

วารสารเทคโนโลยีการแพทย์ เชียงใหม่

**BULLETIN OF
CHIANG MAI
ASSOCIATED MEDICAL SCIENCES**

VOLUME 7

MAY 1974

NUMBER 2

วารสารเทคนิคการแพทย์ เชียงใหม่ BULLETIN OF CHIANG MAI ASSOCIATED MEDICAL SCIENCES

Volume 7 MAY 1974 Number 2

Editorial	การพัฒนาระบบการแพทย์ศาสตร์ (ฉบับสุวนันทน์) สนอง ไชยารัตน์, วท.บ. (เทคนิคการแพทย์), M.T. (ASCP)	53
The Cellular Immune Aspects of Fetal Lymphocytes:		59
I. Distribution of B and T Lymphocyte Subpopulations in Cord Blood		
Pairoe Sanyanusin, B.S. (Med. Tech.) Sanong Chayarasamee, B.Sc., M.T. (ASCP).		
Tawat Tosirarat, B.Sc., (Med. Tech.).		
Parja Kulapongs, M.D., Dip. Amer. Bd. of Ped.		
II. Spontaneous Transformation and Nucleoside Incorporation of Human Fetal Lymphocytes.		69
Parja Kulapongs, M.D., Dip. Amer. Bd. of Ped. Tawat Tosirarat, B.Sc., (Med. Tech.). Orooin Chaiyarasamee B.Sc. M.T (ASCP) Sanong Chaiyarasamee, B.Sc., M.T. (ASCP).		
III. In Vitro Response of Fetal Lymphocytes to phytohemagglutinin Stimulation		77
Manit Vongyutonon, B.Sc., (Med. Tech.). Orooin Chaiyarasamee, B.Sc., M.T. (ASCP). Tawat Tosirarat, B.Sc., (Med. Tech.). Parja Kulapongs, M.D., Dip. Amer. Bd. of Ped.		
Modified Method of Double Plasmapheresis and Plateletapheresis.		85
เรวัต ทักษิณนันท์, วท.บ. (เทคนิคการแพทย์) วารณ คุณชาชีวะ, วท.บ. (เทคนิคการแพทย์) คำร ดำรงศักดิ์, พ.บ. Dip. Amer. Bd. of Ped.		
The Serum Lipids : IV. Nephrotic Syndrome.		95
Mun Keoplung, M.D. Jit Jiraratit, M.D. Nantaya Waiwatana, B.Sc (Med. Tech.)		
Studies of the HI Antibody against JE and Dengue in Amphoe Samoeng and Maechaem in Chiang Mai.		99
Therdkiat Kanjanavisut, B.Sc. (Med. Tech.) Srisakul Klks, B.S., M.S.		
Abstracts News		111 114

สำนักงาน : โครงการคณท์เทคนิคการแพทย์
มหาวิทยาลัยเชียงใหม่
กำหนดออก : ราย 4 เดือน (มกราคม,
พฤษภาคม, กันยายน)

Office : The Faculty of Associated
Medical Sciences Project,
Chiang Mai University.
Published: Tertiaily (January, May,
September)

วารสารเทคนิคการแพทย์ เอียงใหม่

บรรณาธิการ

รองศาสตราจารย์ นายแพทย์ชัยโจน แสงอุดม พ.บ.

ผู้ช่วยบรรณาธิการ

สมอง ไชยรักษ์ วท.บ. (เทคนิคการแพทย์), M.T. (ASCP)

กองบรรณาธิการ

สนิก มกรแก้วเกยูร วท.บ. (เทคนิคการแพทย์), วท.ม., Ph. D.

สุชาติ ศิริฤทธิ์ วท.บ. (เทคนิคการแพทย์)

ไพรโจน สถาวัชตร วท.บ. (เทคนิคการแพทย์)

ชลธ บัวน้ำจิด วท.บ. (เทคนิคการแพทย์)

บุญพะเยา เลาหะจินดา วท.บ. (เทคนิคการแพทย์)

อัญชลี กิติชันม์ธวัช วท.บ. (เทคนิคการแพทย์)

สุรพร มากระถุล วท.บ. (เทคนิคการแพทย์)

นวลชน คำท่อน วท.บ. (เทคนิคการแพทย์)

นิมิตร นรกต วท.บ. (เทคนิคการแพทย์)

เดชา รั่มไทรย์ วท.บ. (เทคนิคการแพทย์)

เหรัญญิก

เพ็ญศรี วรรณฤณล วท.บ. (เทคนิคการแพทย์)

ผู้จัดการ

เนตร สุวรรณคุหาสน วท.บ. (เทคนิคการแพทย์), Cert. in Imm.

ที่ปรึกษาวิชาการ

ศาสตราจารย์ นายแพทย์ ทวัน กังวานพงศ์ พ.บ., D.T.M. & H.

ศาสตราจารย์ นายแพทย์ ประยุทธ ฐิภะสุก พ.บ., M. Sc.

ศาสตราจารย์ นายแพทย์ บริบูรณ์ พรพนัญ พ.บ., M.S.

ศาสตราจารย์ นายแพทย์ กัมพล พนัคคำพลด พ.บ.

ศาสตราจารย์ นายแพทย์ สนาน สิมารักษ์ พ.บ., C.R., Dip. Am. Board of Radiology

ผู้ช่วยศาสตราจารย์ นายแพทย์ มุนี แก้วปัลส์ พ.บ.

ผู้ช่วยศาสตราจารย์ นายแพทย์ จิรศักดิ์ คำบุญเรือง พ.บ., M.Sc., Ph.D.

ผู้ช่วยศาสตราจารย์ นายแพทย์ บัญชา กุลพงษ์ พ.บ., Dip. Am. Board of Pediatrics

ผู้ช่วยศาสตราจารย์ นายแพทย์ คำวิ คำรงค์ศักดิ์ พ.บ., Dip. Am. Board of Pediatrics.

การฝึกอบรมแพทยศาสตรศึกษา (ณ สวนสน)

สอน ไชยารัตน์, วท.บ. (เทคนิคการแพทย์), M.T. (ASCP).

ระหว่างวันที่ ๒๕ มีนาคม-๖ เมษายน ศกนี้ ข้าพเจ้าได้รับมอบหมายจากหัวหน้าโครงการจัดตั้งคณะเทคนิคการแพทย์ ให้เป็นผู้แทนของอาจารย์ในโครงการคณะฯ ไปรับการฝึกอบรมแพทยศาสตรศึกษา สำหรับ คณาจารย์ฝ่ายการแพทย์และอนามัย ณ วนอุทยานแห่งชาติสุเทพ-ปุย (บ้านพักสวนสน) โดยสุเทพ โดยแจ้งให้ทราบเพียงคร่าวๆ ว่า ไปรับการอบรมหน่อยนะ เรื่องรายละเอียดนั้น แม้จะพยายามพยายามคุยกับคณาจารย์ ท่านก็ได้เตือนๆ และบอกให้ไวไปประสบความวุ่นวาย ข้าพเจ้าได้ตั้งใจฟังความกังวลของหัวหน้า หลาย กลับมาจัดการเตรียมตัวเครื่องใช้ ต่างๆ เพื่อการฝึกอบรมครั้งต่อไป พักค้างคืน กินอยู่หลับนอนบนบันดอยสุเทพคุ้ย จะอนุญาตให้ลงมาเฉพาะเย็นวันเสาร์ และวันอาทิตย์เท่านั้นเอง

เมื่อเริ่มออกเดินทางโดยรถบัสของคณะฯ จากคณะแพทยศาสตร์เย็นวันที่ ๒๓ มีนาคม

อาจารย์ทุกท่าน ทั้งที่ไปจากคณะแพทยศาสตร์ และ ASSOCIATES คือ เมลล์ ศาสตร์, ทันตแพทยศาสตร์, พยาบาลศาสตร์ และจากกลุ่มที่มาจากกรุงเทพมหานคร, จากมหาวิทยาลัยสังฆลักษณ์รินทร์ รวมทั้งมหาวิทยาลัยขอนแก่น รวมแล้วแยกเป็นกลุ่ม ของวิทยากร ๑๕ ท่าน และกลุ่มของผู้ที่จะเข้ารับการฝึกอบรม ๓๑ ท่าน โดยเฉพาะกลุ่มของผู้รับการฝึกอบรม หรือจะเรียกว่า ว่า กลุ่มนักเรียน ต่างก็พยายามทำความรู้จักคุ้นเคยกัน แล้วบื้อนบัญชาแก่กันและกันว่า การที่จะไปรับเอกสารฯ “ ณ สวนสน ” จากการอบรมครั้งนั้นนั่น เขาจะเรียนกันอย่างไรกันบ้างหนอ เพราะทุกคนก็ยังมีดีเบดค้าง แต่ยังไม่มีฝ่ายประชาสัมพันธ์ใดๆ มาแจ้งให้คุ้ย เท่าที่พึ่งมาจากพวง “ ณ วังแก้ว ” ทั้งหลาย (ฝึกอบรมที่ระยะระหว่างวันนี้หัวปีโภค) ก็ได้แต่เพียงว่าสนุกดี ไดอะเวย์ๆ หมายจะ บางเสียงก็ว่าเข้ามาไปล้าง

สมอง เพื่อรับเอาการสอนแนวใหม่มาสอนบังลະ หรือบางเสียงก็ว่าเป็นพวกลภูมิที่การศึกษาอะไรเข้าไปใน內เลย์ที่เดียว ยังพอขึ้นไปพบกับบรรดา “ครู” ที่จะมาสอนหลักสูตรนี้ในงานเลี้ยงต้อนรับ ก็ได้รับคำตอบจากครูว่า พรุ่งนี้รู้สึ่ง ก็เลยต้องส่งบอกรสบไปรอดอยต่อไป

เช้าวันแรกของการฝึกอบรม บรรดาครูเรียนก็พ่อจะทราบที่มา ตลอดจนความเป็นไปของการฝึกอบรมแพทยศาสตร์ศึกษาว่า มีแนวทางคล้ายๆ กับ MEDICAL EDUCATION ของต่างประเทศ โดยเฉพาะในสหราชอาณาจักร และในเมืองไทยเรา ก็ได้เริ่มทันทีที่คณะแพทยศาสตร์ โรงพยาบาลจุฬาลงกรณ์ และได้จัดการอบรมกันหลายครั้งแล้ว ครั้งนี้นักเรียนส่วนใหญ่ไปจากเครือ “สหคอก” และมี CHINA MEDICAL BOARD ร่วมช่วยเหลือค่าใช้จ่ายบางส่วน เมื่อประธานกล่าวเปิดอบรมจบลง และบรรดาครูเริ่มการอบรม นักเรียนแทนทุกคนต่างก็ตั้งปัญหาว่า เราจะมาเรียน มาก่อน กันทำไม เพื่ออะไร ซึ่งครูกลุ่มนี้ นอกจากจะมีความชี่วชาญในด้านแพทยศาสตร์ – ศึกษาเป็นพิเศษแล้ว ยังใช้เย็นเป็นพิเศษ

อีกด้วย ก็ได้แต่ปลอบประโลมนักเรียนทั้งหลายว่า อย่าเพิ่งใจร้อน เราจะอยู่ด้วยกันตั้ง ๒ อาทิตย์ ค่อยเรียนกันไป แต่ตอนแรกนี้ขอให้นักเรียนทุกคนตั้ง “ปัญหา” เกี่ยวกับการสอนของตนว่ามีอะไรบ้าง เมื่อแต่ละคนตั้งปัญหานั้นมาแล้ว การอบรมก็เริ่มต้นด้วยการนิยามคำว่า ปัญหา จากนั้นจึงจะมาวิเคราะห์ปัญหา แล้วก็เริ่มอธิบายแก่ปัญหาในที่สุด ก็เป็นอันว่าวันแรกทั้งวันก็เป็นวันของ “ปัญหา” โดยสิ้นเชิง

มาถึงตอนนี้ บรรดาครูเรียนซักจะเกิดปัญญาได้คิดแล้วว่า การขึ้นมารับการอบรมครั้งนั้นดูก็คล้ายๆ กับพาตัวเองมาทากหลุ่มพระ หรือถูกตะล่อมให้ไปในแนวทางของบรรดาวิทยากร หรือ “ครู” คล้ายๆ นั้นเอง กล่าวคือ ครูจะพยายามให้นักเรียนได้คิดถึงปัญหาที่มีอยู่ในทุกด้าน ไม่ว่าจะเกี่ยวกับการศึกษา, วัตถุประสงค์ของการศึกษา, การประเมินผล, การวัดผล ตลอดจนการพัฒนาการศึกษาในอนาคตว่า มีข้อดีข้อเสียอย่างไร แล้วแยกแยะ หรือวิเคราะห์ปัญหาเหล่านี้ว่า มาจากอะไร หรือหากจะใช้ชีวันะของพระพุทธองค์ ก็เข้าในข้อที่ว่า “ทุกอย่างต้องมาเหตุ” เมื่อแก้เหตุได้ ก็ยอมแก้ผลได้ และ

แก้ไขบัญหาต่างๆ เหล่านี้ หากไม่สามารถทำให้สำเร็จวัตถุประสงค์ได้ ก็ต้องอาศัยความร่วมมือในแนวความคิดเห็นจากผู้อื่น หรือ GROUP PROCESS โดยครุจะแยกกันเรียนออกเป็นกลุ่มๆ แต่ละคนก็ออกความคิดความเห็นเพื่อแก้ไขบัญหาที่ตั้งขึ้นมา แล้วนำมาประมวลเป็นความเห็นของกลุ่มเสนอต่อที่ประชุมใหญ่ต่อไป

ตอนแรกๆ นักเรียนก็กระตือรือล้นกันมาก แต่พอเรียนไปได้ลักษณะที่เรียกว่าชักจั่ง เช่นๆ จนบรรดาครุต้องวิงวุ่นประชุมกันทั้งกลุ่มวันกลางคืนว่าจะแก้ไขการเชิงของนักเรียนกลุ่มนี้ด้อย่างไร เพราะการเชิงนี้อาจมีสาเหตุได้หลายอย่าง เช่น หัวข้อที่นำมาอบรมบางอย่างซ้ำกัน การเล่นเพื่อให้เกิดบัญหา เช่นการเล่นท่อรูปกระดาษเหมือนเด็กอนุบาล ทำลายๆ ครั้งก็หมดสนุก หรือนักเรียนบางคนก็อาจคิดถึงบ้าน ก็เลยท้องหวาดวิการใหม่ๆ มาอบรม ตลอดงานจัดทัศนาจรวันเสาร์-อาทิตย์ เพื่อเปลี่ยนบรรยากาศบ้าน

เริ่มอาทิตย์ที่สอง นักเรียนก็ชักจั่งสักชั่นชั่น และได้ประสานการณ์การเรียนรู้เพิ่มขึ้นอีกหลายอย่าง เช่น

- มีความสามารถเพียงพอ ที่จะตั้งบัญชา, วิเคราะห์และแก้ไขบัญหาทางการศึกษา พร้อมทั้งสามารถปรับปรุงแนวทางการศึกษาที่ตนรับผิดชอบให้ดีขึ้น

- เข้าใจในการสอนแบบ GROUP PROCESS และคาดว่าพอจะมีความสามารถชักจูงให้เพื่อนร่วม สถานบัน เกิดความสนใจ และเห็นผลดีในวิธีการ เพื่อนำไปแก้ไขบัญหาได้

- ทั้งวัตถุประสงค์ของการศึกษาได้โดยเฉพาะการสอนของตนว่า นักเรียนสามารถเข้าใจและนำไปใช้ให้เป็นประโยชน์ที่อught คุณเองและส่วนรวมได้

- สามารถประเมินและวัดผลการศึกษาได้ถูกต้องยิ่งขึ้น

- เพิ่มประสิทธิภาพในการทำงาน ร่วมกับผู้อื่น คือ มีมนุษยสัมพันธ์ดีขึ้น

- เป็นผู้ที่พยายามขับคิด และปรับปรุงสภาพแวดล้อมทางการศึกษาให้ดีขึ้น ตลอดจนหากความรู้เพิ่มเติมอยู่เสมอ

ความรู้ หรือ ประสบการณ์ที่ได้รับจาก การพกอบรมแพทยศาสตร์ศึกษาระดับนี้ แม้จะเป็นไปอย่างค่อนข้างจะรีบร้อน เพราะหลักสูตรของการอบรมมีเพียง ๒ อาทิตย์ แต่

นักเรียนทุกคนก็พอใจ แต่พอจะมองเห็น คุณค่าของการอบรม โดยเฉพาะในระยะ หลังๆ ของการอบรมในอาทิตย์ที่ ๒ นักเรียน ได้แบ่งออกเป็นกลุ่มๆ แต่ละกลุ่มก็มีผลงาน ของตนมาเสนอต่อที่ประชุมตามหัวข้อที่ได้รับ มอบหมายไปคล้ายๆ กัน TERM PAPER แต่ใช้การแสดง, แจก SHEET หรือการถ่าย ทำVIDEO TAPE แทน LAB. และให้ ที่ประชุมวิจารณ์ข้อดี – ข้อเสีย ซึ่งช่วยให้ บรรยายการศึกครั้งได้ดีมาก เพราะบางกลุ่ม แสดงได้ดีจริงๆ จนนักแสดงยิ่งพอใจ

