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ABSTRACT
Background: RapidPlan (RP) knowledge-based treatment planning was developed
and adopted in volumetric arc modulated radiotherapy (VMAT) planning to
improve plan quality and planning efficiency. RP used plan database to train a
model for predicting organ-at-risk (OAR) dose-volume-histograms (DVHs) of the new

treatment plan.

Objectives: The purpose of this study was to develop and evaluate the performance
of the RP knowledge-based treatment planning to generate VMAT for definitive

radiotherapy of prostate cancer.

Materials and methods: Three RP models based on a number of 20, 40, and 60
previously VMAT plans were trained and validated on 10 new prostate cancer
patients. Dosimetric parameters of the target volume and organs at risks (OARs)
between models and manually optimized method (MO) from experienced planner

were compared. The D2%, D95%, D98%, homogeneity index (HI), and conformation
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number (CN) for planning target volume (PTV), V65Gy, V70Gy, V75Gy for bladder
and V50Gy, V60Gy, V65Gy, V70Gy, V75Gy for rectum were collected and analyzed
(one-way repeated measures ANOVA, p<0.05).

Results: VMAT plans between models and MO showed similar results of D95%,
D98% for PTV but a significant higher of D2%, CN, and HI from RP (105.4%-105.7%
for D2%, 0.06-0.07 for HI, and 0.9 for CN) when compared with MO (104% for D2%,
0.05 for HI, and 0.8 for CN). For bladder and rectum, all dose-volume parameters
of RP were significantly lower than MO (p<0.05), only in RPmodel20 which bladder
V75Gy, was similar to MO. Dosimetric analysis for model training based on a different

number of VMAT plans showed no statistical difference in plan quality.

Conclusion: RP knowledge-based treatment planning in this investigation presented
acceptable VMAT plan quality for definitive radiotherapy prostate in only single op-
timization. Twenty historic plans were found to be an acceptable minimum number

of plans for the model training.
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INTRODUCTION

Intensity-modulated radiation
therapy (IMRT) and volumetric modulated
arc radiotherapy (VMAT) utilized the inverse
planning process that is needed to solve
this complexity through the optimization
process. To get the satisfied results, an
appropriate set of optimization parameters
for organs at risk (OARs) and the target
volume has to be specified by planners
through a repeated trial-and-error process.
Therefore, the planning outcome was

strongly based on the experience and skills

of the planners'™?. The treatment planning
could take several hours in trial-and-
error optimization to achieve the planning
goals. Currently, various tools were
developed for IMRT and VMAT radiation
therapy treatment planning. Knowledge-
based (KB) approaches were introduced
and adopted in treatment planning to
improve planning consistency in IMRT
and VMAT. KB treatment planning (KBTP)
method was used to predict the
dosimetric features of the new treatment

plan by utilizing a database of prior plans
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determined via the spatial relationship
between anatomical, geometric and
dosimetric features of targets and OARs %
This method was useful to reduce varia-
tions in plan quality. Previous studies®”
have demonstrated that KBTP resulted
in superior treatment plans in terms of
planning time and dose distributions as
compared to conventional IMRT and
VMAT plans. Furthermore, this approach
is able to decrease optimization time.
RapidPlan version 13.6 (Varian Medi-
cal System, Palo Alto, CA, USA; RP) is a
commercially KB planning application
software which is an optional applica-
tion from the Eclipse treatment planning
system (TPS). Therefore, the purpose of
this paper was to study and demonstrate
the potential of the RP knowledge-based
TPS for VMAT plans in prostate cancer in
terms of plan quality and efficiency at the
Division of Radiation Oncology, Depart-
ment of Radiology, Faculty of Medicine,

Siriraj Hospital.

MATERIALS AND METHODS
Previously clinical VMAT plans of pros-
tate cancer selection

Sixty VMAT planning of prostate
cancer patients who treated only prostate
gland, not involved lymph node during
January 2016 to March 2018 were
collected and analyzed. All treatment
plans were created with two or three
arcs, using 10 MV photon beams, and
total prescribed dose to PTV was 78 Gy
in 39 fractions. Dose-volume constraints
for the planning target volume (PTV-
prostate gland), the OARs such as
bladder, rectum, and the PTV overlap
OARs were assigned as the planning goal
for the optimization process. All treatment
plans were approved by the radiation
oncologist according to Quantitative
Analyses of Normal Tissue Effects in the
Clinic (QUANTEC) guideline® as shown in
Table 1. Volume data of the PTV and all

OARs were also collected for the analysis.

