

นารถการแพทย์ เชียงใหม่

เชียงใหม่ แพทย์การและการ
พัฒนาเชียงใหม่

BULLETIN OF
CHIANG MAI
MEDICAL TECHNOLOGY

VOLUME 6

JANUARY 1973

NUMBER 1

บริษัท อุตสาหกรรมที่ จำกัด

๕๙ อาคาร ๘ ถนนราชดำเนิน พระนคร
ที่ ป.๘. ๒-๕๗ โทรศัพท์ ๘๖๖๕๙, ๘๖๖๒๔

บริการและจำหน่าย

เคมีภัณฑ์ อุปกรณ์วิทยาศาสตร์

เทคนิคทางวิทยาศาสตร์โดยทั่วไป

เพื่อการศึกษา, วิเคราะห์, วิจัย และอุตสาหกรรม
ทุกสิ่งทุกอย่างเกี่ยวกับวิทยาศาสตร์การแพทย์

โปรดติดต่อ กับ

บริษัท อุตสาหกรรมที่ จำกัด

เป็นผู้แทนจำหน่ายแต่เดียวในประเทศไทย ของบริษัทต่อไปนี้

1. Griffin & George. England

British leading Supplier & Manufacturer of Scientific equipment for Chemistry - Physics - Biology and Applied Sciences

2. Stanton Instrument Ltd. England.

Manufacturer of Analytical Balance, Equipments for Thermogravimetry-Differential Thermal Analysis

3. LBK-Produkter AB. Sweden

Advanced Research Equipments with Special Emphasis in Bio - Medicine & Bio - Chemistry

4. PHYWE AG. German

German Leading Manufacturer & Supplier for Scientific equipments in the field of Physic Chemistry Biology and Applied Research Techniques.

5. W. Buchi Glasapparate Fabrik. Switzerland

Swiss Manufacturer of Scientific Glass Apparatus for Advanced Research and Routine Control Laboratories

6. Orion Research Inc. U.S.A.

Manufacturer of Specific Ion Meters & Specific Ion Electrodes-A Whole New Technology for Chemical Measurement.

7. Van Water & Rogers Inc. U.S.A.

US & World Leading Scientific Supplier and Manufacturer for Scientific Instruments and Apparatus for industrial, educational, Clinical & Research Laboratories.

etc.

วารสารเทคโนโลยีการแพทย์ เชียงใหม่ BULLETIN OF CHIANG MAI MEDICAL TECHNOLOGY

Volume 6

January 1973

Number 1

CONTENTS

Editorial. (Faculty of Associated Medical Science, Chiang Mai University)	
Leukocyte Alkaline Phosphatase Values of Healthy Thai Adults	
Vanna Kungswanich, B.Sc. (Med. Tech.)	
Panja Kulapongs, M.D., Dip. Amer. Bd. Ped.	
Circulating Reticulocytes in Normal Adults	17
Viriya Silpachai, B.Sc. (Med. Tech.)	
Damrong Piathanond, B.Sc. (Med. Tech.)	
Panja Kulapongs, M.D., Dip. Amer. Bd. Ped.	
Soil Survey for Dermatophytes in Chiang Mai	21
Jiraporn Daungbarn, B.Sc. (Med. Tech.)	
Parimondh Khanjanasthiti, Ph.D.	
Kampol Panas-ampol, M.D.	
Phagocytosis and Killing Function (PKF) Test of Neutrophils	25
Karnaporn Janekarnkit, B.Sc. (Med. Tech.)	
Panja Kulapongs, M.D., Dip. Amer. Bd. of Ped.	
Serum Glucose in Thais Different Age Group	33
Suporn Punpisootchai, B.Sc. (Med. Tech.)	
Kriengsak Imchai, B.Sc. (Med. Tech.)	
Muni Keoplung, M.D.	
Serum Glycoproteins in Diabetes Mellitus and Schizophrenia	39
Penjun Mayazes, B.Sc. (Med. Tech.)	
Maitree Suttajit, B.Sc., M.Sc. Ph.D.	
Transfer of R-Factor Mediating Chloramphenicol and Tetracycline Resistance from One Species of Enterobacteriaceae Isolated from Patients to Another	47
Sudaporn Chintasiri, B.Sc. (Med. Tech.)	
Prayool Inboriboon, B.Sc. (Med. Tech.), M.Sc.	
Kampol Panas-ampol, M.D.	
Abstracts	55
News	59
Cumulative Index	61

สำนักงาน : โรงเรียนเทคนิคการแพทย์

Office : School of Medical Technology

คณะแพทยศาสตร์

The Faculty of Medicine

มหาวิทยาลัยเชียงใหม่

Chiang Mai University.

กำหนดการ : ราย 4 เดือน (มกราคม,

Published : Tertially (January, May,

พฤษภาคม, กันยายน)

September)

วารสารเทคนิคการแพทย์ เชียงใหม่

นวัตกรรมการ

รองศาสตราจารย์ นายแพทย์ ชัยโจนน์ แสงอุดม พ.บ.

พัฒนาระบบการ

เนตร สุวรรณคดุหาสน์ วท.บ. (เทคนิคการแพทย์), Cert. in Imm.

กองนวัตกรรมการ

สนิท mgr กว้วย วท.บ. (เทคนิคการแพทย์), วท.ม., Ph.D.

ประยูร อินนรบาน์ วท.บ. (เทคนิคการแพทย์), วท.ม.

ไฟโรมัน สกาวจิตร วท.บ. (เทคนิคการแพทย์)

นันทยา วัยวัฒนา วท.บ. (เทคนิคการแพทย์)

ชลธ บัวน้ำจื๊ก วท.บ. (เทคนิคการแพทย์)

สรพง มาตรະกุล วท.บ. (เทคนิคการแพทย์)

เกตุรัตน์ สุขวันน์ วท.บ. (เทคนิคการแพทย์)

วารุณี คุณชาชีวะ วท.บ. (เทคนิคการแพทย์)

ยุพา สุภาเลิศ วท.บ. (เทคนิคการแพทย์)

เดชา รัมไทรย์ วท.บ. (เทคนิคการแพทย์)

เครื่องมือ

เพลย์ศรี วรรดุกุล วท.บ. (เทคนิคการแพทย์)

ผู้จัดการ

สุชาติ ศิริทูล วท.บ. (เทคนิคการแพทย์)

ที่ปรึกษาวิชาการ

ศาสตราจารย์ นายแพทย์ ตตวัน กัจวานพงศ์ พ.บ., D.T.M. & H. (Liverpool)

ศาสตราจารย์ นายแพทย์ ประยูร ชีระสุต พ.บ., M.Sc.

ศาสตราจารย์ นายแพทย์ บริวน์ พรพินຍ พ.บ., M.S.

รองศาสตราจารย์ นายแพทย์ กัมพล พนศ์อ่อน พ.บ.

ผู้ช่วยศาสตราจารย์ นายแพทย์ สนาน สิมารักษ์ พ.บ., C.R. (Yale), Dip. Am.

Board of Radiology.

ผู้ช่วยศาสตราจารย์ นายแพทย์ มุนี แก้วปัลล พ.บ.

ผู้ช่วยศาสตราจารย์ นายแพทย์ ชิริศักดิ์ คำบุญเรือง พ.บ., M.Sc., Ph.D.

นายแพทย์ บุญจะ คุณพงษ์ พ.บ., Dip. Am. Board of

Pediatrics.

นายแพทย์ คำริ คำรงศักดิ พ.บ., Dip. Am. Board of Pediatrics.

วารสารเทคโนโลยีการแพทย์ เชียงใหม่ BULLETIN OF CHIANG MAI MEDICAL TECHNOLOGY

EDITOR

Associate Professor Chairojna Saeng-Udom, M.D.

ASSOCIATE EDITORS

Netr Suwankrughasn, B.Sc. (Med. Tech.), Cert. in Immun.

BOARD OF EDITORS

Sanit Makonkawkeyoon, B.Sc. (Med. Tech.), M.Sc., Ph.D.

Prayool Inboriboon, B.Sc. (Med. Tech.), M.Sc.

Pairojana Sapavajitr, B.Sc. (Med. Tech.)

Nantaya Waiwattana, B.Sc. (Med. Tech.)

Chalaw Buanamjued, B.Sc. (Med. Tech.)

Suraporn Matragoon, B.Sc. (Med. Tech.)

Keturat Sukhavat, B.Sc. (Med. Tech.)

Warunee Kunachiva, B.Sc. (Med. Tech.)

Yupa Supalert, B.Sc. (Med. Tech.)

Decha Romsai, B.Sc. (Med. Tech.)

TREASURER

Pensri Vanaruemol, B.Sc. (Med. Tech.)

BUSINESS MANAGER

Suchart Siritool, B.Sc. (Med. Tech.)

BOARD OF ADVISERS

Professor Tawan Kungvanpong, M.D., D.T.M. & H. (Liverpool)

Professor Prayuth Thitasut, M.D., M.Sc.

Professor Boriboon Phornphibool, M.D. M.S.

Associate Professor Kampol Panas-ampol, M.D.

Assistant Professor Snan Simarak, M.D., C.R. (Yale), Dip. Am. Board of Radiology.

Assistant Professor Muni Keoplung, M.D.

Assistant Professor Chirasak Khamboonruang, M.D., M.Sc., Ph. D.

Panja Kulapongs, M.D., Dip. Am. Board of Pediatrics.

Damri Dumrongsak, M.D., Dip. Am. Board of Pediatrics.

NOTES ON MANUSCRIPTS

Review-type articles and case reports are accepted for publication by the Bulletin of Chiang Mai Medical Technology. All manuscripts must be original and should have preferably not been previously submitted to any other publication. Preference is given to material which is of general interest to medical practitioners and research worker in clinical medicine.

Manuscripts must be as concise as possible and should be typed in English with double line spacing. They should be forwarded to the editor, Bulletin of Chiang Mai Medical Technology, Faculty of Medicine, Chiang Mai University. The title should be limited to a maximum of 10 words and the article broken up with suitable subtitles. Black and White photographs may also be submitted and under special circumstance, colour may be accepted.

All accepted manuscripts are subject to copy editing, 20 reprints are return to the author.

Manuscripts should be arranged in this form :-

An abstract of not more than 100 words containing a brief outline of the paper must accompany the manuscript.

Introduction.

Material and Methods.

Results of Experiment.

Discussion.

References.

Editorial

โครงการจัดตั้งคณะเทคนิคการแพทย์ (?) มหาวิทยาลัยเชียงใหม่

(Faculty of Associated Medical Science, Chiang Mai University)

ท่านผู้อ่านคงจะประหลาดใจเกี่ยวกับหัวข้อเรื่องที่เป็นภาษาไทยว่า โครงการจัดตั้งคณะเทคนิคการแพทย์ ทำไม่ต้องมีเครื่องหมายคำถามในวงเล็บอีกด้วย สำหรับเรื่องนี้ท่านจะได้ทราบข้อเท็จจริงต่อไป ในหัวข้อภาษาอังกฤษ ท่านก็จะเข้าใจหรืออนุமานได้ว่า เป็นคณะที่จะผลิตบุคลากรในสาขาวิชาต่างๆ ซึ่งต่อไปนี้ผู้เขียนได้ระบุเรียกว่าวิทยาศาสตร์การแพทย์ ข้างเคียง เพื่อเสริมกำลังการแพทย์ในการให้การบริการดูแลสุขภาพอนามัยของมนุษย์ ให้เป็นไปอย่างสมบูรณ์ และมีประสิทธิภาพ ตลอดจนการเสริมสร้างการศึกษาแพทย์ศาสตร์ และวิทยาศาสตร์การแพทย์ข้างเคียงอีกด้วย ดูเรื่องต้นของโครงการจัดตั้งคณะฯ นี้ มีขึ้นในสมัยที่คณะแพทย์ศาสตร์ โรงพยาบาลรามคำแหงในเมืองในสังกัดมหาวิทยาลัยแพทยศาสตร์ (มหาวิทยาลัยมหิดลบูรพา) เริ่มดำเนินงานที่จังหวัดเชียงใหม่ในปี พ.ศ. ๒๕๐๕ ขณะนั้นมีความขาดแคลนบุคลากรผู้ช่วยเหลือทาง

วิชาการ และการบริการทางห้องปฏิบัติการเพื่อการซัณสู่ตรโภกในผู้ป่วยเป็นอย่างมาก คณะแพทยศาสตร์ในสมัย ศาสตราจารย์ นายแพทย์ บุญสม มาร์ติน เป็นคณะนัก ได้ตระหนักในเรื่องนี้ จึงได้ดำเนินการขออนุมัติเปิดหลักสูตรสาขาวิชาเทคนิคการแพทย์ขึ้นปริญญาชั้น โดยมอบหมายให้ผู้เชี่ยวชาญรับผิดชอบและดำเนินการต่อมาที่ได้รับอนุมัติให้จัดตั้งเป็นภาควิชาเทคนิคการแพทย์ มีหน้าที่จัดการศึกษาอบรมนักศึกษาสาขาวิชาเทคนิคการแพทย์ รวมทั้งดูแลรับผิดชอบหน่วยปฏิบัติการกลางของโรงพยาบาลรามคำแหงในเมือง ซึ่งเป็นศูนย์รวมของห้องปฏิบัติการเพื่อการตรวจทางห้องปฏิบัติการต่างๆ อันจะนำมายังการซัณสู่ตรโภกให้แก่ผู้ป่วยที่มารับบริการ กิจการในการให้การศึกษาและการบริการในสาขาวิชานักเจริญชีวะนี้เป็นลำดับ เมื่อเป็นเช่นนี้คณะแพทยศาสตร์ในสมัย ศาสตราจารย์ นายแพทย์ระเนื้ย ฤกษ์ไกษณ เป็นคณะบดี ได้เริ่มเน้นประจำอยู่และเป็นสมควร

จะได้ยกฐานะภาควิชาชีพเป็นคณะได้ จึงได้มอบหมายให้ผู้เขียนพิจารณาดำเนินการเสนอโครงการจัดตั้งคณะเทคนิคการแพทย์ต่อมหาวิทยาลัยเชียงใหม่ ในปี พ.ศ. ๒๕๑๒ สำหรับในเรื่องชื่อภาษาไทยของคณะนี้ใช้ห้ามองเดียว กันกับคณะเทคนิคการแพทย์ มหาวิทยาลัย มหิดล แต่ชื่อภาษาอังกฤษนั้นแตกต่างกันออก ไป คือของมหาวิทยาลัยมหิดล เป็น “Faculty of Medical Technology” แต่ของโครงการที่เสนอต่อมหาวิทยาลัยเชียงใหม่ เป็น “Faculty of Associated Medical Sciences” ฉะนั้น จะเห็นได้ว่าได้พิจารณา ชื่อภาษาอังกฤษแล้ว มีความหมายแตกต่างกัน ซึ่งแต่เดิมผู้เขียนได้พิจารณาเรื่องชื่อภาษาไทย ว่าไม่น่าจะเกิดบั๊กุหา โครงการจัดตั้งคณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่ มีเจตนา ที่จะจัดการสอนอบรม นักศึกษา แพทย์ หลักสูตร เพื่อให้เป็นไปตามความหมายของ ชื่อ ภาษาอังกฤษ ซึ่งเป็นยุคใหม่ของการวิเคราะห์ให้การศึกษา วิชาชีพวิทยาศาสตร์การแพทย์ ข้าง เคียงหลาย ฯ สาขา โดยรวมรวมเข้ามาอยู่ในสถาบันเดียวกัน แทนที่จะอยู่กรอบเดียวกัน วิชาชีพต่าง ๆ นั้น บางทีก็รวมเรียกว่า “Allied Health Sciences” โดยที่นักวิชาการกลุ่มนี้มีความ

เห็นว่า การรวมกลุ่มของวิชาชีพนี้ให้อยู่ใน แหล่งเดียวกัน จะเป็นประโยชน์อย่างมาก ใน การประยุกต์งบประมาณในด้านต่าง ๆ เป็นต้น ว่าบุคลากร วัสดุครุภัณฑ์ ตลอดจนอาคาร สถานที่ และนอกจากนั้น นักศึกษาในสาขา วิชาต่าง ๆ ที่มีส่วนสัมพันธ์กันอยู่ในส่วนนี้ ให้มีประสพ ภารณ์ของวิชาชีพของกันและกัน และอาจจะนำ ไปใช้ประโยชน์ได้เมื่อออกไปปฏิบัติหน้าที่ใน กลุ่มบริการทางแพทย์ด้วยกัน

โครงการจัดตั้งคณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่ ที่ได้นำเสนอต่อมหาวิทยาลัย สามารถวิทยาลัย ก็ได้รับการสนับสนุน ในหลักการเป็นอย่างดี โดยได้วางแผนจัดหลักสูตรไว้หลายสาขาวิชาดังต่อไปนี้.—

๑. สาขาวิชาเทคนิคการแพทย์ (Medical Technology)

๒. สาขาวิชาเทคนิคกรังสีและไอโซโทป (X-Ray and Isotope Technology)

๓. สาขาวิชาเทคนิคการภาพบำบัด Physical Therapy Technic)

๔. สาขาวิชาชีวสหเคมีโลจิคเทคนิค* (Histo-Cytology Technic)

๕. สาขาวิชาโลสหศิลป์ศึกษาทางการแพทย์* (Medical Arts)

* ยังเป็นชื่อที่ไม่แน่นอนในภาษาไทย

๖. สาขาวิชาที่เนี่ยนสติโภรพยาบาล^{*} (Hospital Record Administration)

นอกจากสาขาวิชาดังกล่าวแล้ว ยังมีการ
การที่จะขยายงานในด้านการจัดห้องสติโภรพยา-
ศาสตร์การแพทย์ข้างเคียงอื่น ๆ อีก เมื่อมี
โอกาสอันควร เป็นต้นว่าสาขาวิชาโภชนาการ
ทางแพทย์* (Medical Dietetics), สาขาวิชาอาชีวบำบัด* (Occupational Therapy), สาขาวิชาจีบนาบก* (Speech Therapy), สาขาวิชาการหายใจบำบัด* (Inhalation Therapy)