ในที่สุดวันที่ทุกคนรอคอยก็มาถึง คือ วันนี้ของการฝึกอบรม และมอบประกาศนียบัตรแก่ผู้เข้ารับการอบรม โดยคณบุรุษวิทยากร ได้รับรองว่า นักเรียนแต่ละคนได้ฝึกการ ฝึกอบรมด้านแพทยศาสตร์ศึกษาแล้ว และ มีความสามารถเพียง สำหรับก่อ ความ วุ่น วายให้บังเกิดขึ้นในสถานบัน การศึกษา ต่างๆ เพื่อประโยชน์ต่อการเรียนรู้ของนิสิตนักศึกษา และนักเรียนก็ได้มอบให้ที่รัฐลึกแಡ “ครู” ผู้ นำอบรมครั้งนี้ด้วยเช่นกัน จบลงด้วยการ แสดงผลงานครั้งล้อเลียนครูแต่ละท่าน เป็นที่สนุก ครึกครื้นก่อนจากกัน

ความรู้สึกของข้าพเจ้า เมื่อฝ่าฝืนการอบรม

รวมแพทยศาสตร์ศึกษาแล้วนี้ ก็เหมือนกับ ทุกท่านที่มารับการอบรมร่วมกัน คือทำ อย่างไรถึงจะ นำเอาประสบการณ์เรียนรู้ที่ได้ รับไปปฏิบัติการ “ก่อความวุ่นวาย” ให้ได้ผล เท่าที่ทราบมาปัจจุบันว่าความรู้สึกของบรรดา อาจารย์ส่วนใหญ่ที่ไม่ได้เข้ารับการอบรม มัก จะมอง กลุ่ม ผู้ ไปรับ การอบรม มาไปในแง่ ของ “ผู้อุกลักษณ์” และมีการตั้งเงื่อนไขที่ ประกอบกับอาจารย์บางท่านที่ไปรับการอบรม มาแล้วนี้ มักจะ ACTIVE เกินไป พอกลับมา ก็จะทำการเปลี่ยนแปลงแนว การสอน แบบ “ปฏิวัติ” ซึ่งผิดกับวัตถุประสงค์ ซึ่งต้อง การที่จะ “ปฏิรูป” มากกว่า ก็เลยพยายามทำ ให้บรรยายคระหว่างผู้ได้รับการอบรม และ ผู้ไม่ได้รับการอบรมซึ่งก็จะไม่ค่อยดี หรือซัก ปั๊บเกลี้ยวกันนิดๆ

ข้าพเจ้ายังมีความเชื่อในพระพุทธองค์ ที่ครั้งไว้ว่า “ครูเป็นกัลยาณมิตรเท่านั้นที่ค้อย แนะนำซึ่งทางให้ศิษย์เรียน ศิษย์จะเรียน ได้หรือไม่ได้ขึ้นกับกรรมของศิษย์เอง เปรียบ เหมือนบัวซึ่งมีอยู่หอยชนิด บัวเห็นอน้ำ เมื่อถูกน้ำกัดย่ำมรุ่งอรุณก็บานสะพรั่งได้ทัน ที บัวปริบหน้าต้องรอเวลาพอให้บัวนั้นพัน นาเห็นอน้ำแล้วก็จะบานได้ ส่วนบัวให้น้ำที่

อยู่ลึกๆ นั้น ไม่มีวันจะบานได้ มิหนำซ้ำ ยังคงเป็นเหมือนแก่เต่า ปู ปลาเสียอีก”

ดังนั้น การใช้บัญญาตริตรองพิจารณา จึงเป็นการเรียนรู้รั้งคับสูงสุด โดยเฉพาะ ซึ่ง ผู้เรียนจะได้มามากด้วยการฝึกฝนอบรมตนเอง ผู้สอนมีหน้าที่เพียงจัดบรรยายการครอบฯ ทั้งผู้เรียน และประสบการณ์ต่างๆ ให้ผู้เรียนได้ เรียนรู้ เพื่อฝึกอบรมตนเองในด้านนี้เท่านั้น ซึ่งจะเห็นได้ชัดเจนว่า ผู้สอนไม่สามารถสอน ให้ได้เลย โดยเฉพาะในเรื่องการใช้บัญญา

เพื่อได้ประจักษ์แก่ความจริงเข่นนี้ ก็ สมควรที่บรรดา “ครู” ทั้งหลาย ทั้งที่ได้ไปรับ การอบรมแพทยศาสตร์ศึกษามาแล้ว หรือที่

ยังไม่ได้ไปอบรม หรือที่ไม่ยอมไปอบรม แน่ๆ ในชาตินี้ เพราะมีความเห็นว่าวิธีการ สอนของตนได้ผลดีอยู่แล้วก็ตาม ควรจะได้ นำร่วมมือกันหาแนวทางที่ดีที่สุดที่จะแนะนำ หรือชี้ช่องทางให้คัญเรียน เพื่อให้คัญได้ ฝึกฝนตนเอง ให้เกิดบัญญาในการที่จะเข้าใจ และนำไปใช้ให้ได้ผล ไม่ว่าจะเป็นวิธีการ สอนแนวใหม่ หรือแบบเก่าก็มีทั้งข้อดีและ ข้อเสียค้างกันทั้งนั้น ครูที่มี “บัญญา” ย่อม ไม่หลงมายกนิริการของตนเท่านั้น แต่ จะต้องเบิดตามีดีกว่าความคิดให้กว้าง เลือก เพื่อแต่ข้อที่คือของแต่ละวิชาชีช่องทางให้แก่ คัญของตน.

อัตราค่าโฆษณา ในระยะเวลา 1 ปี

The advertising rate per year

เต็มหน้า	600.00 บาท	Full page	600.00 bahts
ครึ่งหน้า	400.00 บาท	Half page	400.00 bahts
ปกหน้าด้านในเต็มหน้า	1200.00 บาท	Inside front cover	1200.00 bahts
ปกหลังด้านในเต็มหน้า	1000.00 บาท	Inside back cover	1000.00 bahts

THE CELLULAR IMMUNE ASPECTS OF FETAL LYMPHOCYTES. I.
DISTRIBUTION OF B AND T LYMPHOCYTE SUBPOPULATIONS
IN CORD BLOOD.

By

Pairoje Sanyanusin, B.S. (Med. Tech.).

Sanong Chaiyarasamee, B.S., M.T. (ASCP)*

Tawat Tositarat, B.S. (Med. Tech.)**

Panja Kulapongs, M.D., Dip. Amer. Bd. of Ped. **

ABSTRACT

The distribution of B and T lymphocyte subpopulation in cord blood of 10 normal newborns is determined by the surface membrane marker technic (Rosette Test) and is found to be comparable to those of healthy children and adults. The results indicate that the conflicting findings of PHA responsiveness of fetal lymphocytes obtained by various investigators are due to exogenous factors such as the dosage of PHA used and the presence of inhibitor in cord sera, rather than the abnormality in the distribution of T lymphocyte in the newborn.

INTRODUCTION

Pregnancies in outbred mammalian species survive despite the usual disparity of the participant's histocompatibility antigens. Classical transplantation immunology would predict the rejection of the fetus,

as a graft, by the maternal host (1). In certain animals, it has also been demonstrated that the fetus do not mount a rejection reaction against the mother. Since graft rejection is the function of cellular immune system, the survival of mammalian

* Dept. of Clinical Microscopy, Faculty of Associated Medical Sciences Project, Chiang Mai University.

** Hematology Division, The Anemia and Malnutrition Research Center, Chiang Mai University.

pregnancy indicates either depressed or absent of both fetal and maternal cellular immune systems.

Unfortunately, there are only incomplete information concerning the development of human immunologic competence. The capacity to form immunoglobulins has been studied in detail (2). In contrast, the oncological information regarding the human cellular immunity is still unsettled. Several investigators has demonstrated that fetal thymocytes as young as 12-13 weeks and circulating lymphocytes at 14 weeks gestation are capable of initiating cellular immune reactions (3-9). Limited studies in neonates employing dinitrofluorobenzene sensitization (10) and skin graft (11) suggest that the thymic-dependent function is present at birth, but at a reduced capacity. A variety of methods have been developed for the *in vitro* assessment of cellular immunity. One of these, the response of lymphocytes to stimulation by the plant mitogen, phytohemagglutinin (PHA), has been shown to be the most popular and reliable since it was diminished in various states of impaired cellular immunity (12-14). It has also been inferred that this property is unique for the thymus-derived lymphocyte

or T cells (15, 16). It is known that adults and newborns have approximately the same number of B-lymphocytes in their circulation (17, 18). The assumption that they should also have the same number of T-lymphocytes was not supported by response of fetal lymphocytes to PHA stimulation which has been described as being greater than (19,20), equal to (21-24), or less than (6, 25, 26) the response of the adult lymphocytes.

It is also known that in many aspects the circulating lymphocytes in newborns differ from that of adults including the predominance of large and medium-sized cells (27-30) with different rates of RNA (29) and DNA metabolisms (28,29,31,32) indicated that these lymphocytes may constitute a population different from that of adult (29). If the fetal lymphocytes in the newborn or some of them constitute a different population than adult lymphocytes, then the different in their reaction kinetics upon stimulation may be expected to exist.

It is the purpose of this part of the study to clarify whether the conflicting results of the status of cellular immune competency in newborn as observed by various investi-

gators are due to the alteration in the distribution of these immuno-competence cells.

MATERIAL AND METHOD

Ten normal newborns and healthy young children age 1-5 year were studied. Blood samples were collected in the delivery room within 5 minutes of birth from the umbilical vein. The specimen was drawn into a 12 ml. sterile plastic syringe containing heparin (50 unit/ml. of blood) and immediately mixed with one fifth volume of sterile 6% dextran solution. The mixture was allowed to stand in the upright syringe at 37°C for 60 minutes. The leukocyte-rich plasma was collected by bent needle, washed and resuspended in Hank's-gelatin solution (pH 7.4) to the desired concentration of 5×10^6 lymphocytes/ml. The method for determination of B lymphocytes

(as CRL or Complement-Receptor-Lymphocytes) and T lymphocytes (as RFC or Rosette-Forming-Cells) using the membrane marker technic was described in detail elsewhere (33). Briefly, the CRL was identified as the rosette-forming lymphocyte which occurred after the lymphocyte suspension was incubated with sensitized sheep red cells (EAC or Erythrocyte-Ambroceptor-Complement) at 37°C for 15 minutes. The RFC was identified as the rosette-forming lymphocyte which occurred when the lymphocyte suspension with washed sheep red cells (E) at 4°C overnight.

RESULTS

The results as shown in the table below indicate that both the B and T lymphocyte subpopulations of cord blood are comparable to those of the healthy children and adults.

TABLE I: DISTRIBUTION OF T AND B LYMPHOCYTE SUBPOPULATIONS*

	T lymphocytes	B lymphocytes
Newborn	53.10 \pm 12.20	46.40 \pm 12.20
Children	57.08 \pm 15.04	36.25 \pm 19.25

* Expressed as Mean \pm 1 S.D.

COMMENTS

This is the first time that the circulating fetal T lymphocyte subpopulation in cord blood has been determined simultaneously with B lymphocyte subpopulation. The finding of normal distribution of these two populations in cord blood is of utmost important. In addition to supporting the observations made earlier by Papamichail et al (17) and by Froland et al (18) that neonates have the same number of B lymphocytes in their peripheral circulation as in adults, it also indicates that the conflicting results of PHA responsiveness of fetal lymphocytes obtained by various investigators are due to exogenous factors rather than the variation of T lymphocyte population in these newborns. As a matter of fact, it has recently been shown that the concentration of PHA used in the test system plays the crucial role in these differences (22). Fetal lymphocytes are more sensitive to low doses of PHA than do adult lymphocytes. Thus, the finding of increased fetal lymphocyte responsiveness (19, 20) may be due to suboptimal PHA dose, while those findings of equal reactivity (21-24) probably employed higher PHA doses. In addition, the studies of PHA responsiveness of fetal lymphocytes are

further complicated by the presence of the inhibitor found in cord sera (26, 34).

SUMMARY

The distribution of B and T lymphocyte subpopulations in cord blood is comparable to those of normal children and adults. The variations in the PHA responsiveness of fetal lymphocytes observed by many investigators must be due to exogenous factors such as the PHA dosage and probably the presence of inhibitor in cord sera.

ย่อเรื่อง

ได้ทำการศึกษา และทดลองทางห้องน้ำในการเกี่ยวกับ Distribution ของ B และ T lymphocyte subpopulation ในเด็กจากสายสะอ้อของทารกปกติจำนวน 10 ราย ด้วยวิธี Surface membrane marker (Rosette test) พบว่ามีปริมาณไกส์เคลียงกันเด็กและผู้ใหญ่ปกติ จึงน่าจะกล่าวได้ว่า จากรายงานของผู้ที่ได้ศึกษาและทดสอบมาก่อน และพบว่า Fetal lymphocyte ไม่มีปฏิกิริยาต่อการกระตุ้นด้วย PHA นั้น น่าจะเนื่องมาจากการของ exogenous factors เช่น ปริมาณของ PHA ที่ใช้กระตุ้น, ปริมาณของ inhibitor ใน cord sera มากกว่าที่จะเป็นความผิดปกติของ Distribution ของ T lymphocyte.

REFERENCES

1. Billingham, R.E.: Transplantation immunity and the maternal-fetal relation. *New Eng. J. Med.* 270: 667, 1964.
2. Adinolfi, M., and Wood, C.B.S.: In "Immunology and Development". M. Adinolfi, Ed., Spas. Internat. Med. Publ., London, 1960. pp. 27.
3. Pirofsky, B., Davies, G.H., Ramirez-Mateos, J.C., and Newton, B.W.: Cellular immune competence in the human fetus. *Cell. Immunol.* 6:324, 1973.
4. Cappellini, R., Bounard, G.D., Coppo, F., Miggiano, V.C., Possenti, M., Curtoni, E., and Pellegri, M.: Mixed leukocyte cultures and HL-A antigens. I. Reactivity of young fetuses, newborns and mothers at delivery. *Transplant. Proc.* 3:58, 1971.
5. Pegrum, G.D.: Mixed culture of human fetal and adult cells. *Immunol.* 21:156, 1971.
6. Jones, W.R.: In vitro transformation of fetal lymphocytes. *Amer. J. Obstet. Gynec.* 104:586, 1969.
7. Kay, H.E.M., Doe, J. and Hockley, A.: Response of human foetal thymocytes to phytohaemagglutinin (PHA). *Immunology* 18:393, 1970.
8. Papiernik, M.: Correlation of lymphocyte transformation and morphology in the human fetal thymus. *Blood* 36:470, 1970.
9. August, C.S., Berkel, A.I., Driscoll, S., and Merler, E.: Onset of lymphocyte function in the developing human fetus. *Pediat. Res.* 5:539, 1971.
10. Uhr, J.W., Dancis, J., and Newmann, C.G.: Delayed-type hypersensitivity in premature neonatal humans. *Nature* 187:1130, 1960.
11. Fowler, R., Schubert, W.K., and West, C.D.: Acquired partial tolerance to homologous skin grafts in the human infants at birth. *Ann. N.Y. Acad. Sci.* 87: 403, 1960.
12. Rubin, A.D.: The human lymphocyte in short-term tissue culture. *Postgrad. Med.* 41:244, 1967.
13. Douglas, S.D., Kamin, R.M., and Fudenberg, H.H.: Human lymphocyte response to phytomitogens in vitro: Normal, agammaglobulinemic and paraproteinemic individuals. *J. Immunol.* 103: 1185, 1965.
14. Kretchmer, R., Say, S., Brown, D., and Rosen, F.S.: Congenital

aplasia of the thymus gland (Di George's syndrome). *New Eng. J. Med.* 279:1295, 1968.

15. Lischner, H.W., Punnett, H.H., and Di George, A.M.: Lymphocytes in congenital absence of the thymus. *Nature* 215:580, 1967.

16. Davies, A.J.S., Festenstein, H., Leuchars, E., Wallis, V.J., and Doenhoff, M.J.: A thymic origin for some peripheral blood lymphocytes. *Lancet* i: 183, 1968.

17. Papamichail, M., Brown, J.C., and Holborow, E.J.: Immunoglobulins on the surface of human lymphocytes. *Lancet*. ii:850, 1971.

18. Froland, S.S., and Natvig, J.B.: Lymphocytes with membrane-bound immunoglobulin (B-lymphocytes) in newborn fetus. *Clin. Exp. Immunol.* 11:495, 1972.

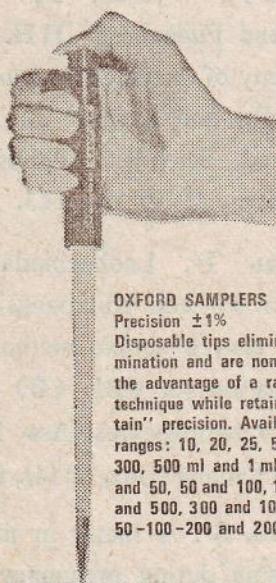
19. Faulk, W.P., Goodman, J.R., Maloney, M.A., Fudenberg, H.H., and Yoffey, J.M.: Morphology and nucleoside incorporation of human neonatal lymphocytes. *Cell. Immunol.* 8:166, 1973.

20. Lindhal-Kiessling, K. and Book, J.A.: Effects of phytohemagglutinin on leukocytes. *Lancet* ii:591, 1964.

21. Pentycross, C.R.: Lymphocyte transformation in young people. *Clin. Exp. Immunol.* 5:214, 1969.

22. Carr, M.C., Stites, D.P., and Fudenberg, H.H.: Cellular immune aspects of the human fetal-maternal relationship. I. In vitro response of cord blood lymphocytes to phytohemagglutinin. *Cell. Immunol.* 5:21, 1972.

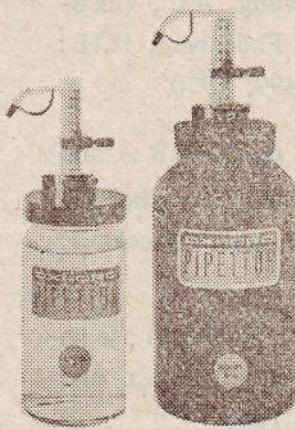
23. Meuwissen, H.J., Bach, F.H., Hong, R., and Good, R.A.: Lymphocyte studies in congenital thymic dysplasia: The one way stimulation test. *J. Pediat.* 72:177, 1968.


