที่แปรผันมากกวาลําอนุภาคโปรตอน

รูปที่ 6 แสดงการเรียงซอนกันของ Bragg peak ของลําอนุภาค
โปรตอนเพื่อใหไดปริมาณรังสีที่เทากัน (Uniform dose) ครอบคลุม
บริเวณท่ีตองการ และกราฟของรังสีโฟตอน 15 MV

รูปที่ 7 แสดงภาพตัดขวาง (Cross section) ของปริมาณรังสีและ
ความลึกของลําอนุภาคโปรตอนและรังสีโฟตอน

Fragmentation tails

สิง่ทีแ่ตกตางระหวางลาํอนภุาคโปรตอนและลาํอนภุาค

คารบอนคือ ปริมาณรังสีส วนปลายหางของคารบอน 
(Fragmentation tails) เกดิจากปฏกิริยิาทีท่าํกบัอะตอมของ
ตัวกลาง รังสีสวนปลายหางของคารบอนประกอบดวย

อิออนพลังงานตํ่าถึงปานกลางซึ่งประกอบดวย โบรอน, 

เบริลเลียม, ลิเทียม, ฮีเลียมกับโปรตอน (Boron, Beryllium, 

Lithium, Helium with protons) เปนสวนมาก(7, 8) บริเวณ

สวนหางน้ีมีปริมาณรังสีทางกายภาพต่ํา (low physical 

dose),  RBE คอนขางสูง (relatively high RBE) และม ีBED 

ตํ่า (low biologically effective dose) อยางไรก็ตาม มี 

ผูศกึษาวาแมปริมาณรงัสสีวนปลายจะไมมากแตควรแสดง

การคาํนวณในการวางแผนการรกัษา เพ่ือหลีกเล่ียงการเกดิ

จุดที่มีปริมาณรังสีเขมขน (hot spot)(9, 10) สําหรับลําอนุภาค

โปรตอนแมปริมาณรังสีลดลงเขาใกลศูนยอยางรวดเร็ว 

อยางไรก็ตามยังมีปริมาณรังสีเล็กนอยท่ีเกิดจากนิวตรอน 

(secondary neutrons) ซึ่งเกิดจากปฏิกิริยาตลอดทางที่ลํา

รังสีผานตัวกลาง Wroe และคณะพบวาปริมาณรังสีที่ 

ระยะทาง 2-13 ซม. หลังจากขอบของรังสี (distal edge) 

นั้นมีปริมาณรังสีอยูในชวง 2-0.6x 10-3 mSv/Gy(11)

เงามัว (Penumbra)

เงามัว คือ ความกวางของแถบรังสีที่ขอบของลํารังสี 

ซึ่งมีปริมาณรังสีลดลงเหลือ 80-20% ของปริมาณรังสีที่
กําหนด เกิดจากการกระเจิงของลํารังสีผานคอลิเมเตอร 

(collimator) ซึง่จะเกิดเงามัวมากนอยข้ึนกบั ความลึก, ระบบ
ในการออกแบบลํารังสีของเคร่ือง, ชองวางของอากาศ

ระหวางคอมเพนเซเตอรกับผิวลําตัว (air gap between the 
compensator and body surface)

ระหวางลําอนุภาคคารบอนกับลําอนุภาคโปรตอนน้ัน 
ลําอนุภาคคารบอนจะมีเงามัวนอยกวา (รูปที่ 7) เหตุที่ลํา

อนุภาคคารบอนมีเงามัวนอยกวาเปนเพราะ (1) คารบอนมี
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รูปที่ 8 เงามัวที่เกิดจากลําอนุภาคโปรตอนและคารบอน

ประจุที่มากกวา 6 ประจุ(2) คารบอนมีมวลที่มากกวา(3) 

คารบอนตองการพลังงานตอนิวคลีตรอนมากกวา โปรตอน 

ประมาณ 2 เทา ในระยะทางทีเ่ทากนัในเน้ือเยือ่ และจาํนวน

ประจทุีท่าํใหเกดิการกระเจงิ (multiple Coulomb scattering ) 

