

ความสัมพันธ์ระหว่างความหลากหลายทางพันธุกรรมของยีน XPD ที่ตำแหน่ง 312 (XPD 312 gene) กับความเสี่ยงต่อการเกิดโรคมะเร็งเต้านมในหญิงไทย

วิชุดา ไตรรัตน์อภิชาต¹ ดนัย ทิวาเวช^{2,3} และ มีรุกุล อากรณ์สุวรรณ^{4*}

¹บัณฑิตศึกษาสาขาวิชาเทคนิคการแพทย์ ภาควิชาเทคนิคการแพทย์ คณะสหเวชศาสตร์ มหาวิทยาลัยธรรมศาสตร์ จังหวัดปทุมธานี

²ภาควิชาการวิเคราะห์ คณะวิทยาศาสตร์ มหาวิทยาลัยธรรมศาสตร์ จังหวัดปทุมธานี

³กลุ่มงานวิจัย สถาบันมะเร็งแห่งชาติ กรุงเทพมหานคร

⁴ภาควิชาเทคนิคการแพทย์ คณะสหเวชศาสตร์ มหาวิทยาลัยธรรมศาสตร์ จังหวัดปทุมธานี

บทคัดย่อ

มะเร็งเต้านมเป็นโรคมะเร็งชนิดที่พบมากที่สุดในสตรีไทย ความหลากหลายทางพันธุกรรมของยีน XPD ซึ่งเกี่ยวข้องกับกระบวนการซ่อมแซมดีเอ็นเอ (DNA repair) เป็นปัจจัยเสี่ยงอย่างหนึ่งต่อการเกิดโรคมะเร็ง งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อศึกษาความสัมพันธ์ระหว่างความหลากหลายของยีน XPD ที่ตำแหน่งกรดอะมิโน 312 กับความเสี่ยงต่อการเกิดโรคมะเร็งเต้านมในสตรีไทย โดยสัดส่วนดีเอ็นเอจากตัวอย่างเลือดของกลุ่มผู้ป่วยมะเร็งเต้านม 100 ราย และกลุ่มคนปกติ 100 ราย แล้วนำมารวเคราะห์ หาความหลากหลายของยีน XPD ที่ตำแหน่งกรดอะมิโน 312 โดย วิธี real-time polymerase chain reaction (RT-PCR) ซึ่งผลการศึกษาไม่พบความสัมพันธ์ระหว่างการเกิดความหลากหลายของยีน XPD ที่ตำแหน่งกรดอะมิโน 312 กับความเสี่ยงต่อการเกิดโรคมะเร็งเต้านมอย่างมีนัยสำคัญ (crude OR: 1.31, 95% CI: 0.64-2.71; $p = 0.462$) และเมื่อปรับตัวแปรที่อาจมีผลเกี่ยวข้องกับการเกิดมะเร็งเต้านม ได้แก่ อายุ ภาวะหมดประจามาเดือน และประวัติครอบครัวเป็นมะเร็งเต้านม ก็ยังไม่พบความสัมพันธ์ ดังกล่าว (adjusted OR: 1.14, 95% CI: 0.75-1.73; $p = 0.621$) จึงสรุปได้ว่า การเกิดความหลากหลายของยีน XPD ที่ตำแหน่งกรดอะมิโน 312 ไม่มีความสัมพันธ์กับความเสี่ยงต่อการเกิดโรคมะเร็งเต้านม

คำสำคัญ: มะเร็งเต้านม การซ่อมแซมด้วยการตัดออกของนิวเคลียติก ยีน XPD ซิงเกิลนิวเคลียติก-โพลีเมอร์ฟิชั่น เทคนิค real-time PCR

*ผู้รับผิดชอบบทความ E-mail address: teerakul_suwan@hotmail.com

รับบทความ: 9 ธันวาคม 2560

แก้ไขบทความ: 17 กรกฎาคม 2561

รับตีพิมพ์บทความ: 24 กรกฎาคม 2561

Association between *XPD* Codon 312 Polymorphisms and Breast Cancer Risk in Thai Women