ในการเริ่มต้นของโครงการจัดตั้งคณะฯ นี้
จะจัดให้มีเพียง ๓ หลักสูตร คือ สาขาวิชาเทคโนโลยีการแพทย์ สาขาวิชาเทคนิครังสีและไอโซโทป และสาขาวิชาเทคนิคการภาพบำบัดก่อน
สำหรับสาขาวิชาอื่น ๆ นั้น จะได้ดำเนินการ
ในขั้นต่อไป เมื่อมีบัญชีต่าง ๆ ที่จะสามารถ
ดำเนินการได้

จะเห็นได้ว่าการศึกษาในสาขาวิชาพัฒนา
ที่กล่าวแล้วข้างต้นนั้น เป็นการผลิตบุคลากร
ที่มีส่วนเกี่ยวข้องกับการบริการ และการศึกษา
ทางการแพทย์ให้สมบูรณ์เดิมขึ้น และถูกต้อง^๑
ตามหลักการ ยังในประเทศไทยขาดแพทย์แล้ว
ยังมีความจำเป็นจะต้องมีบุคลากรดังกล่าวมาก
อีกขั้น เป็นที่ยอมรับกันทั่วไปว่า การแพทย์

แผนบัญชีบันจะให้บริการหรือการศึกษาที่ดีมีคุณ
ภาพทั้งในด้านการบัญชีกันและการรักษาแล้วจ้า
เป็นอย่างยิ่ง จะต้องดำเนินการเบื้องต้น โดย
มีแพทย์เป็นหัวหน้ากุลุ่ม แพทย์อย่างเดียวหรือ
สาขาวิชาชีพ วิทยาศาสตร์ การแพทย์ ข้างเคียง
อย่างเดียว ก็คงจะปฏิบัติหน้าที่ให้สำเร็จลุล่วง
ไปได้โดยหากหรือไม่ได้เลย ในกลุ่มอาชีพนี้
ก็ต้องมีแพทย์เป็นหัวหน้าสามารถที่จะวิเคราะห์
เหตุการณ์ด้วยเหตุผล และแยกจ่ายการปฏิบัติ
งานต่าง ๆ ให้แก่บุคคลากรที่มีความรู้ความ
สามารถในด้านต่าง ๆ ให้สำเร็จลุล่วงไปโดย
เร็ว อันจะยังประโภชันแก่คนใช้ที่มาขอรับ
บริการ และนอกจากนี้ยังเป็นการประยุกต์
เวลาของแพทย์โดยไม่ต้องปฏิบัติงานที่ไม่จำเป็น
โดยมีบุคคลากรอื่น ๆ ที่มีความรู้ความสามารถ
เฉพาะแต่ละสาขาวิชาทำหน้าที่แทนได้ ผู้เชี่ยว
โภรพยาและสาขาวิชาทำหน้าที่ในคนเดียว ไม่ใช่ใน
เรื่องอุบัติเหตุด้วยกรณีทางเดียว แต่ใน
ประภัยให้เห็นการติดเชื้อ คนไข้ก็จะได้รับบริ-
การจาก นักพยาบาล นักพยาบาล ชั้น
มีหน้าที่ในเรื่องนี้โดยตรง แพทย์ ก็ทำหน้าที่
ตรวจสอบพิเคราะห์โรคในคนไข้ และมีความเห็น
ว่าจะต้องทำการตรวจทางห้องปฏิบัติการในคน
ไข้คนนี้ การตรวจทางห้องปฏิบัติการตามที่
แพทย์ต้องการก็ย่อมจะต้องเบื้องหน้าที่ของ นัก

เทคนิคการแพทย์ นักเทคนิครังสี ก็จะมีส่วนช่วยในการด้วยทำเอ็กซ์เรย์ เพื่อให้รังสีแพทย์ ได้ผลของการตรวจวินิจฉัยทางเอ็กซ์เรย์ เมื่อแพทย์ได้รับรวมข้อมูลต่างๆ ทำการวินิจฉัยว่าคนไข้เป็นโรคอะไร จะทำการรักษาต่อไปอย่างไร เมื่อเห็นว่าในการรักษาที่ถูกต้องจะเป็นต้อติดข้า เพื่อช่วยชีวิตคนไข้ในการดูแลรักษาพยาบาล ก็ต้องอาศัย พยาบาล มีส่วนร่วมอยู่อย่างมาก เมื่อคนไข้ได้รับการรักษาโดยวิธีตัดขาหายเรียบร้อยแล้ว คนไข้ควรจะได้รับการพัฟฟ์ฟุสมรรถภาพ ก็ย่อมเป็นหน้าที่ของแพทย์ที่จะต้องปรึกษานักพนฟุสมรรถภาพ เพื่อป้องกันคนไข้และสามารถดำเนินการชีวิตประจำวันของคนไข้ให้เท่าที่ควร ซึ่งอาจจะได้รับการแนะนำจากนักอาชีวบำบัด ด้วยก็ได้ โดยให้มีอาชีพที่เหมาะสมที่ก่อร่างกายให้เนื่องจากเป็นรูป่างให้เข้าใจได้ว่า เนื่องคนไข้มีบุญหาเกิดขึ้นแล้ว จะได้รับบริการจากบุคลากรในวิชาชีพหลายอย่าง เพื่อใคร ก็เพื่อคนไข้นั้นเอง ซึ่งเป็นความปรารถนาหรืออุดมคติของวิชาชีพในวงการแพทย์ และนักวิทยาศาสตร์การแพทย์ข้างเคียง ได้เคยปรากฏรายงานในสมรภูมิเมริการว่า มีผู้ประกอบวิชาชีพวิทยาศาสตร์การแพทย์ข้างเคียง หั้งระดับปริญญาและต่ำกว่าในราوا ๒,๕๐๐,๐๐๐ คน ที่

ทำหน้าที่ร่วมกับแพทย์จำนวน ๓๐๐,๐๐๐ คน คิดเป็นอัตราส่วนของแพทย์และนักวิทยาศาสตร์ การแพทย์ข้างเคียงเท่ากัน ๑:๑ สำหรับประเทศไทยเรามีแพทย์อยู่ประมาณ ๔๐๐๐ คน มีนักวิทยาศาสตร์การแพทย์ข้างเคียง ซึ่งได้แก่ นักเทคนิคการแพทย์ระดับปริญญา และต่ำกว่า (พนักงานวิทยาศาสตร์) นักเทคนิครังสี นักเทคนิคภายในบ้าบัด รวมแล้วประมาณ ๒,๐๐๐ คน จะเห็นว่าเป็นจำนวนที่น้อยมาก เป็น เพราะว่าแต่ก่อนเรามองไม่เห็นความสำคัญของนักวิทยาศาสตร์การแพทย์ข้างเคียงก็ได้ แม้กระทั้งในปัจจุบันนี้เรามีความสำคัญแล้วก็จริง แต่ผลิตภัณฑ์ตามไม่ทัน จำนวนแพทย์อาจจะเป็นเพราะไม่ได้รับการสนับสนุน และส่งเสริมเท่าที่ควร ซึ่งเรื่องนี้จะให้ไว้ในภายหลังมาว่าด้วยโครงการจัดตั้งคณะกรรมการเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่ ต่อไป สักนิดเพื่อประดับสมบัติญญา เมื่อสภามหาวิทยาลัยเชียงใหม่รับหลักการแล้ว เรื่องก็ต้องถึงมือขึ้นระดับชาติที่จะต้องพิจารณากลั่นกรองในรายละเอียดต่างๆ ว่าจะพอจัดเข้าแผนของสภาน้ำเรศรุกิจแห่งชาติระยะที่สามหรือไม่ ประการใด หลักสูตรได้มาตรฐานหรือเปล่า สำนักงบประมาณจัดสรรงบประมาณให้ หรือไม่ การพิจารณาในรายละเอียดเหล่านี้ก็ต้องใช้เวลา

หนึ่ง สอง หรือสามปี ในที่สุดในเดือนตุลาคม
๒๔๙๕ มหาวิทยาลัยเชียงใหม่ได้รับแจ้งจาก
สำนักงานคณะกรรมการศึกษาแห่งชาติ นิพัทธ์
ความพ่อสรุปได้ว่า คณะกรรมการการศึกษา
แห่งชาติ ให้จัดตั้งเป็นโครงการคณะกรรมการไปก่อน
และให้ดำเนินการจัดการศึกษา เกี่ยวกับเทคโนโลยี
รังสีและไอโซโทป และเทคโนโลยีการแพทย์บัณฑิต
เมื่อมหาวิทยาลัยพร้อมแล้วจะ ได้ดำเนินการขอ
อนุมัติให้เป็นคณะกรรมการไป อนึ่ง เกี่ยวกับชื่อ^๑
ของคณะกรรมการนั้น มหาวิทยาลัยควรจะได้พิจารณา
เรียกชื่อเสียใหม่ โดยให้ราชบัณฑิตสถาบันเป็น^๒
ผู้พิจารณา เพื่อให้ชื่อมีความหมายครอบคลุม^๓
สาขาวิชาเทคโนโลยีรังสี-ไอโซโทป และเทคโนโลยี
การแพทย์ ที่เป็นอันว่าเดาของร่องกันท่อไป

ก่อนที่จะจบเรื่องราว ผู้เขียนมีความเห็น
เป็นการส่วนตัวและคร่าวๆ เน้นว่า ความสำคัญ
และประโยชน์ของวิชาชีพนักวิทยาศาสตร์การ-
แพทย์ซึ่งเคยทิ้งไว้เสื่อมนั้น ไม่น่าต้องการ
แพทย์ของประเทศไทยย่างมิต้องสงสัย ในการ

ที่จะพัฒนาสุขภาพอนามัย ของประชากรที่กำลังเพิ่มให้ได้ผลดีเยี่ยม ตลอดจนการศึกษาการวิจัยทางการแพทย์ และวิทยาศาสตร์ การแพทย์ ข้างเคียง ยังนั้น การขยายงานการศึกษาระดับอุดมศึกษาของมหาวิทยาลัยเชียงใหม่ ในนาม ของโครงการจัดตั้งคณะใหม่นี้ ก็คงจะไม่ไร้เสียชื่อเหตุและผล และสมควรจะได้รับการสนับสนุนในด้านงบประมาณเด่างๆ ให้สอดคล้องกับเจตนาที่ มหาวิทยาลัยจะ ส่งเสริม และ พัฒนาการศึกษาของชาติ

ในท้ายที่สุดนั้น โอกาสที่ “วารสาร
เทคโนโลยีเพทบยเชียงใหม่” ได้มีอายุ
ย่างเข้าบท ๖ และเป็นฉบับที่ต้นรับปีใหม่
พ.ศ. ๒๕๑๖ ข้าพเข้าขอให้สมາชิกทุก
ท่าน คงประสบแต่ความสุข ความเจริญ
สมบูรณ์ พุ่งผล ปราราชากชั่งภัยนตราย
ทั้งปวงตลอดไป พ.ศ. ๒๕๑๖.

នគរបាលការ

ଶ୍ରୀ ମୀଳି. କୁମାର

LEUKOCYTE ALKALINE PHOSPHATASE VALUES OF HEALTHY THAI ADULTS

By

Vanna Kungswanich, B.Sc. (Med. Tech.)

Panja Kulapongs, M.D., Dip. Amer. Bd. Ped *

Abstract

Leukocyte alkaline phosphatase activity of 59 healthy adult Thais were estimated by the standard histochemical technic of Kaplow. It is evident that the LAP score varies widely in normal individual but strikingly correlates with the total white cell count. The standard scale constructed and being used as the normal value for our laboratory.

INTRODUCTION.

Alkaline phosphatase is among one of the important enzymes within the cytoplasm of neutrophilic leukocytes. It participates in many crucial metabolic processes of the cell, particularly during the synthesis and breakdown of glycogen. Healthy individual ordinarily show a small amount of alkaline phosphatase enzyme in neutrophils especially the mature stages and the reticuloendothelial cells. Leukocyte alkaline phosphatase (LAP) reacts readily by quantitative change not only to various diseases affecting the hematopoietic and R.E.S. but also to various physiologic and pathologic conditions. The estimation of LAP has been used as a diagnostic test for differentiating CML from other myelo-

proliferative syndromes and leukemoid reaction (1-5). It has also been employed in various diagnostic purposes such as the detection of early pregnancy (6-8), diagnosis of hypophosphatasia (9), acute surgical inflammation (10) and liver diseases (11). Elevation of LAP have been found in several conditions associated with reactive granulocytosis (RG) (1) (2). While the fact that only pyogenic infection may lead to a significant increase in LAP, the value remain normal or even below normal in some viral infections (12). Valentine et al (13) as well as the other have also found the effect of corticosteroid administration on LAP activity. Variations in the activity of LAP from the normal may

be attributed to either a quantitative difference in enzyme concentration or to qualitative changes in the enzyme which could either enhance or reduce enzyme activity.

Previous studies of human LAP have been performed predominantly by histochemical technic as described by Gomori (14) and Kaplow (15). Review of the literature revealed the wide range of LAP values in normal population (15-22). It is thus important to establish our control values for further evaluation of LAP changes in various pathological conditions.

We are presenting the control LAP values of 59 healthy Thai adult that have been used as standard values of our laboratory and the correlation between the LAP scores and the total white cell count.

MATERIAL AND METHOD.

Peripheral blood obtained from 59 healthy Thai adults (Medical Technology students and Medical students) were estimated for hemoglobin, hematocrit, total white cell count, routine WBC differential count and the LAP stain.

The LAP stain technic was those described by Kaplow (15). The freshly prepared blood smear was fixed with ice-cold formulin methanol then incubated with the substrate consisting of sodium alpha-naphthyl-phosphate and Fast Blue RR. in propanediol buffer then counterstained with Mayer's Hematoxylin stain.

The scoring technic was essentially that originally described by Kaplow (15) which was based on the intensity of staining and the appearance of the precipitated dye in the cytoplasm of 100 consecutive neutrophils. The reactions in individual neutrophil were rated as follows:

- 0 : negative or colorless
- 1 : barely visible, diffuse positivity with occasional granules
- 2 : diffuse positivity with moderate granule formation
- 3 : strong positivity with numerous granules
- 4 : very strong positivity with very numerous coarse granules, giving an intense dark precipitates.

The sum of 100 individual neutrophils ratings provided the "LAP score" for each specimen.

RESULTS.

The results are summarized in Table I and the correlation between the LAP values and the total white cell and granulocyte count are shown in Figures I and II. As shown in Table II, most of the granulocytes (77.2%) were colorless and the remainings exhibited low LAP activity. Elevated leukocyte count over 9,000 cells/cu. mm. was usually associated with the presence of granulocytes with higher LAP activity.

TABLE I : LAP SCORES OF 59 HEALTHY THAI ADULTS

WBC. COUNTS	No.	LAP. SCORES		
		MEAN \pm S.D.	S.E.	RANGE
7,500 - 8,900	15	19.26 \pm 8.48	2.19	10 - 34
9,000 - 9,500	16	32.30 \pm 12.96	3.24	14 - 40
9,500 - 9,950	9	55.11 \pm 21.80	7.26	29 - 103
10,000 - 12,000	19	115.45 \pm 46.45	10.38	49 - 130
OVERALL	59			

TABLE II: FREQUENCY OF INDIVIDUAL NEUTROPHILS WITH DIFFERENT DEGREE OF LAP ACTIVITY.

WBC COUNT	No.	LAP SCORES				
		0	1	2	3	4
7,500 - 8,900	24					
		77.17	22.83			
		9.66	9.66			
		1.97	1.97			
8,900 - 9,950	16					
		56.44	40.00	3.56		
		15.88	12.46	7.10		
		3.97	3.12	1.78		
10,000-12,000	19					
		24.30	44.00	24.20	6.60	
		15.17	10.96	15.92	8.87	
		3.39	3.45	3.56	1.98	

TABLE III: NORMAL VALUES OF LAP.

Authors	Year	No.	Sex	LAP. Scores	Range	Reference
Kaplow	1955	-	-	22.0	2-76	15
Hayhoe and Quaglino	1958	50	-	46.0	14-100	16
Alter et al.	1962	35	-	83.0	-	17
Trubowitz et al	1962	--	-	40.0 \pm 17.0	-	18
King et al	1962	60	M.	90.75 \pm 42.33	-	19
			F.	92.07 \pm 35.82	-	
Lennox et al	1962	39	-	48.3 \pm 12.1	-	20
O'Sullivan and Fyles	1963	103	M.	31.0 \pm 16.0	5-90	21
		97	F.	32.0 \pm 17.1	5-140	
Sramkova et al	1965		M.	25.6 \pm 17.7		11
			F.	40.0 \pm 22.3		
				40.8 \pm 24.5		
				(children)		
				35.6 \pm 23.1	5-100	
				(overall)		
Phillips et al	1967	14	M.	81.0 \pm 10.0		22
		25	F.	92.0 \pm 6.5		
Present study	1972	59			10.0-	

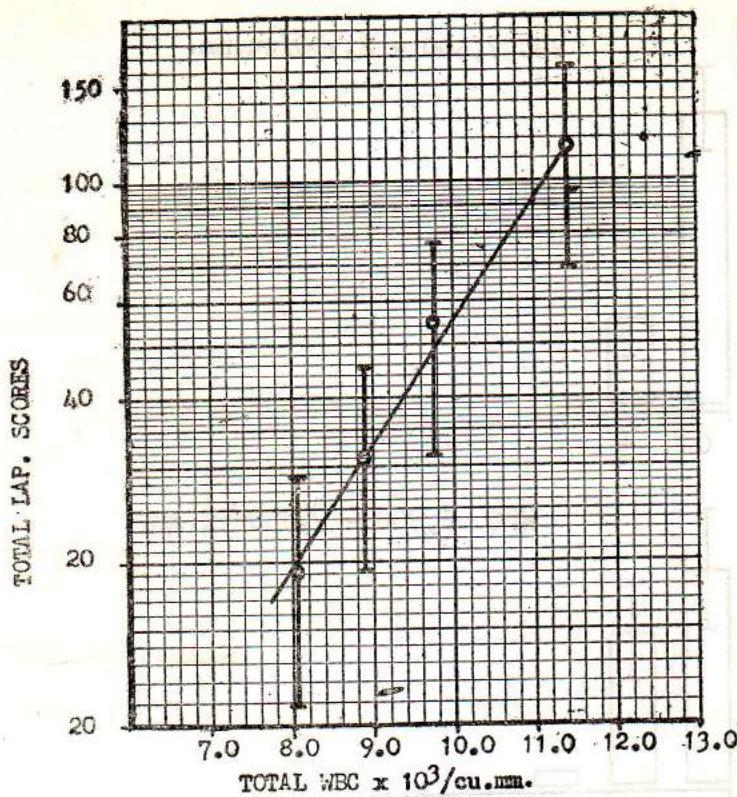


FIGURE I: THE CORRELATION BETWEEN THE LAP. SCORES AND THE TOTAL WHITE CELL COUNTS IN NORMAL HEALTHY ADULTS.