นั้นมีนอยกวาโปรตอน 4 เทา อยางไรก็ตาม ลําอนุภาค

โปรตอนระบบใหมๆ ก็ลดเงามัวลงได โดย Safai และ 

Pedroni ที่ Paul Scherrer Institute (PSI) สามารถที่จะออก 

แบบลําอนุภาคที่แคบมาก (very narrow pencil beams) 

ไดทั้งโปรตอนพลังงานต่ําและสูง(6)

Dose lateral to the penumbra

ปริมาณรังสีรวมทั้งรางกายของลํารังสีแบบ passively 

scattered beams มาจากการสะทอน/กระเจิงต้ังแตหัว

เคร่ือง ในขณะทีป่รมิาณรงัสรีวมทัง้รางกาย จากลาํรงัสแีบบ 

pencil beam เกดิจากการสะทอน/กระเจิงภายในรางกาย(12, 

13, 14) ซึ่งปริมาณรังสีที่ขอบจากเงามัวจากการสแกนแบบ 

active นั้นตํ่ากวาการสแกนแบบ passive(15) ปริมาณรังสี
นิวตรอนท่ีเกิดจากการสแกนแบบ passive ของลําอนุภาค

คารบอนน้ัน ที่ชิบะ (Chiba) คา scattered ของลําอนุภาค
คารบอนท่ี 50 เซนติเมตร มีคาประมาณ 0.2 mSv per Gy 

ซึ่งมีคาตํ่ากวาของโปรตอน(16)

Heterodensities

ความหนาแนนและเลขอะตอมของเน้ือเยื่อที่ลํารังสี
ผาน เปนปจจัยทีก่าํหนดความลึกทีร่งัสจีะทะลุผานไปได เชน 

กระดูกมีความหนาแนนมาก รังสีจะผานไดระยะทาง 
(physical range) สัน้ สวนเนือ้เยือ่ทีเ่ปนโพรงอากาศ รงัสจีะ
ผานไดระยะทาง (physical range) ยาวการคํานวณเพื่อ

แกไขความคลาดเคล่ือนสําหรับลํารังสีที่ตองผานไปใน
เน้ือเย่ือที่มีความหนาแนนไมเทากัน ลําอนุภาคโปรตอนจะ
มกีารเพิม่ขอบดานไกลและใกล (margin) ของ PTV โดยสวน
ที่เพิ่มคิดเปน 3% จากขอบดานไกลและใกลของกอน (3% 
of the depth to the distal and proximal edges of the 
target) อยางไรก็ตาม ในบริเวณที่มีการเปล่ียนแปลงความ
หนาแนนที่ตางกันมาก เชน โพรงโซนัส ตองใหความระมัด 
ระวังเปนพิเศษในการวางแผนการรักษา(17)

รูปที่ 9 ก) แสดงปริมาณรังสีของแผนการรักษาที่คํานวณโดยใชลํา
อนุภาคคารบอน ข) แสดงปริมาณรังสีของแผนการรักษาที่คํานวณ
โดยใชลําอนุภาคโปรตอน

มีการเปรียบเทียบการวางแผนการรักษาโดยใช 

ลําอนุภาคคารบอนเทียบกับลําอนุภาคโปรตอนในคนไขคน

เดยีวกนัจากสองสถาบนั โดย O. Jaekelแหง DFKZ วางแผน

การรักษาโดยใชลําอนุภาคคารบอนและA.Trfimov จาก 

MGH วางแผนการรกัษาโดยใชลาํอนภุาคโปรตอน (actively 

scanned proton beams) จากรปูที ่9 จะเหน็วาเนือ้เยือ่ปกติ

ทีไ่ดรบัรงัสปีรมิาณนอยๆ จากการวางแผนโดยใชลาํอนุภาค

คารบอนนัน้ดกีวาโปรตอน แตปรมิาณรงัสคีรอบคลมุบรเิวณ

เนื้อเย่ือเปาหมายที่ตองการทําการรักษาไมแตกตางกัน

คุณสมบัติทางชีวรังสี (Radiation biological 
factors)