Table 1. Dose-volume constraints assigned for VMAT prostate cancer optimization

Organ Dose constraints

PTV D2%< 107%, D95%:= 95%, and D98%=> 93%

Bladder V65Gy<50%, V70Gy<35%, and V75Gy<25%

Rectum V50Gy< 50%, V60Gy<35%, V65Gy<25%, V70Gy<20%, and V75Gy<15%
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Model configuration

RP system consists of two main
components: model configuration and
model validation. To configure a model,
the geometric and dosimetric parameters
of the historic treatment plans are
extracted and trained by using a com-
bination of Principal Component Analysis
and regression tecniques in the RP

algorithm!™.

For model validation,
estimated dose volume histogram (DVH)
and optimization objectives for the
optimization process of new patients were
generated. In this study, sixty previously
VMAT prostate plans were used to
generate three RP models. Model20 is
the minimum number of 20 random
previous plans that used for building the
model as suggested by the vendor. To
examine whether a number of plans
result in model quality and consistency
or not, Modeld40 and Model60 were
generated from using 40 and 60 previous

plans for training.

Model Validation

CT dataset of 10 new prostate
cancer patients were used to validate
the model. For each patient, three VMAT
treatment planning were created from a

total of 3 RP models. The VMAT planning

parameters including the field geometry
(2 arcs), 10 MV photon energy, and dose
prescription 78 Gy to PTV were set. In the
optimization process, the RP system was
used to perform an estimation for the
DVHs in any new patient. The workflow of
the DVHs estimation started with a selec-
tion of the RP model. Then, the outlined
structures of new patient auto-matched
to the model structures using a structure
code. The system automatically generated
optimization priorities, setting of the
upper and lower objectives to the PTV,
DVH estimated boundary to the OARs, and
line objectives, which placed along the
inferior DVH estimated boundary®. The
examples of the resulting RP predictive
DVH estimated and priorities are shown
in Figure 1. Generating estimated DVHs
and priorities based on patient geometry
of new patient and previous knowledge
contained in a model database and were
used in the optimization process. A single
optimization without any planner inter-
vention was performed to assess the

quality of the models.

Performance of the RP plan compared
to the manually optimized plans
Two expert planners with their

experience in VMAT planning of more
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Figure 1. (a) priorities and objectives (b) the estimated range and line objectives of RP prediction

than 60 prostate cancer plans were
participated in this study. Manually
optimized (MO) VMAT plans were created
by the planners using the same technique
as the RP plans. Dosimetric parameter
results of MO plans from two planners
were comparable. Then, the MO plans
results were averaged and compared
with plans from 3 RP models. Dosimetric
parameters in term of (1) dose to 2%
of the PTV volume (D2%); (2) dose to
95% of the PTV volume (D95%); (3) dose
to 98% of the PTV volume (D98%); (4)
homogeneity index (H)"” of the PTV
defined as HI =[D2%-D98]/D50%, the HI
value is O, representing dose homogeneous
in target ; (5) conformation number (CN)!"
of the PTV defined as CN = [TVRI/TV] x
[TVRI/VRI] where TVRI = target volume

covered by the prescription isodose,

TV = target volume, and VRI = volume of
the prescription isodose, the CN value is
1, representing conformity of target; (6)
dose-volume parameters to the bladder
as V65Gy, V70Gy, and V75Gy; and (7)
dose-volume parameters to the rectum as
V50Gy, V60Gy, V65Gy, V70Gy, and V75Gy
were used for the analysis.

The one-way repeated measures
ANOVA (p < 0.05) was used to test the

significance of the plan comparison results.

RESULTS

Collecting the structure’s volume
from the historic plans, the results in
Table 2 shows mean + SD of PTV, OARs,
and OARs overlapping with PTV volumes
for each RP model, compared with 10
new patients. The mean of the PTV

registered in each model and test group
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Table 2. Data of the structure volumes in each RP model and a test group

Volumes (cm?) Model Model_ Model New Patients
Mean = S.D.