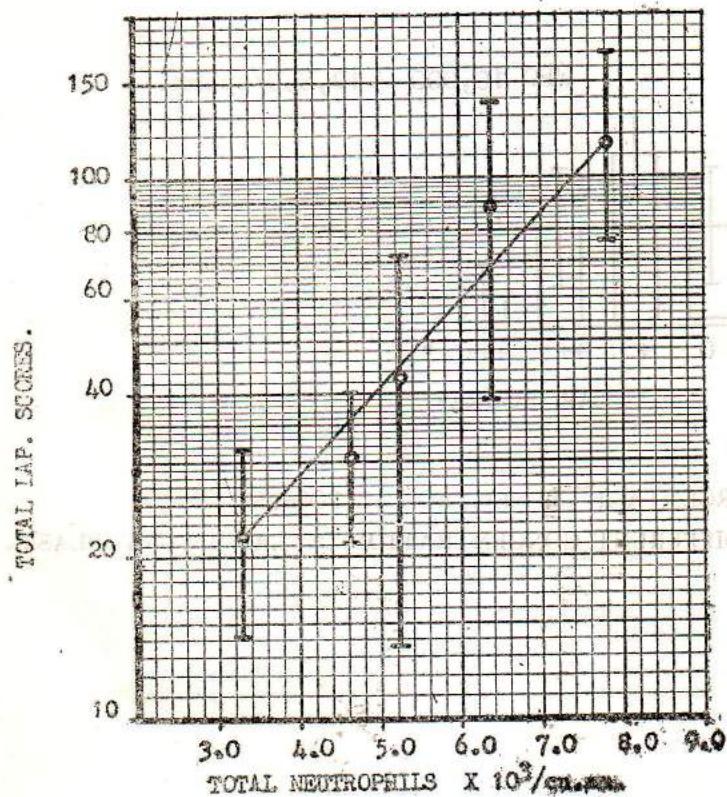


FIGURE II: THE CORRELATION BETWEEN THE LAP. SCORES AND THE TOTAL NEUTROPHIL COUNTS

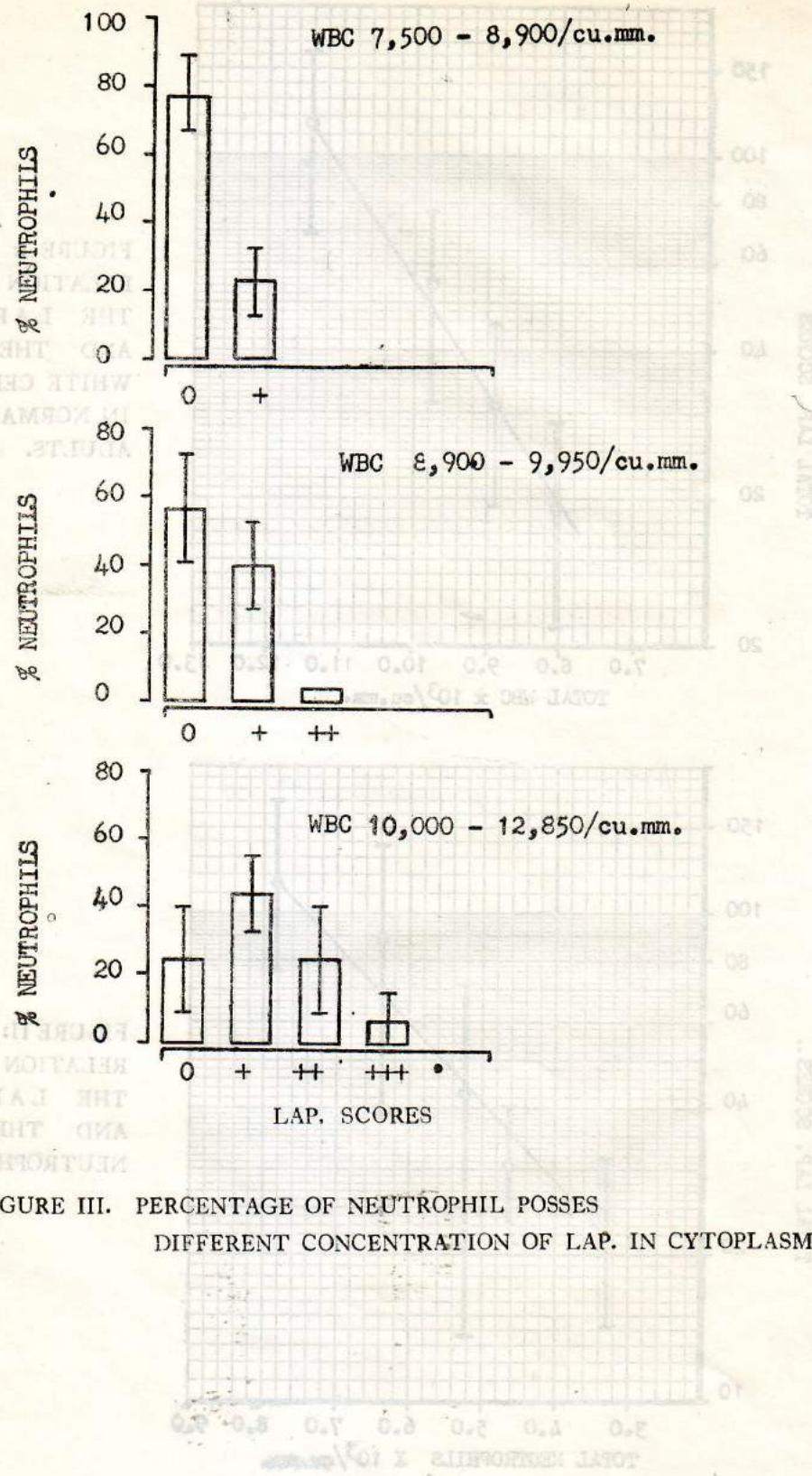


FIGURE III. PERCENTAGE OF NEUTROPHIL POSSES
DIFFERENT CONCENTRATION OF LAP. IN CYTOPLASM.

FIGURE I: THE CORRELATION BETWEEN THE LAP. SCORES AND THE TOTAL WHITE CELL COUNTS IN NORMAL (HEALTHY ADULTS.

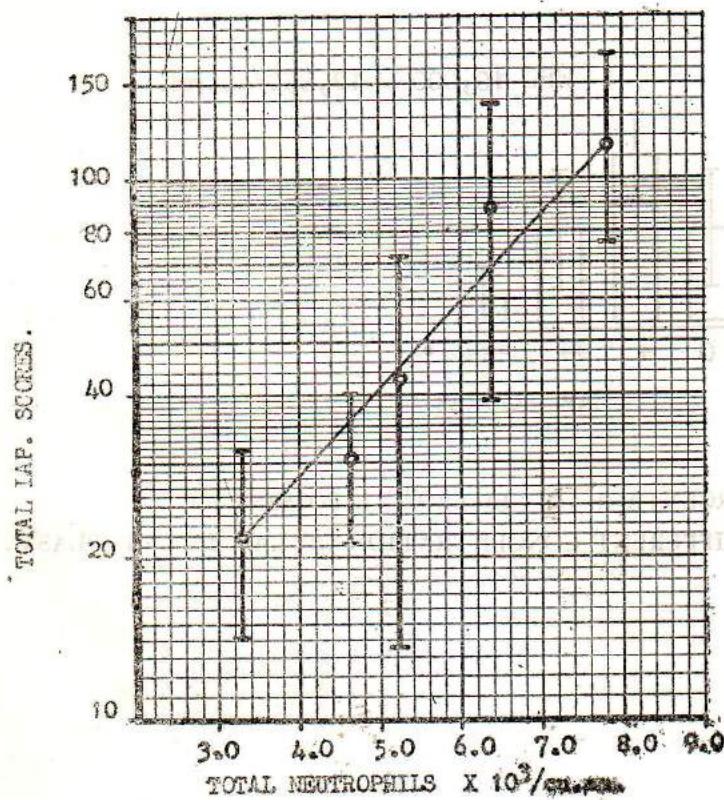


FIGURE II: THE CORRELATION BETWEEN THE LAP. SCORES AND THE TOTAL NEUTROPHIL COUNTS

COMMENTS.

Using the Gomori technic, Wachstein (1) and Plum (16) had found that the alkaline phosphatase activity of neutrophils confined to the more mature granulocytes. Nuclear staining which often predominates with this technic has been shown not to represent phosphatase activity, but to be an artefact due to phosphatase diffusion from some neighboring site of enzyme activity. This difficulty of artefactual positivity applies also to other structure within the cells (23-25). Although the general pattern of alkaline phosphatase distribution among leukocytes, and gross alteration of the pattern may be roughly assessed by the Gomori technic, the method is too subject to error to allow the accurate application of a semiquantitative "Scoring" analysis as proposed by Brodell and Swisher. (26) Azo-dye coupling method, Kaplow's technique (15), have been proved to be an excellent one and probably may give a specific localization of enzyme activity in the tissue section.

The neutrophils varied markedly in their degrees of alkaline phosphatase activity, particularly in patients whose smear exhibited high enzyme activity. This variations in the staining intensity of different neutrophilic granulocytes supports the speculation of Valentine et al (27) who suggested that increased alkaline

phosphatase activity may be initiated at the site of cells maturation, resulting in the appearance in the circulation of cells of 2 types: those with little or no LAP activity originating prior to the increase LAP score, and those rich in LAP, originating after the stimulation.

The existence of LAP above the normal range in leukemoid reactions, pyogenic infections and non-leukemic myeloproliferative disorders, and below normal in chronic myelocytic leukemia (CML) has been widely accepted. Prior to treatment, a strikingly low level or complete absence of alkaline phosphatase activity was observed in CML. During treatment, gradual increase of the activity was observed, reaching the normal level during remission. This increase was due to the appearance of a population of granulocytes containing alkaline phosphatase (30). This and the appearance of granulocytes with a strikingly high LAP activity in CML associated with inflammatory processes, suggest the existence of 2 different populations of these cells; a leukemic one (LAP negative), and another LAP-positive normal granulocytes. Bottomley et al (4) studied the alkaline phosphatase of leukocytes from normal subjects; patients with CML, and patients with reactive granulocytosis by the extensive biophysical, biochemical and immuno-

logic technics. They discovered that similar amounts of enzymes protein from these patients had markedly different enzyme activity, i. e., the enzyme from CML leukocytes had low specific activity those from normal leukocytes had intermediate specific activity, and those from patients with reactive granulocytosis has a very high specific activity.

No correlation was found between the serum alkaline phosphatase activity and the LAP score. With stimulation the LAP

activity within individual cells as the number of granulocytes possessing the LAP enzyme are markedly increased. (1,2, 15, 16, 21, 29) Although the original reports (15, 16) observed no correlation between the intensity of staining and the total leukocyte or total granulocyte counts, we confirmed the subsequent findings by many (1, 28) that the increase in LAP correlated roughly in magnitude and timing with the severity of leukocytosis.

REFERENCES

1. Wachstein, M.: Alkaline phosphatase activity in normal and abnormal human blood and bone marrow cells. *J. Lab. Clin. Med.* 31:1, 1946.
2. Valentine, W.N., and Beck, W.S.: Biochemical studies on leukocytes. I. Phosphatase activity in health, leukocytosis and myelocytic leucemia. *J. Lab. Clin. Med.* 38:39, 1951.
3. Moloney, W.C. and Lange, R.D.: "Leukemia and atomic bomb survivors. II. Observations on early phases of leukemia. *Blood* 9:663, 1954.
4. Bottomley, R.H., Lovig, C.A., Holt, R., and Griffin, M.J.: Comparison of alkaline phosphatase from human normal and leukemic leukocytes. *Cancer Res.* 29: 1866, 1969.
5. Valentine, W.N., Beck, W.S., Follette, J.H., Mills, H., and Lawrence, J.S.: Biochemical studies in chronic myelocytic leukemia, polycythemia vera and other idiopathic myeloproliferative disorders. *Blood* 7: 959, 1952.
6. Pritchard, J.A.: Leukocyte Alkaline phosphatase activity in pregnancy. *J. Lab. Clin. Med.* 50:432, 1957.
7. Borek, C., Frei, J., and Vannotti, A.: Leukocyte metabolism in pregnancy. *Acta Endocrinol.* 35:575, 1960.
8. Harer, W.B., and Quigley, H.J.: Alkaline phosphatase activity in granular leukocytes as a test for early pregnancy. *Obst. Gynec.* 17: 238, 1961.
9. Beisel, W.R., Benjamin, N., and Austen, K.F.: Absence of leukocyte alka-

line phosphatase activity in hypophosphatasia. *Blood* 14:975, 1959.

10. Wyllie, R. G.: Neutrophil alkaline phosphatase-response to acute inflammation. *Aust. Ann. Med.* 11:118, 1962.

11. Sramkova, L., Kouba, K., and Benda-va, N.: Alkaline phosphatase in neutrophil leukocytes of patients with infectious mononeucleosis and the effect of corticosteroid therapy. *Blood* 26: 479, 1965.

12: Wiltshaw, W.N., and Moloney, W.C.: Studies on various factors influencing leukocyte alkaline phosphatase activity. *J. Lab. Clin. Med.* 47:691, 1956.

13. Valentine, W.N., et al: The relationship of leukocyte alkaline phosphatase "stress" to ACTH and adrenal 17-OH corticosteroids. *J. Lab. Clin. Med.* 49:723, 1957.

14. Gomori, G.: Microtechnical demonstration of Phosphatase in tissue sections. *Proc. Soc. Exp. Biol.* 42:23, 1939.

15. Kaplow, L.S.: A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity in smears of blood and marrow. *Blood* 10:1023, 1955.

16. Hayhoe, F. G. J., and Quaglino, D.: Cytochemical demonstration and measurement of leukocyte alkaline phosphatase activity in normal and patho-logical states by a modified Azo-dye coupling technique. *Brit. J. Haemat.* 4:375, 1958.

17. Alter, A.A., et al: Leukocyte alkaline phosphatase in mongolism; a possible chromosome marker, *J. Clin. Invest.* 41:1341, 1962.

18. Trubowitz, S., Kirman, D., and Masek, B.: Leukocyte alkaline phosphatase in mongolism. *Lancet* 2:486 1962.

19. King, M.J., Gielis, E.M., and Baikie, A.G.: Alkaline phosphatase activity of polymorphs in mongolism. *Lancet* 2: 1302, 1962.

20. Lennox, B., White, H., St.C., and Campbell, J.: The polymorph alkaline phosphatase in mongolism. *Lancet* 2: 991, 1962.

21. O'Sullivan, M.A., and Pyles, C.V.: A comparison of leukocyte alkaline phosphatase determination in 200 patients with mongolism and 200 "familial" controls. *New Eng. J. Med.* 268:1168, 1963.

22. Phillips, J., et al: Leucocyte alkaline phosphatase and erythrocyte glucose-6-phosphate dehydrogenase in Down's syndrom. *J. Med. Genet.* 4:268, 1967.

23. Matin, B.F., and Jakoby, F.: Diffusion phenomenon complicating the histochemical reaction for alkaline phosphatase. *J. Anat.* 83:351, 1949.

24. Gomori, G.: Sources of error in enzymatic histochemistry. *J. Lab. Clin. Med.* 35:802, 1950.
25. Novikoff, A.B.: The validity of histochemical phosphatase methods on the intracellular level. *Science* 113:320, 1951.
26. Brodell, H., and Swicher, S.N.: Studies of leukocyte alkaline phosphatase determined by a clinically applicable histochemical method. *Clin. Res. Proc.* 2:58, 1954.
27. Valentine, W. N., et al: Studies on leukocyte alkaline phosphatase activity: Relation to "stress" and pituitary-adrenal activity. *J. Lab. Clin. Med.* 44:219, 1954.
28. Hoffman, G.C., and Lucid, V. J.: The clinical application of a modified azo-dye technique for the determination of alkaline phosphatase activity in neutrophils. *Cleveland Clin. Quart.* 27:146, 1960.
29. Plenert, W.: Cytochemistry of the leukocyte phosphatase in children. II. The influence of operation and infection on the alkaline granulocytic phosphatase. *Folia Haemat.* 69:273, 1962.
30. Mdzewski, B.: Peripheral blood granulocyte populations showing different alkaline phosphatase activity in chronic myelocytic leukemia. *Blood* 36:123, 1970.

CIRCULATING RETICULOCYTES IN NORMAL ADULTS

By

Viriya Silpachai, B. Sc. (Med. Tech.)*

Damrong Pinthanond, B. Sc. (Med. Tech.)**

Panja Kulapongs, M. D., Dip. Amer. Bd. Ped**

Abstract

Circulating reticulocytes in 50 normal men and 50 normal women were determined by the new methylene blue and brilliant cresyl blue methods. The mean values were slightly higher in brilliant cresyl blue method, and also higher in women than men. With new methylene blue method, the mean value for men is $0.37 \pm 0.24\%$ (95% limits = 0.1 - 0.8%); for women is $0.40 \pm 0.33\%$ (95% limits = 0.1 - 1.0%).