The International Commission on Radiological 
Units and Measurements (ICRU) ไดใหความหมายของ 

Linear Energy Transfer (LET) หมายถึง คาพลังงานเฉล่ีย
ทีเ่กดิจากรงัสผีานไปในตัวกลาง (dE) หารดวยระยะทาง (dl) 
มีหนวย เปน keV /μm โดยคาพลังงานเฉลี่ยที่เกิดจากรังสี

ผานไปในตัวกลาง LET เปนตัวบงถึงคุณภาพของรังสีชนิด
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ตางๆ และสงผลถึงคา Relative Biological Effectiveness 
(RBE) ของรงัสชีนดิน้ันๆ โดยทัว่ไปคา RBE เพิม่ เมือ่คา LET 
เพ่ิมถงึประมาณ 100keV/μm เมือ่คา LET เพิม่มากกวานี ้คา 
RBE จะเร่ิมลด เน่ืองจากพลังงานท่ีสะสมมีมากเกินกวาท่ีจะ
เกิดผลทางชีวภาพ (overkill)(18)

โปรตอนมคีา Linear Energy Transfer (LET)  คอนขาง
ตํ่า ICRU ไดกําหนดคา Relative Biological Effectiveness 
(RBE) ของโปรตอนเทากับ 1.10 สวนคารบอนนั้นมีคา LET 

ที่แปรผัน (vary) สงผลถึงคา RBE ดวยเชนกัน

มสีมมตฐิานวาเซลลเนือ้งอกม ีRBE ทีส่งูกวาเซลลปกติ

ซึง่ไดมกีารศกึษาของ Warenius(19) และคณะ, Suzuki(20) และ

คณะ, Ando(21) และคณะในเร่ืองน้ีพบวาไมมคีวามแตกตาง

ของ RBE ระหวางเซลลเนือ้งอกและเซลลปกต ิเมือ่ไดรบัการ

ฉายรังสีภายใตสภาวะ (metabolic condition) เดียวกัน

ภายนอกสิ่งมีชีวิต (invitro) (รูปที่ 10) 

ในการทดลองภายนอกสิ่งมีชีวิต (in vitro) ลําอนุภาค

ซึ่งมีคา LET สูง เพิ่ม α แต ไมไดเพิ่ม β และลําอนุภาคซ่ึง 
มีคา LET สูง ลดการผนัแปร (variation) ของ α ไมไดลด 

การผันแปร (variation) ของ β และแมวาคา α เพิ่มขึ้นก็ไม
ไดสงผล (correlate) โดยตรงกบั RBE ในการทดลองภายใน

สิ่งมีชีวิต (in vivo) ลําอนุภาคซ่ึงมีคา LET สูง เพิ่ม α แต
สําหรับคา β นั้น การเพ่ิมขึ้นของคา β ขึ้นอยูกับชนิดของ
เนื้อเยื่อชนิดตางๆกัน และยังขึ้นกับขนาดของปริมาณรังสีที่

ใหในแตละครั้งอีกดวย (dose fractionation)(22, 23)

รูปที่ 10 RBE ของเซลลเนื้องอกและเซลลปกติเมื่อฉายรังสีดวย
นิวตรอนพลังงาน 62.5 MeV และ คารบอน 13.3 และ 77 keV/μm

การออกแบบลํารังสีคารบอน
เนือ่งจากลําอนุภาคคารบอนมีคา RBE ทีแ่ปรผัน (vary) 