Vichuda Triratapichat¹, Danai Tiwawech^{2,3} and Teerakul Arpornsuwan^{4*}

¹Graduate Program in Medical Technology, Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum thani Province, Thailand

²Department of Anatomy, Faculty of Medical Science, Naresuan University, Pisanulok Province, Thailand

³Research and Technology Assessment Division, National Cancer Institute, Bangkok, Thailand

⁴Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum thani Province, Thailand

Abstract

Breast cancer is the most common cancer in Thai women. Polymorphic variants of *XPD* gene, which involve DNA repair systems, were found to be associated with several cancers. The aim of this study was to investigate the association between *XPD* codon 312 polymorphisms and breast cancer susceptibility in Thai women. In this study, DNA was isolated from the peripheral blood sample of 100 patients with breast cancer and 100 healthy controls for determination of *XPD* codon 312 polymorphisms by real-time polymerase chain reaction (RT-PCR). The results show that no significant associations were found between breast cancer risk and *XPD* codon 312 polymorphisms (crude OR: 1.31, 95% CI: 0.64-2.71; $p = 0.462$). Variable parameters comprising age and menopause status did not alter the findings (adjusted OR: 1.14, 95% CI: 0.66-1.98; $p = 0.635$) suggesting that *XPD* codon 312 polymorphisms is not associated with breast cancer risk.

Keywords: Breast cancer, Nucleotide excision repair, *XPD* gene, Single nucleotide polymorphisms, Real-time polymerase chain reaction

*Corresponding author E-mail address: teerakul_suwan@hotmail.com

Received: December 9, 2017

Revised: July 17, 2018

Accepted: July 24, 2018

Introduction

Breast cancer (BC) is a major public health problem in many countries and remains the most frequently diagnosed cancer in women worldwide. In Thailand, the incidence rate for BC is 28.6/100,000 and the rate is steadily increasing⁽¹⁾. The exact cause of BC is unknown but the risk factors for developing BC may include older age, having a family history of BC, not having children or pregnant over age 30, using hormone therapy for a long time and obesity. Furthermore, obtaining environmental factors such as ionizing radiation and chemical carcinogens may be an important factor that increases the risk of BC. According to a recent study, exposure of these factors may contribute to DNA damage such as oxidized bases, bulky DNA adducts, and DNA strand breaks. The gene mutations and gene malfunctions that contribute to BC pathogenesis are more likely to achieve suboptimal DNA repair⁽²⁾.

There are several pathways to repair the DNA damages. Among these is the nucleotide excision repair (NER) pathway that removes DNA damage including cross-links, oxidative damage and bulky adducts⁽³⁾. The xeroderma pigmentosum group D (*XPD*) gene or excision repair cross-complementing rodent repair deficiency group 2 (*ERCC2*) is located on chromosome 19q 13.3 encoding a helicase. The *XPD* is a protein in the transcription and NER pathway removing DNA cross-links, UV-induced DNA damage, and bulky chemi-

cal adducts^(4, 5). Mutations of the *XPD* gene were associated with defective NER, transcription defects and abnormal response to apoptosis⁽⁶⁾.

Single-nucleotide polymorphism (SNP) is a variation in a single nucleotide that occurs at a specific position in the genome. Many SNPs of *XPD* gene have been reported but the codon 312 and codon 751 polymorphisms which result in amino acid changes from aspartic acid to asparagine and lysine to glutamine, respectively, are commonly studied⁽⁷⁾. These polymorphisms have been associated with increased levels of DNA adduct and lower DNA repair capacity^(7, 8). Many studies have reported an association between *XPD* codon 312 polymorphism and risk of various cancers including lung cancer⁽⁹⁾, prostate cancer⁽¹⁰⁾, and upper aero-digestive tract⁽¹¹⁾. The A allele of Asp312Asn was significantly associated with BC risk⁽¹²⁾. It was consistent with the report of AA genotype of *XPD* Asp312Asn polymorphism that had a 3.5-fold increase risk of BC⁽¹³⁾. In contrast, Kuschel *et al.* and Lee *et al.* found no association^(14, 15). However, there are no reports of an association between *XPD* codon 312 polymorphisms and risk of BC in Thailand. The aim of the present study was to determine the allelic frequencies of the *XPD* codon 312 polymorphisms using RT-PCR. The association of genetic polymorphisms in *XPD* codon 312 with BC susceptibility was also investigated.