PTV 112.2 £ 339 112.6 + 30.8 116.1 + 35.1 110.0 £ 35.3
Bladder 2645+ 161.6 2513+ 1354 251.1 +117.1 266.2 + 141.8
Rectum 56.6 + 24.0 57.6 £+ 23.9 56.3 + 21.6 526 + 14.1
Bladder Overlap 114+ 4.2 149 +9.0 147+ 7.8 1131+ 4.0
PTV
Rectum Overlap 28+ 13 30+ 15 30+ 1.7 27+19

PTV

were 112.2 + 33.9 cm’, 112.6 + 30.8 cm’,
116.1 + 35.1 cm® and 110.0 + 35.3 cm’ for
I\/\odetzo, Modelao, Modeléo, and test
group respectively. The mean + SD of the
bladder were 264.5 + 161.6 cm?, 251.3
+ 135.4 cm?®, 251.1 + 117.1 cm’, and
266.2 + 141.8 cm’ for Model , Model ,
I\/\odetéo, and test group, respectively. In
the rectum volume, the mean + SD were
56.6 + 24.0 cm’, 57.6 + 23.9 cm’, 56.3 +
21.6 cm?®, and 52.6 + 14.1 cm” for Model ,
I\/\odeL4O, Modeléo, and test group, respec-
tively. It can be seen that the volumes
of the target and organs at risks among
3 models and in a test group were quite
similar.

The isodose distribution for VMAT
planning from both RP & MO optimiza-

tion methods are shown in Figure 2. All
plans were evaluated and passed the
clinical planning goal as prescribed from
QUANTEC guideline. All dosimetric results
were summarized as shown in Table 3.
The comparison of RP plans to MO plans,
RP improved D%% and D%% of PTV, but
no significant difference was seen. A
significant higher of D, CN, and HI from
all 3 RP models (DZ%: 105.7 %, 105.4 %,
and 105.49%, HI: 0.07, 0.07, and 0.06, CN:
0.9, 0.9, and 0.9 for Model , Modelao, and

20
Model , respectively) was shown when

compa6:ed with MO (D2_: 104%, HI: 0.05,
and CN: 0.8), (p<0.05). The higher D, and
HI showed more dose variation. However,
the higher CN represented more con-

formity of target. For bladder, almost all
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Figure 2. Isodose distributions for VMAT prostate cancer of (a) Modelzo, (b) ModelAO, (c) Modeleo, and (d) MO

Table 3. Summary of the dosimetric results from RP and MO plans in 10 new prostate

patients

Mean + SD

(Model vs. MO)

P-value

(Model vs. Model)

PTV; D, (%) Model

Model
MO

PTV;D (%) f\/\odel20

Model

Model
60

MO

U=iS933RUU 015ansauALSIESNFIA:UzSIoNEIKIUS:INATNg
Un 25 aoun 1 unsIAu - 0NUI9U 2562

20

Model
40

105.7 £ 0.8
105.4 £ 0.8
105.4 + 0.7
104.0 £ 0.3

100.1 + 0.5
100.0 £ 0.6
100.0 + 0.5
99.7 £ 0.9

0.187
0.162
0.880

0.307
0.770
0.125



Mean + SD P-value P-value
(Model vs. MO) (Model vs. Model)

PTV, D%% (%) !\/\odel20 98.8 + 0.6 MZO vs. MO:  0.341 l\/\20 vs. M40: 0.373
!\/\odel40 98.7 + 0.7 Mao vs. MO:  0.526 Mzo vs. M60: 0.878
!\/\odel60 98.8 + 0.6 Méo vs. MO:  0.328 l\/\40 vs. M60:  0.052
MO 98.5+ 09

PTV; HI Model20 0.07 + 0.1 f\/l20 vs. MO:  0.012 Mzo vs. M40: 0.343
I\/\odelllO 0.07 £ 0.1 r\/l40 vs. MO:  0.037 MZO vs. M60:  0.177
Modelé() 0.06 + 0.0 M60 vs. MO:  0.023 Mzo vs. M60:  0.443
MO 0.05 + 0.1

