

# The Correlations of Baseline Autonomic Nervous System Function and Hostility Score with Change Ratio of Treatment Response in Generalized Anxiety Disorder

Tsung-Hua Lu, MD<sup>1</sup>, Lan-Ting Lee, MD<sup>1</sup>, Shuo-En Hsu, MD<sup>1</sup>,  
Kao Chin Chen, MD, PhD<sup>1</sup>, I Hui Lee, MD<sup>1</sup>, Tzung Lieh Yeh, MD<sup>1</sup>,  
Po See Chen, MD, PhD<sup>1,2</sup>, Yen Kuang Yang, MD<sup>1,2,3\*</sup>

<sup>1</sup>Department of Psychiatry, National Cheng Kung University Hospital,  
College of Medicine, National Cheng Kung University, Tainan, Taiwan

<sup>2</sup>Institute of Behavioral Medicine, College of Medicine,  
National Cheng Kung University, Tainan, Taiwan

<sup>3</sup>Department of Psychiatry, National Cheng Kung University Hospital,  
Dou-Liou Branch, Yunlin, Taiwan

\*Corresponding author: Yen Kuang Yang  
Tel.: +886-6-235-3535 ext. 5213. E-mail: ykyang@mail.ncku.edu.tw

Received: 8 February 2018

Revised: 10 April 2018

Accepted: 31 May 2018

## Abstract

The relationship between the autonomic nervous system (ANS) index, hostility scale and generalized anxiety disorder (GAD) in the long-term treatment outcome has been rarely studied. The aim of this study was to explore whether the ANS index and hostility scale at baseline are predictors of long-term outcome in GAD. Nine patients with GAD were recruited. At baseline (week 0), blood pressure (BP), heart rate (HR), and mean heart rate range (MHRR) were measured as ANS index; the Cook-Medley Hostility Scale was assessed as hostility. The Hamilton Anxiety Rating Scale (HAM-A) was administered at baseline, short-term (week 6) and long-term (week 52). The aggressive response subscale of the hostility scale was significantly negatively correlated with the HAM-A change ratio in short-term and long-term, while MHRR were significantly positively correlated with these change ratios. The MHRR and the aggressive response subscale at baseline could be predictors of long-term outcome in GAD.

**Keywords:** Autonomic nervous system function, Generalized anxiety disorder, Hostility, Predictors; Treatment response

## Introduction

Generalized anxiety disorder (GAD) is one of the most common mental disorders, with a reported lifetime prevalence of 5–8%, and is associated with poorer adjustment and increased use of health services (Weisberg, 2009). In addition, GAD shares high comorbidity with several physical problems, especially cardiovascular risk

(Chang et al., 2016). An elevated cortisol level is usually found in anxiety disorders. Hypothalamic-pituitary-adrenal axis dysregulation not only lead to anxiety symptoms, but may also influence the cardiovascular function. (Mantella, et al., 2008). Also, the symptoms of cardiovascular dysfunction will mimic the physical discomfort of GAD, such as short of breath, headache or chest

tightness, exaggerating worrisome or somatic symptoms in GAD patients. This serves as a reminder that cardiovascular function is related to GAD, which is influenced by the autonomic nervous system (ANS) (Chalmers, Quintana, Abbott, & Kemp, 2014). ANS dysfunction is often noted in GAD (Fisher & Newman, 2013). Examination of ANS function is broadly performed as an index of severity in patients with anxiety and depression (Alvares et al., 2013). Within the variables of the ANS, increased HR at baseline, low HR variability, and a low finger temperature have been observed in patients with GAD (Pittig, Arch, Lam, & Craske, 2013). A positive correlation between the severity of anxiety and ANS dysfunction was noted (Alvares et al., 2013). Biofeedback therapy, combining behavioral therapy and using the ANS index, has been reported to be a good treatment strategy in addition to medication in GAD (Canadian Agency for Drugs and Technologies in Health, 2014). Meanwhile, previous studies have shown that some psychological factors, such as hostility, are associated with anxiety and the ANS index (Deschenes, Dugas, Fracalanza, & Koerner, 2012; Virtanen et al., 2003). Additionally, the hostility score, assessed using a self - reported questionnaire, might be correlated with serotonin activity, which is part of the main action of pharmacological treatment of GAD (Park, Kim, Kim, Im, & Lee, 2010; Yang et al., 2007).