Materials and Methods

Subjects

A total of 200 subjects were recruited from National Cancer Institute, Ministry of Public Health at Bangkok, Thailand. They were divided into 2 groups: a breast cancer group and a control group. The breast cancer group was 100 Thai women (mean age=53.1 ± 9.4) with histo-pathologically proven diagnosis of breast cancer between May 2014 and November 2014 from National Cancer Institute at Bangkok, Thailand. The control group was 100 healthy Thai women (mean age = 43.5 ± 8.4) with no sign or symptoms of malignancy, autoimmune, chronic liver and chronic inflammation disease. All of the 100 cases were pretreatment BC patients with no history of pathologic secondary amenorrhea, hysterectomy or oophorectomy. The clinico-pathological features of BC patients were summarized in Table 1. These patients were graded according to the modified criteria as described by the American Joint Committee on Cancer TNM staging system. The protocol of the present study was approved by the ethics committee of National Cancer Institute and Thammasat University, Thailand.

Blood sample collection

Three milliliters of venous blood were collected in EDTA test tubes. All blood samples from a total of 200 cases were centrifuged at 2,500 rpm for 20 min, then the buffy coat containing white blood cells were transferred

into 1.5 mL Eppendorf tubes and kept at -20°C for DNA extraction.

DNA extraction

Genomic DNA (gDNA) was extracted from white blood cells using a innuPREP Blood DNA Mini Kit (Analytik Jena, Germany) as described by the instruction manual. The quality of the gDNA was analyzed by spectrophotometer and preserved at -20 °C until use.

XPD codon 312 polymorphisms detection

Genotyping of *XPD* codon 312 was analyzed by RT-PCR with TaqMan probes (Applied Biosystems, USA). The real-time PCR was performed in a final volume of 20 μL, containing 2 μL of gDNA (30-35 ng/mL), 10 μL of TaqMan Genotyping Master Mix, 0.5 μL of TaqMan probe with specific primers (5'-TGGCCCTGTCTGACTT-GTCCC-3' and 5'-GACGGGGAGGC-GGGAAAGGGACT-3') (RefSeqGene (LRG_461) on chromosome 19Sequence ID: NG_007067.2) (Wang *et al.*, 2010) and 7.5 μL of double distilled water. The PCR mixture was incubated at 60°C for 30 sec followed by AmpliTaq Gold Enzyme activation at 95°C for 10 min. Then, gDNA was amplified by RT-PCR program comprising 40 cycles of denaturation at 95°C for 15 sec and annealing at 60°C for 1 min followed by holding at 60°C for 30 sec. The amplified target sequences were analyzed in the end-point mode using the Allelic Discrimination Sequence Detector

Table 1 Clinicopathological characteristics of the cases and controls

Characteristics	Breast cancer group (%)	Control group (%)	<i>p</i>
Age (year)			
<40	7 (7)	38 (38)	< 0.05
40-60	70 (70)	60 (60)	
>60	23 (23)	2 (2)	
Mean ± SD	53.1±9.4	43.5±8.4	
Menopause			
Pre	35 (35)	73 (73)	
Post	65 (65)	27 (27)	
Tobacco smoking			
Yes	0 (0)	0 (0)	
No	100 (100)	100 (100)	
Alcohol consumption			
Yes	2 (2)	3 (3)	
No	98 (98)	97 (97)	

Patient characteristics	number
Tumor size	
< 2 cm	31
2-5 cm	63
> 5 cm	6
Lymph node metastasis	
Negative	48
Positive	52
AJCC pathological stage	
I-II	63
III-IV	37

Software (Applied Biosystems). The genotyping of *XPD* codon 312 were GG genotype (homozygous wild type), AA genotype (homozygous mutant type) and GA genotype (heterozygous type) that perfect match to TaqMan probes with VIC® dye, FAM™ dye and both VIC® and FAM™ dyes, respectively.