INTRODUCTION

Circulating reticulocytes as measured by the reticulocyte count has been widely used as an index of the erythropoietic activity. Since its introduction by Brecher in 1949 (1), the new methylene blue method for reticulocytes staining has gained wider acceptance and is considered to be superior and more accurate than the brilliant cresyl blue method. Recently Deiss et al (2) has reported the astonishingly high value of reticulocyte count in normal adults using the new methylene blue method. It is our purpose to study the reticulocyte values in normal Thai

adults with the above 2 conventional methods.

MATERIAL AND METHODS

The normal adult population were the 100 healthy, non-anemic medical technology students, technicians and medical students in the 20 to 40 year age range. The staining of reticulocytes with new methylene blue and brilliant cresyl blue was performed as described by Brecher and others. (3)

RESULTS

Reticulocyte counts determined by the new methylene blue were lower in men than in women. (Tables I and II)

* Women's Hospital, Bangkok.

** Dept. of Clinical Microscop, Program for the Faculty of Associated Medical Sciences, Chiang Mai University.

TABLE I: RETICULOCYTE COUNTS IN 100 NORMAL ADULTS USING NEW METHYLENE BLUE METHOD.

Reticulocyte count	Men (50)	Women (50)
Mean	0.37%	0.40%
S. D.	0.24	0.33
95% limits	0.1-0.8%	0.2-1.0%
Observed range	0.1-0.9%	0.1-1.1%

* Theoretical 95% limits is calculated from the formula : $\pm 2\sqrt{\frac{R}{N}} (100 - R)$

Where R is the reticulocyte count in percent.

N is the number of red cells examined.

$100 - R = 100 - 0.37 = 99.63$

$\sqrt{\frac{R}{N}} = \sqrt{\frac{0.37}{50}} = 0.098$

$\pm 2\sqrt{\frac{R}{N}} (100 - R) = \pm 2 \times 0.098 \times 0.37 = \pm 0.18$

TABLE II: RETICULOCYTE COUNTS IN 100 NORMAL ADULTS USING BRILLIANT CRESYL BLUE METHOD.

Reticulocyte count	Men (50)	Women (50)
Mean	0.46%	0.51%
S. D.	0.33	0.36
95% limits	0.2-1.1%	0.2-1.2%
Observed range	0.1-1.5%	0.1-1.5%

The bimodal distribution of the individual observations is evident in both sex groups.

DISCUSSION

The reticulocyte values reported here are slightly lower than those cited in the literature (2). The higher value obtained from the brilliant cresyl blue method is in agreement with previous observations (2,4) and necessitates the establishment of separate "normal" values for each method and probably for different locality. It is not apparent why reported normal values vary so greatly. One factor is the lack of uniform criteria for identifying reticulocytes. It is our practice to identify a cell as a reticulocyte if it contains at least a single appropriately-stained inclusion. The other reason is the minimal interference by the siderotic granules in our population.

REFERENCES

1. Brecher, G. : New methylene blue as a reticulocyte stain. *Am. J. Clin. Path.* 19 : 895, 1949.
2. Deiss, A., and Kurth, D. : Circulating reticulocytes in normal adults as determined by the new methylene blue method. *Am. J. Clin. Path.* 53 : 481, 1970.
3. Kulapongs, P., and Seang-Udom, C. : *Clinical Pathology Laboratory Manual*. 1971.
4. Mackinney, A.A., Jr., Morton, N.E., et al. : Ascertaining genetic carriers of hereditary spherocytosis by statistical analysis of multiple laboratory tests. *J. Clin. Invest.* 41 : 554, 1962.

SOIL SURVEY FOR DERMATOPHYTES IN CHIANG MAI

Jiraporn Daungbarn, B.Sc. (Med. Tech.) *

Parimondh Khanjanasthiti, Ph.D. **

Kampol Panas-ampol, M.D. **

Abstract

The isolation of dermatophytes from 46 soil samples Collected from Amphur Muang and Chiang Mai University yielded 78.2%. Among the two isolated species, the most prevalent was *Trichophyton terrestris*. *Microsporum gypseum* are also found abundantly in the soil. *Trichophyton rubrum* and *T. mentagrophytes*, the common pathogens reported at Chiang Mai hospital were not recovered.

The hair-baiting technique of Vanbreuseghem was used in this investigation.

Introduction

Dermatophytes is a group of fungi that invade the keratinized areas of the body such as the skin, hair and nails. Some of the fungi flourish on keratinaceous debris in soil resulting a potential source of infection. Since dermatophytes have in common the ability to utilize keratin, a hair baiting method, technique to isolate keratinophilic fungi from soil was developed (1). With this technique, studies of dermatophytes in soil samples from many areas of the world have been reported (2, 3, 4).

In Chiang Mai, such a study has never been attempted before. This investigation describes the isolation of geophilic dermatophytes from Chiang Mai soil.

Materials and methods

Soil samples were collected at random by scraping the upper layer of the soil and put in plastic bags; sealed and brought to the laboratory. Each sample was put into sterile petridish half of the plate, moistened with sterile distilled water. An amount of sterile horse hairs 1-2 cm. long was added into the plate which was, then, sealed with masking tape and incubated at

* Liverstock Breeding Station, Huey Kaew, Chiang Mai

** Department of Microbiology, Faculty of Medicine, Chiang Mai University.

room temperature for one month. The soil was moistened with sterile water during the incubation.

Fungal growth on horse hairs were examined and checked for macroconidia which were transferred, (if any), into 2-3 Sabouraud agar slants containing antibacterial antibiotics. The growth on Sabouraud agar slants at room temperature (15°C-30°C) were identified macroscopically and microscopically to species according to Rebell et al (5).

Results

Of 46 soil specimens collected from the areas of Amphur Muang Chiang Mai and Chiang Mai University, *Microsporum gypseum* was recovered in 12 (26%) *Trichophyton terrestris* in 32 (69.5%) and both organisms were found in 8 (17.3%). Table I shows the details.

Discussion

The two major species of dermatophytes found in Chiang Mai soil are *Microsporum gypseum* and *trichophyton terrestris*. These two species are recovered

in the soil almost everywhere. Alteras and Erolceanu (6) on their soil survey for dermatophytes, also found *M. gypseum* and *T. terrestris* in Romanian soil, however, Al-Doory (7), Baxter (8) isolated *T. mentagrophytes* from the soil from Africa and Birmingham respectively. The absence of *T. mentagrophytes* in this investigation might be due to the living area. Physiological and ecological conditions of the soil affect soil fungal flora. Bohome and Ziegler (9) discovered that dermatophytes and keratinophilic fungi grew well in neutral to slightly alkaline soil. Also, discovered in this study that 11 soil samples collected near the ash areas yielded no growth of fungi because of the high pH of the soil.

Regarding the cases of dermatophytosis in Chian Mai Hospital, most of the causative fungi were reported as *T. rubrum* which is anthropophilic species and not found in Chiang Mai soil. This evidence indicates that soil should not be the source of infection in this community.

Table I. Soil survey for dermatophytes in Chiang Mai.

Location	Total No. of Soil samples	No. of positive samples for dermatophytes		
		M. gypsum	M. gypsum+T. terrestris	T. terrestris
Amphur Muang	29	4	3	14
Chiang Mai				
Chiang Mai University	11	—	2	8
Faculty of Medicine	6	—	3	2

References

1. Vanbreuseghem, R. : Technique biologique pour l'isolement de dermatophytes du sol, Ann. Soc. Belge. Med. Trop., 32 : 173, 1952.
2. Ajello, L., Manson—Bahr, P.E.C. and Moore, J.C. : Amboni Caves, Tanganyika, a new endemic area for **Histoplasma capsulatum**, Amer. J. Trop. Med. & Hyg., 9 : 633, 1960.
3. Marples, M.J. : The distribution of keratinophilic fungi in soil from New Zealand, and from Tar polynesian Islands, Mycopath. et Mycol. Appl., 25 : 361-372, 1965.
4. Al-Doory, Y., and Kalter, S.S. : The isolation of **Histoplasma duboisii** and keratinophilic fungi from soil of East Africa, Mycopath. et Mycol. Appl., 31 : 289, 1967.
5. Rebell, G., Taplin, D., and Blank, H. : Dermatophytes. Their recognition and identification Dermatology Foundation of Miami, 1020 N.W. 16 tk Street, Miami, Florida 3316, 1964.
6. Alteras, I. and Evolceanu, R. : A ten years survey of Romanian soil screening for keratinophilic fungi, Mycopath. et Mycol. Appl., 38 : 151-159, 1969.
7. Al-Doory, Y. : The isolation of keratinophilic fungi from African soils, Mycopath. et Mycol. Appl., 36 : 113-116, 1967.
8. Baxter, M. : keratinophilic fungi isolated from hunan and from soil in the city of Birmingham, England, Mycopath. et Mycol. Appl., 39 : 389-397, 1969.
9. Bohome, H. and Ziegler, H. : The distribution of geophilic dermatophytes and other keratinophilic fungi in relation to the pH of the soil, Mycopath. et Mycol. Appl., 38 : 247-255, 1969.

PHAGOCYTOSIS AND KILLING FUNCTION (PKF)

TEST OF NEUTROPHILS *

By

Karnaporn Janekarnkit, B.Sc. (Med. Tech.) **

Panja Kulapongs, M.D. Dip. Amer. Bd. of Ped. ***

Abstract

Phagocytosis and bactericidal activity are the outstanding features of polymorphonuclear neutrophils. Alteration of these activities has been found several conditions and generally related to the susceptibility to sepsis. The authors described their method for the determination of phagocytosis and bactericidal activity of neutrophils and illustrated its usefulness in detection of defective neutrophil functions in the patients with diabetes mellitus, typhoid fever and protein-calorie malnutrition.

INTRODUCTION

Many functions have been ascribed to polymorphonuclear neutrophils; but their outstanding feature is their capacity to phagocytize and degrade a variety of substances, particularly bacteria. Functional defects of these cells are known to relate to the development of bacterial sepsis. Several techniques have been introduced for the study of the phagocytosis and bactericidal capacity of neutrophils with vary-

ing degrees of results even in normal individual. The reason for this may in part, be due to the difficulties and complexities of the given methodology plus the lack of standardization of techniques. We are describing our method which is rather simple, reproducible by which phagocytic and bacterial killing activities of neutrophils can be evaluated precisely *in vitro*.

* Part of this work had been submitted to the Faculty of Medicine in partial fulfillment of the requirements for the B.Sc. degree (Med. Tech.).

** Chief technologist, Microbiology and Immunology Lab., Anemia and Malnutrition Research Center, Chiang Mai University.

*** Hematologist, Dept. of Pediatrics, Faculty of Medicine, Chiang Mai University.

MATERIALS AND METHODS

Phagocytosis and bactericidal properties of intact leukocytes were determined by a modification of the method described by Hirsch and Strauss, (1) as modified by Quie, et al (2) and by Kauder et al. (3)

ISOLATION OF LEUKOCYTES

Leukocyte suspension were prepared by dextran sedimentation of heparinized venous blood. Ten ml. of freshly drawn blood was collected into a sterile plastic syringe containing 200 units of sodium heparin and 2 ml. of sterile 6% dextran solution was added. After thorough mixing the syringe was allowed to stand upright on the plunger for 60 to 90 minutes at 4 °C. (or 30 to 60 minutes at 37 °C.). The supernatant plasma layer containing leukocytes was then harvested by bent needle technique and spun in sterile plastic tube for 5 minutes at 200 g. The cell button was washed twice with sterile Hank's balanced salt solution (HBSS), pH 7.2. After the last centrifugation the white cell concentration was determined by hemacytometer counting, smears were stained with Wright's stain and differential leukocyte count was performed. Cell suspension was then resuspend in sterile HBSS to give a polymorphonuclear neutrophils (PMN) concentration of 2×10^6 per ml. Ordinarily, over 95 % of PMN isolated by this technique are viable as shown by

trypan blue or eosin-Y exclusion method and their functional integrity were intact as measured by latex particle phagocytosis.

PREPARATION OF BACTERIA

Stationary phase bacteria were used in the bactericidal assay system. Overnight (18 hours) broth culture (BHI, broth) of staphylococcus aureus, coagulase positive, isolated from the patient of Chiang Mai University Hospital was centrifuged and washed twice with HBSS. A suspension of bacteria giving an optical density of 0.6 at 620 nm. in a Coleman Junior Spectrocolorimeter was prepared. This bacterial suspension was then further diluted and adjusted with HBSS to give approximately 2×10^7 bacteria per ml.

PREPARATION OF SERUM

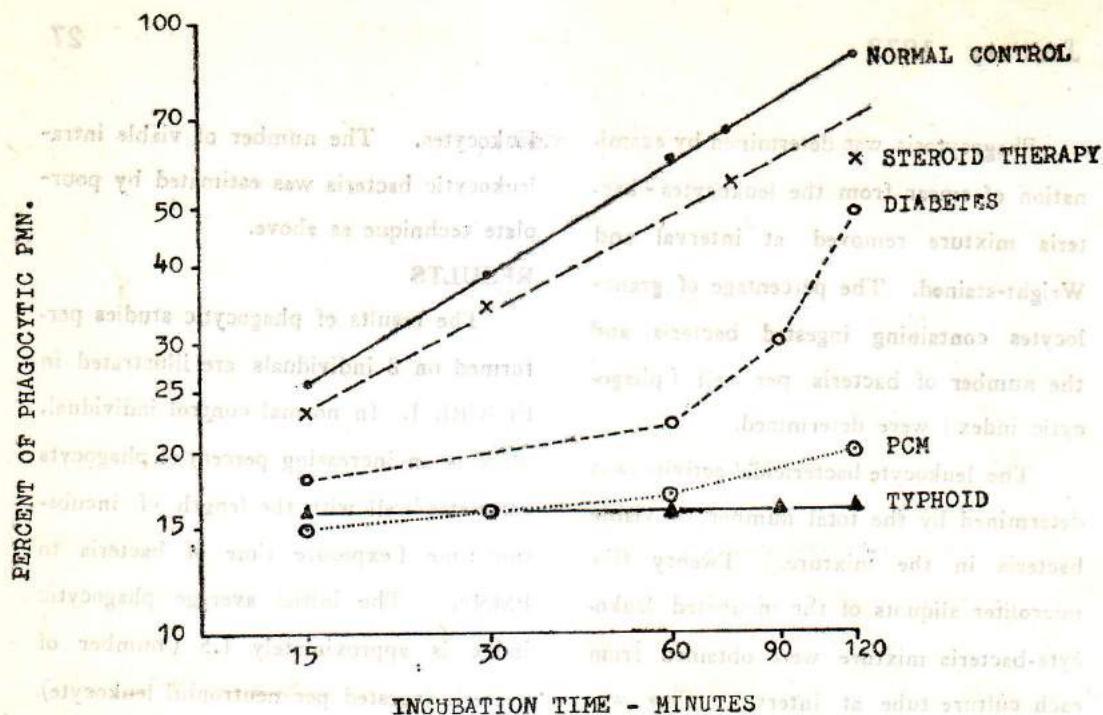
Pooled normal human sera was frozen at -20 °C in one ml. aliquots and thawed immediately before use to provide opsonins.

LEUKOCYTE-BACTERIA SUSPENSION

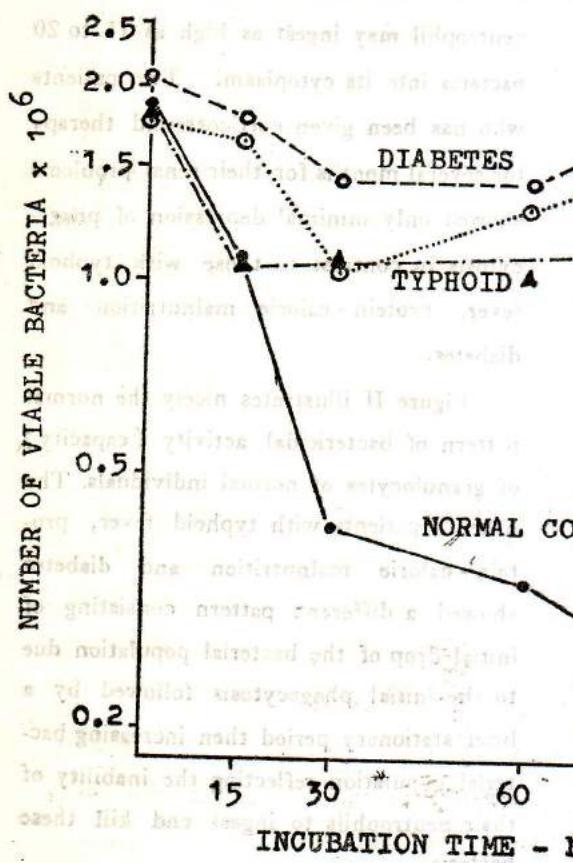
Phagocytosis studies were done in 12×75 mm. sterile disposable plastic tube (Falcon) by adding 0.5 ml. of the PMN-rich suspension, 0.1 ml. of pooled sera, 0.1 ml. of the adjusted bacterial suspension and 0.3 ml. of HBSS. The mixture providing approximately two bacteria for each PMN in the medium containing 10% serum. The leukocytes bacteria mixture tubes were then incubated at 37 °C in a temperature-controlled water-bath shaker set at 30 agitation/minutes.

Phagocytosis was determined by examination of smear from the leukocytes - bacteria mixture removed at interval and Wright-stained. The percentage of granulocytes containing ingested bacteria and the number of bacteria per cell (phagocytic index) were determined.

The leukocyte bactericidal activity was determined by the total number of viable bacteria in the mixture. Twenty five microliter aliquots of the incubated leukocyte-bacteria mixture were obtained from each culture tube at interval. This was diluted with 10 ml. sterile distilled water, mixed hard with vortex vibromixer for 30 seconds to facilitate osmotic disruption of the leukocytes. Viable bacteria were counted by diluting this suspension then mixed with the melted trypticase Soy Agar and using a standard pour-plate technique.