## Objectives

Although patients with GAD present a chronic clinical course, most studies regarding the relationship between ANS and GAD have not assessed the long-term outcome following the recommended 12-month medical treatment period (Bereza, Machado, Ravindran, & Einarson, 2012). The aim of this study was to explore whether the ANS index and hostility are correlated with the long-term clinical treatment response in patients with GAD.

## Methods

### Participants

A total of 16 patients with GAD, 7 males and 9 females, were recruited from the psychiatric outpatient clinic of a university hospital from January 2012 to December 2016; however, 2 participants withdrew during the study, and 5 participants did not complete the one-year follow-up assessment. Only 9 patients with GAD, 4 males and 5 females, completed the one-year follow-up. No significant differences in terms of age, gender, or duration of illness were noted between the patients who did and did not complete the follow-up assessment (Table 1). All participants were assessed using the Hamilton Anxiety Rating Scale (HAM-A). The inclusion criteria for the participants with GAD were as follows: (i) patients should fulfill the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for GAD; (ii) aged between 18 and 60 years; (iii) no physical illness and stable vital signs, and no evidence of substance abuse/dependence, as assessed during the clinical interview with the research psychiatrist, at the time of enrollment – all participants were confirmed by a senior psychiatrist to be free from any mental disorder except GAD by the MINI Neuropsychiatry Interview (MINI); (iv) free of any psychotropic medication, except benzodiazepines, during the three months prior to the time of testing. The exclusion criteria were as follows: (i) other comorbid psychiatric illnesses, substance abuse/dependence, or severe medical or neurological illnesses; (ii) mental retardation; (iii) pregnancy – all female participants underwent an instant urine pregnancy test prior to enrollment; (iv) patients deemed at risk of acute suicide/self-harm were excluded from the study for their safety.

**Table 1:** Comparisons between completed and uncompleted participants.

|                              | Completed (N=9) |      |      |        |           | Uncompleted (N=7) |      |      |        |          | Statistic                |      |
|------------------------------|-----------------|------|------|--------|-----------|-------------------|------|------|--------|----------|--------------------------|------|
|                              | N               | Mean | SD   | Median | Range     | N                 | Mean | SD   | Median | Range    | $\chi^2$ /Mann Whitney U | p    |
| Gender (male/female)         | 4/5             |      |      |        |           | 3/4               |      |      |        |          | 0                        | 0.95 |
| Age (years)                  | 9               | 41.1 | 13.9 | 43.0   | 23-59     | 7                 | 35.3 | 11.9 | 36.0   | 22-48    | 0.90                     | 0.37 |
| Duration of illness (months) | 9               | 52.0 | 76.3 | 4.0    | 1.0-180.0 | 6                 | 21.9 | 23.0 | 12.2   | 3.2-62.0 | 0.47                     | 0.64 |

Study protocol approved by the institutional review board of the National Cheng Kung University Hospital (NCKUH), which confirms to the provisions of the Declaration of Helsinki. Before any procedure was performed, written informed consent was obtained from each of the participants after a complete explanation of the study. This study was of a near-naturalistic design. After recruitment, most of the participants were prescribed sertraline (50–150 mg) with add-on benzodiazepines or other medications for the treatment of anxiety. The antidepressant could be changed to another based on clinical judgment. Hostility and ANS data were collected at baseline (week 0) and HAM-A was collected at baseline (week 0), short-term (week 6) and long-term (week 52). HAM-A change ratio was defined as (HAM-A after treatment – HAM-A at baseline)/ HAM-A at baseline.

#### *Autonomic Nervous System (ANS) Activity during Resting*

A full 20-minute period of recumbent acclimatization preceded the cardiovascular measurements, which started at 10 AM. The beat-to-beat BP of the left radial artery and HR were monitored for 5 minutes while the subject remained in the supine position. BP and HR were continuously monitored using a Tonometry BP Monitor (Colin BP-508, Colin Co., Komaki-City, Aichi, Japan), which has been proven as a reliable instrument (Imholz, 1998), and input into a computer console. The referential BP was recorded by a sphygmomanometer cuff over the right brachial artery and measured at intervals of 2.5 minutes. Whenever the tonometry BP measurement was questionable or failed, cuff measurement automatically started for calibration.