Statistical Analysis

Chi-Square test (X^2) was used to compare the differences of genotype and allele frequencies between cases and controls. Odd ratios (OR) and 95% confidence interval (CI) calculated by logistic regression method were used to examine the association between the *XPD* codon 312 polymorphisms and risk of BC. Data were considered significantly different when p -values were less than 0.05. All data were calculated with SPSS version 16.0.

Results

The characteristics of the case and control cohorts are shown in Table 1. Drinking alcohol and tobacco smoking produced no significant differences between cases and controls. However, age and menopause status of BC caused/gave significant differences between cases and controls. The clinicopathological parameters are shown in Table 1. Among all patients, 63 patients (63%) had the tumor size of 2-5 cm. About 63% and 37% of BC patients had pathological staging for stage I-II and III-IV, respectively.

The frequency of G allele (wild type) was 90% in BC group and 92% in controls. In addition, the frequency of A allele (mutant type) was 10% in BC group and 8% in controls. These data showed that the frequency of allele A were not significantly different between control and BC groups (adjusted OR: 1.10, 95% CI: 0.65-1.84) ($p = 0.721$) (Table 2).

The genotypic distributions of *XPD* codon 312 polymorphisms are shown in Table 2. The genotype frequencies of GG and AG were 80% and 20% in BC group and 84% and 16% in control group, respectively. However, the genotype frequency of AA for both BC and control group was not detectable in this study.

The data show that genotype frequencies of *XPD* codon 312 polymorphisms were not significantly different between control and BC groups. When using the GG genotype as a reference group there was no significant association between *XPD* codon 312 polymorphisms and risk of BC (crude OR: 1.31, 95% CI: 0.64-2.71) ($p=0.462$). When adjusted with variables that might influence BC, ie. age and menopause status, we found that these variables did not alter the findings. (adjusted OR: 1.14, 95% CI: 0.66-1.98) ($p=0.635$) (Table 2)

Discussion

Nucleotide excision repair (NER) pathway is an important system to repair DNA damage. Defects in this pathway may lead to defect or lower repair capacity of DNA that

Table 2 Correlation between *XPD* codon 312 polymorphisms and the risk of breast cancer

Genotype	Control group N (%)	Breast cancer group N (%)		Crude OR (95 % CI)	<i>p</i>	Adjusted OR ^a (95% CI)	<i>p</i>
		breast cancer group N (%)	Crude OR (95 % CI)				
Genotype							
GG (ref.)	84 (84)	80 (80)	1			1	
AG	16 (16)	20 (20)	1.31 (0.64-2.71)	0.462	1.14 (0.66-1.98)	0.635	
AA	0 (0)	0 (0)	-			-	
AA+AG	16 (16)	20 (20)	1.31 (0.64-2.71)	0.462	1.14 (0.66-1.98)	0.635	
Allele							
G allele (ref.)	184 (92)	180 (90)	1			1	
A allele	16 (8)	20 (10)	1.28 (0.64-2.54)	0.485	1.10 (0.65-1.84)	0.721	

OR, odd ratio; CI, confidence interval, ^aadjusted for age and menopause status.