PTV; CN !\/\odel20 09+ 0.0 MZO vs. MO:  0.001 l\/\20 vs. M40:  0.343
!\/\odel40 09 +0.0 f\/\40 vs. MO: <0.001 !\/\20 vs. M60:  1.000
!\/\odel60 0.9 +0.0 Méo vs. MO:  0.001 Mao vs. M60:  0.343
MO 0.8 +0.1

Bladder; VéBGy (%) !\/\odel20 86 +59 f\/l20 vs. MO:  0.020 !\/\20 vs. M40: 0.144
!\/\odelllO 82+51 M, vs. MO:  0.001 M, vs.M60: 0.534
!\/\odel60 8.4 +5.1 M60 vs. MO: <0.00 !\/\40 vs. M60:  0.059
MO 10.1 £ 5.3

Bladder; \/7OGy (%) !\/\odel20 75+50 MZO vs. MO:  0.036 I\/\20 vs. M40: 0.193
!\/\odelL10 7.1+44 Mqo vs. MO:  0.002 MZO vs. M60:  0.535
!\/\odel60 73 +4.4 M vs.MO: 0.001 M vs. M60: 0.120
MO 8.6 +45

Bladder; V756y (%) I\/\odel20 6.2 +4.1 M vs.MO: 0.160 M vs.M40: 0.135
!\/\odel40 6.0+ 338 M, vs. MO 0.020 M, vs. M60: 0.622
I\/\odel60 6.1 +38 f\/l60 vs. MO:  0.026 M40 vs. M60: 0.051
MO 6.8 +35

Rectum; V5OGy (%) !\/\odel20 16.1 +4.6 Mzo vs. MO: <0.001 Mzo vs. M40: 0.109
!\/\odelaO 175+ 6.0 M4O vs. MO:  0.006 l\/\20 vs. M60:  0.158
!\/\odel60 174 + 6.0 Méo vs. MO:  0.006 I\/\ao vs. M60:  0.752
MO 203+ 58

Rectum; V60Gy (%) Model 12.0 + 3.8 M, vs.MO: 0.001 M, vs. M40: 0.156
Model40 127 £ 4.6 M40 vs. MO:  0.001 Mzo vs. M60: 0.242
I\/\odel60 12.7 + 4.6 r\/l60 vs. MO:  0.002 l\/\40 vs. M60:  0.957
MO 149 £ 4.7
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Mean + SD

P-value

(Model vs. Model)

P-value
(Model vs. MO)

Rectum; V. (%) Model 10.2 + 3.4
65Gy 20
f\/lodelqo 10.7 £ 4.0
Model60 10.7 £ 4.1
MO 12.6 + 4.2
Rectum; V. (%) Model 8.4 + 3.1
706y 20
Moolell10 8.7 +35
!\/lodel60 8.7+36
MO 10.1 £ 3.7
Rectum; V. (%) Model 6.4+ 28
75Gy 20
!\/lodelL10 6.5+ 30
!\/lodel60 6.6 +3.0
MO 7.1 +3.1

M_ vs. MO:  0.001 M_ vs. M40: 0.216
I\/\40 vs. MO:  0.001 !\/\20 vs. M60:  0.305
M, vs. MO:  0.001 M, Vvs. M60:  0.957

Mzo vs. MO:  0.002 Mzo vs. M40: 0.237

M, vs. MO:  0.002 M, vs. M60: 0.335
I\/\60 vs. MO:  0.003 MAO vs. M60:  0.826

I\/\20 vs. MO:  0.030 !\/\ZO vs. M40: 0.478
!\/\40 vs. MO:  0.028 M20 vs. M60:  0.375
l\/\60 vs. MO:  0.048 !\/l40 vs. M60:  0.405

a!\/\zo is 20 plans model training, M_is 40 plans model training, and M_is 60 plans model training

“The p-value < 0.05 is the statistical significance of this study

dose-volume parameters of RP were
significantly lower than MO (p<0.05), only
RPmodel20, V75Gy of the bladder was
similar to MO (V75Gy: 6.2% and 6.8% for
RPmodel20 and MO). All dose-volume pa-
rameters to the rectum in RP plans were
significantly lower than MO plans (p<0.05).
In addition, PTV parameters in terms of
D2%, D95%, D98%, HI, and CN illustrated
result among the models insignificantly.
For bladder and rectum, all 3 RP models
provided comparable the dose-volume

parameters.