The number of viable intracellular bacteria was determined by adding 0.025 ml. aliquot of the leukocyte-bacterial mixture to 1.0 ml. HBSS containing 200 mcg. of Kanamycin sulfate then incubated for additional 30 minutes. This mixture was then washed twice with sterile HBSS to remove the kanamycin and extracellular bacteria. The cell button containing the intracellular bacteria was resuspended in 1 ml. sterile distilled water, mixed vigorously with vortex vibromixer for 60 seconds to facilitate osmotic disruption of

leukocytes. The number of viable intra-leukocytic bacteria was estimated by pour-plate technique as above.


RESULTS

The results of phagocytic studies performed on 8 individuals are illustrated in FIGURE I. In normal control individual, there is an increasing percent of phagocytosis correlates well with the length of incubation time (exposure time of bacteria to PMN). The initial average phagocytic index is approximately 1.5 (number of bacteria ingested per neutrophil leukocyte). This value may be higher up to 3.0 or above in certain condition. Individual neutrophil may ingest as high as 15 to 20 bacteria into its cytoplasm. Two patients who has been given corticosteroid therapy for several months for their renal problems showed only minimal depression of phagocytosis in contrast to those with typhoid fever, protein-calorie malnutrition and diabetes.

Figure II illustrates nicely the normal pattern of bactericidal activity (capacity) of granulocytes of normal individuals. The other 3 patients with typhoid fever, protein-calorie malnutrition and diabetes showed a different pattern consisting of initial drop of the bacterial population due to the initial phagocytosis followed by a brief stationary period then increasing bacterial population reflecting the inability of their neutrophils to ingest and kill these bacteria.

FIGURE I: The percentage of phagocytic PMN in normal individuals increased with incubation time. Note the defective phagocytosis in other conditions.

FIGURE II: The number of viable bacteria in the leukocyte-bacteria mixture is reduced by the bactericidal activity of normal PMN. Initial drop of viable bacteria is noted when the leukocytes with defective phagocytosis are used, then the viable bacteria population is elevated.

Kanamycin, in our hands, eliminate the possible extracellular bacteria contamination efficiently as well as the penicillin-streptomycin combination advocated by others. It neither interfere with the degree of phagocytosis or intracellular viability of bacteria.

COMMENTS

The mechanisms of bacterial killing of normal PMN leukocytes are not completely understood. Phagocytosis bacteria is associated with the rupture of the leukocyte granules and the discharge of their contents into the phagocytic vacuole containing the ingested organisms. (4) Leukocytic granules contain a variety of antibacterial agents among which are lysozyme, a number of granular cationic proteins and myeloperoxidase. There is a burst of leukocyte metabolic activity after phagocytosis that results in a sharp fall in pH in the vicinity of the ingested particle and in the generation of hydrogen peroxide by the cell (5) accompanied by the death of most organisms.

During the past few years several reports have appeared describing patients exhibiting deficiency in the phagocytic activity of blood PMN leukocytes. These can be separated into 2 general types of functional deficiencies:

1. Deficiency in bactericidal activity: Leugocytes of patients with chronic granulomatous disease have been reported to contain normal amounts of lysozyme,

peroxidase and phagocytin but they are unable to destroy the ingested microorganisms or to reduce the NBT to blue formazan during phagocytosis. It has been suggested that this may be due to the defective operation of cyanide insensitive NADH oxidase of the leukocytes. (6) The other examples of this type of defect is the impaired killing of staphalococci, (7) myeloperoxidase deficiency (8) and Chadiak-Higashi syndrome. (9)

2. Deficiency of extracellular factors (and/or the opsonizing factors) including the opsonic defects described in sickle cell anemia (10), Miller syndrome (11), and Tuftsin deficiency (12). Opsonins are known to be either heat labile or heat stable, the latter being more efficient. The absence or diminution of adequate opsonization results in the failure of the phagocytic cell to engulf the infecting or target organism. The other examples of these deficiencies in certain components of the complements such as C 3, (13) C 5 (14) etc.

The possibility of varying amount of opsonizing activity in our system is eliminated by washing the leukocytes and adding the pooled fresh human sera. The other microorganism such as E. Coli, S. marcessen has been used sucessfully. Corticosteroid therapy in humans occasionally leads to increased susceptibility to bacterial

infections. Our results in 2 patients agreed with the others (15) that corticosteroids do not influence the normal phagocytic ability of PMN leukocytes, but they may interfere with intracellular killing activity (16) (17).

Solberg and Hellum (18) studies 100 patients with bacterial infections had found that 32 % of these patients had reduced bactericidal activity. The reduced granulocyte function observed seemed to be the result of the infection rather than the cause. Some of their patients exhibited shift to the left of the neutrophil with reduced bactericidal activity similar to our patient with typhoid fever. It is important

to realize that the functional defects of PMN leukocytes of patients with typhoid, protein - calorie malnutrition and diabetes should be further investigated especially their relation to bacterial sepsis.

SUMMARY

The modified method for determination of phagocytosis and bactericidal activity of PMN leukocytes is described. By using this method it is possible to detect the functional defects of PMN leukocytes isolated from the patients with diabetes mellitus, protein - calorie malnutrition and typhoid fever.

REFERENCES

1. Hirsch, J.C., and Strauss, B.: Studies on heat-labile opsonin in rabbit serum. *J. Immunol.* 92: 145, 1964.
2. Orie, P.G., White, J.C., Holmes, B., and Good, R.A.: In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood. *J. Clin. Invest.* 46: 688, 1967.
3. Kauder, E., Kahle, L.L., Moreno, H., and Partin, J.C.: Leukocyte degranulation and vacuole formation in patients with chronic granulomatous disease of childhood. *J. Clin. Invest.* 47: 1753, 1968.
4. Hirsch, J.C., and Cohn, Z.A.: Degranulation of polymorphonuclear leukocytes following phagocytosis of microorganisms. *J. Exper. Med.* 112: 1005, 1960.
5. Iyer, G. Y. N., Islam, D. M. F., and Quastel, J.H.: Biochemical aspects of phagocytosis. *Nature* 192: 535, 1961.
6. Bachner, R.L., and Nathan, D.G.: Leukocyte oxidase: Defective activity in chronic granulomatous disease. *Science* 155: 835, 1967.
7. Davis, W.C., Douglas, S.D., and Fudenberg, H.H.: A selective neutrophil dysfunction syndrome. Impaired killing of staphylococci. *Ann. Intern. Med.* 69: 1237, 1968.

8. Lehrer, R.I., and Cline, M.J.: Leukocyte myeloperoxidase deficiency and disseminated candidiasis. The role of myeloperoxidase in resistance to candida infection. *J. Clin. Invest.* 48: 1478, 1969.
9. Windhorst, D.B.: Functional defects of neutrophils. *Adv. Intern. Med.* 16: 329, 1970.
10. Winkelstein, J.A., Drachman, R.H.: Deficiency of pneumococcal serum opsonizing activity in sickle-cell disease. *New Eng. J. Med.* 279: 459, 1968.
11. Miller, M.E., Seals, J., Kaye, R., and Levitsky, L.C.: A familial, plasma-associated defect of phagocytosis. *Lancet* II: 60, 1968.
12. Constantopoulos, A., Najjar, V.A., and Smith, J.W.: Tuftsin deficiency: A new syndrome with defective phagocytosis. *J. Pediat.* 80: 564, 1972.
13. Alper, C.A., et al: Increased susceptibility to infection associated with abnormalities of complement mediated functions and of the third component of complement (C₃): *New Eng. J. Med.* 282: 349, 1970.
14. Miller, M.E., and Nilsson, U.R.: A familial deficiency of the phagocytosis enhancing activity of serum related to a dysfunction of the fifth component of the complement (C₅). *New Eng. J. Med.* 282: 354, 1970.
15. Chretien, J.H., and Garagusi, V.F.: Corticosteroid effect on phagocytosis and NBT reduction by human polymorphonuclear neutrophils. *J. Reticuloendo. Soc.* 11: 358, 1972.
16. Alexander, J.W., Hegg, M.E., McCoy, H.V., and Altemeier, W.A.: Neutrophil function and infection during immunosuppression and transplantation. *Surg. Forum* 19: 198, 1968.
17. Miller, D.R., and Kaplan, H.G.: Decreased nitroblue tetrazolium dye reduction in the phagocytosis of patients receiving prednisolone. *Pediatrics* 45: 861, 1970.
18. Solberg, C.O., and Hellum, K.B.: Neutrophil granulocyte function in bacterial infections. *Lancet* II: 727, 1972.

SERUM GLUCOSE IN THAIS OF DIFFERENT AGE GROUP.

Suporn Puppisootchai B. Sc. (Med. Tech.)*

Kriengsak Imchai B. Sc. (Med. Tech.)**

Muni Keoplung M.D.***

Abstract

Fasting serum glucose in 146 healthy subjects of different ages were studied. The age ranges from 4 months to 90 years. Ortho toluidine method was used. The results shows no statistically difference of blood glucose levels among age groups, the blood glucose level varies from 78.9-81.9 mg%.

Introduction

There are factors affecting the serum glucose level including emotional stress, type of diet, hormones and exercise. For this reason, the serum glucose may vary with advancing age. Therefore, to determine the serum glucose levels in Thais of different age groups is interesting and worth studying.

Material and Method

146 healthy subjects who have no clinical symptoms and signs and familial history of diabetes or liver disease were studied the age range from 4 months to 90 years. The venous blood samples were drawn in fasting period and plasma was

separated for glucose determination as soon as possible. Ortho - Toluidine method was used. All sample were done in duplicate.

Result

The results were shown in table I & II. The serum glucose varies from 70-91.1 mg%; average ranges from 80.2-81.9 mg%, the variation is only slight and there is no statistical significant.

Discussion

The specificity of the reaction, time needed and the difficulty in determining blood, serum or plasma glucose are variable and depend upon particular method. The difference of result in fasting and post

* Microbiology Division, Anemia and Malnutrition Research Center, Chiang Mai University.

** Instructor, School of Medical Technology, Faculty of Medicine, Chiang Mai University.

*** Department of Medicine, Faculty of Medicine, Chiang Mai University.

absorptive periods measured by different methods are shown in table III (1). Ortho Toluidine method requires less time for boiling and gives more specific color reaction (2). It can also be modified to use with autoanalyzer (3).

The normal blood glucose level in adult varies from 70-90 mg % by Ortho Toluidine method, regardless of prolong fasting. Red blood cell contains less free glucose as compared to that of the plasma; certain amount of glucose is converted into lactic acid (4). The capillary blood glucose is almost equal to the arterial blood glucose and it is about 10 - 30 % higher than the venous blood glucose. There is no significant differences between arterial, capillary and venous blood glucose levels in diabetics (5, 6)

The C.S.F. glucose varies from 50-70 mg % which is lower than that of plasma. Continuos glycolysis by the mininges is considered as a main factor. In diabetes, the C.S.F. glucose may remain at higher level for hours even the blood glucose levels has returned to normal level after insulin therapy (5).

Glycolysis by the formed elements in the blood can be avoided by determining all samples within 24 hours after collection. Glycolytic enzyme in the plasma may also caused significant errors in sample done after 24 hours of collection. By diluting the blood with water 1:80 v/v,

the blood glycolytic mechanism will be completely inhibited within 2 hours before protein precipitation is performed. Sterile physiologic saline can inhibit this glycolytic action but not as complete as water (8,9,10). Immediate precipitation of blood protein, freezing or using preservatives such as sodium fluoride, thymol or formaldehyde are possible methods to stop the glycolytic process.

The glucose is removed from circulating blood by diffusion into interstitial fluid, diffusion into intracellular fluid, formation of glycogen, oxidation into CO_2 , H_2O and energy, transformation into lipids and in certain condition by renal excretion. On the other hand. It is maintain by G. I. absorption, glycolysis and gluconeogenesis. There are internal factors that regulate the blood glucose level including insulin, steroids, growth hormone, thyroid hormone cathecolamines and others. The liver seems to be the most important organ for maintaining blood glucose in fasting period. Datta et al (11) demonstrate in animal experiment that hepatectomised animal will develop symptoms and signs due to hypoglycemia.

Kolmer reported that there was no statistical different of blood glucose due to sexes. The blood glucose level tends to increase slightly with age. In the first 24 hours, the blood sugar of a new born

is about 70 mg %; it will increase to 82 mg % after 8-9 days of age the blood glucose will reach normal adult level of approximately 2 weeks of age. In premature baby, the blood glucose is much lower. The baby born of diabetic mother will show lower blood glucose level in the first 12-36 hours after delivery (6).

The amount of glucose absorbed after each meal, emotional stress and exercise can affect the blood glucose level in any individual. Starvation will cause a definite decrease in blood glucose within 48

hours. It will raise up slightly to subnormal level there after. The level as low as 37 mg % has also been reported. Emotional stress tends to raise blood glucose level but exercise will reduce it. Severe hypoglycemia and convulsion due to exercise can be seen in children especially when returning from school in the evening.

Variation of type of diet seems to have no influence on the blood sugar level in all age groups.

Table I. Showing blood sugar levels and number of subjects in different ages.

Age in years	no of subject	range (mg %)	average (mg %)
-10	7	75-88	81.5
11-20	13	70-90.6	80.2
21-30	22	72-91.7	79.2
31-40	21	72-90	81.9
41-50	31	70-91	78.9
51-60	29	70-90	80.4
61-70	12	72-90	80.2
71-90	11	72-90	80.3

Table II Result

Age in years	12-10		11-20		21-30		31-40		41-50		51-60		61-70		71-90	
	age	mg%	age	mg%	age	mg%	age	mg%	age	mg%	age	mg%	age	mg%	age	mg%
Number	4/12	81.8	12	70	21	74	31	74	41	77	51	85	61	81	71	74
1	4/12	81.8	12	80	21	88.2	31	83	41	77	52	73	61	86.9	72	71
2	11/12	88.0	12	75	13	74	21	91.7	31	88	41	82	52	75	63	78
3	3	75	13	89	22	74	32	83	41	82	52	78.2	64	72	72	72
4	3	80	13	89	22	74	32	83	41	82	52	78.2	64	72	72	72
5	5	75	15	86	22	91	35	72	41	85	52	83	65	72	73	83
6	7	88	16	81	22	74	35	80	41	88	53	71	65	90.9	74	80
7	10	83	18	70	23	74	35	86	42	72	53	86	67	75.8	75	88
8		18	79.4	23	74	36	75	42	80	53	89	67	82	75	90	
9		19	70	23	82	36	81	42	84.5	54	74	67	86	77	84	
10		19	80	23	84	36	82	42	91	55	79	68	80	80	81.1	
11		19	82	24	72	37	83	43	74	56	74	68	80	81	88	
12		19	90.6	25	76	38	86	43	74	56	83	70	78			
13		20	90.6	25	84.1	38	90	43	80.5	56	90					
14				27	85	39	78	44	78	57	77					
15				28	75	39	83	45	71.1	57	77					
16				28	75	39	89	45	72	57	77.2					
17				28	77	40	74	45	77	57	77					

Table III - Showing normal blood glucose level by different methods.

Method	Fasting blood glucose	Post prandial blood glucose
1. Folin-Wu	80-120	≤ 150
2. Benedict	70-110	≤ 140
3. Somogyi	60-95	≤ 140
4. Somogyi-Nelson	70-105	≤ 140
5. Ortho-toluidine	70-90	≤ 140

References

1. Hoffman, W.S., The Biochemistry of Clinical Medicine, 4th Edition. Year book medical publishers, Inc. 35 East Wacker Drive, Chicago. 78, 99, 106 and 281, 1970.
2. Hultman, E., Nature. 183: 108 - 109, 1959.
- 3: Russell, S., M. Bryant and D.B. Morrison: Clin. Chem. 10 (7): 641, 1964.
4. Harper, H.A., Review of Physiological Chemistry. 11th Edition. Lange Medical Publication Los Altos, California. 238, 1967.
- 5: Kolmer, J.A., Clinical diagnosis by laboratory examinations. 3th Edition. Appleton - Century - Crofts, Inc. New York. 76, 79, 1961.
6. Weissman, M. and B. Klein. Clin. Chem. 4 (5): 422, 1957.
7. Meites, S. and Bohman. Clin. Chem. 8 (4): 440, 1962.
8. Landau, B.R., J.R. Leanards and E.M. Barry. Am. J. Physiol. 201: 41, 1961.

SERUM GLYCOPROTEINS IN DIABETES MELLITUS AND SCHIZOPHRENIA.

Penjun Mayazes, B.Sc. (Med. Tech.) *

Maitree Suttajit, B.Sc., M.Sc., Ph.D. **

Abstract

Chemical determination of serum glycoproteins as proteins-bound hexose and sialic acid has been studied in 54 healthy male donors, 52 diabetic patients and 45 schizophrenic patients. The average values of protein-bound hexose and sialic acid were found to be 125 ± 25 mg %, 47.8 ± 12.5 % in normal persons, 133 ± 45 mg %, 41.36 ± 10.2 mg % in diabetic patients 231 ± 36 mg %, 49.9 ± 9.6 mg % in schizophrenic patients respectively. The discrepancies among the group were discussed.

Introduction:

Glycoprotein consists of a polypeptide chain covalently bound with carbohydrate as oligosaccharide chains usually through serine, threonine and asparagine. The sugars in the oligosaccharides are amino sugars, N-acetyl glucosamine and N-acetyl galactosamine; neutral sugars, mannose, galactose and fucose; and derivatives of neuraminic acid or sialic acids (1). Human serum contains a very large number of glycoproteins such as orosomucoid, fetuin, ceruloplasmin, alpha 2 - glycoproteins, haptoglobins, alpha 2 - macroglobulins, 7 - 5 gammaglobulins, 19.5 gammaglobulins and

transferrin. Many of these specifically play a transport role in blood (2). Some are antibodies and hormones. Other functions of these serum glycoproteins are still being investigated.

It has been accumulated in literatures regarding the elevation of the protein-bound carbohydrate of serum in a great number of diseases, such as cancer, tuberculosis, rheumatoid arthritis, pneumonia and myocardial infarction (3). Decreased levels of some glycoproteins of plasma have been discussed. This might be due to a failure of normal hepatic synthesis

* Department of Pathology, Faculty of Medicine and Ramathibodee Hospital.