ดังแถบที่กราฟ RBE ในรูปที่ 11 ดังนั้นสิ่งที่มีผลในการ
ออกแบบลํารังสีคารบอน คือ physical dose (Gy), RBE 
และ biological dose หนวย Gy (RBE) ในการที่จะได
ปริมาณรังสีที่เทากันตลอดชวง SOBP นั้น physical dose 
จะตองเพิม่เมือ่ RBE ลด และ physical dose จะตองลดเม่ือ 
RBE เพิ่มข้ึนจะเห็นวาที่ชวงปลายของสวนที่เปน Bragg 

peak จะพบวา เมื่อ RBE มีคาตางกันเพียง 0.5 (ระหวาง 3 

กับ 3.5) คาของ biological dose หนวย Gy(RBE) ที่ผูปวย

ไดรับตางกันถึง 16%

รูปที่ 11 แสดงกราฟของ physical dose (Gy), RBE และ 
biological dose in Gy (RBE)  แถบกวางที่กราฟแสดงถึงคาที่เปน
ชวง (แปรผัน) ของ RBE และ biological dose

อยางไรก็ตาม ในการหาคา RBE ที่ถูกตองนั้นคอนขาง

ซบัซอน เพราะ ขึน้กับ คา LET, ปรมิาณรงัสี, ชนดิของเนือ้เยือ่, 
จํานวนคร้ังของการฉาย (fractionation), ความเขมขนของ

ออกซิเจน (pO2), ระยะของเซลลในวงจรชีพของเซลล

RBE vs LET

RBE มกัมแีนวโนมเพ่ิมเม่ือ LET เพิม่ขึน้ โดยเฉพาะชวง 
LET 40–100–150 keV/μm ของลําอนุภาคคารบอน อยางไร

ก็ตามผลของ LET ตอ RBE แปรผันในแตละชนิดของเซลล 
(รูปที่ 12 และ 13) นอกจากนี้การเปล่ียนแปลงของคา LET 
และ RBE จะเปล่ียนแปลงมากในชวง 10 มิลลิเมตรสุดทาย

ของระยะทางของลําอนุภาค (particle range)(24, 25)
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รูปที่ 12 คา RBE และ LET ของลําอนุภาคคารบอนที่ตางกัน
ในเซลลชนิดตางๆ กัน

รูปที่ 13 RBE ของเซลลชนิดตางๆ (V79, CHO และ xrs5) ที่ไดรับ
รังสีคารบอน 270 MeV 

RBE และ ปริมาณรังสีตอครั้ง
การศึกษาของ Karger และคณะทําการศึกษา การบาด

เจ็บของไขสันหลังในการฉายรังสีที่ไขสันหลังหนู (female 

Sprague Dawley rats) 346 ตัว โดยการฉายรังสีในหนู 

1, 2, 6 หรือ 18 ครั้ง (fractions) และติดตามดูผลที่ 300 วัน 

โดยใชลําอนุภาคคารบอนท่ีมี LET 13 keV/μm และ 125 
keV/μm พบวาที่ปริมาณรังสีที่ทําใหเกิดอัมพาตครึ่งหนึ่ง 

(D50) สาํหรับลาํอนุภาคคารบอน 125 keV/μm นัน้ คา RBE 

สาํหรบัการบาดเจ็บของไขสนัหลงั (spinal cord injury) เพิม่
จาก 1.8-5 เมือ่ปรมิาณรงัสลีดลงจาก 13.9-0.98 Gy/fraction 
และคา RBE เพิ่มขึ้นคอนขางชันเมื่อปริมาณรังสีลดลงนอย

กวา 3 Gy แตสาํหรบัลาํอนภุาคคารบอนทีม่คีา LET ทีต่ํา่กวา
คอืมคีา LET เทากบั 13 keV/μm คา RBE ไมไดเพิม่ขึน้ตาม(26) 
(รูปที่ 14)

การศึกษาลักษณะคลายกันของRobbins และคณะ
ศึกษาโดยการฉายรังสีไปที่ไตของหมูเพศเมีย 111 ตัว โดย