increases risk of genetic mutations and carcinogenesis. *XPD* is a DNA dependent ATPase/helicase, which is a part of the transcription factor TFIIH, plays an important role in opening the DNA helix during the process of NER⁽¹⁶⁾. Mutation of the *XPD* gene may decrease helicase activity, resulting in reducing DNA repair and transcription capacity and abnormal responses to apoptosis⁽¹⁷⁾. Several studies have examined the functional significance of the *XPD* codon 312 polymorphisms. The studies reported that the variant alleles of *XPD* codon 312 have been shown to result in significantly lower DNA repair capacity⁽¹⁸⁾. There are many epidemiological studies that show the association between *XPD* codon 312

polymorphisms and the risk of several cancers including lung cancer⁽⁹⁾, upper aerodigestive tract cancer⁽¹¹⁾ and prostate cancer⁽¹⁰⁾. However, other studies did not show the association between *XPD* codon 312 polymorphisms and the risk of lung cancer⁽¹⁹⁾, skin cancer⁽²⁰⁾ and esophageal cancer⁽²¹⁾. In this study, we investigated the polymorphisms distribution of the *XPD* codon 312 and analyzed the relationship between *XPD* codon 312 polymorphisms and susceptibility to BC.

As regard *XPD* codon 312 polymorphisms in the present study, the frequency of A (mutant) allele was 10 % in BC patients and 8% in controls. The results show that the frequencies of *XPD* 312 variant alleles were

not significantly different between patients and the control group ($p = 0.621$). This study demonstrated that the allelic frequencies of the A allele at *XPD* codon 312 in healthy controls were 0.080, which were similar to several reports for example, in Thai population by Pakakasama *et al.* (0.074)⁽²²⁾ and Chinese population reported by Liang *et al.* (0.065)⁽²³⁾, Yuan *et al.* (0.088)⁽²⁴⁾, Yu *et al.* (0.053)⁽²⁵⁾, but were lower than in Taiwanese (0.245)⁽¹²⁾, Americans (0.341)⁽²⁶⁾, European (0.401)⁽²⁷⁾ and Egyptian (0.50)⁽¹³⁾ (Table 3). These data revealed that the frequencies of *XPD* 312 variant alleles have ethnic and geographical differences.

Several epidemiologic studies have examined an association between *XPD* codon 312 polymorphisms and BC risk. Wang *et al.*, who studied in Taiwanese patients, reported that the heterozygotes and homozygotes of the A allele of *XPD* codon 312 was associated with a higher risk of BC⁽¹²⁾. Another study in

Egypt, demonstrated that AA genotype of *XPD* codon 312 polymorphisms increased the risk of BC⁽¹³⁾. Also in France by Bernard-Gallon *et al.*, who found the heterozygous type for *XPD* codon 312 polymorphisms was associated with breast cancer development in women receiving menopause substitution treatment⁽²⁸⁾. However, in this study, the association between *XPD* codon 312 polymorphisms and risk of BC was investigated. The results did not demonstrate the difference in the genotypes of *XPD* codon 312 between patients and control groups. It was also found that *XPD* codon 312 polymorphisms were not associated with BC risk. The findings are consistent with the results of Kuschel *et al.*, Jorgensen *et al.* and Lee *et al.*, that found no evidence of association of *XPD* codon 312 polymorphisms and BC risk^(14, 15, 29). The discrepancies in the findings concerning the role of *XPD* polymorphisms in BC may be explained by genetic factors and environmental factors, which differ among

Table 3 Allele frequencies of *XPD* codon 312 in other ethnic population

First author	Year	Country	Ethnicity	Allele frequency
Hussien	2012	Egypt	African	0.500
Yuan	2012	China	Asian	0.088
Wang	2010	Taiwan	Asian	0.245
Pakakasama	2007	Thailand	Asian	0.074
Debniak	2006	Poland	European	0.401
Mechanic	2006	USA	American	0.341
Mechanic	2006	USA	African-American	0.127

the population. By reviewing the previous studies, Tang *et al.* reported that *XPD* codon 312 polymorphisms were not associated with breast cancer, although they were associated with increased levels of PAH–DNA adduct in tumor tissue, which may contribute to tumor development⁽³⁰⁾. Nevertheless, Lunn *et al.* found that *XPD* codon 312 polymorphisms did not appear to affect DNA repair capacity⁽⁸⁾. In addition, *XPD* plays a role in apoptosis. Rzeszowska-Wolny *et al.* reported that the frequency of apoptotic cells was significantly higher in individuals with alleles coding for Asn at *XPD* 312⁽³¹⁾. Seker *et al.* also found that homozygous for the variant A allele had a higher apoptotic response than heterozygous or homozygous for the G allele⁽³²⁾. The limitation of this study is small sample size, which makes it difficult to find significant relationships from the data, as statistical tests normally require a larger sample size to ensure a representative distribution of the population.