#### *Autonomic Function during the Respiratory Challenge Test*

The participants were asked to take a deep breath and the HR was continuously recorded. Each deep breath cycle contained a five-second inspiration and five-second expiration, and 5 successive breath cycles were measured in one assessment. We subtracted the minimum HR during expiration from the maximum HR during inspiration, for each cycle of breathing, the time interval between two cycles being one minute, and then determined the mean of the differences. This was taken as the mean heart rate range (MHRR), which is one of the most widely-used methods by which to assess HRV under the respiratory challenge test (Low, 1977; Shaffer & Ginsberg, 2017; Shields, 2009). The MHRR can be changed by the practice of deep breathing. We adopted the two MHRR, from measurements of a total of three that were most similar, as MHRR 1 and MHRR 2.

#### *Hostility*

Hostility was measured using the Cook-Medley Hostility Scale (Cook, 1954). This scale is purported to measure cynical beliefs and mistrust of others, as well as neurotic and antagonistic hostility. Hostility has been used as a valid predictor of medical, psychological and interpersonal outcomes (Barefoot, 1994; Contrada & Jussim, 1992). This 39-item version contains items from the four subscales identified by Barefoot et al. (1995): cynicism (13 items), hostile attribution (12 items), hostile affect (5 items) and aggressive response (9 items).

#### *Statistical Analysis*

Because the sample size was small, the

Friedman Test was used to determine whether there was any improvement in the HAM-A score between visits, and the Wilcoxon signed ranks test was used for post-hoc analyses. Spearman's rho correlation was used to test the correlation between HAM-A score, hostility scale score and ANS score. The level of significance was set at  $p < 0.05$ .

## Results

Results of the Friedman Test showed that there was a difference in HAM-A score between visits (baseline:  $22.4 \pm 8.0$ , week 6:  $11.9 \pm 6.3$ , week 52:  $6.8 \pm 6.7$ , Friedman test = 16.22,  $p < 0.001$ ).

Post-hoc analyses showed that an improvement in the HAM-A score occurred at week 6 and at week 52 as compared with baseline ( $p = 0.008$ ), but improvement was not observed between week 6 and week 52 ( $p = 0.0504$ ).

The results of Spearman's rho correlation analysis showed that aggressive response was significantly negatively correlated with the HAM-A change ratio between baseline and week 6 and between baseline and week 52, while MHRR 1 and MHRR 2 were significantly positively correlated with these HAM-A change ratios (Table 2).

**Table 2:** Spearman's rho correlation was used to test the correlations between HAM-A score at different visits, hostility scale score at baseline and ANS score at baseline.

| HAM-A                  | Baseline | Week 6 | Week 52 | HAM-A change ratio<br>(baseline and week 6) <sup>a</sup> | HAM-A change ratio<br>(baseline and week 52) <sup>a</sup> |
|------------------------|----------|--------|---------|----------------------------------------------------------|-----------------------------------------------------------|
|                        | $\rho$   | $\rho$ | $\rho$  | $\rho$                                                   | $\rho$                                                    |
| <b>Hostility scale</b> |          |        |         |                                                          |                                                           |
| Cynicism               | 0.32     | 0.07   | 0.05    | 0.03                                                     | -0.07                                                     |
| Hostile affect         | 0.64     | 0.17   | 0.04    | -0.11                                                    | -0.33                                                     |
| Aggressive response    | 0.57     | -0.18  | -0.64   | -0.67*                                                   | -0.86**                                                   |
| Hostile attribution    | 0.37     | 0.17   | 0.09    | -0.03                                                    | -0.07                                                     |
| <b>ANS</b>             |          |        |         |                                                          |                                                           |
| MHRR 1                 | 0.14     | 0.77   | 0.81*   | 0.94**                                                   | 0.81*                                                     |
| MHRR 2                 | -0.09    | 0.60   | 0.81*   | 0.89*                                                    | 0.81*                                                     |
| SBP                    | -0.09    | -0.09  | 0.23    | 0.09                                                     | 0.23                                                      |
| DBP                    | -0.37    | 0.03   | 0.72    | 0.31                                                     | 0.72                                                      |
| HR                     | 0.71     | 0.83*  | 0.06    | 0.54                                                     | 0.06                                                      |

\*  $p < 0.05$ ; \*\*  $p < 0.01$

a: the change ratio was computed as (after treatment – baseline)/baseline

HAM-A: Hamilton Anxiety Rating Scale

ANS: autonomic nervous system

MHRR: mean heart rate range

SBP: systolic blood pressure

DBP: diastolic blood pressure

HR: heart rate

## Discussion

Early improvement in the HAM-A score has been reported to be a good predictor of treatment outcome in GAD patients (Rynn, Khalid-Khan, Garcia-Espana, Etemad, & Rickels,