รูปที่ 14 แสดงคา RBE ของ D50 และ ปริมาณรังสีตอคร้ัง
ลําอนุภาคคารบอน

ใชรังสีนิวตรอน 42 MeV หรือรังสีเอ็กซ 250 kVp ฉาย 1,6, 

12 หรือ 30 fractions ในระยะเวลา 1 ถึง 39 วัน พบวาคา  

RBE เพ่ิมขึ้นจาก 1.2 ถึง 4.6 เมื่อปริมาณรังสีตอครั้งลดลง 

จาก 7 ถึง 1.3 Gy(27) นอกจากน้ี ยังมีการศึกษาของ Koike 

และคณะ ทําการศึกษาในเนื้องอกชนิด fibrosarcoma ใน

หน ูพบวาคา RBE มกีารเปลีย่นแปลงตางๆ กนั ตามพลงังาน

ของคารบอน คือ เมื่อพลังงานของคารบอนมีคา 14-20 

keV/μm คา RBE จะเทากับ 1.4 โดยไมขึ้นกับจํานวนครั้ง 

ของการฉายรังสี เมื่อพลังงานของคารบอนมีคา 44 keV/μm 

คา RBE จะเพ่ิมขึน้จาก 1.8 เปน 2.3 เม่ือจํานวนครัง้ของการ

ฉายแสงเพิม่ขึน้จาก 1 ถงึ 4 ครัง้ และทีพ่ลังงานของคารบอน

มีคา 74 keV/μm คา RBE จะเพิ่มขึ้นจาก 2.4 เปน 3.0 เมื่อ

จํานวนครั้งของการฉายแสงเพ่ิมขึ้นจาก 1 ถึง 4 ครั้ง แตเมื่อ

เพ่ิมจํานวนครั้งของการฉายแสงจาก 4 เปน 6 ครั้ง คา RBE 

ไมมีการเปล่ียนแปลง(28)

RBE vs OER

ความไวของเนือ้เยือ่ตอรงัสทีีม่คีา LET ตํา่ นัน้ขึน้กับคา

ความดันของออกซิเจน (pO
2
) จาก <1 mm Hg ถึง 25 mm 

Hg ทาํใหอตัราสวนของปริมาณรังสีทีม่ผีลตอเนือ้เยือ่เทากนั
ภายใตสภาวะที่มีออกซิเจนตํ่ามีคาเปน 2.5-3 เทา(24) การ

ศึกษาของFurusawa และคณะ ศึกษาคา OER และ LET  
ในเซลลตอมนํ้าลายของมนุษย ในหองทดลอง พบวาคา  

OER ของรังสีที่มี LET สูงจะลดลง ดังรูปที่ 15 คา RBE เพ่ิม
ขึ้นไปกับคา LET จนกราฟทั้งสองตัดกันที่คา RBE ประมาณ 
2.3 และคา LET ประมาณ 70(25)
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รูปที่ 15 แสดงกราฟความสัมพันธระหวาง LET, OER และ RBE

Blakely และคณะแสดงความสัมพนัธระหวางคา OER 
ของลําอนุภาคคารบอนตอเซลลไตของมนุษยชนิด T-1 (T-1 
human kidney cells) โดยคา OER ลดลงอยางมากในชวง 
1 เซนติเมตรของ Bragg peak และคา OER เพ่ิมขึ้นใกล 
ปกติในชวงหางของกราฟ (fragmentation tail) ดังรูปที่ 16 
และที่จุดกึ่งกลางของ SOBP (mid-SOBP) ที่มีความกวาง 
6-12 เซนติเมตร คา OER จะมีคาประมาณ 2.2(9)

RBE และระยะวงจรชีพของเซลล
สาํหรบัรังสเีอ็กซนัน้ ระยะวงจรชพีของเซลลทีไ่วตอรังสี

คือ ระยะ late G2 และ M สวนระยะท่ีดื้อตอรังสีคือ ระยะ S 

แตในลาํอนภุาคคารบอน มคีณุสมบตัทิีม่ ีLET สงู ตลอดชวง 

SOBP ระยะวงจรชีพของเซลลจงึไมมผีลมากนกัตอการตอบ

สนองตอรังสีคารบอน(29, 30)

รูปที่ 16 แสดงกราฟความสัมพันธระหวาง OER และ
ระยะหางจาก Bragg peak
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