24. Leikin, S., Mochir-Fatemi, F., and Park, K.: Blast transformation of lymphocytes from newborn human infants. *J. Pediat.* 72:510, 1968.

25. Colombies, R., Ducos, J., Ohayou, E. and Kessous, A.: *Ann. Inst. Pasteur, Paris* 117:868, 1969.

26. Ayoub, J., and Kasakura, S.: In vitro response of foetal lymphocytes to PHA, and a factor plasma which suppresses the PHA response of adult lymphocytes. *Clin. Exp. Immunol.* 8:427, 1971.

27. Playfair, J.H.L., Wolfendale, M.R., and Kay, H.E.M.: The leukocytes of peripheral blood in the human foetus. *Brit. J. Haemat.* 9:336, 1963.


28. Faulk, W.P., Wang, A.C., Goodman, J.R., and Fudenberg, H.H.: *Pediat. Res.* 3:499, 1970.
29. Winter, G.C.B. Byles, A.B., and Yoffey, J.M.: *Blood lymphocytes in newborn and adult* *Lancet* ii: 932, 1965.
30. Winthrobe, M.M.: *Clinical Hematology*. Sixth Edition. Lea and Febiger, Phila., 1967.
31. Faulk, W.P.: In "Sudden and Unexpected Death in Infancy (Cot Death)". Camps, F.E., and Carpenter, R.G., eds., John Wright and Sons, Bristol, 1972. pp. 82.
32. Stites, D.P., Wybran, J., Carr, M.C., and Fudenberg, H.H.: In "Ontogeny of Acquired Immunity". Porter, R., and Knight, J., eds., Associated Scientific Publishers, Amsterdam, 1972. pp. 113.
33. Tositarat, T., Laohachinda, B., Teowsiri, P., and Kulapongs, P.: Rosette test, a simple method for identification of CRL (B) and RFC (T) lymphocytes. *Ass. Med. Tech. Thailand Gaz.* 2:(4), 1973.
34. Kasakura, S.: A factor in maternal plasma during pregnancy that suppresses the reactivity of mixed leukocyte cultures. *J. Immunol.* 107:1296, 1971.

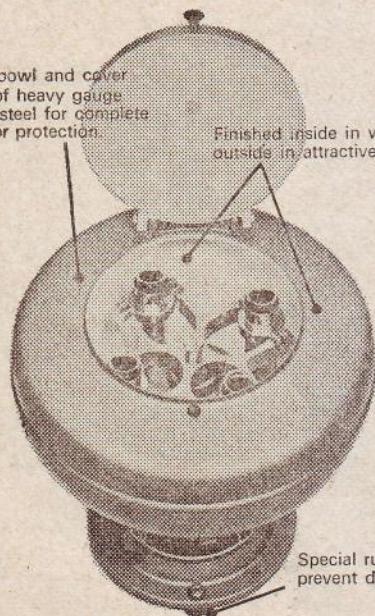
OXFORD SAMPLERS

Precision $\pm 1\%$

Disposable tips eliminate cross-contamination and are non-wetting, providing the advantage of a rapid "to deliver" technique while retaining the "to contain" precision. Available in single ranges: 10, 20, 25, 50, 100, 200, 250, 300, 500 ml and 1 ml; multiranges: 20 and 50, 50 and 100, 100 and 200, 200 and 500, 300 and 1000, 500 and 1000, 50-100-200 and 200-500-1000 ml.

OXFORD PIPETTORS

Both the 0.1 to 1.0 ml and the 1.0 to 10.0 ml Pipettors have a reproducibility of $\pm 0.5\%$.


Reagents contact only glass and Teflon. All parts are modular. Mouth pipetting and meniscus reading is eliminated.

OXFORD
LABORATORIES

2 LOURDES CENTRIFUGES FROM VERNITRON

Guard bowl and cover made of heavy gauge drawn steel for complete operator protection.

Finished inside in white enamel, outside in attractive hammertone.

CHT Clinical Centrifuge.



Vernitron Medical Products, Inc.

Automatic snap cover lock.

Uni-body welded construction and dynamically balanced rotors assure smooth, quiet performance.

Heavy-gauge steel, attractive hammertone finish.

Micro-Hematocrit Centrifuge.

รัชมอร์

11 ทองหล่อชัย 55 ลุ่มวิท 55 กรุงเทพฯ
โทร. 913143, 924100
(ผู้แทนจำหน่ายแท้ๆ เที่ยว ในประเทศไทย)

THE CELLULAR IMMUNE ASPECTS OF FETAL LYMPHOCYTES.

II. SPONTANEOUS TRANSFORMATION AND NUCLEOSIDE INCORPORATION OF HUMAN FETAL LYMPHOCYTES.

by

Panja Kulapongs, M.D., Dip. Amer. Bd. of Ped.

Tawat Tositarat, B.S. (Med. Tech.)*

Orapin Chaiyarasamee, B.S., M.T. (ASCP).*

Sanong Chaiyarasamee, B.S., M.T. (ASCP).*

ABSTRACT.

Unstimulated short-term culture designed to study the spontaneous lymphocyte transformation, ^3H -thymidine incorporation were carried out in 12 samples from cord blood and 12 samples from adult blood. It was found that fetal lymphocytes in cord blood had significantly greater spontaneous blastic transformation rate and nucleoside uptake than the adult lymphocytes. The rates of spontaneous transformation of both cord blood and adult lymphocytes was not affected by fetal or adult plasma. The autoradiographic study revealed a special group of high-labeling lymphocyte population in cord blood.

INTRODUCTION.

From an immunological standpoint, the newborn period differs from later ages. The supporting evidences

including the susceptibility of the newborn to certain infection especially the gram negative organisms; delayed and diminished antibody response (1), re-

* Dept. of Clinical Microscopy; Faculty of Associated Medical Sciences Project, Chiang Mai University.

** Hematology Division, The Anemia and Malnutrition Research Center, Chiang Mai University.

duced DNFB sensitization (2) and skin graft rejection (3), which indicated that the cell-mediated immune function is present at birth, but may be at a reduced capacity (4). We have recently shown that T lymphocytes are present in normal number in newborns (5). The possible explanations for the different results obtained from functional studies of T lymphocytes in newborn are many, including the different PHA doses (6), the presence of inhibitor in cord sera (7, 8) and artifacts from antibiotics or fetal calf serum (9, 10). In addition, the study of immune competency of fetal lymphocytes is further complicated by the interesting phenomenon of high spontaneous transformation.

It is the purpose of this part of the study to gain insight into the phenomenon of spontaneous proliferation of fetal lymphocytes and possible role of cord blood sera.

MATERIAL AND METHOD.

Twelve normal human newborns and 12 healthy adults were studied simultaneously. Blood samples were collected in the delivery room within 5 minutes of birth from the umbilical vein. The lymphocyte-rich plasma sample were obtained from heparinized

blood by gravity sedimentation. Lymphocyte suspensions were cultured at 37° C for 72 hours without stimulation. Lymphocytes from cord blood were cultured with both autologous and adult plasma and, conversely, adult's lymphocytes were grown with autologous and cord blood plasma. The detailed method for determination of blastic transformation and ^{3}H -Thymidine incorporation employed in this study was described elsewhere (11). Autoradiographic study were carried out in some of these samples. Briefly, after 18 hours of ^{3}H -thymidine exposure samples were measured for the thymidine uptake and smears were prepared on clean microscope slides for autoradiography. At least 8 slides per sample were dipped in NTB emulsion (Kodak, Rochester, N.Y.); stored at 4° C in the dark for 5 days and developed in Dektol (Kodak, Rochester, N.Y.) and stained with either Giemsa or Wright's stain. Differential cell count were made by counting 1,000 lymphocytes. Cells with 3 grains or less were counted as being labeled.

RESULTS.

As shown in the table below, spontaneous transformation and tritiated thymidine incorporation of fetal lymphocytes are significantly ($p < 0.001$) higher than adult's lymphocytes.

TATBLE I. : SPONTANEOUS TRANSFORMATION AND ^{3}H -THYMIDINE INCORPORATION OF FETAL AND ADULT'S LYMPHOCYTES IN AUTOLOGOUS PLASMA.

	Fetal	Adult
Blastic Transformation	3.28 \pm 1.93	0.25 \pm 0.13
^{3}H -Thymidine incorporation *	691 \pm 373	200 \pm 68

* expressed as cpm/ 10^6 lymphocytes.

There is no statistical significant difference in the percent of spontaneous blastic transformation and tritiated thymidine incorporation rate between those incubated in cord plasma and in adult blood plasma. Autoradiographic study of fetal lymphocytes with 5-day exposure time revealed small number of the heavily labeled lymphocytes with 75-100 grains or even more (Figure 1). These cells are medium or large lymphocytes with a leptochromatic nucleus that was usually dented. The cytoplasm was pale gray in Wright's stain and contains no cytoplasmic inclusion. This cell was never found in adult's lymphocyte preparation while it was observed in every fetal lymphocytes preparations.

COMMENTS.

Results of our experiment indicated that fetal lymphocytes in cord blood have significantly higher rate of spontaneous blastic transformation than normal adult's lymphocytes and in agreement with other workers (12-14).

The possibility of artefact due to the fetal calf sera and antibiotics employed by other workers (9) has been readily ruled out (14) as well as the effect of plasma factor, since the incubation of cord plasma with adult's lymphocytes did not affect the transformation rate in our system. From these facts it appears that spontaneous transformation of fetal lymphocytes is an intrinsic characteristic. The high spontaneous blastic transformation is further supported by the concurrent "high" spontaneous incorporation of nucleoside as observed by us and others (6, 14-17). This "high-labeling" phenomenon of cord blood lymphocytes may partly be due to the presence of transitional lymphocytes or stem cells (18). In our experiment, transitional lymphocytes were uncommon in adults and the high-labeling fetal lymphocytes as shown in Figure I was never identified in adult blood (18). Experiments with chickens (19) and mice (20) have indicated that stem cells are seeded into

the peripheral circulation of young animals, and transitional lymphocytes are thought to be hematopoietic stem cells in guinea pig (21). The process of peripheralization of lymphocytes to peripheral lymphatic tissue may occur in human at about the time of birth, and this would also be accompanied by a release of metabolically active cells into the blood. Bone marrow in human fetus has a much higher proportion of lymphocytes and transitional cells than in adult life (22), and the thymus (23) and peripheral lymphoid tissues (24) are developed at birth. Morphologically, human neonatal blood lymphocytes are larger (25) and have higher nucleo-cytoplasmic ratios and more leptochromatic nuclei (26) than lymphocytes in adult. Metabolically, fetal lymphocytes demonstrate a higher *in vitro* labeling index for RNA (26) and DNA (26-28) than lymphocytes in adults. A number of studies in both the continuously dividing and resting fetal cells have indicated that their generation time may be shorter than adult cells (17, 29-31). Faulk et al (18) have made an *in vitro* observation that while adult's lymphocytes are normally in the resting state in culture vessels small number of fetal lymphocytes are already proceeded into or through the G_1 period. The shorter G_1 period

in the fetal lymphocytes is reflected by an earlier increase in the amount of nucleoside incorporation into DNA by an increasing number of cells entering the S phase but not by a small number of cells with an increasing rate of incorporation of precursor as revealed by the autoradiographic study (17). Upon addition of stimulant such as phytohemagglutinin (PHA), these cells rapidly started to incorporate thymidine into DNA. Our finding of higher spontaneous transformation and nucleoside incorporation and the fact that lower concentrations of PHA needed to produce a peak response (6) are consistent with the hypothesis that fetal lymphocytes are already partially stimulated *in vivo*. The nature and source of the mitogenic stimulus is still obscure. However, it may very well be a naturally derived antigen or antibody which has crossed the placental barrier. Human fetus is virtually bombarded with allotypically incompatible maternal Gm and InV antigens *in utero* (31), and presumably other maternal allotypic serum protein antigens such as IgA. The fetus is usually not made tolerant to these antigens, and often mounts a vigorous immune response to them in extrauterine life (33, 34). Fetal and neonatal lymphocytes manifest transplantation an-

tigens (35) but these cells react vigorously with maternal than with strange lymphocytes in the mixed leukocyte reaction (35). It is thus not unlikely to consider the above findings of "spontaneous stimulation" of fetal lymphocytes as being part of the cellular response to maternal-fetal immunological incompatibilities.

The question of the placental transfer of blood cells to the fetus has not been fully settled (36). The unsuccessful attempt to identify significant number of maternal lymphocytes in cord blood (37, 38) does not contradict the above hypothesis since one can not deny the possibility that the maternal lymphocytes may be eliminated shortly after entering fetal circulation. In addition, it has recently been shown that a considerable number of fetal lymphocytes actively cross the placental barrier and appear in the maternal blood during pregnancy, and this traffic may very well turn out to be a two-way one similar to those of erythrocytes.

SUMMARY.

Fetal lymphocytes from cord blood exhibited "high" spontaneous blastic transformation with concurrent "high" Tritiated Thymidine incorporation in the unstimulated cul-

tures. This interesting phenomenon is not affected by either cord blood or adult plasma and appears to be an intrinsic characteristic of fetal lymphocytes. Autoradiographic study revealed the high-labeling transitional lymphocytes in cord blood but not in adult's blood. This is consistent with the hypothesis that fetal lymphocytes are already partially stimulated *in vivo*.

ปัจจัย ปัจจัย

จากผลการศึกษาและทดสอบทางห้องปฏิบัติการในการ culture lymphocytes ที่ไม่ได้ถูกกระตุ้นมาก่อน จาก cord blood และ adult blood อย่างละ 12 ราย เพื่อที่
³ H - thymidine incorporation พบว่า lymphocytes ของ cord blood มีอัตรา spontaneous blastic transformation สูงมาก และมี nucleoside uptake มากกว่า adult lymphocytes ซึ่งทั้งนี้ไม่ผลจาก fetal หรือ adult plasma เข้ามาเกี่ยวข้องด้วย เมื่อศึกษาด้วย autoradiograph พบ special group ของ high-labeling lymphocyte population ใน cord blood ด้วย

REFERENCES

1. Smith, R.T., and Eitzmann, D. V.: The development of the immune response. *Pediatrics* 33: 163, 1964.
2. Uhr, J.W., Dancis, J., and Newmann, C.G.: Delayed-type hypersensitivity in premature neonatal humans. *Nature* 187: 1130, 1960.
3. Fowler, R., Schubert, W.K., and West, C.D.: Acquired partial tolerance to homologous skin grafts in the human infants at birth. *Ann. N.Y. Acad. Sci.* 87: 403, 1960.
4. Sanyanusin, P., Chaiyarasamee, S., Tositarat, T., and Kulapongs, P.: The Cellular immune aspects of fetal lymphocytes. I. Distribution of B and T lymphocyte subpopulations in cord blood. *Bull. Chiang Mai Med. Tech.* 7: 1974.
5. Turner, J.H., Hutchinson, D.L., and Petricciani, J.C.: Chimerism following fetal transfusion. Report of leukocyte hybridization and infant with acute lymphocytic leukemia. *Scand. J. Haemat.* 10:358, 1973.
6. Carr, M.C., Stites, D.P., and Fudenberg, H.H.: Cellular immune aspects of the human fetal-maternal relationship. I. In vitro response of cord blood lymphocytes to phytohemagglutinin. *Cell. Immunol.* 5:21, 1972.
7. Ayoub, J., and Kasakura, S.: In vitro response of foetal lymphocytes to PHA, and a factor in plasma which suppresses the PHA response of adult lymphocytes. *Clin. Exp. Immunol.* 8: 427, 1971.
8. Kasakura, S.: A factor in maternal plasma during pregnancy that suppresses the reactivity of mixed leukocyte cultures. *J. Immunol.* 107:1296, 1971.
9. Johnson, G., and Russell, P.: Reaction of human lymphocytes in culture to components of the medium. *Nature (London)* 208: 343, 1965.
10. Hsu, C.C.S., Waite, W.L., Hathaway, P., Hirschhorn, K.: The effects of foetuin on lymphocytes: Lymphocyte-stimulating property. *Clin. Exp. Immunol.* 15:427, 1973.
11. Tositarat, T., Nitimanop, K., and Kulapongs, P.: Phytohemagglutinin-induced blastic transformation and DNA synthesis of lymphocyte culture. *Bull. Chiang Mai Med. Tech.* 5:151, 1972.