2006). In this study, it showed non-improvement of HAM-A score in the longer follow-up between week 6 and week 52. Although there were no studies to investigate this result, it is possible that the residual symptoms of GAD might influence the improvement in the later treatment

course of GAD, and the augmentation of non-pharmacological intervention should be considered (Ravindran & Stein, 2010). Also, in previous studies, sleep disturbance, difficulty concentrating, restlessness, anxious mood, pain severity, neuroticism and psychosocial function have been reported to be strongly associated with outcome in patients with GAD (Bodkin et al., 2011; Pollack, Meoni, Otto, Simon & Hackett, 2003). However, these studies focused in the main on subjective symptomatic presentation, which could imply underlying ANS dysfunction. The results of our study showed that MHRR 1 and MHRR 2 were both significantly positively correlated with the change ratio of the HAM-A score during long-term treatment, but BP and the HR during the resting state were not. Resting ANS function is not sensitive enough to allow identification of autonomic dysfunction according to previous studies (Howorka, Pumprla, Jirkovska, Lacigova, & Nolan, 2010; Shields, 2009). As respiration has a significant effect on heart rate oscillations, the respiratory peak can be used as a quantitative measure of vagal control (Aysin & Aysin, 2006); furthermore, a physiological relationship between the vagal tone of the heart and the HRV with deep breathing has been reported (Shields, 2009), and estimates of ANS function differ during normal breathing and deep breathing (Aysin & Aysin, 2006). Therefore, deep breathing could be considered the most reliable test of parasympathetic functions (Low, 1977), meaning that the MHRR, an ANS index obtained under deep respiration challenge, could be a potential predictor of treatment response in GAD patients. Many researchers have applied different neurophysiological measurements to predict the change in severity of GAD after treatment (Connor & Davidson, 1998; Fisher & Newman, 2013; Makovac et al., 2016; Reeves, Fisher, Newman, & Granger, 2016). Clinically, ANS measurement could be an easily-obtainable and useful tool for the assessment of patients with GAD. It would also be useful to examine whether therapies that improve ANS function could improve the treatment response in GAD patients, such as biofeedback therapy,

relaxation therapy or mindfulness therapy (Mankus, Aldao, Kerns, Mayville, & Mennin, 2013; Schoenberg & David, 2014). Also, a poor life quality with increasing stresses that could be correlated with the ANS dysfunction may worsen the severity of GAD (Brotman, Golden, & Wittstein, 2007). Lifestyle modification would be recommended for GAD patients (Sarris et al., 2012).

Hostility is similar to the characteristic of easy anger, which is a diagnostic criterion for GAD. High levels of anger and hostility are contributing factors in GAD (Deschenes et al., 2012). Previous studies have also reported that central serotonergic activities may play a role in hostility (Yang, Yao, Yeh, Lee, Chen & Lu, 2007). One of the neurobiological theories of GAD is related to serotonergic activity dysregulation (Connor & Davidson, 1998). In this study, it was confirmed that a subscale of the hostility scale, aggressive response, was significantly negatively correlated with the change ratio of the HAM-A score. The aggressive response items indicated the respondent's tendency to use anger and aggression as the instrumental response to problems, or endorse these behaviors as reasonable and justified (Barefoot, Dodge, Peterson, Dahlstrom, & Williams, 1989). In another study, intolerance of uncertainty mediated the association of GAD symptoms with anger expression, which also indirectly supported the correlation between hostility and the severity of GAD (Fracalanza, Koerner, Deschenes, & Dugas, 2014). Clinically, due to the high level of hostility and anger, intervention with cognitive or behavioral reconstruction such as cognitive-behavioral therapy will be helpful to these patients (Seligman & Ollendick, 2011).

## Limitations

Several limitations should be considered. First, the number of participants was small. Second, a high dropout rate was noted. Third, other ANS indexes were not investigated in this study. Study in which the above limitations are negated could provide a more detailed

understanding of ANS function and hostility in GAD patients.

## Acknowledgements

The authors thank Mr. Chien Ting Lin and Ms. Tsai Hua Chang of the Department of Psychiatry, National Cheng Kung University Hospital, in addition to the participants in this study.