In conclusion, the findings suggest that *XPD* codon 312 polymorphisms are not associated with BC risk in Thai population.

Acknowledgements

We would like to thank TU Research grant supported by Thammasat University for the financial support to this study. Thanks are also extended to National Cancer Institute, for kind supports in providing instrument and storage specimens for this study.

References

1. Imsamran W, Chaiwerawattana A, Wiangnon S, *et al.* Cancer in Thailand 8th eds. 2015; 2010-2012, Bangkok: New Thammada Press, Thailand.
2. Hu JJ, Smith TR, Miller MS, Lohman K, Case LD. Genetic regulation of ionizing radiation sensitivity and breast cancer risk. *Environ Mol Mutagen* 2002; 39: 208-215.
3. Parshad R, Price FM, Bohr VA, Cowans KH, Zujewski JA, Sanford KK. Deficient DNA repair capacity, a predisposing factor in breast cancer. *Br J Cancer* 1996; 74: 1-5.
4. Sancar A, Tang MS. Nucleotide excision repair. *Photochem Photobiol* 1993; 57: 905-921.
5. Weeda G, Hoeijmakers JH. Genetic analysis of nucleotide excision repair in mammalian cells. *Semin Cancer Biol* 1993; 4: 105-17.
6. Taylor EM, Broughton BC, Botta E, *et al.* Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the *XPD* (ERCC2) repair/transcription gene. *Proc Natl Acad Sci* 1997; 94: 8658-63.
7. Shen MR, Jones IM, Mohrenweiser H. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. *Cancer Res* 1998; 58: 604-8.

8. Lunn RM, Helzlsouer KJ, Parshad R, *et al.* *XPD* polymorphisms: effects on DNA repair proficiency. *Carcinogenesis* 2000; 21: 551-5.
9. Hu Z, Wei Q, Wang X, Shen H. DNA repair gene *XPD* polymorphism and lung cancer risk: a meta-analysis. *Lung Cancer* 2004; 46: 1-10.
10. Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G, Witte JS. DNA repair gene *XRCC1* and *XPD* polymorphisms and risk of prostate cancer. *Cancer Epidemiol Biomarkers Prev* 2004; 13: 23-9.
11. Buch S, Zhu B, Davis AG, *et al.* Association of polymorphisms in the cyclin D1 and *XPD* genes and susceptibility to cancers of the upper aero-digestive tract. *Mol Carcinog* 2005; 42: 222-8.
12. Wang HC, Liu CS, Wang HC, *et al.* Significant association of *XPD* Asp312 Asn polymorphism with breast cancer in Taiwanese patients. *Chin J Physiol* 2010; 53: 130-5.
13. Hussien YM, Gharib AF, Awad HA, Karam RA, Elsawy WH. Impact of DNA repair genes polymorphism (*XPD* and *XRCC1*) on the risk of breast cancer in Egyptian female patients. *Mol Biol Rep* 2012; 39: 1895-901.
14. Kuschel B, Chenevix-Trench G, Spurdle AB, *et al.* Common polymorphisms in *ERCC2* (Xeroderma pigmentosum D) are not associated with breast cancer risk. *Cancer Epidemiol Biomarkers Prev* 2005; 14: 1828-31.
15. Lee SA, Lee KM, Park WY, *et al.* Obesity and genetic polymorphism of *ERCC2* and *ERCC4* as modifiers of risk of breast cancer. *Exp Mol Med* 2005; 37: 86-90.
16. Manuguerra M, Saletta F, Karagas MR, *et al.* *XRCC3* and *XPD/ERCC2* single nucleotide polymorphisms and the risk of cancer: a huge review. *Am J Epidemiol* 2006; 164: 297-302.
17. Coin F, Bergmann E, Tremeau-Bravard A, Egly JM. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. *EMBO J* 1999; 18:1357-66.
18. Hou SM, Fält S, Angelini S, *et al.* The *XPD* variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk. *Carcinogenesis* 2002; 23: 599-603.
19. Butkiewicz D, Rusin M, Enewold L, Shields PG, Chorazy M, Harris CC. Genetic polymorphisms in DNA repair genes and risk of lung cancer. *Carcinogenesis* 2001; 22: 593-7.
20. Vogel U, Hedayati M, Dybdahl M, Grossman L, Nexo BA. Polymorphisms of the DNA repair gene *XPD*: correlations with risk of basal cell carcinoma revisited. *Carcinogenesis* 2001; 22: 899-904. Erratum in: *Carcinogenesis* 2002; 23: 373