12. Hirschhorn, K., Schreibman R., Verbo, S., and Grukin, R.: The action of streptolysin S. on peripheral lymphocyte of normal subject and patients with acute rheumatic fever. *Proc. Nat. Acad. Sci.* 52:1151, 1964.
13. Pulvertaft, R.J.V., and Pulvertaft, I: Spontaneous "transformation" of lymphocytes from the umbilical-cord vein. *Lancet* ii: 892, 1966.
14. Leikin, S., Mochir-Fatemi, F., and Park, K.: Blastic transformation of lymphocytes from newborn human infants. *J. Pediat.* 72:510, 1968.
15. Meuwissen, H.J., Bach, F.H., Hong, R., and Good, R.A.: Lymphocyte studies in congenital thymic dysplasia: The oneway stimulation test. *J. Pediat.* 72: 177, 1968.
16. Prindull, G.: An in-vitro qualitative study of phytohemagglutinin (PHA) induced transformation of lymphocytes from premature newborn infants, from older premature infants, and full-term newborn infants. *Blut* 23:7, 1971.
17. Weber, T.H., Santesson, B., and Skoog, V.T.: The activation of fetal lymphocytes. *Scand. J. Haemat.* 11:177, 1973.
18. Faulk, W.P., Goodman, J.R., Maloney, M.A., Endenberg, H.H., and Yoffey, J.M.: Morphology and nucleoside incorporation of human neonatal lymphocytes. *Cell. Immunol.* 3:166, 1973.
19. Moore, M.A.S., and Owen, J.J. T.: Chromosome marker studies in the irradiated chick embryo. *Nature* 215:1081, 1967.
20. Barnes, D.W.H., and Loutit, J. F.: Haematopoietic stem cells in the peripheral blood. *Lancet* ii: 1138, 1967.
21. Moffat, D.J., Rosse, C., and Yoffey, J.M.: Identity of the haemopoietic stem cell. *Lancet* ii: 547, 1967.
22. Beer, A.E., and Billingham, R.E.: Immunobiology of mammalian reproduction. *Adv. Immunol.* 14: 1, 1971.
23. Kay, H.E.M., Playfair, J.H.L., Wolfendale, M., and Hopper, P. K.: Development of the thymus in the human foetus and its relation to immunological potential. *Nature* 196:238, 1962.
24. van Furth, R., Schuit, H.R.E., and Hijmans, W.: The immunological development of the human fetus. *J. Exp. Med.* 122: 1173, 1965.
25. Playfair, J.H.L., Wolfendale, M. R., and Kay, H.E.M.: The leukocytes of peripheral blood in the human foetus. *Brit. J. Haemat.* 9:336, 1963.

26. Winter, G.C.B., Byles, A.B., and Yoffey, J.M.: Blood lymphocytes in newborn and adult. *Lancet* ii : 932, 1965.
27. Faulk, W.P.: In "Sudden and Unexpected Death in Infancy (Cot Death)". Camps, F.E., and Carpenter, R.G., Eds., John Wright and Sons, Bristol, 1972. pp. 82.
28. Stites, D.P., Wybran, J., Carr, M.C., and Fudenberg, H.H.: In "Ontogeny of Acquired Immunity". Porter, R., and Knight, J., Eds., Associated Scientific Publishers, Amsterdam, 1972. pp. 113.
29. Fujita, S.: Kinetics of Cellular proliferation. *Exp. Cell. Res.* 28: 52, 1962.
30. Kubanek, B., Renericca, N., Procellini, A., Howard, D., and Stohlman, F., Jr.: The pattern of recovery of erythropoiesis in heavily irradiated mice receiving transplants of fetal liver. *Proc. Soc. Exp. Biol.* 131:831, 1969.
31. Haskill, J.S., and Moore, M.A.S.: Two dimensional cell separation: Comparison of embryonic and adult hematopoietic stem cells. *Nature*. 266:853, 1970.
32. Steinberg, A.G.: In "Advances in Immunogenetics". Greenwalt, T.J., Ed., J.B. Lippincott, Phila., 1967. pp. 75.
33. Steinberg, A.G., and Wilson, J. A.: Hereditary globulin factors and immune tolerance in man. *Science* 140:303, 1963.
34. Vyas, G.N., Levin, A.S., and Fudenberg, H.H.: Intrauterine isoimmunization caused by maternal IgA crossing the placenta. *Nature* 225:275, 1970.
35. Ceppellini, R., Bonnard, G. D., Coppo, F., Miggiano, V.C., Pospisil, M., Cartoni, E.S., and Pellegrino, M.: Mixed leukocyte cultures and HL-A antigens. I. Reactivity of young fetuses, newborns and mothers at delivery. *Transplant. Proc.* 3:58, 1971.
36. Benirschke, K., and Sullivan, M.M.: The human placenta in relationship to the development of chimerism. In "The Foeto-placental Unit". Excerp. Med. Fdn., Amsterdam, 1970. pp. 49.
37. Leikin, S., Whang Peng, J., and Oppenheim, J.J.: In "Proceedings of the Fifth Leukocyte Culture Conference". Harris J., Ed., Academic Press, New York, 1970. pp. 389.
38. Turner J. H., Wald, N., and Quinlivan, W.L.G.: Cytogenetic evidence concerning possible transplacental transfer of leukocytes in pregnant women. *Amer. J. Obstet, Gynec.* 95:831, 1966.
39. Schroder, J., and de la Chapelle, A.: Fetal lymphocytes in the maternal blood. *Blood* 39: 153, 1972.

THE CELLULAR IMMUNE ASPECTS OF FETAL LYMPHOCYTES.

III. IN VITRO RESPONSE OF FETAL LYMPHOCYTES TO PHYTOHEMAGGLUTININ STIMULATION.

By

Manit Vongyutidham, B.S. (Med. Tech.)

Orapin Chaiyarasamee, B.S., M.T. (ASCP). *

Tawat Tositarat, B.S. (Med. Tech.) **

Panja Kulapongs, M.D., Dip. Amer. Bd. of Ped. **

ABSTRACT

Immunocompetency of fetal lymphocytes was evaluated in vitro by determination of their response to phytohemagglutinin (PHA) stimulation. Fetal lymphocytes from cord blood of 14 newborns were stimulated with PHA and the degrees of response were determined by both the percentages of lymphoblastic transformation and rate of tritiated thymidine incorporation. Lymphocytes from 14 healthy adults were used as controls. There was no statistical significant difference in PHA responsiveness between these 2 groups of lymphocytes studied which suggest that the immunocompetency of fetal lymphocytes is comparable to those of adults.

INTRODUCTION.

The cell-mediated immunocompetency of fetal lymphocytes is still the interesting and unsettled subject.

Limited numbers of the in vivo studies including the DNFB sensitization (1), skin grafting (2), and

* Dept. of Clinical Microscopy, Faculty of Associated Medical Sciences Project, Chiang Mai University.

** Hematology Division, The Anemia and Malnutrition Research Center, Chiang Mai University.

chimerism following intrauterine transfusion⁽³⁾ suggest a depressed or diminished cellular immunity in newborn infants. However, a completely different conclusion could be drawn from many in vitro studies such as the normal or better than normal response to stimulation with PHA⁽⁴⁻⁹⁾, pokeweed mitogen and staphylococcal filtrate⁽⁴⁾, adequate response to foreign histocompatibility loci on adult lymphocytes⁽¹⁰⁻¹²⁾, and the recent study of the distribution of peripheral lymphocytes which are responsible for the body cellular immune competency has shown that it was normal in newborns⁽¹³⁾. Unfortunately, these in vitro results are far from uniform due to many variations including the different PHA doses used⁽⁸⁾ and the presence of inhibitor in cord sera^(14, 15).

Our earlier report has shown that fetal lymphocytes are metabolically active presumably due to sensitization in utero⁽¹⁶⁾. We are now reporting our findings which further indicated the normal immune competency of fetal lymphocytes in cord blood.

MATERIAL AND METHOD.

Lymphocytes isolated from

14 cord blood samples and 14 healthy normal adults were studied intermittently. Cord blood samples were collected in the delivery room within 5 minutes of birth from the umbilical vein. Blood sample was drawn into a 12 ml. sterile plastic syringe containing heparin (50 units/ml. of blood) and immediately mixed with one fifth volume of sterile 6% dextran solution. The mixture was allowed to stand in the upright syringe for 60 minutes at 37°C. The washed leukocytes were finally resuspended in Hank's-Hepes solution (pH 7.4). The leukocyte suspension was incubated with PHA (0.05 ml/1.5 ml of culture volume) for 72 hours at 37°C. Leukocytes from cord blood were cultured in autologous or adult plasma and, conversely, adult's leukocytes were cultured in autologous or cord blood plasma. At the end of incubation period, cultures were centrifuged and smears were made from the cell buttons and stained with Wright's-Giemsa. The percentages of blastic transformed lymphocytes were determined. The DNA synthesis rate was determined by adding tritiated thymidine solution 1 μ C/1.5 ml. of culture volume/10⁶ lymphocytes) into the incubating vessels at 54 hours of incubation and harvesting the leukocytes 18 hrs.

later. The radioactivity of the perchloric acid-precipitated nuclear material were expressed as cpm/10⁶ lymphocytes in each cultures (in triplicate).

RESULTS.

There is no statistical signifi-

cant difference noted between the fetal and adults' lymphocytes in both the percent of blastic transformation and degrees of tritiated thymidine incorporation. There is no evidence of the presence of inhibitor in cord blood and adult's plasmas.

TABLE I.: BLASTIC TRANFORMATION RATES OF FETAL AND ADULT'S LYMPHOCYTES AFTER IN VITRO PHA STIMULATION*

	FETAL PLASMA	ADULT PLASMA
FETAL CELLS	67.64 \pm 10.53	68.85 \pm 13.72
ADULT'S CELLS	69.69 \pm 10.14	75.53 \pm 6.54

* expressed as Mean \pm 1 S.D. values in percent.

TABLE II.: TRITRIATED-THYMIDINE INCORPORATION RATES OF FETAL AND ADULT'S LYMPHOCYTES AFTER IN VITRO PHA STIMULATION *

	FETAL PLASMA	ADULT PLASMA
FETAL CELLS	34,842.78 \pm 24,930.65	34,850.11 \pm 23,920.32
ADULT'S CELL	56,159.5 \pm 23,189.39	57,014.22 \pm 18,546.08

* expressed as Mean \pm 1 S.D. values of nine samples in each groups as cpm/10⁶ lymphocytes.

COMMENTS

Our results are in agreement with those of Carr and associates⁽⁸⁾ that the response of fetal lymphocytes to phytohemagglutinin stimula-

tion is comparable to those of adult's lymphocytes. We have confirmed earlier impression that both the fetal lymphocytes (4, 8, 16) and maternal lymphocytes are regularly undergoing

low level stimulation (17). Thus the hypotheses previously postulated to explain how the mammalian fetus avoids immunologic rejection by the mother has to be re-examined. Previous hypotheses usually centered on either defective or blocked cellular immune capability of the maternal host, nonantigenicity of the fetal graft, or a immunologically neutral placental separation zone between host and graft (18-20). Experimental evidence indicates that fetal protection against maternal immunologic attack is dependent on a placental barrier requiring at least 2 specific properties: (1) a trophoblastic layer low or lacking in transplantation antigens and (2) the ability to limit the exchange of cells, especially leukocytes, between mother and fetus.

The frequent observations of donor cells (3) and persistence of donor lymphocytes after intrauterine transfusion (21) have been interpreted as the indications that the average fetal response to donor cells in terms of rejection is minimal, and probably resulting from the variable immunologic maturity (3). Graft-versus-host (G.V.H.) disease, a fatal complication of the treatment of severe hemolytic anemia by intra-

uterine transfusion, are surprisingly rarely observed (22). This disease results from reaction by lymphocytes in donor blood to histocompatibility antigens of the recipient resembling those by which healthy individuals reject foreign grafts. The lymphocytes responsible for G.V.H. disease are T-cells and they can survive in bank-blood for up to 3 weeks. It is interesting to note that in a few cases observed recently (23, 24) the foreign lymphocytes were derived from the postnatal exchange transfusion rather than the original intrauterine transfusion donor. Parkman et al (24) speculated that the intrauterine transfusion may have induced tolerance in the fetus to certain histocompatibility antigens which were shared by the exchange transfusion donors. This might have allowed the donor's lymphocytes to colonise the infant instead of being rejected. Special mechanisms must account for the G.V.H. disease in these few cases since most intrauterine transfusions do not result in total G.V.H. disease. Tolerance to foreign lymphocytes encountered during gestation has not been demonstrated in human fetus. On the other

hind, human fetal lymphocytes and fetal thymocytes as young as 12-14 weeks gestation can respond to foreign cells in mixed lymphocyte culture (10-12, 25). Susceptibility to attack by transfused incompatible

lymphocytes is greatest in immunodeficient individuals (26, 27). Thus, the rarity of G.V.H. disease in the recipients of intrauterine transfusion presumably reflects the effectiveness of the fetus's immune system

ข้อเรื่อง

ได้ทำการศึกษาและทดสอบทางห้องปฏิบัติการเกี่ยวกับปฏิกิริยาต่อต้านต่อการกระตุ้นด้วยสาร PHA ของ fetal lymphocytes *in vitro* โดยใช้ lymphocytes จากเลือดสายสะตือของทารกปกติจำนวน 14 ราย การตรวจหาอัตราปฏิกิริยาต่อต้าน ทำโดยวิธีท่าเบอร์เซนท์ของ lymphoblastic transformation และอัตรา incorporation กับ tri-

triated thymidine โดยใช้ Lymphocytes จากเลือดของผู้ใหญ่ปักกิจำนวน 14 รายเป็น Control

ผลการตรวจพบว่าไม่มีความแตกต่างให้เห็นอย่างชัดเจนในปฏิกิริยาต่อต้านต่อสาร PHA ระหว่าง lymphocytes จากเลือดของทารกและจากเลือดผู้ใหญ่ปักกิ.

REFERENCES

1. Uhr, J.W., Dancis, J., and Newmann, C.G.: Delayed-type hypersensitivity in premature neonatal humans. *Nature* 187:1130, 1960.
2. Fowler, R., Schubert, W.K., and West, C.D.: Acquired partial tolerance to homologous skin grafts in the human infants at birth. *Ann. N.Y. Acad. Sci.* 87:403, 1960.
3. Turner, J.H., Hutchinson, D.L., and Petricciani, J.C.: Chimerism following fetal transfusion. *Scand. J. Haemat.* 10:358, 1973.
4. Leikin, S., Mochir-Fatemi, F., and Park, K.: Blast transformation of lymphocytes from newborn human infants. *J. Pediat.* 72:510, 1968.
5. Faulk, W.P., Goodman, J.R., Maloney, M.A., Fudenberg, H.H., and Yoffey, J.M.: Morphology and nucleoside incorporation of human neonatal lymphocytes. *Cell. Immunol.* 8:166, 1973.
6. Lindhal-Kiessling, K., and Book, J.A.: Effects of phytohemagglutinin on leukocytes. *Lancet* ii:591, 1964.
7. Pentycross, C.R.: Lymphocyte transformation in young people. *Clin. Exp. Immunol.* 5:214, 1969.
8. Carr, M.C., Stites, D.P., and Fudenberg, H.H.: Cellular immune aspects of the human fetal-maternal relationship. I. In vitro response of cord blood lymphocytes to phytohemagglutinin. *Cell. Immunol.* 5:21, 1972.
9. Meuwissen, H.J., Bach, F.H., Hong, R., and Good, R.A.: Lymphocytes studies in congenital thymic dysplasia: The one way stimulation test. *J. Pediat.* 72:177, 1968.
10. Pirofsky, B., Davies, G.H., Ramirez-Mateos, J.C., and Newton, B.W.: Cellular immune competence in the human fetus. *Cell. Immunol.* 6:324, 1973.
11. Cappellini, R., Bonnard, G.D., Coppo, F., Miggiano, V.C., Pospisil, M., Curtoni, E., and Pellegrino, M.: Mixed leukocyte cultures and HL-A antigens. I. Reactivity of young fetuses, newborns and mothers at delivery. *Transplant. Proc.* 3:58, 1971.
12. Pegrum, G.D.: Mixed culture of human foetal and adult cells. *Immunol.* 21:159, 1971.
13. Sanyanusin, P., Chaiyarasamee, S., Tositarat, T., and Kulapongs, P.: The cellular immune aspects of

fetal lymphocytes. I. Distribution of B and T lymphocyte subpopulations in cord blood. *Bull. Chiang Mai Med. Tech.* 7: 1974.

14. Ayoub, J., and Kasakura, S.: In vitro response of foetal lymphocytes to PHA, and a factor in plasma which suppresses the PHA response of adult lymphocytes. *Clin. Exp. Immunol.* 8:427, 1971.

15. Kasakura, S.: A factor in maternal plasma during pregnancy that suppresses the reactivity of mixed leukocyte cultures. *J. Immunol.* 107:1296, 1971.

16. Kulapongs, P., Tositarat, T., Chaiyarasamee, S., and Chaiyarasamee, O.: The cellular immune aspects of fetal lymphocytes. II. Spontaneous blastic transformation and tritiated-thymidine incorporation. *Bull. Chiang Mai Med. Tech.* 7:1974.

17. Carr, M. C., Stites, D.P., and Fudenberg, H.H.: Cellular immune aspects of the human fetal-maternal relationship. II. In vitro response of gravida lymphocytes to phytohemagglutinin. *Cell. Immunol.* 8:448, 1973.

18. Billingham, R.E.: Transplantation immunity and the maternal-fetal relation. *New Eng. J. Med.* 270: 667, 1964.

19. Hellstrom, K.E., Hellstrom, I., and Brawn, J.: Abrogation of cellular immunity to antigenically foreign mouse embryonic cells by a serum factor. *Nature* 224:914, 1969.

20. Lanman, J. T.: Transplantation immunity in mammalian pregnancy; mechanisms of fetal protection against immunologic rejection. *J. Pediat.* 66:525, 1965.

21. Jones, W.R.: Immunological aspects of intraurine transfusion. *Brit. Med. J.* iii: 280, 1968.

22. Liley, A.W.: Intrauterine transfusion of foetus in haemolytic disease. *Brit. Med. J.* ii: 1107, 1963.

23. Naiman, J.L., Punnett, H H., Lischner, H.W., Destine, M.L., and Arey, J.B.: Possible graft-versus-host reaction after intrauterine transfusion for Rh erythroblastosis fetalis. *New Eng. J. Med.* 281:697, 1969.

24. Parkman, R., Mosier, D., Uman-sky, I., Cochran, W., Carpenter, C.B., and Rosen F.S.: Graft-versus

host disease after intrauterine and exchange transfusions for hemolytic disease of the newborn. New Eng. J. Med. 290:359, 1974.