DISCUSSION
The complicated VMAT treatment

planning needed the efficient optimi-
zation process in the inverse planning
system. However, to reach the planning
goals, the optimization was currently
a trial-and-error approach, and quality
of planning was mostly based on the
experience of planners. To reduce the
planner dependent variability in plan
quality, the RP knowledge-based (KB)
solutions for the inverse planning have
been developed. Best practice models
were able to apply for the clinic to increase
planning efficiency. The performance of
RP had been compared with manually
optimized clinical plans for different

treatment sites and techniques. Previous
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studies” ™ > of RP for VMAT optimization
in head and neck, hepatocellular, lung,
rectum, pelvic, and esophagus cancer
were reported and RP optimized plan is
able to improve plan quality and increase
planning efficiency. For prostate cancer,
better plan quality than the original
clinically acceptable plans were
presented, from the study of Fogliata
et al.” Hussein et al."  and Kubo et al.”
In addition, reduction of planning time,
and independently of planner’s skill
when they used RP was also exhibited.

In this study, after the 3 RP models
for VMAT prostate cancer validation, all
plans from 3 models were clearly shown
the acceptable and better plan quality.
For PTV dose coverage, similar results
of D%%, Dgg%, and higher CN, from the
models were exhibited when compared
with MO. However, in MO plans showed
lower D.. and HI number due to the
better control of a hotspot area in PTV

15]

from the planner. Kubo et al.™ also

showed that the dose coverage, D,

H

%’ 98%’

CN, and HI to the PTV was slightly inferior
in KBP plans when compared with the
manually optimized planning. They
suggested to manually adjust in the RP
optimization process for improving PTV

coverage. For OARs, almost all of the

rectum and bladder doses in RP models
showed significantly better results than
MO, except the V75Gy to the bladder in
Model20 that was comparable to the MO
plans. For the head and neck studied from
Tol et al"®, they reported that the high
dose-volume of OARs might be increased
due to the overlap region between PTV
and OARs. Therefore, Hussein et al."” and
Kubo et al."” suggested that the planners
should add the upper objective of OARs
in the optimization process to reduce the
high dose of RP plans.

The number of the plan for
model training and the removing of
outliers was also investigated in this study.
Three different RP models, based on 20,
40, and 60 prostate cancer plans, showed
similar results of PTV coverage, blad-
der, and rectum dose. When the organ
volume used in building the model was
analyzed, it can be seen that all 3 models
presented a very similar volume of the
PTV, bladder, and rectum. A study of
Tol et al.'"” also created head and neck
model using 30 and 60 plans and plan
quality obtained from both models were
the same and concluded that 30 plans
were sufficient for building model. In
addition, their study showed OAR

outlier did not influence to OAR dose.
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' as well found that

Hussein et al
removing statistical outliers from the
training set was insignificant effect to
modal quality. In our study, removing
the outliers from the model was also
tested, and showed the same result of
no effect on our model quality. Besides,
the application of RP for VMAT optimiza-
tion was found to reduce the optimiza-
tion time from 30 min in MO plans to
6-7 min. However, the result of this study
was limited from a number of sample
size in the model validation and further
study with more number of data or

applied in other clinical cases should be

conducted.

CONCLUSION

RP knowledge-based treatment
planning system is able to increase
planning efficiency and plan quality.
Satisfactorily and acceptable prostate
VMAT plans from 3 RP trained models in
this investigation can be obtained in only
single optimization. The 20 historic plans
were also found to be an acceptable
minimum number of plans for the model

training.

ACKNOWLEDGEMENT

We would like to thank you staff at
Division of Radiation Oncology, Department
of Radiology, Faculty of Medicine Siriraj
Hospital for help and support throughout

this research.

m U=iS933RUU 015ansauALSIESNFIA:UzSIoNEIKIUS:INATNg

Un 25 aoun 1 unsIAu - 0NUI9U 2562



REFERENCES

1.

Khan FM. The Physics of Radiation
Therapy. 4”ed. Philadelphia:
Williams & Wilkins. 2010

Nelms BE, Robinson G, Markham
J, Velasco K, Boyd S, Narayan S, et al.
Variation in external beam treat-
ment plan quality: An inter-
institutional study of planners and
planning systems. Pract Radiat
Oncol 2012;2:296-305.