21. Xing D, Qi J, Miao X, Lu W, Tan W, Lin D. Polymorphisms of DNA repair genes *XRCC1* and *XPD* and their associations with risk of esophageal squamous cell carcinoma in a Chinese population. *Int J Cancer* 2002; 100: 600-5.
22. Pakakasama S, Sirirat T, Kanchanachumpol S, *et al.* Genetic polymorphisms and haplotypes of DNA repair genes in childhood acute lymphoblastic leukemia. *Pediatr Blood Cancer* 2007; 48: 16-20.
23. Liang G, Xing D, Miao X, *et al.* Sequence variation in the DNA repair gene *XPD* and risk of lung cancer in a Chinese population. *Int J Cancer* 2003; 105: 669-73.
24. Yuan T, Deng S, Liu H, Liu M, Chen P. Relationship between *XRCC1* and *XPD* polymorphisms and the risk of the development of hepatocellular carcinoma: A case-control study. *Exp Ther Med* 2012; 4: 285-90.
25. Yu HP, Wang XL, Suna XS, *et al.* Polymorphisms in the DNA repair gene *XPD* and susceptibility to esophageal squamous cell carcinoma. *Cancer Genet Cytogenet* 2004; 154: 10-5.
26. Mechanic LE, Millikan RC, Player J, *et al.* Polymorphisms in nucleotide excision repair genes, smoking and breast cancer in African Americans and Whites: a population-based case-control study. *Carcinogenesis* 2006; 27: 1377-85.
27. Debnik T, Scott RJ, Huzarski T, *et al.* *XPD* common variants and their association with melanoma and breast cancer risk. *Breast Cancer Res Treat* 2006; 98: 209-15.
28. Bernard-Gallon D, Bosviel R, Delort L, *et al.* DNA repair gene ERCC2 polymorphisms and associations with breast and ovarian cancer risk. *Mol Cancer* 2008; 7: 36.
29. Jorgensen TJ, Visvanathan K, Ruczinski I, Thuita L, Hoffman S, Helzlsouer KJ. Breast cancer risk is not associated with polymorphic forms of xeroderma pigmentosum genes in a cohort of women from Washington County, Maryland. *Breast Cancer Res Treat* 2007; 101: 65-71.
30. Tang D, Cho S, Rundle A, *et al.* Polymorphisms in the DNA repair enzyme *XPD* are associated with increased levels of PAH-DNA adducts in a case-control study of breast cancer. *Breast Cancer Res Treat* 2002; 75:159-66.
31. Rzeszowska-Wolny J, Polańska J, Pietrowska M, *et al.* Influence of polymorphisms in DNA repair genes *XPD*, *XRCC1* and *MGMT* on DNA damage induced by gamma radiation and its repair in lymphocytes in vitro. *Radiat Res* 2005; 64:132-40.
32. Seker H, Butkiewicz D, Bowman ED, *et al.* Functional significance of *XPD* polymorphic variants: attenuated apoptosis in human lymphoblastoid cells with the *XPD* 312 Asp/Asp genotype. *Cancer Res* 2001; 61: 7430-4