25. August, C.S., Berkel, A.I., Driscoll, S., and Merler, E.: Onset of lymphocyte function in the developing human fetus. Pediat. Res. 5:539, 1971.

26. Hong, R., Gatti, R.A.: and Good, R.A.: Hazards and potential benefits of blood-transfusion in immunological deficiency. Lancet ii: 388, 1968.

MODIFIED METHOD OF DOUBLE PLASMAPHERESIS AND
PLATELETPHERESIS

เรวัตร ทักษิณະณ์ วท.บ. (เทคนิคการแพทย์)*

วารุณี คุณาชีวะ วท.บ. (เทคนิคการแพทย์)**

คำริ คำรงค์กั๊ด W.B., Dip. Am. Board of Pediatrics **

ข้อเรื่อง

Modified method of double phasmapheresis และ plateletapheresis ได้ทำการทดลองใน donor 20 ราย โดยการเจาะเลือดลงใน ACD single blood bag และนำ centrifuge เอาส่วน packed red cell กลับคืนเข้าสู่ Donor และเอาเลือดออกมาอีก 1 unit ทางเข็มเจาะเลือดคืน ลงใน single blood bag ถุงที่ 2 นำมา centrifuge และคืน packed red cell ให้แก่ donor อีก ในระหว่างการ centrifuge เพื่อแยกส่วนประกอบของเลือดก็ให้น้ำเกลือแก่ donor.

การ centrifuge เพื่อแยกส่วนประกอบของเลือด ทดลองทำโดยใช้ standard speed และ high speed ชี้ผลการทดลองปรากฏว่า การใช้ high speed จะได้จำนวน plasma มากกว่า standard speed และทั้งสองวิธีจะใช้เวลาประมาณ 2 ½ ชั่วโมง การทดลองนี้ได้ผลดี และถูกเปลี่ยนค่าใช้จ่ายน้อยกว่าการใช้ standard equipments มาก.

* ภาควิชาพยาธิวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น

** หน่วยชนาการเดือด คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่

บทนำ

Plasmapheresis and plateletapheresis เป็นคำรวมระหว่าง plasma หรือ platelet กับคำว่า apheresis ซึ่งแปลว่า removal หมายถึงการแยกเอาเฉพาะส่วน plasma และ platelet ออกจากร่างกายของ donor โดยวิธีการเจาะเลือดจาก donor นำมานำแยกเอา platelet-rich plasma ออกจาก whole blood และนำ packed red blood cell ให้กลับคืนเข้า circulation ของ donor ตามเดิม ส่วน platelet-rich plasma นำมานำแยกเป็น platelet concentrate และ platelet-poor plasma ต่อไป.

ในปี ค.ศ. 1914 Abel²⁾ ได้ตีพิมพ์ รายงานเรื่องการแยก plasma ออก จำกว่างกายของผู้ป่วยเพื่อประโยชน์ของการรักษา โดยการเจาะเลือดออกจากเส้นเลือด คำ ทำให้สามารถที่จะลดปริมาณ ของ fluid ในเส้นเลือดได้ หรือเอาสิ่งที่เป็นพิษใน plasma ออก และให้ Locke's soln. แทนพร้อมทั้งนำ packed red blood cell คืนกลับเข้า circulation ของ donor อีก เนื่องจากว่า plasma สามารถเอาออกหลังรักษาได้จำนวนมากโดยไม่มีอันตราย การทำแบบนี้ เองเข้าจึงเรียกว่า plasmapheresis นอกจากนี้ Abel ยังได้ศึกษาเกี่ยวกับสุนัขโดยทดสอบที่หงส์ลง

ข้างออก พบว่าทั้งที่ทำ plasmapheresis จะมีอายุนานกว่าทั้งที่ไม่ได้ทำ plasmapheresis.

ในปี ค.ศ. 1964 Kliman และคณะ⁽¹⁾ ได้ศึกษาถึง effect of plasmapheresis ซึ่งทำ double donation โดยใช้ double blood bag system แยก plasma ออก ภายหลังเมื่อคืน packed red blood cell ให้ donor และจึงเอาเลือดออกอีกครั้งหนึ่งทางเดิม ทำเหมือนครั้งแรก ในขณะเดียวกัน แยก plasma ออก จะให้ normal saline แทนแล้วให้ normal saline เข้าไปเท่าจำนวน plasma ที่เอาออกมา ซึ่งในการทดลอง donor 4 คน ภายหลังเอา plasma ออกคนละ 1000 ml. ในเวลา 2 ชั่วโมง แล้วปรากฏว่า hemoglobin concentration จะสูงขึ้น 1 gm/100 ml และ serum protein จะลดลง 1 gm/100 ml แต่ถ้าทำติดต่อ กัน 5 วัน พบว่า total serum protein จะกลับไประดับก่อนทำ plasmapheresis ภายใน 2-4 สัปดาห์ และ gamma-globulin concentration จะกลับไปสู่ระดับปกติภายหลัง 26-90 วันไปแล้ว Kliman มีความเห็นว่าการทำ plasmapheresis ไม่ควรเอา plasma ออกมากกว่า 750 ml ทุกวันต่อคน เพื่อหลีกเลี่ยงการสูญเสีย plasma protein จำนวนมากของร่าง-

ภายในชั่ง plasma 750 ml ประมาณว่ามี protein 50 gm.

บัญญับน์ plasmapheresis ได้เจริญก้าวหน้ามาก เพราะมีประโยชน์ต่อการรักษาโรค เช่น

1. Waldenstrom's macroglobulinemia (2, 3)
2. Plasmapheresis and plasma exchange in hepatic coma (4, 5)
3. plasmapheresis and plasma exchange in the treatment of hyperlipaemia and xanthomatous neuropathy in patient with primary biliary cirrhosis (6)
4. Plasmapheresis in Rh - Isoimmunization (7)
5. Plasmapheresis in acute pulmonary edema (8)

ถ้าทำ plasmapheresis มาก ๆ (4) ในเวลาติดต่อกัน ผู้ป่วยได้รับ citrate เข้าไปมากจะทำให้เกิด Cardiotoxicity ได้ citrate 20 % จะถูกขับออกทางปัสสาวะ และที่เหลือจะถูกทำลายในร่างกาย citrate เป็น chelating agent ทำให้ ionized calcium ใน circulation ลดลงเกิด hypocalcemia แก้โดยให้ calcium gluconate หรือ calcium chloride เข้าทาง I.V. การให้

citrate whole blood หรือให้ plasma 1 unit ควรจะให้ 10 % calcium chloride 2 ml และควรระวังเรื่อง blood coagulation factor, platelets, electrolyte และ glucose.

เมื่อนำ whole blood มาบีนด้วยความเร็วต่ำ ๆ หรือที่มีความเร็วสูง โดยใช้ เวลาสั้นใน Refrigerated centrifuge จะสามารถแยก platelet-rich plasma ออกจาก whole blood ได้ และเมื่อนำ platelet-rich plasma มาบีนด้วยความเร็วสูงก็จะสามารถแยก platelet concentrate ออกจาก plasma ได้.

บัญญับน์ platelet มีประโยชน์ในการรักษาโรคหลายอย่าง เช่น congenital isoimmune thrombocytopenic purpura (10); Anemia in erythroblastosis and thrombocytopenia (9, 10), Hemorrhage in patients with acute leukemia (11)

1 unit ของ platelet-rich plasma จะมี platelet 1×10^{11} (1 unit จาก whole blood 500 ml) และ platelet concentrate 1 unit มี platelet ประมาณ 0.87×10^{11} (11), platelet-rich plasma จะให้กับ adult เป็นส่วนมาก แต่ platelet concentrate จะให้กับ children หรือ adult ที่มี cardiorenal insufficiency. Fresh frozen plasma และ Platelet concentrate เวลาจะ

ให้กับ Recipient ไม่ต้องทำ cross match โดย Donor และ Recipient มี Rh และ ABO Blood group ตรงกัน.

วัสดุและวิธีการ

การทำ Modified method of double plasmapheresis and plateletapheresis แบ่งออกเป็น 4 ขั้น คือ

ขั้นที่ 1 เจาะเลือดจาก donor

ขั้นที่ 2 แยก platelet-rich plasma ออก จาก whole blood.

ขั้นที่ 3 คืน packed red cell เข้า circulation ของ donor และเจ้าเลือดออกอีกครั้งหนึ่ง

ขั้นที่ 4 แยก platelet concentrate ออก จาก plasma.

ขั้นที่ 1 เจาะเลือดจาก donor

1.1 เตรียม set ให้ normal saline และ set ให้เลือด โดยใช้เข็มเบอร์ 18 ที่ต่อจาก set ให้ normal saline แหง เข้า set ให้เลือด ก่อนแหงใช้ 70 % alcohol เช็ดบริเวณจะแหง ทงสอง set ใช้มีเป็น system เดียวกัน และ ไม่อาจกั้นใน connecting tube ออก ให้หมดด้วย normal saline.

1.2 ให้ donor นอนวัดความดันและตั้ง ความดันไว้ประมาณ 70 mm Hg.

1.3 ทำความสะอาดบริเวณข้อพับด้วย 2.5% tincture of iodine และ 70 % alcohol.

1.4 ฉีด xylocaine เข้าใต้ผิวหนังใกล้เส้น เลือดบริเวณจะเจาะเลือด.

1.5 ใช้เข็มของ ACD single blood bag system เจาะเข้าเส้นเลือดคำบบริเวณที่ฉีด xylocaine.

1.6 เมื่อเลือดเข้าถุงเลือด เรากองค่อยเขย่าถุงเลือด เพื่อให้เลือดผสมกับ ACD เมื่อเลือดเต็มถุงโดยใช้ donor scale ชั่งให้ประมาณ 550 gm (น้ำหนักของถุงและน้ำยา ACD ประมาณ 100 gm) และถูกความดันลงเป็น 0 mm Hg.

1.7 มัดและ clamp connecting tube ประมาณช่วงกึ่งกลางของ connecting tube และใช้กรรไกรตัดซึ่งมัดกับ clamp.

1.8 เจ้า 70 % alcohol เช็ด connecting tube หน้า clamp ใช้เข็มเบอร์ 18 ท่อ กับ recipient blood set แหงเข้า connecting tube ท่อนติดกับแขนหน้า clamp เล็กน้อย และปล่อยให้ normal saline หยดเข้า circulation ช้าๆ ในขณะที่รอดการบันแยกเลือด.

ขั้นที่ 2 แยก platelet-rich plasma ออกจาก whole blood.

2.1 นำ whole blood จาก 1.7 มล. บนที่ 4°C ด้วยความแรง 375 G นาน 15 นาที (standard speed) หรือ 4500 G นาน 2 นาที (high speed) (12)

2.2 ใช้ transfer blood bag แยก platelet-rich plasma ออกจาก plasma extractor.

ขั้นที่ 3 คืน packed red blood cell เข้า circulation ของ donor และเอา เลือดออกอีกครั้งหนึ่ง.

3.1 เอา packed red cell คืนให้ donor โดยเข้าทาง recipient blood set โดย หยุดการให้ normal saline.

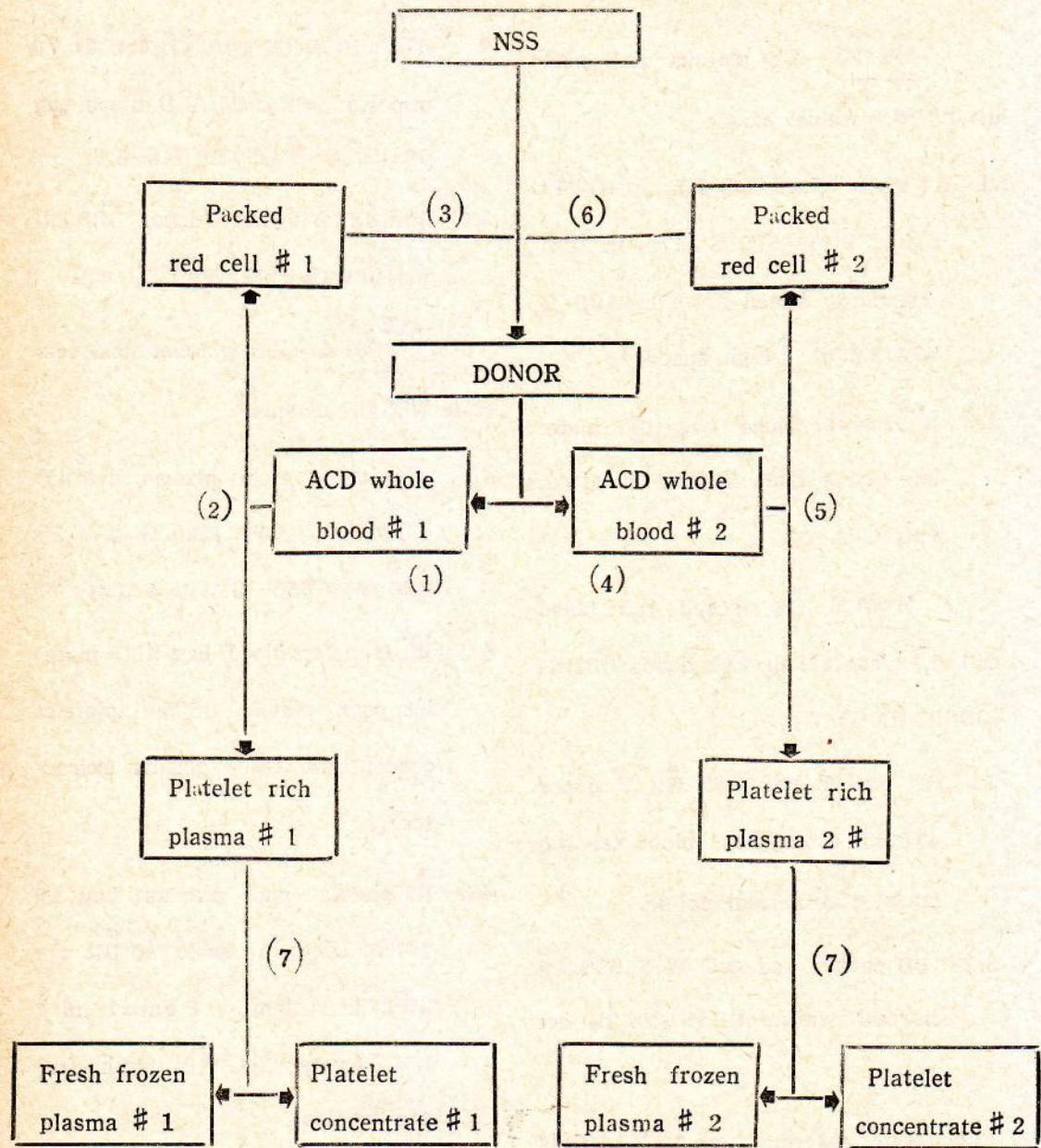
3.2 เมื่อ packed red cell หมดแล้วจึงให้ normal saline ท่อจนเลือดใน set หมด.

3.3 clamp ท่อเข็ม เอา 70 % alcohol เข้า connecting tube หัว clamp และเอาเข็มของ ACD single blood bag และเข้า connecting tube หัว clamp บีบให้ ACD จาก blood bag เข้าไปจนถึงเข็มที่เจาะอยู่กับเส้นเลือด

คั่ม แล้วตั้งความดันไว้ประมาณ 70

mm Hg เลือดจะเข้า ACD blood bag อีก แล้วดำเนินตามข้อ 1.6-3.2.

3.4 ดูดเข้มออกจากเข็น donor วัดความดันโลหิตเข็นอีกชั้งหนึ่ง.


ขั้นที่ 4 แยก platelet concentrate ออกจาก plasma.

4.1 นำ platelet-rich plasma มาบนที่ 4°C ด้วยความแรง 1500 G นาน 15 นาที หรือ 4500 G นาน 4 นาที (12).

4.2 ใช้ transfer blood bag แยก platelet poor plasma ออกจาก platelet concentrate โดยใช้ plasma extractor.

4.3 นำ platelet-poor plasma bag มา ชั่งคิวต Dietetic scale ให้เป็น gm และเที่ยบเป็น ml (1 gm=1 ml) นำมานำ freeze- 20°C เป็น fresh frozen plasma.

4.4 platelet concentrate เก็บไว้อุณหภูมิ ห้อง (22°C) นาน $\frac{1}{2}$ ชั่วโมง นำ platelet concentrate bag เพื่อไม่ให้ platelet จับกู่มันแล้วเก็บไว้ที่ 4°C สามารถเก็บได้ถึง 5 วัน.

Diagram แสดงการทํา Modified method of double plasmapheresis and plateletapheresis ลำดับการทําความหมายเดิม

ผล

Modified method of double plasmapheresis and plateletapheresis ทำ การทัดลองทงหมด 20 ราย แยกเป็น standard speed 10 ราย และ high speed 10 ราย

standard speed แยก plasma ได้ 31.89% ของ ACD free whole blood.

high speed แยก plasma ได้ 42.66% ของ ACD free whole blood

platelet-poor plasma นำไป freeze -20 ถึง -30 °C จะได้ fresh frozen plasma ก่อนใช้นำมาละลายที่อุณหภูมิ 37 °C สำหรับ platelet-concentrate เรานำไปให้คนไข้ได้ กันที หรือเก็บไว้อุณหภูมิห้อง 22 °C นาน ครึ่งชั่วโมง และทำการนวต platelet-concentrate bag เพื่อไม่ให้ platelet จับ

กันเป็นกลุ่มก้อน เก็บไว้ที่ 4 °C จะใช้ได้ภายใน 5 วัน

ปฏิกริยาที่พบใน donor จากการทำ plasmapheresis และ plateletapheresis ใน donor 20 คน ไม่พบว่ามีปฏิกริยาใด ๆ เลย ความดันโลหิตก่อนทำ และหลังทำพบว่า ไม่มีความแตกต่างกันนักเด่น donor ไม่รู้สึก อุ่นเพลียเลยแต่หลายคนไม่ชอบวิธีการเจาะ แบบนี้ เพราะใช้เวลานานเกินไป และ ตอนท้าย ๆ เริ่มรู้สึกเจ็บที่เข็มแทง.