Wu B, Ricchetti F, Sanguineti G,
Kazhdan M, Simari P, Chuang M,
et al. Patient geometry-driven
information retrieval for IMRT
treatment plan quality control.
Med Phys 2009;36:5497-505.
Sutherland K. A Dosimetrist Per-
spective on the Role of Knowledge
Based Planning [online]. 2014 [cited
2017 Jul 12]. Available from: http://
pubs.medicaldosimetry.org/pub/
ddbccde6-f920-82a8-7e3e-e2c37
d5eaaec.

Fogliata A, Belosi F, Clivio A,
Navarria P, Nicolini G, Scorsetti M,
et al. On the pre-clinical validation
of a commercial model-based
optimisation engine: Application to

volumetric modulated arc therapy

for patients with lung or prostate
cancer. Radiat Oncol 2014;113:
385-91.

Fogliata A, Nicolini G, Clivio A,
Vanetti E, Laksar S, Tozzi A,
et al. A broad scope knowledge
based model for optimization of
VMAT in esophageal cancer: valida-
tion and assessment of plan quality
among different treatment centers.
Radiat Oncol 2015;10:220.

Fogliata A, Wang P-M, Belosi F, Clivio
A, Nicolini G, Vanetti E, et al.
Assessment of a model based
optimization engine for volumetric
modulated arc therapy for patients
with advanced hepatocellular
cancer. Radiat Oncol 2014;9:236.
Marks LB, Yorke ED, Jackson A, Haken
RT, Constine LS, Eisbrruch A, et al.
Use of normal tissue complication
probability models in the clinic. Int
J Radiat Oncol Biol Phys 2010;76:
10-9.

Luca C. RAPIDPLAN: The clinical
value and DVH estimation algorithm
[online]. 2014 [cited 2015 Jul 16].
Available from: Varian Medical

System Source.

Jornal of Thai Association of Radiation Oncology

Vol. 25 No.1 January - June 2019 |



10.

11.

12.

13.

14.

22

Kataria T, Sharma K, Subramani V,
Karrthick KP, Bisht SS. Homo-
geneity Index: An objective tool
for assessment of conformal
radiation treatments. J Med Phys
2012;37:207-13.

Riet A, Mak A, Moerland M, Elders
L, van W. A conformation number
to quantify the degree of confor-
mality in brachytherapy and
external beam irradiation: Applica-
tion to the prostate. Int J Radiat
Oncol Biol Phys 1997;37:731-6.
Fogliata A, Reggiori G, Stravato A,
Lobefalo F, Franzese C, Franceschini
D, et al. RapidPlan head and neck
model: the objectives and possible
clinical benefit. Radiat Oncol
2017;12:73.

Wu H, Jiang F, Yue H, Zhang H, Wang
K, Zhang Y. Applying a RapidPlan
model trained on a technique and
orientation to another: a feasibility
and dosimetric evaluation. Radiat
Oncol 2016;11:108.

Hussein M, South CP, Barry MA,

U 2562

15.

16.

17.

015NSAIALSIASN A UEIS JoNEMKIUSINATN

Adams EJ, Jordan TJ, Stewart AJ,
et al. Clinical validation and bench-
marking of knowledge-based
IMRT and VMAT treatment planning
in pelvic anatomy. Radiat Oncol
2016;120:473-9.

Kubo K, Monzen H, Ishii K, Tamura
M, Kawamorita R, Sumida |, et al.
Dosimetric comparison of
RapidPlan and manually optimized
plans in volumetric modulated arc
therapy for prostate cancer. Phys
Med 2017;1120-1790:30216-8

Tol JP, Dahele M, Delaney AR,
Slotman BJ, Verbakel WF. Can
knowledge-based DVH predictions
be used for automated, individua-
lized quality assurance of radio-
therapy treatment plans. Radiat
Oncol 2015;10:234.

Tol JP, Delaney AR, Dahele M,
Slotman BJ, Verbakel WFAR. Evalua-
tion of a Knowledge Based Planning
Solution for Head and Neck Cancer.
Int J Radiat Oncol Biol Phys 2015;
91:612-20.