** Lecturer, Department of Biochemistry, Faculty of Medicine, Chiang Mai University.

or to a loss of glycoprotein in the urine.

Goodman et al. (4) reported that orosomucoid was elevated in schizophrenic patients who had no other pathological conditions. It might be of interest to investigate serum glycoproteins in Thai Schizophrenic persons and diabetes mellitus patients. It is the purpose of this article to report the level of protein-bound hexoses in serum of normal persons, schizophrenic persons, and diabetes mellitus in northern Thailand. A discrepancy among the groups will be discussed.

Materials and methods

Normal blood serum was obtained from 45 male donors, aged 20 - 35 years. 52 blood serum of diabetes mellitus and 45 of schizophrenics from Suanprung Hospital were brought for analyses of bound hexoses and sialic acids.

Determination of protein-bound hexoses

Protein-bound hexoses is defined as those total neutral sugars covalently linked with protein precipitated by 95 % ethanol. It was determined by the method of Wintzler (5). 0.2 ml of serum was well-mixed with 5 ml of 5 % ethanol in a graduated centrifuges tube. The tube was spun for 15 minutes. The supernatant was dis-

carded and the precipitate was dissolved with 0.2 ml of 0.1 N NaOH. 0.1 ml. of the mixture in duplicates was pipetted into a test tube (15×150 mm.) and diluted upto 1.0 ml with distilled water. A blank was made with 1 ml distilled water 0.25, 0.5 and 1 ml of galactose and mannose mixture (0.2 mg/ml) was used as the standards. The final volume of all samples and standards was made up to 1.0 ml. 8.5 ml of orcinol-H₂SO₄ reagent* were added to all the tubes and well-mixed by conversion. The tubes were covered with marbles to minimize the evaporation and heated in a water bath at 80°C for 15 minutes. Optical densities were read at 540 mu by Bausch & Lomb Spectronic 20.

Determination of total Sialic Acid

Total sialic acid was analysed by thiobarbiturate method (6). To 0.3 ml serum in a 12×100 mm test tube, 3.2 ml of 5% TCA was added, and mixed. The tube was heated in water bath at 100°C for 15 minutes, cooled in tap water, and centrifuged for 20 minutes. 0.5 ml filtrate was drawn mixed with 0.1 ml of 0.04 M periodic acid and then cooled at 0°C for 20 minutes. 1.25 ml resorcinol-HCl ** was added and cooling at 0°C was continued.

* Orcinol-sulfuric acid reagent = a mixture of 60 % H₂SO₄ and 1.6 % orcinol in 30% H₂SO₄ in a ratio 7.5 : 1.

** Resorcinol-HCl reagent = 0.6 gm Resorcinol in 60 ml of 28 % HCl plus 25 u. ml Cu SO₄ and 40 ml distilled water.

for another 5 minutes. The final mixture was placed in boiled water at 100°C for 15 minutes and consequently in a water bath at 37°C for 3 minutes. The optical density was read at 630 mu by Spectronic 20.

Results

Each of Tables 1, 2, 3 shows the comparison of serum protein-bound hexose and sialic acid in 54 normal subjects, 52 diabetes mellitus patients and 44 schizophrenic patients respectively.

The average values with standard deviation of serum protein-bound hexose and sialic acid also demonstrated.

Discussion

The average values of protein-bound hexoses and sialic acid in normal Thai serum determined in the present study were 125 ± 25 mg% and 47.8 ± 12.5 mg% respectively (Table 1). The hexose content is close to that reported by Winzter as about 121 ± 2.1 mg% (5). By diphenylamine reaction the level of sialic acid in normal American serum reported by the same author was 60.0 ± 3.1 mg% (5). In our studies, sialic acid was determined by resorcinol method, therefore this might give the lower values. Besides different technics of the methods, the discrepancy might be due to physiological variations, races and ages of the subjects. Haralambe (7) found that physiological exercises

caused an increase of serum glycoproteins.

In this report there seemed to be no concentration change of glycoproteins in serum obtained from 52 diabetic patients. High concentration of glucose in their blood does not interfere the protein-bound hexoses in the serum. The free sugar was separated and washed out during protein precipitation with 95% alcohol. Total sialic acid concentration was also normal. There was a fluctuation in analyses of serum bound hexoses and sialic acid (Table 2). Shetlar (8) showed no significant change of serum glycoprotein in diabetes mellitus, but Srinivasa et al. (9) reported an increase of galactose-containing glycoproteins in renal cortical tissue of the diabetic patients. The latter report also showed the relationship between serum glycoprotein concentration and the severity of the disease. It is still a matter of conjecture.

It has been previously reported by Goodman et al (4) that serum glycoproteins were greatly increased in schizophrenic patients. Our work firmly supported the investigation, since protein-bound hexoses in serum of Thai schizophrenic patients was two times higher than the normal Thais (table 3), some rised upto three times more. All schizophrenic patients we observed had no history of pathological diseases or any physical sickness. the

TABLE 1

Quantitative Analysis of Protein-bound Hexoses and Sialic Acid in Normal Serum

No.	mg.% protein-bound hexose	mg.% sialic acid	No.	mg.% protein-bound hexose	mg.% sialic acid
1	101	41.0	28	117	79.1
2	90	54.6	29	100	45.5
3	104	43.2	30	208	78.0
4	93	56.0	31	124	52.7
5	154	—	32	141	64.1
6	125	38.5	33	150	64.1
7	149	49.0	34	130	62.2
8	107	—	35	182	48.0
9	237	43.2	36	109	46.0
10	105	35.0	37	155	46.0
11	97	38.5	38	116	42.1
12	129	35.5	39	143	—
13	90	36.2	40	172	43.3
14	139	55.5	41	127	47.0
15	102	43.2	42	149	—
16	112	36.2	43	116	50.0
17	110	35.0	44	127	42.1
18	95	32.7	45	190	—
19	120	45.5	46	97	52.5
20	100	35.0	47	148	50.0
21	190	52.7	48	108	38.5
22	118	43.3	49	153	—
23	123	40.8	50	137	45.5
24	111	62.0	51	121	37.4
25	128	57.4	52	155	—
26	73	78.0	53	110	—
27	109	62.0	54	95	—
Protein-bound hexose mean		=	125	± 25	mg. %
Sialic acid mean		=	47.8	± 12.5	mg. %

TABLE 2 Quantitative Analysis of Protein-bound Hexoses and Sialic in Serum
Obtained from Diabetic Patients

No.	mg% protein-bound hexose	mg% sialic acid	No.	mg% protein-bound hexose	mg% sialic acid
1	111	—	28	170	48.0
2	198	42.0	29	180	56.0
3	177	39.4	30	201	—
4	109	44.2	31	100	39.8
5	109	49.0	32	178	58.4
6	100	38.5	33	203	52.5
7	84	50.5	34	158	51.5
8	115	—	35	115	26.8
9	150	55.0	36	81	35.1
10	93	49.0	37	213	42.0
11	101	44.2	38	111	24.5
12	116	—	39	210	42.0
13	145	—	40	183	28.0
14	117	37.0	41	144	42.0
15	135	49.0	42	131	37.4
16	93	45.5	43	103	33.8
17	125	55.3	44	195	37.0
18	88	—	45	124	33.8
19	85	35.0	46	212	—
20	101	53.7	47	203	44.5
21	75	—	48	189	—
22	81	36.2	49	185	52.5
23	80	31.5	50	102	29.1
24	142	37.4	51	191	74.5
25	69	31.5	52	102	43.2
26	152	44.5			
27	109	37.4			

Protein-bound hexose mean = 133 ± 45 mg %

Sialic acid mean = 41.36 ± 10.2 mg %

TABLE 3 Quantitative Analysis of Protein-bound Hexoses and Sialic Acid in Serum
Obtained from Schizophrenic Patients

No.	mg% protein-bound hexose	mg% sialic acid	No.	mg% protein-bound hexose	mg% sialic acid
1	200	40.7	23	222	39.4
2	151	40.7	24	215	39.4
3	206	55.0	25	215	53.9
4	198	36.0	26	238	45.6
5	167	36.0	27	192	50.1
6	177	46.0	28	237	54.0
7	163	48.0	29	204	66.5
8	198	33.6	30	350	54.0
9	234	50.1	31	263	46.5
10	195	45.2	32	267	73.0
11*	220	57.0	33	211	46.5
12	220	58.4	34	206	57.0
13	206	54.0	35	225	51.8
14	202	64.0	36	247	67.0
15	160	31.0	37	200	38.0
16	187	46.0	38	291	54.0
17	246	50.1	39	229	50.1
18	297	55.0	40	206	57.0
19	208	46.0	41	285	73.0
20	257	68.3	42	267	55.0
21	191	40.7	43	172	46.0
22	215	35.0	44	340	55.0
Protein-bound hexose mean = 231 \pm 36 mg%					
Sialic acid mean = 49.9 \pm 9.6 mg%					

marked increase of serum glycoproteins might be due to the mental stress and internal metabolic changes in the patients rather than due to tissue destruction or proliferation.

Instead of increasing as did the bound hexoses, total sialic acid did not change in the schizophrenic serum. The change of sialic acid should be seen along with

that of bound hexoses since sialic acid is contained as terminal units of serum glycoproteins (10, 11). There is a tendency to state that those increased glycoproteins contain less or no sialic acid. Are these glycoproteins abnormal. To answer the question intensive investigations on the glycoproteins in schizophrenia are needed.

References

1. Gottschalk, A, Glycoproteins, Amsterdam: Elsevier, 1966.
2. Spiro, R.G., Glycoproteins: Structure, Metabolism, and Biology, the New England Journal of Medicine, 269: 566, 1963.
3. Winzler, R.J., In The Plasma Proteins, vol 2, Glycoproteins: Biosynthesis, metabolism, Alterations in Disease, New York: Academic Press, pp. 309-347, 1960.
4. Goodman, M., Luby, E.D., Frohman, C.F., Gottineb, J.S. Orosomucoid in Schizophrenia, Nature (London), 192: 370, 1971.
5. Winzler, R. J. In Determination of serum Glycoproteins, Method of Biochemical Analysis Vol II. Interscience pp. 290-299, 1961.
6. Jourdian, G.W., Dean, L., Roseman, S., The Sialic Acids XI: J. Biol. Chem. 246: 430, 1971.
7. Haralambie, G., Serum Seromucoid and Physical Exercise, J. Appl. Physiol. 27: 669, 1969.
8. Shetlar, M.R.J. Okla. Med. Ass., 51: 323, 1961.
9. Srinivasan, S.R., Berenson G.S., Radhakrishndmurthy, Glycoprotein Changes in Diabetic Kidneys, Diabetes, 19: 171, 1970.
10. Gottschalk, A. Chemistry and Biology of sialic Acids and Related Substances Cambridge: Cambridge Univ. Press, 1960.
11. Kent P.W., Structure and Function of Glycoproteins, In Essays in Biochemistry, Vol. 3, the Biochemical Society by Acciadem Press, 1967.

TRANSFER OF R- FACTOR MEDIATING CHLORAMPHENICOL AND TETRACYCLINE RESISTANCE FROM ONE SPECIES OF ENTEROBACTERIACEAE ISOLATED FROM PATIENTS TO ANOTHER

Sudaporn Chintasiri, B.Sc. (Med. Tech.) *

Prayool Inboriboon, B.Sc. (Med. Tech.), M.Sc. **

Kampol Panasampol, M.D. **

Abstract

Transfer of R-factor mediating tetracycline and chloramphenicol resistance from *E. coli* 5 strains, *Proteus* 5 strains and *Salmonella* 2 strains to *Salmonella* 4 strains were accomplished by transferring 0.2 ml of the Donors 6-hour culture into Trypticase Soy Broth and incubated overnight at 37°C. At the end of the conjugation period, dilutions of mixed culture were plated on selective media of Mac Conkey plus tetracycline (12.5 ug/ml), chloramphenicol (25 ug/ml) and nalidixic acid (100 ug/ml) and on control plates of Mac Conkey with tetracycline (12.5 ug/ml), chloramphenicol (25 ug/ml) and Mac Conkey with nalidixic acid (100 ug/ml). Only recombinants did grow on Mac Conkey containing tetracycline, chloramphenicol and Nalidixic acid.

Four of the 5 *E. coli* strains, 5 of the 5 *Proteus* strains and 1 of the 2 *Salmonella* strains could transfer their resistance pattern to *Salmonella*. These organisms were isolated from the patients in Chiang Mai Hospital. They reflect the conditions prevalent of R-factors transfer in this country.

Introduction

Since the discovery of penicillin by Fleming in 1929, many antibiotics are

discovered and introduced to treatment of infectious diseases. However the problem of resistant of the organisms to the anti-

* Department of Medicine, Faculty of Medicine,
Chiang Mai University.

** Department of Microbiology, Faculty of Medicine, Chiang Mai University.

biotics that formerly had been used effective had occurred, for example, *Staphylococcus aureus* are found to be penicillin resistant in high percentage (1,2). Resistance transfer factor (R-factor) was one of the most important thing that make the organisms become resistant to antibiotics, and could transfer to antibiotic sensitive organisms, particularly in Enterobacteriaceae (3,4,5,6.). Transfer of drug resistance reported first in Japan in 1959. They found that *E. coli* could transfer drug resistance to *Shigella*. (7)

R-Factors are infectious extrachromosomal genetic elements called "Episomes" or Plasmids and did not necessary for bacterial reproduction (8). They consists of two major components. The first one is transfer factor or R (tf) This component involved replication and mobility of R-factors. The other part is drug resistance determinant or R-determinant. It is responsible for drug resistance and may have more than one determinant on the same R-factors, which usually found in multiple drug resistance organisms (9). The chemical nature of R-factors are double-stranded DNA molecule (10). The amount of DNA depend upon drug resistance determinants (11).

Because of R-factors occurred commonly among Enterobacteriaceae. These organisms usually found to be the causative agents of gastro-intestinal infections,

particularly in tropical country. In the patients the pathogenic, *Salmonella* and *Shigella*, are living together with normal flora, *E. coli*. This study attempted to transfer R-factors mediating chloramphenicol and tetracycline resistance from one species of Enterobacteriaceae to another.

Materials and Methods

Donor organisms

Five strains of *E. coli*, *Proteus* and two strains of *Salmonella* were obtained from diagnostic laboratory, Chiang Mai Hospital. All were found to be chloramphenicol, tetracycline resistant and nalidixic acid sensitive by the Kirby Bauer disc method.

Recipient organisms

The recipient organisms, *Salmonella* 4 strains, were isolated from diagnostic laboratory, Chiang Mai Hospital. All were found to be chloramphenicol, tetracycline sensitive and nalidixic acid resistant by the Kirby Bauer disc method.

Antibiotics

Stock solution of chloramphenicol and tetracycline, 2500 ug/ml, and nalidixic acid 5000 ug/ml are divided into 5 ml for each tube and kept in freezer, -20°C. After used the remainder are discarded.

Media

1. Trypticase soy broth was used for growth (5 ml) and conjugation (10 ml).
2. Mac Conkey agar was prepared as followed.

- Mac Conkey agar plate.

- Mac Conkey plate plus chloramphenicol 25 ug/ml and tetracycline (12.5 ug/ml). (Mc + C + T).

- Mac Conkey agar plate plus nalidixic acid 100 ug/ml (Mc + NA)

- Mac Conkey agar plate plus chloramphenicol 25 ug/ml, tetracycline 12.5 ug/ml and nalidixic acid 100 ug/ml.

Conjugation

Donor and recipient strains were grown in Trypticase Soy broth (TSY) separately for 6 hours at 37°C. After incubation, 0.2 ml donor and 0.8 ml recipient were added to 10 ml TSY and incubated at 37°C for 24 hours. Then, the conjugation were diluted and plated on Mac Conkey plus chloramphenicol and tetracycline (Mc+C+T); Mac Conkey plus nalidixic acid (Mc+NA) and Mac Conkey plus chloramphenicol, tetracycline and nalidixic acid (Mc+C+T+NA) and incubated 37°C overnight.

The recombinants did grow on (Mc + C+T+NA) and rate of transfer are calculated from :

$$\text{Rate of transfer} = \frac{\text{Recombinant colonies/cc}}{\text{Resistant donor colonies/cc}}$$

Results

The antibiotic susceptibility patterns of donors and recipients are shown in table I. When these organisms are plated on Mac Conkey plus antibiotics, The donors did grow on Mac Conkey agar plate containing chloramphenicol and tetracycline and the recipients did grow on Mac Conkey agar plate containing nalidixic acid only (Table II).

After conjugation, the recombinants are resistant to chloramphenicol, tetracycline and nalidixic acid

The result showed that five of the 5 *E.coli* strains, 5 of the 5 *Proteus* strains and 1 of the 2 *Salmonella* strains could transfer their resistant pattern to *Salmonella*. Rate of transfer between *E. coli* and *Proteus* to *Salmonella* are higher than *Salmonella* to *Salmonella*

The incidence of pathogenic enteric bacilli isolated from the patients in Chiang Mai Hospital during January, 1971-December 1971 are shown in Table III and percentage of drugs resistance are shown in Table IV.