การใช้ ACD single blood-pack for 450 ml blood และ transfer blood bag capacity 300 ml แทนการใช้ ACD plasma pheresis triple blood-pack unit สามารถ ลดค่าใช้จ่ายลงได้มากกว่า 100% ต่อ donor 1 คน.

ตารางแสดงผลการทดลอง Modified method of double plasmapheresis and plateletapheresis เป็นค่าเฉลี่ย

	time hrs	BP ₁ mmHg	BP ₂ mmHg	whole blood ₁ (gm)	whole blood ₂ (gm)	total ACD free whole blood	FFP ₁ (ml)	FFP ₂ (ml)	PC ₁ (ml)	PC ₂ (ml)	total ACD free plasma
standard speed	2.22	134	130	564	496	860	192	160	30	27	274
		80	80								
high speed	2.23	126	124	581	549	930	258	229	23	20	398

BP₁ = Blood pressure ก่อนทำ plasmapheresis

BP₂ = Blood pressure หลังทำ plasmapheresis

whole blood₁ หรือ whole blood₂ = citrate whole blood + น.น. bag

FFP₁ = Fresh frozen plasma จาก whole blood

FFP₂ = Fresh frozen plasma จาก whole blood₂

PC₁ = Platelet concentrate จาก whole blood₁

PC₂ = Platelet concentrate จาก whole blood₂

Total ACD free = (FFP₁+PC₁-67.5) + (FFP₂+PC₂-67.5)

67.5 = น.น. ACD

Total ACD free whole blood = (whole blood₁-100) + (whole blood₂-100)

100 = น.น. bag + ACD

วิจารณ์

ในการทำ plasmapheresis มีประโยชน์มากเมื่อเราต้องการใช้ plasma จำนวนมาก และหลีกเลี่ยงการเกิด Iron deficiency anemia กับ donor ได้ donor ที่ทำ double plasmapheresis และ plateletapheresis

เมื่อเรา plasma ออก และให้ normal saline แทน donor จะไม่อ่อนเพลีย และความกันโลหิตไม่เปลี่ยนแปลงเลย แต่ donor จะมีอาการเบื่อหน่าย เพราะต้องนอนบนเวลากาน และ clot มักจะเกิดเมื่อเก็บเลือดเข้า blood bag ทีสอง ทั้งนี้อาจเป็นเพราะ

เส้นเลือดเกิด spasm หรือการ flow ของ เลือดไม่ดี เพราะต้องผ่านเข็มมากกว่า 1 แห่ง การทำทุก step จะต้องเป็น aseptic technique เพราะ red blood cell ต้องคง

donor ไป และจะต้อง control การให้ normal saline ให้พอเหมาะสมกับเวลาที่ทำ แต่ละคนด้วย.

REFERENCES

1. Mollison, P.L.: Blood transfusion in clinical medicine. Fourth edition. Philadelphia, F.A. Davis Co., 1967, P 3-5, 94-95.
2. Abel, J.J.; Rowntree, L.G.; and Turner, B.B.: Plasma removal with return of corpuscles (Plasmapheresis), J. Pharmacol. Exptl. Therap. 5: 625 (July) 1914. Quoted in: A new dimension for blood banks. Fenwal laboratory, Morton Grove, Illinois.
3. Brown, E.B., and Moore, C.V. (Editors): Progress in hematology volume III. New York and London, Grune&Strattion, 1971, P 24-25.
4. Lepore, M.J., and Martel, A.J.: Plasmapheresis with plasma exchange in hepatic coma. Ann Intern Med. 72: 165-74, Feb. 1970.
5. Lepore, M.J., Stutman, L.J., Bonanno, C.A., Bonklin, E.F., Robilotti, J.G., and McKenna, P.J.: Plasma exchange in hepatic coma. Arch Intern Med. 129: 900-7, June 1972.
6. Turnberg, L.A., Mahoney, M.P., Gleeson, M.H., Freeman, C.B., and Gowenlock, A.H.: Plasmapheresis and plasma exchange in the treatment of hyperlipaemia and Xanthomatous neuropathy in patients with primary biliary cirrhosis. Gut. 13: 976-81, Dec. 1972.
7. Kovac, I.: Plasmapheresis in Rh-Isoimmunization. Lancet. 1: 1253, 2 June 1973.
8. Lucian, S., and Nicolae, M.: Plasmapheresis in acute pulmonary edema. New Engl. J. Med. 283: 1289-90, 3 Dec 1970.
9. Kay, H.E.M.: Preparation and use of platelet concentrates. Brit J Haemato. 17: 603, Dec 1969.
10. Platelet transfusion. New Engl. J. Med. 280: 273, 30 Jan 1969.
11. Han, T., Stutzman, L., Cohen, e., and Kim, U.: Effect of platelet transfusion on hemorrhage in patients with acute leukemia. Cancer. 19: 1937-42, Dec 1966.
12. Fenwal laboratories technical manual. 3rd edition. 1967, P16.

SUMMARY

Modified method of double plasmapheresis and plateletapheresis was tried in 20 healthy donors by utilizing the resources available in Chiang Mai University Hospital.

Blood was first collected in the ACD single blood bag, then centrifuged. Packed red cell were transfused back to the donor, blood was re-collect again via the retaining needle into the second ACD blood bag. After refrigerated centrifugation, packed red cells were again transfused into the donor. During the process of component separation, the vein was kept opened by saline drip.

The result showed that the modified method with the simple equipments worked very well and

costed much cheaper than with the standard equipments. No complication was noted in donors except for some complaint of time consumed and slight pain in the later part of the procedure. Their blood pressures were found to be stable. The whole procedure took $2\frac{1}{2}$ hours. There was no difference between using standard and high speed centrifugation as far as the time was concerned. However, high speed technic showed definite advantage in term of plasma yield. The only difficulty was usually found during the second bleeding when theh lood clot might form and obstruct the flow. However, this modified method, if properly done, would be very useful for future component preparation in the blood bank.

THE SERUM LIPIDS
IV. NEPHROTIC SYNDROME

Muni Keoplung, M.D.*

Jit Jiraratsatit, M.D.*

Nantaya Waiwatana, B.Sc. (Med. Tech.)**

Nephrotic syndrome has striking manifestations in its hyperlipidemia and hyperlipemia reflecting the increased levels of certain classes of serum lipoproteins. It can provide varieties of lipoproteins, ranging from a discrete increase in beta-lipoproteins to tremendous increases in pre-beta lipoproteins (1, 2, 3) to represent secondary hyperlipoproteinemias, types II, IV and V. The mechanism by which certain lipoprotein concentrations are increased in nephrosis, so far, has not been established. We have observed these serum changes in both ambulatory and hospitalized nephrotic patients which are worthy of academic interest.

MATERIAL AND METHODS:

A total number of 27 nephrotic subjects were studied. When diagnosed, all of them showed classical, clinical features of nephrotic syndrome with hypoalbuminemia and hyperlipemia. Renal biopsy confirmed the diagnosis in most of cases. They were categorized into 3 groups:

1. UNTREATED: There were 8 new patients without history of any treatment in this group (age 15-51 years, 5 male, 3 female).

2. PREDNISOLONE-TREATED BUT UNCONTROLLED: There were 10 patients falling in this group (age 17-47, 9 males, 1 female).

3. PREDNISOLONE - CONTROLLED: (doses vary from 10 mg. every other day to 10 mg. per day). There were 9 patients in this group (age 15-41 years, 7 males, 2 females). At the time of investigation, no one had edema or hypoproteinemia and the proteinuria was trace or negative. There was only one in this group

* Department of Medicine, Faculty of Medicine, Chiang Mai University.

** Department of Clinical Chemistry, Faculty of Associated Medical Sciences Project, Chiang Mai University,

who had spontaneous remission after the complete withdrawal of the steroids. The serum lipids and lipoproteins were analyzed by the methods previously mentioned. (4)

RESULT:

I. Untreated : The range for alpha-lipoprotein was 15-29% (mean = 22%), pre-beta-lipoprotein was 15-33% (mean = 43%), beta-lipoprotein 36-50% (mean 43%) and albumin-bound-free fatty acid was 7-17% (mean 10%). Cholesterol was 148-812 mg% (mean = 369 mg%), triglyceride was 124-432 mg% (mean = 281 mg%) and total lipid was 429-2589 (mean 1201 mg%).

II. Prednisolone-treated but uncontrolled: Alpha-lipoprotein 24-27% (mean = 22%), pre-beta-lipoprotein was 12-42% (mean = 24%), beta-lipoprotein was 23-44% (mean = 34%) and albumin-bound-free fatty acid was 5-29% (mean = 19%). Cholesterol was 160-1064 mg% (mean = 298 mg%), triglyceride was 107-338 mg% (242 mg%) and total lipid was 692-4082 mg% (mean = 1267 mg%).

III. Prednisolone-controlled : Alpha-lipoprotein was 13-24% (mean = 20%), pre-beta-lipoprotein was 21-

40% (mean 29%), beta-lipoprotein was 22-34% (mean = 28%) and albumin-bound-free fatty acid was 8-34% (mean = 23%). Cholesterol was 119-300 mg% (mean = 190 mg%), triglyceride was 63-326 mg% (mean = 149 mg%) and total lipid was 462-1208 mg% (mean = 918 mg%).

All data of groups I, II and III were shown in tables I, II, III-IV and V-VI respectively.

COMMENTS

Nephrotic syndrome represents secondary hyperlipoproteinemias, types II, IV and V. The data of the three groups as presented are classically characterized by a rise in triglyceride, cholesterol, pre-beta-lipoprotein and beta-lipoprotein in the untreated nephrotic syndrome; all of these values are slightly increased in partially treated and uncontrolled nephrosis and they are classically within our "Reference values" in the prednisolone-controlled group.

Beside the decrease of proteinuria, the increase of serum albumin; the return to normalcy of these serum lipoproteins should indicate the therapeutic response.

TABLE I.

UNTREATED NEPHROTIC SYNDROME

Age-yr.	No.	Lipoprotein Expressed in per cent				Albumin-bound-free	
		alpha		pre-beta		beta	
		Range	Mean	Range	Mean	Range	Mean
15-51	8	15-29	22	15-33	24	36-50	43
M:F=5:3						7-17	10

PREDNISOLONE-TREATED BUT UNCONTROLLED N.S.

17-47	10	24-27	22	12-42	24	23-44	34	5-26	19
M:F=9:1									

PREDNISOLONE-CONTROLLED N.S.

15-41	9	13-24	20	21-40	29	22-34	28	8-34	23
M:F=7:2									

TABLE II.

UNCONTROLLED N.S.

Age-yr.	No.	Cholesterol mg%		Triglyceride mg%		Total lipids mg%	
		Range	Mean	Range	Mean	Range	Mean
15-51	8	148-812	369	124-432	281	429-2586	1201
M:F=5:3							

PREDNISOLONE-TREATED BUT UNCONTROLLED N.S.

17-47	10	160-1064	298	107-338	242	692-4082	1267
M:F=9:1							

PREDNISOLONE-CONTROLLED N.S.

15-41	9	119-300	190	63-326	149	462-1208	918
M:F=7:2							

REFERENCES

1. Gitlin, D., et al.: Studies on metabolism of plasma protein in nephrotic syndrome. II. Lipoproteins. *J. Clin. Investigation*; 37:172-184, 1958.
2. Baxter, J.H., Goodman, H.C., and Havel, R.J. Serum lipid and lipoprotein alterations in nephrosis. *J. Clin. Investigation*; 39:445-465, 1960.
3. Baxter, J.H.: Hyperlipoproteinemia in nephrosis. *Arch. Int. Med.*; 190:742-757, 1962.
4. Keoplung, M., Jiraratsatit, J., Waiwatana, W.: The serum lipids. II. Reference values in Chiang Mai. *Bull. Chiang Mai Med. Tech.*; 6:165-200, 1973.
5. Beaumont, J. L. et al.: Classification of hyperlipidemias and hyperlipoproteinemias. *Bull. Wld. Hlth. Org.*, 43:907, 1970.
6. Fredrikson, D.S., Levy, R.I., Lees, R.S.: Fat transportation in lipoprotein in an integrated approach to mechanism and disorders. *New Eng. J. Med.* : 276: 216-217, 1967.

ปัจจัยทางภาษาไทย

ในผู้ป่วยด้วย Nephrotic syndrome พบว่ามี secondary hyperlipoproteinemias ชนิด II, IV และ V จากการวิจัยในผู้ป่วย ของโรงพยาบาลเชียงใหม่ จำนวน 3 กลุ่ม พบว่าปริมาณของ Triglyceride, cholesterol, pre-beta lipoprotein และ beta-lipoprotein เพิ่มมากขึ้นในผู้ป่วย Nephrotic syn-

drome ที่ไม่ได้รับการรักษา และเพิ่มขึ้นเล็กน้อยในผู้ป่วย Nephrosis ที่ได้ Prednisolone แต่ยังควบคุมไม่ได้ ส่วนในกลุ่มที่สามารถควบคุมด้วย Prednisolone นั้น พบว่า cholesterol และ Serum lipoproteins คงคล่อง กลับส่วนตัวปกติ.

STUDIES OF THE HI ANTIBODY AGAINST JE AND DENGUE IN AMPHOE SAMOENG AND MAECHAEM IN CHIANG MAI

By

Therdkiet Kanjanavisuti, B.Sc. (Med. Tech.)
Srisakul Kliks, B.S., M.S.*

ABSTRACT :

Sera of 342 healthy persons from the remote rural districts of Samoeng and Maechaem, Chiang Mai Province, North Thailand, were tested by the HI test for both JEV and dengue virus antibodies; 89% and 8% were positive for JEV and 86% and 94% were positive for dengue virus in Samoeng and Maechaem respectively. HI antibodies appeared in most persons in the 1 to 4 age group and reached nearly 100% by 14. Interviews with inhabitants and local health officials and examinations of provincial health records revealed very low incidence of clinical JEV infections. The authors suggest that unknown environmental or vector related factors are responsible for early subclinical exposure to JEV leading to the formation of protective antibodies and widespread resistance to clinical disease.

INTRODUCTION

Japanese Encephalitis (JE) is an acute febrile disease, ranging in expression from inapparent subclinical, to severe, frequently fatal, infections. JE is caused by a group B arbovirus (JEV) and is transmitted by mosquitoes known to be members of the genus **Culex**, in particular **C. tritaeniorhynchus** (2). Swine are

commonly a reservoir host or magnifier for the virus.

In Thailand periodic rainy season outbreaks of JE have been recorded in the northern region since 1962 (7). The largest single outbreak studied occurred in Chiang Mai Province during the 1969 rainy season when the incidence rate of clinically diagnosed cases reached 20.3

* Department of Microbiology, Faculty of Medicine, Chiang Mai University.

per 100,000 population (5). There has been a seasonal outbreak in every subsequent year. During the 1970 outbreak, 84 of 100 persons who were hospitalized with JE-like symptoms were serologically confirmed by HI and CF tests; 64% of these were males and 94% were under 30 years of age. The overall case incidence was 14.7 per 100,000 population⁽⁷⁾.

Yamada et al, (5), examined clinical records of patients with clinically confirmed JE or JE-like symptoms from 2 local hospitals and noted that most hospitalized JE patients were residents of Chiang Mai municipality and surrounding districts. In their study, no clinical cases were uncovered in hospitalized persons who had resided in the three remote districts of Maechaem, Samoeng and Omkoi which all have a slightly higher mean altitude than the Chiang Mai valley and all of which are closed to vehicular traffic during the rainy season, when JE epidemics normally occur.

The present study further investigates the clinical and serological incidence of JE among the populations of two of the three remote, districts by examination of records, and through interviews with, the local population and provincial health officers, and by one site serological

surveys using the specific hemagglutination inhibition (HI) test against JEV.

MATERIALS AND METHODS

Virus Antigen. JEV Nakayama strain, dengue virus type 1, Hawaiian strain, and dengue virus type 3, strain 3-H87 were generously supplied as lyophilized antigens by S.E.A.T.O. Laboratory, Bangkok.

Hemagglutination Inhibition test: All blood samples were tested by the Hemagglutination Inhibition (HI) test for Arbovirus's⁽¹⁾.

HI antibody against JEV exhibits a certain degree of cross reactivity with dengue virus (3, 6). As seasonal outbreak of both JE and dengue fever occur concurrently in Northern Thailand (5, 7), it is necessary to test all sera for reactivity against both viruses. HI titers of 1:40 in the JEV test and titers of 1:20 for dengue (Fukunaga, personal communication).

Location Samoeng District with a population of 15,000 (density 10 persons/Km²) (Shaw, 1969) is located 50 Kilometers by compacted dirt road from Chiang Mai. At the time of the 1969-1970 outbreak, the district seat could not be reached by road during the peak of the rainy season.

The landscape consists of low-

land rice paddies surrounded by small hills dominated by steep ridges attaining a maximum altitude of about 6,000 ft. above mean sea level.