## Funding

This study was supported in part by grants from the National Science Council of Taiwan (NSC 100-2314-B-006-041-MY3) and National Cheng Kung University Hospital (NCKUH-10508001).

## Conflict of Interest Statement

The authors declare that they have no conflicts of interest in relation to this work. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

## References

Alvares, G. A., Quintana, D. S., Kemp, A. H., Van Zwieten, A., Balleine, B. W., Hickie, I. B., & Guastella, A. J. (2013). Reduced Heart Rate Variability in Social Anxiety Disorder: Associations with Gender and Symptom Severity. *PLoS ONE*, 8(7), e70468.

Aysin, B., & Aysin, E. (2006). Effect of Respiration in Heart Rate Variability (HRV) Analysis. *2006 International Conference of the IEEE Engineering in Medicine and Biology Society*. 1. 1776-1779.

Barefoot, J. C. a. I. M. L. (1994). *Anger, hostility, and the heart*. NJ, USA: Lawrence Erlbaum Associates, Hillsdale.

Barefoot, J. C., Larsen, S., Von der Lieth, L., & Schroll, M. (1995). Hostility, Incidence of Acute Myocardial Infarction, and Mortality in a Sample of Older Danish Men and Women. *American Journal of Epidemiology*, 142(5), 477-484.

Bereza, B. G., Machado, M., Ravindran, A. V., & Einarson, T. R. (2012). Evidence-Based Review of Clinical Outcomes of Guideline - Recommended Pharmacotherapies for Generalized Anxiety Disorder. *The Canadian Journal of Psychiatry*, 57(8), 470-478.

Bodkin, J. A., Allgulander, C., Llorca, P. M., Spann, M. E., Walker, D. J., Russell, J. M., & Ball, S. G. (2011). Predictors of relapse in a study of duloxetine treatment for patients with generalized anxiety disorder. *Human Psychopharmacology: Clinical and Experimental*, 26(3), 258-266.

Brotman, D. J., Golden, S. H., & Wittstein, I. S. (2007). The cardiovascular toll of stress. *Lancet*, 370(9592), 1089-1100.

Canadian Agency for Drugs and Technologies in Health (2014). Neurofeedback and biofeedback for mood and anxiety disorders: a review of the clinical evidence and guidelines - an update. In Canadian Agency for Drugs and Technologies in Health (Ed.), *CADTH rapid response reports*. Ottawa (ON): Canadian Agency for Drugs and

Technologies in Health.

Chalmers, J. A., Quintana, D. S., Abbott, M. J., & Kemp, A. H. (2014). Anxiety Disorders are Associated with Reduced Heart Rate Variability: A Meta-Analysis. *Frontiers in Psychiatry*, 5, 80.

Connor, K. M., & Davidson, J. R. (1998). Generalized anxiety disorder: neurobiological and pharmacotherapeutic perspectives. *Biological Psychiatry*, 44(12), 1286-1294.

Contrada, R. J., & Jussim, L. (1992). What Does the Cook-Medley Hostility Scale Measure? In Search of an Adequate Measurement Model1. *Journal of Applied Social Psychology*, 22(8), 615-627

Cook, W. W., & Medley, D. M. (1954). Proposed hostility and Pharisaic-virtue scales for the MMPI. *Journal of Applied Psychology*, 38(6), 414-418.

Fisher, A. J., & Newman, M. G. (2013). Heart rate and autonomic response to stress after experimental induction of worry versus relaxation in healthy, high-worry, and generalized anxiety disorder individuals. *Biological Psychology*, 93(1), 65-74.

Fracalanza, K., Koerner, N., Deschenes, S. S., & Dugas, M. J. (2014). Intolerance of uncertainty mediates the relation between generalized anxiety disorder symptoms and anger. *Cogn Behav Ther*, 43(2), 122-132.

Howorka, K., Pumprla, J., Jirkovska, A., Lacigova, S., & Nolan, J. (2010). Modified orthostatic load for spectral analysis of short-term heart rate variability improves the sensitivity of autonomic dysfunction assessment. *J Diabetes Complications*, 24(1), 48-54.

Imholz, B. (1998). Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. *Cardiovascular Research*, 38(3), 605-616.

Low, P. A. , & Benarroch, E.E. (1977). *Clinical autonomic disorders*. Philadelphia, PA: Lippincott Williams & Wilkins.