Specimen	Number	Number	Number	Number	Number	Number	Specimen
<i>E. coli</i>	281	201	186	181	186	186	<i>Salmonella</i>
<i>Proteus</i>	218	202	186	184	188	188	<i>Enterobacter</i>

Table I Antibiotic susceptibility of the donor and recipient organisms by Kirby Bauer disc Method

Organisms	Tetracycline	Chloramphenicol	Nalidixic acid.
Donors			
E. coli 5 strains	R	R	S
Proteus 5 strains	R	R	S
Salmonella 2 strains	R	R	S
Recipients			
Salmonella 4 strains	S	S	R

R = Resistant

S = Sensitive

Table II Growth of donors and recipients on Mac Conkey agar plate containing antibiotics

Organisms	Mc	Mc + C + T	Mc + NA	Mc + C + T + NA
Donors	+	+	-	-
Recipients	+	-	+	-

Table III Incidence of *Salmonella*, *Shigella*, *Proteus* and Enteropathogenic *E. coli* Isolated from patients in Chiang Mai Hospital during January, 1971 - December, 1971

Specimens	Total Specimens	Salmonella spp.	Shigella spp.	Proteus spp.	Enteropathogenic E. coli
Stool	1666	188(7.08%)	33(1.98%)	107(6.60%)	162(8.52%)
Urine	2823	4(0.14%)	4(0.14%)	205(7.26%)	312(10.04%)

Table IV Percentage of Resistance to 10 antibiotics among *Salmonella*, *Shigella*, *Proteus*, *E. coli* isolated from patients

Organism	Test	Resistant	Resistance to									
			C	E	OT	S	K	Bac.	SD	T	KF	Amp.
<i>Salmonella</i> spp.	122	77	77	—	—	98	70	13	—	67	15	75
			from 122	from 122		from 120	from 119	from 116		from 117	from 95	from 117
<i>Shigella</i> spp.	36	27	63.11%	63.11%	5	11	17	6	15	23	14	25
			from 36	from 36	from 6	from 19	from 25	from 35	from 35	from 26	from 62	from 53
<i>Proteus</i> spp.	312	232	75.00%	75.00%	83.33%	57.89%	68.00%	17.14%	42.86%	88.46%	22.57%	47.17%
			from 312	from 312	from 21	from 64	from 281	from 309	from 282	from 92	from 62	from 273
<i>E. coli</i>	474	354	74.59%	75.00%	95.24%	87.50%	66.54%	33.65%	51.77%	95.65%	88.69%	75.82%
			from 474	from 474	from 27	from 94	from 423	from 450	from 412	from 146	from 324	from 394
			74.62%	75.00%	85.18%	85.11%	82.03%	49.66%	20.87%	83.50%	71.29%	29.77%
												75.14%

C = Chloramphenicol

Bac = Bactrim or Septrin

E = Erythromycin

SD = Sulfadiazine

OT = Oxytetracycline

I = Tetracycline

S = Streptomycine

KF = Keflin

K = Kanamycin

Amp = Ampicillin

Discussion

Biochemical change with can lead to drug resistance were hypothesized as follows: (a) decreased penetration of the drug; (b) increased destruction of the drug; (c) increased concentration of a metabolite antagonizing the drug; (d) increased concentration of an enzyme utilizing this metabolite; (e) decreased quantitative requirement for a product of the metabolite; (f) alternate metabolic pathway. Drug resistance due to R-factors involved with the inactivation or destruction of drug by bacterial enzymes (8,12), except R-factors mediated tetracycline resistance which involved decrease penetration of drug (13). Transfer of R factors accomplished by conjugation and may occurred both in vivo and in vitro. However in vitro is better because there are many factors affecting the conjugation process (14). Pili of the organisms are importance. If the organisms lack pili they could not

transfer R-factors to other organisms (6). Ratio of donors and recipients also affected. Akiba reported that optimum pH is 7.3 ± 0.2 and temperature is 37°C (15).

Media for growth of the donors and recipient organisms and for conjugation in this experiment are trypticase soy broth, the selective medium did not choose because transfer occurs very rare in selective medium (14). From this experiment almost the donors could transfer R-factors to *Salmonella*. These donors are isolated from the patients and selected in random. It showed the prevalence of R-factors in these organisms, which correlated with antibiotic susceptibility testing (Table IV). The R factors may be acquired by an intestinal pathogen upon contact with these organisms, and the pathogen may then convey the resistance transfer factor back to the original RTF donor or to other pathogens. Transferable drug resistance is thereby spread (16).

References

1. Cohen, S., and Sweeney, H.M.: Constitutive penicillinase formation in *Staphylococcus aureus* owing to mutation unlinked to the penicillinase plasmid, *J. Bacteriol.* 95: 1368-1374, 1968.
2. Novick, R.P.: Analysis by transduction of mutations affecting penicillinase formation in *Staphylococcus aureus*, *J. Gen. Microbiol.* 33:121-136, 1963.
3. Anderson, E.S.: A rapid screening test for transfer factors in drug sensitive Enterobacteriaceae, *Nature*, 208:1016-1017, 1965.
4. Anderson, E. S., and Lewis, M. J.: Drug resistance and its transfer in

Salmonella typhimurium, *Nature*, 206: 579-538, 1965.

5. Anderson, E.S., and Datta, N.: Resistance to penicillin and its transfer in Enterobacteriaceae, *Lancet*, 1: 407-409, 1965.

6. Meynell, E., and Datta, N.: Mutant drug resistance of high transmissibility, *Nature (Lond.)* 214:885-887, 1967.

7. Watanabe, T.: Infective of multiple drug resistance in bacteria, *Bact. Rev.* 27: 86-115, 1963.

8. Mitsuhashi, S., Kameda, M., Harada, KI, and Suzuki, M.: Formation of recombinants between nontransmissible drug resistance determinants and transfer factor, *J. Bacteriol.* 97:1520-1521, 1969.

9. Harada, K., Suzuki, M., Kameda, M., and Mitsuhashi, S.: On the drug resistance of enteric bacteria 2. Transmission of the drug resistance among Enterobacteriaceae, *Japanese J. Expt. Med.* 30: 289-299 (in English), 1960.

10. Sturdevant, A.B. Jr., Casell, G.H., et al. Effects of Antibiotic Treatment on the Incidence of Infectious drug Resistance Among Intestinal Lactose-Fermenting Bacteria Isolated from Burn Patients: Infection and Immunity, 3: 411-415, 1971.

11. Nisioka, T., Mitani, M., and Clones, R.: Composition Circular locus of R-factor DNA molecule, *J. Bacteriol.* 97: 376-385, 1969.

12. Sieckmann, E.G., Reed, N.D., and Georgi, C.E.: Transferable drug resistance among Enterobacteriaceae isolated from human urinary tract infection, *Appl. Microbiol.* 17:701-706, 1969,

13. Izaki, K., Kiuchi, K., and Arima, K.; Specificity and mechanism of tetracycline resistance in a multiple drug resistant of *E. coli*, *J. Bacteriol.* 91: 628-633, 1966.

14. Gardner, P., Harding, A.L., Olans, R. N., et al. R. factor transfer in selenite and tetrathionate broths, *Appl. Microbiol.* 21:685-687, 1971.

15. Akiba, T., and Iwahara S.: Studies on the mechanism of transfer drug resistance in bacteria. IX. Influence of temperature and pH on resistance transfer (In Japanese) *Med. Biol. (Tokyo)* 60: 42-44.

16. Anderson, E.S.: Origins of transferable drug resistance factor in the Enterobacteriaceae, *British Medical Journal*, 2: 1289-1291, 1965.

ยอ และ รีวิวเอกสาร

Micro Electrophoresis

by Suntaree Chalermgsri

The Term paper for the degree of B.Sc.
(Med. Tech.) 1969-1970

School of Medical Technology, Faculty of
Medicine, Chiang Mai University.

โดยใช้ cellulose acetate เป็น supporting medium ในการทำ microelectrophoresis ผู้ทดลองสามารถที่จะแยกนิยดของ hemoglobin ได้ออกมานเป็น band ที่ชัดเจน ทั้งของคนปกติและคนไข้ Thalassemia Hemoglobin E

Cellulose acetate นับเป็น supporting medium ที่ใหม่ที่สุดในการของ electrophoresis. ในการทำ hemoglobin typing โดยวิธีนี้ส่วนตีกว่าแบบเก่าๆ แบบอันดายประการ อาทิ ใช้เลือดคนอยกว่ามาก เพียงแค่เจาะเลือดจากปลายนิ้ว ตัดส่วนปลายมาออกจาก capillary tube และ apply เพียง 1-2 microlitre ของส่วนเม็ดเลือดแดงลงบน strip. Buffer คือ T.E.B. Buffer สำหรับ cellulose acetate ประกอบด้วย Tris crystal 242 gm., Disodium EDTA 3.13 gm., Boric acid 1.84 gm.

เติมน้ำให้เป็น 2,000 cc. โดยปรับ pH ให้ได้ 6.0 กระแสไฟครั้งที่ 500 V. Fraction จะ complete ในเวลา 30-40 นาที ผลที่ได้ปรากฏว่าเห็น zone ของแต่ละชนิดของ hemoglobin ชัด ไม่เกิด tailing เหมือน paper electrophoresis นอกจากนี้ วิธี cellulose acetate นี้ยังไม่ถูก interfere โดย none-heme protein และไม่ต้องทำ hemoglobin solution. แม้แต่เม็ดเลือดแดง ก็ไม่จำเป็นต้องนำมารสังห์ด้วย ซึ่งทุนเวลาไปได้มาก วิธีทำง่ายและอ่านผลง่าย เห็นมาและสังควรสำหรับทำการสำรวจเพื่อศึกษาพันธุกรรมของโรคที่มีการผิดปกติของ hemoglobin ในกลุ่มนี้ค่อนข้างๆ.

สรพ. มาตรฤก
B.Sc. (Med. Tech.)

Transient Prothrombin complex Deficiency in Neonatal Period

By Aweewan Hangthaworn
The Term paper for Degree of B.Sc.
(Med. Tech.)

The School of Medical Technology,
Faculty of Medicine,

Chiang Mai University 1970-1971

ผู้รายงานได้ทำการทดลองทางด้านของ

Prothrombin time, Factor II, V, VII+ X, X จากหารกแรกคลอดที่ไม่ได้รับ Vitamin K จำนวน 20 ราย ครรภ์แรกใช้ Cord blood ต่อไปเจาะเลือดจาก femoral vein เมื่อ 18, 24, 36, 48 และ 72 ชั่วโมง ตามลำดับ โดยใช้ 3.8% sodium citrate เป็น anticoagulant แล้วทำเป็น Platelet-poor plasma โดย centrifuge ที่ high speed (4000 rpm) 10 นาที plasma ที่ยังไม่ใช้ต้อง freeze ที่ -20°C จากผลการทดลองปรากฏว่า ทั้ง Prothrombin time และ factors ต่างๆ ที่กล่าวข้างต้นมีระดับลดน้อยลงเรื่อยๆ จนต่ำสุดประมาณ 24-36 ชั่วโมง ต่อจากนั้นจะเริ่มน้ำรดับลงจนกระทั่งอยู่ในระดับปกติเมื่อเดือดออกอีกประมาณ 48 ชั่วโมง ผลการทดลองนี้รายงานกล่าวว่าระดับของ factors ต่างๆ ที่น้ำรดับปกติรวมเร็วกว่ารายงานของต่างประเทศที่ได้เคยรายงานไว้

ชลธ บัวนันจัด

B.Sc. (Med. Tech.)

Comparison of in vivo and in vitro toxicogenicity tests for *Corynebacterium diphtheriae*

Tian Pholpothi B.Sc. (Med. Tech.), The Term paper for the degree of B.Sc. (Med. Tech.), The School of Med. Tech., Faculty of Medicine,

Chiang Mai University 1969-1970

จากภาควิชา *Corynebacterium*

diphtheriae 18 strains (17 strains

เป็น mitis type และอีก 1 strain เป็น intermedium type) ซึ่งแยกได้จากผู้ป่วยที่รพ. นครเชียงใหม่ 14 strains (82.3%) ของ mitis type จะมีลักษณะเป็นเม็ดเดี่ยวกัน และอีก 3 strains (17.7%) จะเป็น fine granular ส่วน intermedium type จะเป็นเม็ดเดี่ยวกัน 13 strains (76.5%) ของ mitis type ที่ Hemolysin production และอีก 4 strains (24.5%) ที่ผลลัพธ์ intermedium ให้ผลบวก

In vitro toxicogenicity test พนบวหง 2 type ตั้งกล่าวให้ผลบวกภายใน 48 ชั่วโมง โดยเปรียบเทียบ media ที่ใช้ต้องพนบวหง pooled rabbit serum และ serum substitute (Casamino acid 1 gm, Tween 80 1 ml, glycerol 1 ml, distilled water 100 ml.) มีคุณภาพพอต้น

In Vivo toxicogenicity test โถวธี Intradermal test ในกระต่ายพนบวหง C. diphtheriae ทั้ง 18 strains ให้ necrotic lesion ชัดเจน จากการเปรียบเทียบพนบวหง in Vitro ให้ผลเร็วและสะดวกกว่าวิธี in Vivo test.

สนธ มงคลวัฒร

B.Sc., M.Sc., Ph.D.

A study on rats and their ectoparasites in the municipality of Chiang Mai and its vicinity.

by Somchai Imlarp B.Sc. (Med. Tech.)
The Term paper for degree of B.Sc. (Med. Tech.) 1969-1970.

School of Medical Technology, Faculty of Medicine, Chiang Mai University

ผู้รายงานได้ดักหนูในเขตเทศบาลนครเชียงใหม่ และบริเวณใกล้เคียง เพื่อศึกษาชนิดของหนู และ.ecotoparasitที่มีในหนู ตั้งแต่เดือนพฤษภาคม 2512 ถึงเดือนมกราคม 2513 ได้หนูทั้งหมด 244 ตัว น้ำหนัก 3 ชนิด คือ *Bandicota indica*, *Rattus rattus*, *Rattus exulans*

ผู้รายงานได้ผ่าหนูด้วย Chloroform ตรวจหา.ecotoparasitที่ในหนูและตามขน ทั่วต่างๆ พนไร่อ่อน (Chiggers) *Laurentella indica*, *Gahrtiepia (Walchia) ewingilupella*, *Gahrliepia (walchia) longidentata*, *Gahrliepia (Schongastiella) lignla*, *Leptotrombidium (Leptotrombidium) deliensis*, *Trombicula spp.*

ส่วนพวกเห็บ (Ticks) พบ *Rhipicephalns spp.*, *Haemaphysalis spp.* *Ixodes spp.* พวกหนี้ (Fleas) พบ *Xenopsylla cheopis* ชนิดเดียว.

เกตุรัตน์ สุขวัฒ
B.Sc. (Med. Tech.)

The Relationship between Total serum Cholesterol and Serum Protein Bound Iodine for Diagnosis of Thyroid Diseases.

by Dr. Muni Keoplung, M.D.,
and Griengsudi Imchai

From The term paper for degree of B.Sc. (Med. Tech.) 1970 - 1971

School of Medical Technology, Faculty of Medicine, Chiang Mai University.

จากการหา Total serum Cholesterol โดยวิธีของ Henly, modified by Chiamori & Henry เปรียบเทียบกับการหา serum PBI โดยวิธี Thyro-Pak, Modified Dry - Ash (Barker) โดยเอา Sample เดียวกันมาเปรียบเทียบกัน

ใช้ Serum ของคนปกติ (Euthyroidism) จาก Blood bank donors และ volunteers ทั้งหมด 57 ราย อายุระหว่าง 13-64 ปี เป็นชาย 16 ราย เป็นหญิง 41 ราย ได้ค่า Total serum Cholesterol ทั้งหมด อยู่ในระดับปกติ

Range = 147-303 mg./100 ml serum

Average = 189 mg./100 ml serum

และค่า Serum PBI ทั้งหมดอยู่ในระดับปกติ

Range = 3.3-7.9 ugm/100 ml serum

Average = 5.2 ugm/100 ml serum

ใช้ Serum ของคนไข้ Hyperthyroidism ที่มารับการตรวจใน รพ. นครเชียงใหม่

ทั้งหมด 28 ราย อายุระหว่าง 15-57 ปี เป็นชาย 5 ราย เป็นหญิง 23 ราย ได้ค่า Total serum Cholesterol แทนทั้งหมดอยู่ในระดับต่ำ แต่ก็มีผลลัพธ์ที่อยู่ในระดับปกติ Range = 70 - 330 mg/100 ml serum Average = 133 mg/100 ml serum ได้ค่า serum PBI ทั้งหมดสูงกว่าระดับปกติ Range = 8.4-18.6 ugm/100ml serum Average = 10.3 ugm/100 ml serum ใช้ serum ของคนไข้ Hypothyroidism ที่มารับการตรวจใน ร.พ. นครเชียงใหม่ ทั้งหมด 8 ราย อายุระหว่าง 20-70 ปี เป็นชาย 2 ราย เป็นหญิง 6 ราย ได้ค่า Total serum Cholesterol แทนทั้งหมดสูงกว่าระดับปกติ แต่ก็มีบางรายที่อยู่ในระดับปกติ Range = 131-456 mg/100 ml serum Average = 248 ugm/100 ml serum ได้ค่า serum PBI ทั้งหมดต่ำกว่าปกติ Range = 1.3-2.8 ugm/100 ml serum Average = 2.2 ugm/100 ml serum

เมื่อเปรียบเทียบค่าระหัวง Total serum Cholesterol กับ serum PBI จากผลการทดลองที่ได้รับ ทดสอบ U.V. ที่ 340 มม.

ใน Euthyroidism ค่า Total Cholesterol และ PBI อยู่ใน acceptable range มาก

ใน Hyperthyroidism ค่า PBI สูงกว่าค่าปกติทุกราย ส่วนค่า Total Cholesterol ยังเชื่อถือไม่ได้ทุกราย เพราะยังอยู่ในเกณฑ์ปกติอีกหลายราย แต่ถึงแม้ว่าค่า Total cholesterol จะเทียบไม่ตรงกับค่าของ PBI ทุกรายก็ตาม แต่ก็มีความสำคัญในการวินิจฉัยมากถ้าพบว่าได้ค่า Total cholesterol ต่ำค่า PBI สูง จะช่วยในการวินิจฉัยโรคได้แม่นยำและถูกต้องยิ่งขึ้น

ใน Hypothyroidism ค่า PBI ต่ำกว่าปกติทุกราย ส่วนค่า Total cholesterol จะสูงขึ้นชัดเจนเฉพาะในรายที่เป็นค่อนข้างรุนแรงและนานພอย่างนั้น ช่วยในการวินิจฉัยโรคซึ่งได้แม่นยำและถูกต้อง ถ้ายังเป็นไม่รุนแรงก็เชื่อถือได้แต่ค่า PBI.