Maechaem district is adjacent to and southeast of Samoeng. The population is estimated to be about 27,000 (density 7 persons/Km²) (Shaw 1971). Maechaem is about 170 Kilometers by road from Chiang Mai of which the last 40 kilometers was little more than a mountain track prior to 1973. (The population density in and around Chiang Mai City ranges between 134 and 809 persons/Km²)

Sampling procedure: During January 1974, on site studies of 3 days each were made in both district seats. Voluntary participation of healthy persons from village households was requested for the collection of blood samples and interviews. Efforts were made to select sufficient numbers of subjects from each of the five previously determined age classes (ranging from 1 to 33 years and above) in order to assure adequate distribution within the samples. Single filter paper blood samples were collected by finger puncture and each subject was questioned briefly about any previous experience with several of the characteristic JE symptoms (i. e. continuous high fever,

convulsions, prolonged coma with limpness of limbs). In Samoeng, 136 persons were sampled of whom 81 were males and 105 were females; the Maechaem sample consisted of 156 persons of whom 73 were males and 83 were females.

Blood samples were collected over three days periods in both towns and stored at room temperature for approximately one week before elution. All filter paper samples were simultaneously eluted by being cut into several pieces and eluted overnight in 0.4 ml. of borate buffered saline (pH 9.0) in a small test tube. The tubes were centrifuged at 2500 rpm. for 10 min. to separate out the eluate and stored for 1 to 4 weeks at -20°C until tested (Fukunaga, personal communication).

RESULTS.

JE Disease occurrence: None of the subjects interviewed and bled indicated that they were aware of the occurrence of JE-like illness in the area in the recent past. However, records from the Provincial Health Office had noted some cases of JE from the two districts under study during the past 4 to 5 years (Table 1). These data, based on clinical observations showed that the incidence of JE disease in Samoeng, Maechaem and Omkoi was very low compared to those in other districts of the

Chiang Mai Valley.

JEV and Dengue Antibody

Prevalence (Table 2): In Samoeng District, of the 186 persons tested 89% were positive for HI antibody against JEV and 86% against dengue. Titers ranged from 1:20 to 1:1280; the frequency distribution showed that most persons reacted positively at a titer of 1:40 for both JEV and dengue (Fig. 2). Similarly, in Maechaem District, 86% and 94% of 156 persons tested were positive for HI antibody against JEV and dengue respectively. Mean titers were higher in Maechaem with the highest frequency at 1:80 for JEV and 1:160 for dengue (Fig. 2). No sex differences were noted (Table 3).

Age Distribution: The frequency of serologically positive JE and dengue subjects in both areas increased with age (Fig. 3). The rate of acquisition of both antibodies were similar appearing at 1 to 4 years of age and gradually rising to nearly 100 percent by the age of 25 (Fig. 3). In Maechaem the prevalence of anti-JEV HI antibody rose more rapidly and higher mean titers were measured than in Samoeng District. Most persons in the former district converted to positive abruptly after the age of 9. Virtually 100% of those tested in the 10 to 14 age group were positive.

The prevalence of dengue antibody in the 1 to 4 years age group in both districts was somewhat greater than in the 5 to 9 year group, but thereafter rose steadily reaching essentially 100% by the age of 25.

The comparative distribution of JEV and dengue titers in these populations are displayed in figure 4, a and b. The titer patterns are similar in both districts, indicating considerable exposure to both viruses. JEV titers in Samoeng were considered to be monospecific in 33 (18%) of 186 HI tests, while 11 (6%) had monospecific dengue titers. In Maechaem, JEV titers were monospecific in 12 (8%) of the 156 HI test sera, while 47 (31%) had monospecific dengue titers.

DISCUSSION

Through interviewed with local inhabitants and health officials, and examinations of provincial medical records, it was evident that the occurrence of clinical JE disease in the districts was considerable less frequent than in the Chiang Mai Valley, thus confirming the observation of Yamada *et al* (5). However, the high prevalence of anti-JEV HI antibodies in both populations seems to indicate that virtually everyone above the age 27 has experienced subclinical, inapparent infection with JEV. The ratio of inapparent to apparent

infection by JEV was reported to be 312:1 in the Chiang Mai Valley (8). This undoubtedly contributed to the high prevalence of anti-JEV HI antibodies and low incidence of clinical disease in the areas studied.

In the present study despite that lack of clinical disease the prevalence of anti-JEV antibody in the population of Samoeng and Maechaem was found to be comparable to that of the Chiang Mai Valley reaching 90% in the 10 to 14 years age range. Grossman *et al* (8) reported a 86 to 92% prevalence in three of his Chiang Mai Valley villages in the 15 to 29 age group and Yamada *et al* (5) found 90% of his healthy population in the 11 to 20 age group to have anti-JEV titers of greater than 1:20. Acquisition of anti-JEV HI antibody could be evidence of early protective antibody formation leading to widespread resistance to clinical JEV infection.

It is suggested that factors such as population density, mobility and communications, vectors density, altitude or other environmental and ecological factors may play a significant epidemiological role enhancing the probability of early exposure to the virus followed by antibody production.

It is also likely that at least some persons who contacted clinical JE in these remote areas were unable to reach hospitals during the rainy season or were not detected at interview.

In figure 4, it can be seen that while monospecific infection of both viruses occurred, the apparent anti-JEV HI antibody titers of most persons were due to the combined effect of infection by both viruses. Therefore, the actual overall prevalence of anti-JEV HI antibody must be assumed to be something less than the 89% and 86% found in the present study in Samoeng and Maechaem respectively.

REFERENCES

1. Clake, D.H. and J. Casals: Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne virus. Am. J. Trop. Med. Hyg. 7: 561 - 573, 1958.
2. Halstead, S.B., P. Singharaj and P. Simasathien: Ecology of arbovirus in Thailand. Ann. Prog. Rep. The SEATO Medical Research Laboratory, Bangkok A₁-A₆, 1965.

3. Igarashi, A., K. Fukai, S. Ahdank and P. Tuchinda: Antibody against Japanese Encephalitis in sera of Dengue hemorrhagic fever patients in Thailand. *Biken J.* 11, 41-49, 1968.
4. Shaw, N.F.: "In economic and social environment of Changwat Chiang Mai, Thailand" mimograph reports from the United States Operation Mission., 1971.
5. Yamada, T., S. Rojanasuphot, M. Takagi, S. et al: Studies on an epidemic of Japanese Encephalitis in the Northern region of Thailand in 1969 and 1970. *Biken J.* 14:267-296, 1971.
6. Edelman, R., A. Niasalak, A. Pariyanonda, et al: Immuno-globulin response and viremia in dengue vaccinated gibbons repeatedly challenged with Japanese encephalitis virus. *Am. J. Epidemiol.* 97: 208-218, 1973.
7. Grossman, R.A., R. Edelman, P. Chiowanich, P. Voodhikul, and C. Siriwan, : Study of Japanese encephalitis virus in Chiang Mai valley, Thailand. II Human Clinical infections. *Am. J. Epidemiol.* 98: 121-132, 1973.
8. Grossman, R.A., R. Edelman, M. Willhight, S. Pantuwatana, and S. Udomsakdi, : Study of Japanese encephalitis virus in Chiang Mai Valley, Thailand. III. Human Seroepidemiology and inapparent infections. *Am. J. Epidemiol.* 98: 133-149, 1973.

Table 1 Morbidity rate per 100,000 persons of Japanese Encephalitis in some districts in Chiang Mai Province. Data collected from local hospitals are provided by the Chiang Mai Provincial Health office (1969-1973)

District	1969		1970		1971		1972		1973	
	Cases	Rate								
Muang	43	30.8	20	14.3	19	13.6	16	11.4	15	10.7
Maetang	12	21.5	5	8.9	8	14.3	3	5.8	6	10.7
Hangdong	12	25.6	10	21.2	10	21.2	4	8.5	6	12.7
Sanpatong	14	14.8	8	8.5	9	9.5	8	8.5	11	11.6
Saraphi	16	26.6	6	9.9	11	18.2	5	8.3	11	18.2
San Kamphaeng	12	17.0	9	12.7	10	14.1	8	11.3	10	14.1
Sansai	15	25.6	5	8.5	11	18.8	1	1.7	4	6.8
Maechaem	1	3.7	0	0	0	0	0	0	0	0
Samoeng	1	6.6	1	6.6	0	0	0	0	1	6.6
Omkoi	0	0	0	0	0	0	2	9.5	0	0

Table 2 Prevalence of JEV and dengue HI antibody titers in Samoeng and Maechaem

HI titers	Samoeng		Maechaem	
	JEV	dengue	JEV	dengue
<20	19	27	8	9
20	2	13	13	-
40	112	112	35	22
80	40	26	68	44
160	10	5	24	56
320	1	1	7	16
640	1	1	1	4
1,280	1	1	-	5
2,560	-	-	-	-
Total	186	186	156	156
% HI + ve	89	86	86	94

* positive HI titers against JEV > 40

Positive HI titers against dengue > 20

Table 3 Percentage distribution of JEV and dengue HI antibodies by sex in Samoeng and Maechaem.

Sex	tested	% HI positives				
		Samoeng		tested	Maechaem	
		JEV	dengue		JEV	dengue
Male	81	90	89	73	87	97
Female	105	88	83	83	85	91
Total	186	89	86	156	86	94

Table 4 Percentage distribution of JEV and dengue HI antibodies, by age in Samoeng and Maechaem.

Age (years)	tested	% HI positives				
		Samoeng		tested	Maechaem	
		JEV	dengue		JEV	dengue
1-4	10	70	80	17	59	88
5-9	41	78	76	42	66	83
10-14	58	87	83	32	100	94
15-24	45	97	95	23	100	100
25-34	9	100	100	14	100	100
35+	23	100	100	28	100	100
Total	186	89	86	156	86	94

Figure 1. MAP OF CHIANG MAI PROVINCE

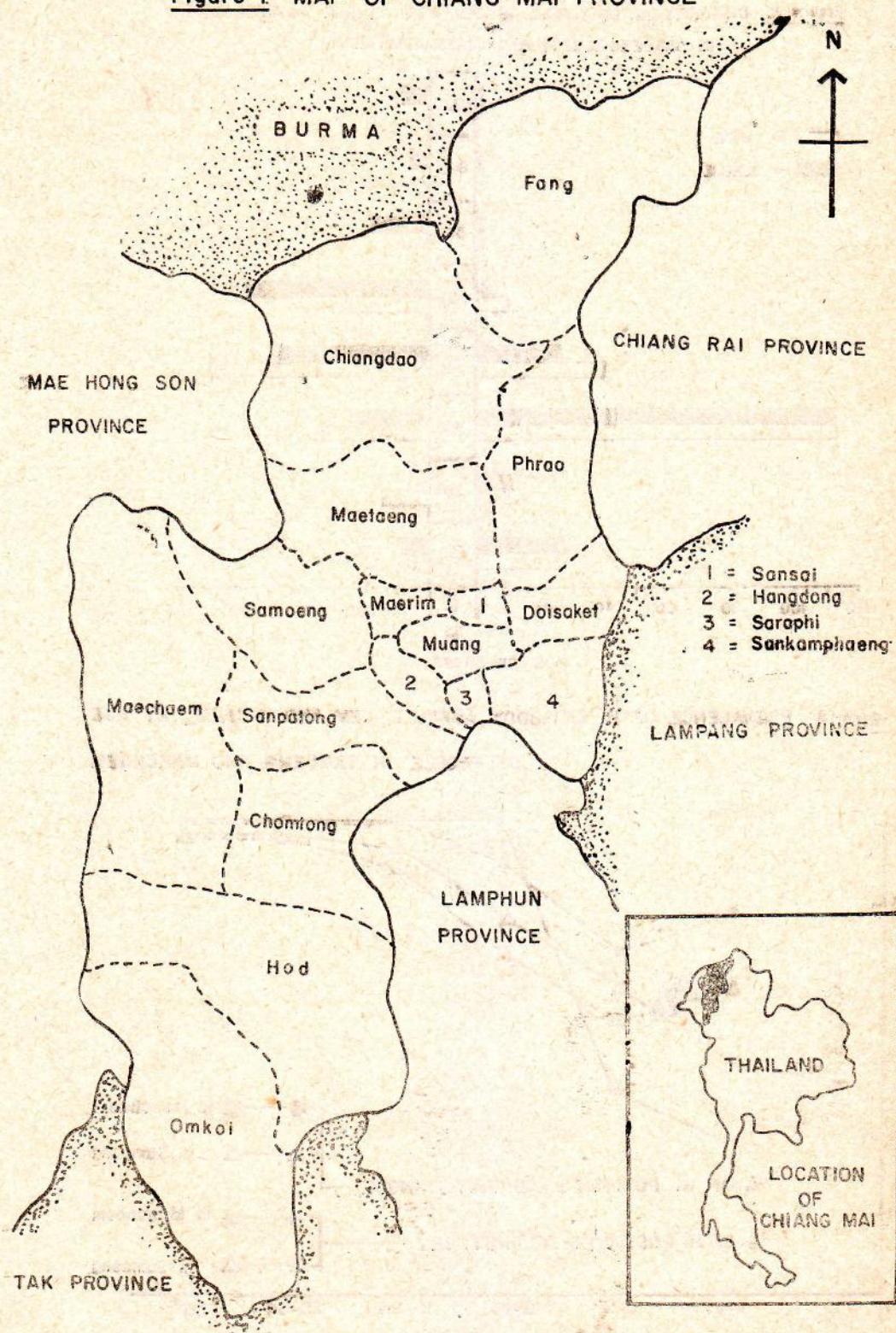


Figure 2. DISTRIBUTION OF TITERS OF JEV AND DENGUE HI ANTIBODIES
IN SAMOENG (LEFT) AND MAECHAEM (RIGHT)

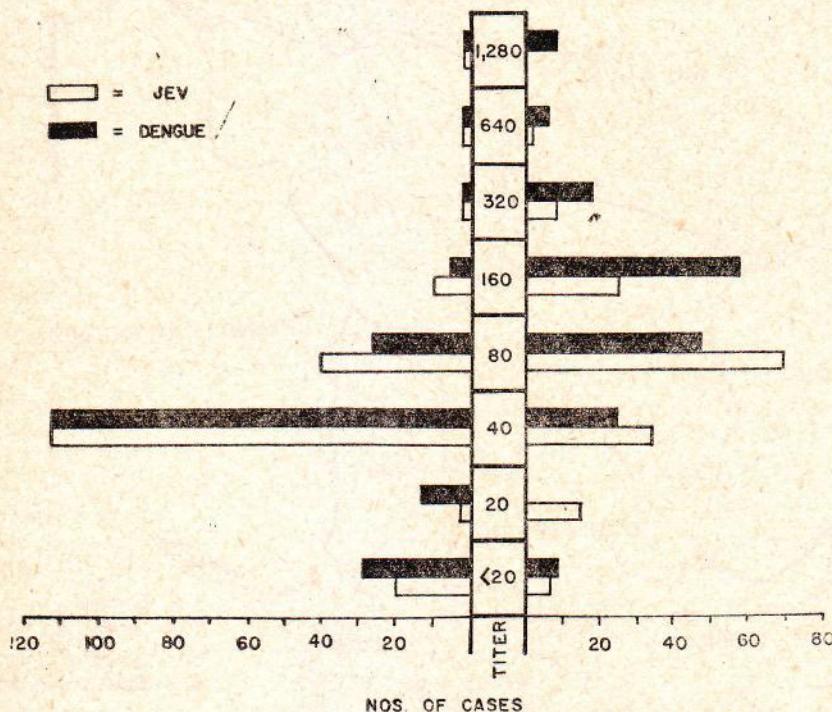
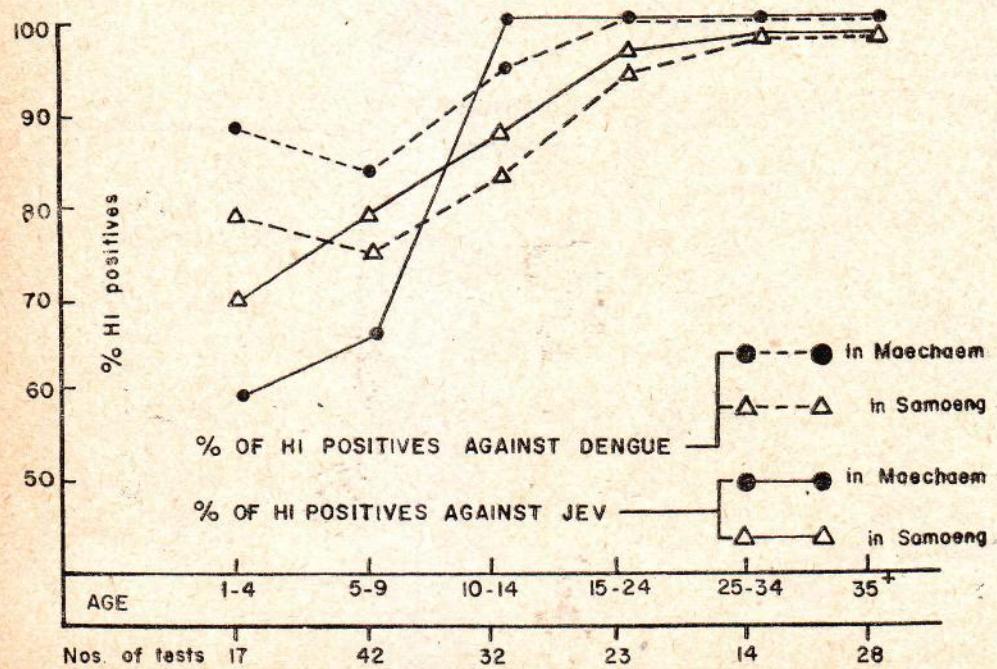



Figure 3 PREVALENCE OF HI ANTIBODY AGAINST JEV AND DENGUE, BY AGE
OF PEOPLE IN SAMOENG AND MAECHAEM

Figure 4 Distribution of HI titers to JEV and dengue in Samoeng (a) and Maechaem (b). January, 1974.

a) Samoeng

JEV titer	Highest Dengue 1 or 3 titer									Total	%
	< 20	20	40	80	160	320	640	1280	2500		
< 20	11	1	7							19	91
20		1	1							2	
40	16	9	75	11	1					112	81
80		2	25	12	1					40	
160			4	3	3					10	
320						1				1	
640					1					1	
1280						1				1	
2560											
5120											
total	27	13	112	26	5	1	1	1		186	
%	14	67		17		2			-		100

b) Maechaeam

JEV titer	Highest dengue 1 or 3 titer										Total	%
	< 20	20	40	80	160	320	640	1280	2560	5120		
< 20	2		4	2							8	14
20	4			5	3	1					13	
40			2	16	16	1					35	66
80	3		8	19	29	7	2				68	
160		3	4	9	6	2					24	20
320				1	2		4				7	
640							1				1	
1280												
2560												
5120												
Total	9	0	22	44	56	16	4	5			156	
%	6	14		64		13		3			100	

ย่อเร่องภาษาไทย

ผู้รายงานได้ศึกษาทั่วอย่างน้ำเหลืองจากคนในอ่าเภอสะเมิง และแม่แจ่ม จังหวัดเชียงใหม่ โดยใช้วิธี Hemagglutination Inhibition Test จากทั้งหมด 342 ทั่วอย่างพบว่า 89% และ 86% ให้ผลบวกต่อ JEV กับอีก 86% และ 94% ให้ผลบวกต่อ Dengue ในอ่าเภอสะเมิงและแม่แจ่มตามลำดับ HI antibodies จะพบในส่วนมาก ของเด็กอายุ 1-4 ปี และในเด็กอายุ 14 ปี จะให้

ผลบวกเกือบ 100% จากการสัมภาษณ์และตรวจสอบหลักฐานพบว่ามี low incidence ของ Clinical JEV infections ในอ่าเภอ ทั้งสองดังกล่าว ผู้เชื่อโน้นนิยมฐานว่า เป็น เพราะ unknown environmental หรือ Vector related factors เป็นทั่วสำคัญที่ทำให้มี early subclinical exposure ต่อ JEV ทำให้เกิด protective antibodies และ widespread resistance ต่อโรคทั้งสองดังกล่าว.