Makovac, E., Meeten, F., Watson, D. R., Herman, A., Garfinkel, S. N., H. D. C., & Ottaviani, C. (2016). Alterations in Amygdala-Prefrontal Functional Connectivity Account for Excessive Worry and Autonomic Dysregulation in Generalized Anxiety Disorder. *Biol Psychiatry*, 80(10), 786-795.

Mankus, A. M., Aldao, A., Kerns, C., Mayville, E. W., & Mennin, D. S. (2013). Mindfulness and heart rate variability in individuals with high and low generalized anxiety symptoms. *Behav Res Ther*, 51(7), 386-391.

Mantella, R. C., Butters, M. A., Amico, J. A., Mazumdar, S., Rollman, B. L., Begley, A. E., Reynolds, C. F., & Lenze, E. J. (2008). Salivary cortisol is associated with diagnosis and severity of late-life generalized anxiety disorder. *Psychoneuroendocrinology*, 33(6), 773-781.

Park, Y. M., Kim, D. W., Kim, S., Im, C. H., & Lee, S. H. (2011). The loudness dependence of the auditory evoked potential (LDAEP) as a predictor of the response to escitalopram in patients with generalized anxiety disorder. *Psychopharmacology (Berl)*, 213(2-3), 625-632.

Pittig, A., Arch, J. J., Lam, C. W., & Craske, M. G. (2013). Heart rate and heart rate variability in panic, social anxiety, obsessive-compulsive, and generalized anxiety disorders at baseline and in response to relaxation and hyperventilation. *Int J Psychophysiol*, 87(1), 19-27.

Pollack, M. H., Meoni, P., Otto, M. W., Simon, N., & Hackett, D. (2003). Predictors of outcome following venlafaxine extended-release treatment of DSM-IV generalized anxiety disorder: a pooled analysis of short- and long-term studies. *J Clin Psychopharmacol*, 23(3), 250-259.

Ravindran, L. N., & Stein, M. B. (2010). The pharmacologic treatment of anxiety disorders: a review of progress. *J Clin Psychiatry*, 71(7), 839-854.

Reeves, J. W., Fisher, A. J., Newman, M. G., & Granger, D. A. (2016). Sympathetic and hypothalamic-pituitary-adrenal asymmetry in

generalized anxiety disorder. *Psychophysiology*, 53(6), 951-957.

Rynn, M., Khalid-Khan, S., Garcia-Espana, J. F., Etemad, B., & Rickels, K. (2006). Early response and 8-week treatment outcome in GAD. *Depress Anxiety*, 23(8), 461-465.

Sarris, J., Moylan, S., Camfield, D. A., Pase, M. P., Mischoulon, D., Berk, M., Jacka, F. N., & Schweitzer, I. (2012). Complementary medicine, exercise, meditation, diet, and lifestyle modification for anxiety disorders: a review of current evidence. *Evid Based Complement Alternat Med*, 2012, 20.

Schoenberg, P. L., & David, A. S. (2014). Biofeedback for psychiatric disorders: a systematic review. *Appl Psychophysiol Biofeedback*, 39(2), 109-135.

Seligman, L. D., & Ollendick, T. H. (2011). Cognitive-behavioral therapy for anxiety disorders in youth. *Child Adolesc Psychiatr Clin N Am*, 20(2), 217-238.

Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. *Front Public Health*, 5, 258.

Shields, R. W., Jr. (2009). Heart rate variability with deep breathing as a clinical test of cardiovagal function. *Cleve Clin J Med*, 76(2), 37-40.

Virtanen, R., Jula, A., Salminen, J. K., Voipio-Pulkki, L. M., Helenius, H., Kuusela, T., & Airaksinen, J. (2003). Anxiety and hostility are associated with reduced baroreflex sensitivity and increased beat-to-beat blood pressure variability. *Psychosom Med*, 65(5), 751-756.

Weisberg, R. B. (2009). Overview of generalized anxiety disorder: epidemiology, presentation, and course. *J Clin Psychiatry*, 70(2), 4-9.

Yang, Y. K., Yao, W. J., Yeh, T. L., Lee, I. H., Chen, K. C., & Lu, R. B. (2007). Association between serotonin transporter availability and hostility scores in healthy volunteers - a single photon emission computed tomography study with [(123)I] ADAM. *Psychiatry Res*, 154(3), 281-284.