ข้อ และ รีวิวเอกสาร

A New Fluorescence and Kin-youn's Acid-fast Stain:

Philip W. Lavallee

Amer. J. Clin. Path. 60:428-429, 1973.

ผู้รายงานเรื่องนี้ได้ทดลองเบริญบเที่ยบการย้อม Acid-fast stain โดยวิธีใหม่ กับวิธีอื่นๆที่ได้เคยใช้ย้อมกันมา ปรากฏผลว่าวิธีใหม่ได้ผลดีที่สุด ส่วนวิธีอื่นๆ ให้ผล false positives และ false negatives มากกว่าวิธีใหม่ ตามวิธีการของผู้รายงานคือทำ smears ปล่อยให้ air-dried และ heat-fixed ต่อจากนั้นนำไปย้อมด้วย auromine-O solution 3 นาที, drain slide และย้อมด้วย Kin-youn's carbol fuchsin solution 2 นาที, rinse ด้วยน้ำ ต่อจากนั้น stain และ decolorize ด้วย methylene blue-acid alcohol solution 2 นาทีถังน้ำ และปล่อย air-dry

ชุด บัวน้ำอีกด้วย

วท.บ. (เทคนิคการแพทย์)

Red cell Density in various blood disorders:

by Koji Nakashima, Susumu Oda and Shiro Miwa

J. Lab. and Clin. Med. 82:297-302, 1973.

โดยวิธีของ Danon และ Marikovsky เข้าใช้ phthalate esters ซึ่งเป็นสารไม่ร่วนตัวกันน้ำ เป็นตัวแยกเม็ดเลือด Phthalate fluid A (D.W. 1.104 สำหรับชาย และ D.W. 1.102 สำหรับหญิง) และ Phthalate fluid B (D.W. 1.096 สำหรับชาย และ 1.094 สำหรับหญิง) ที่ใส่เข้าไปกับเม็ดเลือดใน capillary tube จะแยกเม็ดเลือดออกเป็น 3 fractions เมื่อนำไปปั่นที่ 12,000 rpm คือ fraction ที่หนักกว่า fluid A (D-fraction), Fraction ที่เบากว่า fluid B (L-fraction) และ fraction ระหว่าง fluid A และ B (I-fraction)

ผลจากการทดลอง เบริญบเที่ยบ กับคนปกติชายหญิงอย่างละ 20 คน พบร่วางคนไข้ Iron deficiency anemia มี L-fraction สูงขึ้น แต่กลับมี D และ I-fractions น้อยลง ซึ่งแสดงว่าคนไข้ IDA มีเม็ดเลือดเบา คนไข้ Thalassemia ซึ่งพบ hypochromia ไม่ปรากฏว่า D-fraction ลดน้อยลงแต่อย่างใด จึงเข้าใจว่าการคิดสีอาจนั้นเกิดจากความ

บางของเม็ดเลือดมากกว่า ส่วนใน Hereditary spherocytosis มี L และ I-fractions ลดลงแต่มี D-fraction สูงกว่า normal, Autoimmune hemolytic Anemia รายหนึ่งซึ่งแต่ตรวจไม่พบ Anemia หรือ spherocytosis เลยนั้น โดยวิธีนับว่าเม็ดเลือดแดงมี density สูงขึ้น สำหรับคนไข้ที่เป็น Typical aplastic anemia ซึ่งมี pancytopenia จะพบว่ามีเปอร์เซนต์ของ D-fraction สูงขึ้น ส่วน L-fraction นั้นอยู่ลงบนเห็บได้ชัด ทั้งนี้เพราะ hypoplasia ทำให้มี reticulocytopenia ซึ่งเป็นส่วนของ L-fraction

นอกจากนี้ จากการตรวจหา enzymes ทั่วๆ เช่น Hexokinase, phosphofructokinase และ pyruvate kinase พบว่าจะมีมากใน L-fraction และน้อยใน D-fraction

ศุรพ นาตรัฐกุล
วท.บ. (เทคนิคการแพทย์)

Serum albumin polymorphism Bisalbuminemia in Hawaii-Japanese

Fukunaga, Francis H., and Glober, Gary A.

Amer. J. Clin. Path. 60:867-870, 1973.

จากการทำ Protein electrophoresis

คัวย cellulose acetate พบ Bisalbuminemia ในชาว Hawaii-Japanese 2 คน ซึ่งการพับครึ่งเป็นครึ่งแรก พับในชาวอเมริกันที่นิสัยญี่ปุ่น จากการ study ทางครือตัวพบว่า albumin variant ถูกถ่ายทอดแบบ autosomal codominant trait เมื่อ non alloalbuminemias ในชาวญี่ปุ่นและพากอเมริกันอินเดียน

ครึ่งแรกของการพับ Bisalbuminemia พบในคนไข้ diabetic ชาว German Report หลังจากนั้นส่วนใหญ่เป็นของชาวญี่ปุ่น และเมริกันอินเดียน

รายแรกของเอเชีย พับในชาว Moslem ใน Pakistan และไข้ของ albumin นั้นว่า Albumin Kashmir.

บุญพะเยา เลาหะจินดา
วท.บ. (เทคนิคการแพทย์)

Lactose Intolerance in Thai Adults.

By Pornpnn Tanjasiri

ผู้รายงานได้ทดสอบทำ Lactose Tolerance ในผู้ใหญ่ 24 คน โดยให้กิน lactose 50 gm. นมคากายใน 3 นาที และจะเลือดที่ปลายนิ้วหลังจากกิน lactose 15, 45, และ 105 นาที มาหา blood glucose ด้วยวิธี

Somogyi - Nelson พนวาระคัน blood glucose ที่สูงกว่าปกติ range ระหว่าง 1-13 mg% (เฉลี่ย 13 ± 7.9) เชื่อว่าการที่เกย์คัมมหรือกินอาหารที่มีส่วนประกอบของนมไม่เกี่ยวข้องกับ Lactose tolerance และการเกิด lactose intolerance ไม่เกิดจาก Physiological Adaptation ที่ milk-free diet.

Evaluation of the three Methods for Blood Sugar Determinations.

By Uthai Thongsriphongs

ในการหา glucose ทาง pooled serum เปรียบเทียบระหว่าง enzymatic, copper reduction และ O-toluidine methods โดยทำซ้ำกันวิธีละ 30 ครั้ง วิธี enzymatic ได้ค่า 92-104 mg% (เฉลี่ย 98 ± 2) วิธี Copper reduction ได้ค่า 90-98 mg% (เฉลี่ย 94 ± 2) และวิธี O-toluidine ได้ค่า 94-106 mg% (เฉลี่ย 102-4.5)

Serum Iron

By Pramuansri Chatpunyaporn

เปรียบเทียบวิธี Modified Caraway และ Williams and Conrad's Macro One tube method ในการหาระคับ SI และ TIBC ใน serum คนปกติ 10 ราย และผู้

ป่วยในโรงพยาบาลเรียงใหม่ จำนวน 36 ราย ปรากฏได้ค่าไกล์เคียงกันเพียง 10 ราย หรือ 27.7% เท่านั้น และวิธี Modified Caraway ให้ผลเป็นที่เชื่อถือ และมีความแม่นยำกว่าวิธี Macro one tube

Urinary 17-Hydroxyecorticosteroids

By Kruawan Visuthisakdi

การหาค่าปกติของ urinary 17-OHCS โดยวิธี 17-Ketosteroid kit (17-OHCS) ของ Medicchem, Inc. ใช้ phenylhydrazine เป็น Colour reagent ในคนไทยอายุระหว่าง 21-36 ปี จำนวน 39 คน พนว่า 12 ราย ได้ค่า 4.5-21.0 mg / 24 hr. (เฉลี่ย 13.0 mg/24 hr.) อีก 27 รายค่านวณไม่ได้ เพราะได้ค่า blank สูงกว่า unknown การทำ repeat ให้ผลไม่เท่ากัน ด้วยวิธีนี้ทำได้ง่าย และประหยัดเวลา เพราะไม่ต้องทำ hydrolysis และ purification แต่ไม่ reproducible และไม่เหมาะสมสำหรับในการทำในห้องปฏิบัติการ.

นันทยา วัยวัฒน

วท.บ. (เทคนิคการแพทย์)

ข่าว

แต่งตั้งคณะกรรมการ
จัดตั้งคณะกรรมการแพทย์

เพื่อให้การดำเนินงานจัดตั้งคณะกรรมการ
การแพทย์ มหาวิทยาลัยเชียงใหม่ อันจะ
ประกอบด้วย ๓ สาขาวิชา คือ เทคนิคการ
แพทย์, เทคนิกรังสี, และอาชีวบำบัด ได้
เป็นไปด้วยความเรียบร้อย และรวดเร็ว มหา
วิทยาลัยเชียงใหม่ได้มีคำสั่งที่ ๓๗๔/๒๕๗๗
ลงวันที่ ๒๓ เมษายน ๒๕๗๗ แต่งตั้งคณะกรรมการ
จัดตั้งคณะกรรมการแพทย์ เพื่อ^{ให้} ให้คณะกรรมการชุดนี้ทำหน้าที่ พิจารณาจัด
ทำรายละเอียดต่างๆ เพื่อขอจัดตั้งเป็นคณะกรรมการ
เทคนิคการแพทย์ท่อไป คณะกรรมการประ
กอบด้วย

๑. รองศาสตราจารย์นายแพทย์ชัยโรจน์
แสงอุดม เป็นประธาน

๒. ศาสตราจารย์นายแพทย์กัมพล พนัค
ย์ผล

๓. ศาสตราจารย์ นายแพทย์สنان ติ
มารักษ์

๔. ผู้ช่วยศาสตราจารย์ นายแพทย์มุนี
แก้วปลึง

๕. ผู้ช่วยศาสตราจารย์ นายแพทย์จิร
ศักดิ์ คำบุญเรือง

๖. ผู้ช่วยศาสตราจารย์ นายแพทย์บัญชา
กุลพงษ์

๗. ผู้ช่วยศาสตราจารย์ นายแพทย์ คำริ
คำรงค์กัก

๘. อาจารย์ นายแพทย์เทอดชัย ชีรaveกุ

๙. อาจารย์ ดร. สนิท มงคลแก้วเกยูร

๑๐. อาจารย์ณรงค์ สุขานุรัณ

๑๑. อาจารย์สุรพล ทันตยาคม

๑๒. อาจารย์เนตร สุวรรณคุหาสน์

๑๓. อาจารย์ผาสุก ชุมเชิงแพทย์ เป็น^{เป็น}
กรรมการ

๑๔. อาจารย์สันติ ไชยรัศมี เป็น^{เป็น}
กรรมการและเลขานุการ

สมรส :

พожารวบรวมข่าวสมรสของคิชช์เก่า
เทคนิคการแพทย์เชียงใหม่ ที่ได้สมรสไปใน
รอบปีที่ผ่านมาและปีนี้ คันธ์

๑๕ พฤษภาคม ๒๕๗๖

อาจารย์วิชิต สมทรพัพ (รุ่น ๔)

คุณประยงค์ ปรีดีสนิท

๑๖ ฤกษ์ตุลาคม ๒๕๗๖

คุณธนัช โถสิการ์ตัน (รุ่น ๒)

คุณพิกุล ไชยดวงแก้ว

๒๙ ตุลาคม ๒๕๑๖

คุณสุรีรัตน์ ศันศิริ (รุ่น ๓)

นายแพทย์เดชา คุณยักษร

๒๙ พฤศจิกายน ๒๕๑๖

คุณเกรียงวัลย์ วิสุทธิศักดิ์ (รุ่น ๓)

นายแพทย์สมชาย วัฒนาภรณ์ชัย

๒ มีนาคม ๒๕๑๗

คุณบรรณาการณ์ เจนการกิจ (รุ่น ๓)

นายแพทย์วินิต ชาติเสถียร

คุณชัชวาลี คุณารักษ์ (รุ่น ๔)

คุณอาทพร ทองทاب (รุ่น ๔)

คุณสุภาพร จินดลริ (รุ่น ๔)

อาจารย์นิวัฒน์ นกิวัฒนา (รุ่น ๓)

๒๒ มีนาคม ๒๕๑๗

คุณอาวีวรรณ แห่งถาวร (รุ่น ๓)

นายแพทย์เลอศักดิ์ วัชรสีห์

๑๘ พฤษภาคม ๒๕๑๗

คุณกนกหา บริราช (รุ่น ๔)

นายแพทย์วีระ หล่ออยนท์

ประชุมต่างประเทศ

รองศาสตราจารย์ นายแพทย์ชัยโรจน์
 แสงอุ่น หัวหน้าโครงการจัดตั้งคณิตศาสตร์
 การแพทย์ ได้เดินทางไปประชุมเกี่ยวกับ
 International Symposium on Quality

Control ณ กรุงโถเกียว ประเทศญี่ปุ่น
 ระหว่างวันที่ ๑-๒ มิถุนายน ๒๕๑๗

สถาบันวิทยาศาสตร์และเทคโนโลยีการแพทย์
 เชียงใหม่

บัณฑิตที่จบปริญญาตรี

	ชาย	หญิง	รวม
รุ่นแรก (๒๕๑๐-๑๑)	๙	๓	๑๒
รุ่น ๒ (๒๕๑๑-๑๓)	๑๔	๑๔	๓๒
รุ่น ๓ (๒๕๑๓-๑๕)	๑๑	๑๓	๒๔
รุ่น ๔ (๒๕๑๔-๑๖)	๑๓	๑๒	๒๕
รุ่น ๕ (๒๕๑๕-๑๗)	๑๕	๑๔	๓๓
รุ่น ๖ (๒๕๑๖-๑๙)	๑๖	๗	๒๓
รวม		๙๙	๖๗

บัณฑิตที่ศึกษาต่อปริญญาโท

รุ่นแรก คุณสุเทพ คงรอด

รุ่นที่ ๒ อาจารย์คำรง พิณกานทร์

อาจารย์นันทยา วัยวัฒน์

อาจารย์บุญพะเยาว์ เลาแหงจินดา

อาจารย์สุพัตรา พีรakan

คุณสุนทร เนติมศรี

รุ่นที่ ๓ อาจารย์นิวัฒน์ นกิวัฒนา

อาจารย์สุพิลา สุกาลีศ

อาจารย์อัมพารัตน์ ชุมรุ่น

คุณไชยรัตน์ อศักขาก
 คุณปราโมทย์ วนิชย์นาคม
 คุณพรพรวด รัฐุณศิริ
 รุ่นที่ ๔ อาจารย์วิชิต สมทรพัย
 คุณแพ็ญจันทร์ มยาเสส
 คุณชัชวาลี คุณราภัณฑ์
 คุณศุกร์ พันธุ์พิศุทธ์ชัย
 รุ่นที่ ๖ คุณธีระ วิมลตัตรเวท
 คุณไพรожน์ แสนยานุสิน
 คุณปกรณ์ ไวยานันท์
 คุณอุ่น ชัยทอง

คุณชูชีพ ประพุทธพิทaya
 บัณฑิตทศกัยาต่อปริญญาเอก
 รุ่นที่ ๒ อาจารย์อุ่นศักดิ์ เหวชิงเจริญ
 ศึกษาต่อต่างประเทศ
 อาจารย์เกตุรัตน์ สุขวัจน์ ภาควิชา
 ปราสาติวิทยา คณะแพทยศาสตร์ เชียงใหม่
 และคุณสุเทพ คงรอด คณะอายุรศาสตร์เชียง
 ร้อน ได้รับทุน SEAMEC ไปศึกษาต่อขั้น
 ปริญญาโท ณ U.P. ประเทศไทยพัลปีนส์ และ^๔
 ได้ออกเดินทางแล้วเมื่อวันที่ ๔ มิถุนายน