เกรียงศักดิ์ อัมใจ

ข่าว

Sport day, Sport night, Sock and tie

สมอสรนักศึกษาเทคนิคการแพทย์ คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ ได้จัดงาน Sport day ซึ่งเป็นการแข่งขันกีฬาภายในขึ้น เมื่อวันที่ ๒๖ พฤษภาคม ๒๕๑๕ เวลา ๙.๓๐-๑๖.๐๐ น. และในตอนกลางคืนได้จัดให้มีงาน Sport night เพื่อความสนุกสนานเริง ร่วมด้วย Sock and tie ของนักศึกษาเทคนิคการแพทย์บีท ๑ โดยเริ่มงาน ๑๗.๐๐-๒๓.๐๐ น. ณ อาคารสันทนาการ คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่

Fare well Senior

นักศึกษาโครงการจัดตั้งคณะเทคนิคการแพทย์ คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ ได้จัดงานเลี้ยงให้แก่นักศึกษาเทคนิคการแพทย์บีท ๔ ซึ่งจะจบเป็นบัณฑิตในปลายปี ๒๕๑๕ ที่ก้าวต่อการเมืองอิน เชียงใหม่ เมื่อวันเสาร์ที่ ๙ ธันวาคม ๒๕๑๕ เวลา ๑๙.๐๐-๒๔.๐๐ น. ซึ่งงานได้สำเร็จลุล่วงไปด้วยดี เป็นที่นิยมแก่ผู้ที่จะเป็นบัณฑิตใหม่โดยทั่วหนา

กลับจากต่างประเทศ

อาจารย์จำปา ศรีสัจจ์ อาจารย์โภ ภาควิชาสรีวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ ซึ่งได้เดินทางไปศึกษาต่อเกี่ยวกับ Medical Electronic ณ University of Illinois at the Medical Center สหรัฐอเมริกา มีกำหนด ๒ ปีได้ศึกษาสำเร็จและเดินทางกลับมาถึงประเทศไทย และกลับเข้าปฏิบัติหน้าที่ราชการตามเดิมเรียบร้อยแล้ว ตั้งแต่วันที่ ๑ ธันวาคม ๒๕๑๕

อาจารย์สนอง ไชยรัศมี และ อาจารย์อรพินท์ ไชยรัศมี อาจารย์โภ ในโครงการจัดตั้งคณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่ ซึ่งได้เดินทางไปศึกษาวิชา Medical Technology (MT. ASCP) ได้เดินทางกลับมาถึงประเทศไทย และเข้าปฏิบัติหน้าที่ราชการตามเดิมเรียบร้อยแล้ว ตั้งแต่วันที่ ๑ ธันวาคม ๒๕๑๕

งานส่งท้ายบีทเก่า-ต้อนรับบีใหม่

โครงการจัดตั้งคณะเทคนิคการแพทย์ และนักศึกษาเทคนิคการแพทย์ คณะแพทยศาสตร์

มหาวิทยาลัยเชียงใหม่ ได้ทำบุญส่งท้ายนี้เก่า

และต้อนรับนี้ใหม่ ที่ตึกโครงการจัดตั้งคณะ
เทคนิคการแพทย์ เวลา ๙.๐๐ น. วันที่ ๓๑
ธันวาคม ๒๕๑๕ เสร็จแล้วมีการรับประทาน
อาหารกลางวัน และจับฉลากของขวัญนี้ใหม่
ด้วย

งานนิทรรศการของมหาวิทยาลัย

ในการจัดงานฉลองนิทรรศการของมหาวิทยาลัยเชียงใหม่
เริ่มตั้งแต่วันที่ ๓๐ ธันวาคม ๒๕๑๕ ถึงวันที่
๖ มกราคม ๒๕๑๖ ทางมหาวิทยาลัยเชียงใหม่
จะได้ไปแสดงนิทรรศการ ที่อาคารยิมเนเซี่ยม
ของวิทยาลัยพลศึกษา ในบริเวณสนามกีฬา
เทศบาลนครเชียงใหม่ ในการแสดงครั้งนี้
โครงการจัดตั้งคณะเทคนิคการแพทย์ ได้ร่วม^ช
แสดงนิทรรศการ และรับตรวจทางห้องปฏิบัติ
การด้วย.

สมรส

น.ส. เอ้อมพร ศรีสุโข บัณฑิตเทคนิคการ
แพทย์เชียงใหม่ รุ่นที่ ๑ สมรสกับคุณนันส์
รัตนชาตย์พิรชัย แห่งธนาคารกรุงเทพฯ สาขาศรี
นครพิงค์ เมื่อวันที่ ๔ พฤษภาคม ๒๕๑๕ ที่
จังหวัดเชียงใหม่

ศึกษาต่อ

อาจารย์ประยูร อินบริบูรณ์ อาจารย์โท
ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์ มหา-
วิทยาลัยเชียงใหม่ ได้รับทุน China Medi-
cal Board ให้ไปศึกษาต่อ ณ University
of Illinois at the Medical Center,
Chicago, Illinois, U.S.A. ซึ่งจะได้ออก
เดินทางจากประเทศไทยประมาณเดือนมีนาคม ๒๕๑๖.

CUMULATIVE INDEX

SUBJECT INDEX

- A -

ANAEROBIC

Organisms in Stool. 3: 107, 70.

ANEMIA

Protein - Calorie Malnutrition. 3: 77, 91, 70.

ANTIBIOTICS

Action. 2: 35, 69.

And Chemotherapeutic Agents. 3: 43, 70.

Sensitivity, in Local Wound Infection. 5: 209, 72.

ANTIMICROBIAL SUSCEPTIBILITY

Hemophilus influenzae. 4: 65, 71.

Shigella. 5: 123, 72.

AMMONIA

Plasma, Effect of Time and Temperature. 5: 111, 72.

AMYLASE

Serum. 2: 117, 69.

- B -

BLOOD

Stool Occult. 4: 93, 71.

BAT

3: 145, 70.

And Medicine. 3: 139, 1970. (Editorial).

- C -

CAROTENE

Serum, and Vitamin A levels. 5: 85, 72.

CELLULOSE ACETATE

Hemoglobin Electrophoresis. 1: 63, 68.

CERCARIAE

And Larvae in Mollusks. 2: 22, 69.

Of *Opisthorchis* spp. 4: 77, 71.

CHEMOTHERAPEUTIC AGENTS

And Antibiotics. 3: 43, 70.

CHIANG MAI

Drinking Water, Coliform. 5: 17, 72.

Drinking Water, Fluoride. 5: 81, 72.

Fish, Helminth of 5: 185, 72.

Hemophilus influenzae. 4: 65, 71.

Leptospirosis. 5: 91, 72.

Microorganisms, Sampling for. 4: 145,

71.

Mollusks, Larvae and Cercariae. 2: 22, 69.

Mosquito, *Culex fatigans*. 2: 97, 69.

Mosquito, Fauna. 2: 71, 69.

Opisthorchis, Cercariae. 4: 77, 71.

Opisthorchis, Metacercariae. 4: 113, 71.

Rabid Dogs. 5: 43, 72.

Tuberculosis. 1: 43, 68.

Urinary Steroids. 4: 133, 71.

CHOLESTEROL

Serum Level in Northern Thai. 3: 157, 70.

- E -

COLIFORMS

In Drinking Water and Utensils. 5: 17, 72.

COLLOCALIA

Mucoid Media. 5: 201, 72.

COLONY-STIMULATING FACTOR (CSF)

In Thalassemic Urine. 5: 1, 72.

COUNT—COUNTER

Delayed Leukocyte count. 5: 9, 1972.

Leukocytes and differential counts in PCM. 3: 91, 70.

Use of Electronic Coulter Counter

Moder D. 1: 36, 68.

CULEX FATIGANS

Susceptibility to D.D.T. 2: 97, 69.

CULTURE

Lymphocyte. 5: 151, 72.

Mutation of Staphylococci to Penicillin G. 1: 1, 68.

- D -

D. D. T.

Susceptibility, Culex fatigans. 2: 97, 69.

DIARRHOEA

Infantile, E. coli. 2: 109, 69.

DIFFERENTIAL COUNT

PCM. 3: 91, 70.

DNA

Synthesis, of lymphocyte culture. 5: 151, 72.

DONORS

Iso-Agglutinin Titer. 1: 11, 68.

EDITORIAL

Bat and Medicine. 3: 139, 70.

Curriculum, Revised for School of Med. Tech. 4: 57, 71.

Electrophoresis, Immunodisc. 5: 145, 72.

Medical Technology and Medicine. 2: 83, 69.

Medical Technology in USA. 4: 111, 71.

Quality Control, Clin. [Chem. Lab. 4: 1, 71.

WHO, Immunology Research and Training Center. 5: 51, 72.

ELECTROPHORESIS

Hemoglobin. 1: 63, 68.

Immunodisc. 5: 145, 72.

Protein. 4: 29, 71.

ELUTION

Hemoglobin, Strip Elution. 5: 13, 72.

Protein, Paper Electrophoresis. 4: 29, 71.

ENTERIC PATHOGEN

Isolation of. 5: 23, 72.

ENZYMES

Activities in Heart Disease and Trichinosis. 3: 163, 70.

ESCHERICHIA COLI

Infantile Diarrhoea. 2: 109, 69.

- F -

FASTIDIOUS ORGANISMS

Media for growth. 4: 153, 71.

FISH

Helminth Parasites of. 5: 185, 72.

FLUORIDE

In drinking water. 5: 81, 72.

- G -

GRAVIDEX

Slide Test for Pregnancy. 1: 30, 68.

- H -

HEART DISEASE

And Trichinosis, Enzyme Activities. 3: 163, 70.

HELMINTHS

Parasites in Fresh - Water Fish. 5: 185: 72.

HEMATOCRIT VALUES

Neonates, Northern Thai. 4: 15, 71.

PCM. 3: 77, 70.

School-Age Children. 4: 21, 71.

Teenagers. 4: 25, 71.

HEMOGLOBIN

Electrophoresis. 1: 63; 68.

Neonates Levels, North Thai. 4: 15, 71.

PCM. 3: 77, 70.

School-Age Children Levels 4:21, 71.

Strip Elution Technic. 5: 13, 72.

Teenagers Levels. 4: 25, 71.

HEMOGRAM

Neonates, Northern Thai. 4: 15, 71.

School Age Children, Levels. 4:21, 71.

Teenages, Levels. 4: 25, 71.

HEMOPHILUS INFLUENZAE

Antimicrobial Susceptibility. 4: 65, 71.

HOOK - WORM

Infection and Serum Iron Levels. 5: 117, 72.

- I -

INFANTILE

Diarrhoea. 2: 109, 69.

INFECTION

Hook-worm and SI Levels. 5: 117, 72.

Microorganism, Antibiotic Sensitivity. 5 : 209, 72.

IMMUNODISC ELECTROPHORESIS

5 : 145, 72. (Editorial)

IRON

Serum, and Hook-worm Infection. 5: 117, 72.

ISOAGGLUTININ

Titer. 1: 11, 68.

- L -

LARVAE

In Mollusks. 2: 22, 69.

LEPTOSPIROSIS

Cause of PUO. 5: 91, 72:

In Thailand. 3: 1, 70.

LEUKOCYTE

Delayed Count. 5: 9, 72.

PCM. 3: 91, 70.

LIPOPROTEIN

Serum Electrophoresis. 5 : 31, 72.

LYMPHOBLASTIC TRANSFORMATION

PHA - Induced. 5 : 151, 72.

- M -

MEDIA

Blood Agar, Beta-hemolysis of group

A Streptococci. 4: 3, 71.

For Fastidious Organisms. 4: 153, 71.

Collocaia Mucoid, Effect on Vibrio-cholera. 5: 201, 72.

METACERCARIA

Opisthorchis spp. 4: 113, 71.

METHOTREXATE

Serum. 4: 125, 71.

MICROORGANISM

Air Sampling. 4: 145, 71.

Local Wound Infection, Antibiotic Sensitivity. 5: 209, 72.

MOLLUSKS

Larvae and Cercariae in. 2: 11, 69.

MOSQUITO

Culex fatigans. 2: 97, 69.

Fauna. 2: 71, 69.

MUTATION

Staphylococci due to Penicillin G. 1: 1, 68.

MYLOCYTE

In PCM. 5: 69, 72.

- N -

NEMATODS

In Mollusks. 2: 22, 69.

NEONATES

Hemograms. 4: 15, 71.

NEUROMIDASE

Vibrio cholera, Effect of Collocaia Mucoid Media. 5: 201, 72.

NEUTROPHIL

In PCM. 5: 69, 72.

NORTHERN THAI

Hemograms. 4: 15, 21, 25, 71.

Serum Cholesterol Levels. 3: 157, 70.

- O -

OCCULT BLOOD

Stool. 4: 93, 71.

OPISTHORCHIS spp.

Cercariae. 4: 77, 71.

Metacercariae. 4: 113, 71.

- P -

PATHOGEN

Enteric, Isolation of. 5: 23, 72.

PENICILLIN G

Staphylococci, Prolonged Culture. 1: 1, 69.

PHYTOHEMAGGLUTININ

Lymphoblastic Transformation. 5: 151, 72.

PREGNANCY

Gravindex, Slide Test. 1: 30, 68.

PROTEIN

Electrophoresis. 4: 29, 71.

Refractometric Determination. 5: 103, 72.

PROTEIN-CALORIE MALNUTRITION

Differential Count Levels. 3: 91, 70.

Hematocrit and Hemoglobin. 3: 77, 70.

Leukocyte Count. 3: 91, 70.

Myelocytes and Neutrophils. 5: 69, 72.

Reticulocyte Response. 3: 77, 70.

PYREXIA

Leptospirosis, as a cause of. 5: 91, 72.

- R -

RABIES

2: 125, 69.

Rabid dogs. 5: 43, 72.

RADIOIODINE

Detection of Thyroid. 1: 49, 68.

REFRACTOMETRY

Serum Protein. 5: 103, 72.

RETICULOCYTE

Response, PCM. 3: 77, 70.

- S -

SAMPLING

Air Sampling for Microorganisms. 4: 145, 71.

SCANNING

Electrophoresis, Serum Paper. 4: 29, 71.

SENSITIVITY

Antibiotic, Local Wound Infection. 5: 209, 72.

SERUM

Amylase. 2: 117, 69.

Lipoprotein Electrophoresis. 5: 31, 72.

Methotrexate. 4: 125, 71.

Protein Electrophoresis. 4: 29, 71.

Protein Refractometry. 5: 103, 72.

SHICELLA

Susceptibility. 5: 123, 72.

STAPHYLOCOCCUS

Mutation, due to Penicillin G. 1: 1, 68.

STEROIDS

17-Ketosteroids in Urine. 2: 59, 69.

Excretion Patterns, Normal and after Treatment. 4: 133, 71.

STOOL

Anaerobic Organisms. 3: 107, 70.

Occult Blood. 4: 93, 71.

- T -

THAI

Carotene Levels. 5: 85, 72.

Cholesterol Levels. 3: 157, 70.

Uric acid Levels. 3: 71, 70.

THAILAND

Leptospirosis. 3: 1, 70.

Scrub typhus. 2: 1, 69.

THALASSEMIA

Colony-Stimulating Factor, in Urine. 5: 151, 72.

THYMIDINE

Tritiated Thymidine Incorporation, PHA-induced. 5: 151, 72.

THYROID

Function, I^{131} . 1: 49, 69.

TOXICITY

Vibrio cholera, Effect of Collocaia Mucoid Media. 5: 201, 72.

TRICHINOSIS

Enzymes Activities. 3: 163, 70.

- U -

URIC ACID

Serum. 3: 71, 70.

URINE

17-Ketosteroids. 2: 59, 69.

Thalassemic, Colony-stimulating factor. 5: 1, 72.

- V -

VIBRIO CHOLERA

Effect of Collocaia Mucoid Media. 5: 201, 72.

VITAMIN A

And Carotene. 5: 85, 72.

- W -

WOUND

Infections, Antibiotic Sensitivity. 5: 209, 72.

AUTHOR INDEX

— ๙ —

จาร์สคร์ เกษมสวัสดิ์

กัมพล พนัสสำพลด

Vol. 1:63, 68.

Vol. 1:1, 43, 68 *

จารุญู ยาสมุทร

Vol. 2:109, 125, 69.

Vol. 5:17, 81, 72.

Vol. 3:1, 107, 70.

— ๑๐ —

Vol. 4:3, 65, 145, 153, 71.

ชุดอ บ้านชาติ

Vol. 5:17, 23, 43, 91, 123, 201, 72.

Vol. 5:1, 72.

โภวิท อิงคิโกรัตน์

ชชาวดี คุณารักษ์

Vol. 4:93, 71.

Vol. 5:111, 72.

กำธร นิติมานพ

ชัยกอร ฤทธาภรณ์

Vol. 5:151, 72.

Vol. 4:93, 71.

กำแพง สรุทิณฑ์

ชูเชิด ศิริสมบูรณ์

Vol. 2:71, 69.

Vol. 2:71, 97, 69.

— ๑๑ —

เกรือวัลย์ วิสุทธิศักดิ์

Vol. 5:117, 72.

Vol. 5:103, 72.

ไซรัตน์ อัศวภาค

— ๑๒ —

Vol. 4:125, 71.

จันทร์ ศรีวิทยากร

— ๑๓ —

Vol. 5:85, 72.

ฤทธิ์ ประภาสะวัก

ชนทรร ณ เชียงใหม่

Vol. 1:49, 68.

Vol. 5:9, 72.

กำรงค์ พิณกานนท์

จันทน์ คงทน

Vol. 4:21, 71.

Vol. 4:29, 71.

— ๑๔ —

จิรศักดิ์ คำบุญเรือง

ทองฤทธิ์ กาญจนพ

Vol. 4:77, 71.

Vol. 5:81, 72.

ເທົອດເກີຍກົດ ສມບູຮັນ

Vol. 4:15, 71.

- ໝ -

ຮັງຊໍຍ ກີສິນ

Vol. 2:91, 69.

ຮວ້າ ໂຄສາກົດກັນ

Vol. 3:71, 70.

Vol. 5:69, 103, 151, 72.

ຮົກາ ດາວວເກຣະງູ

Vol. 2:35, 69.

- ໝ -

ນັ້ນທຍາ ວ້ຍວັພນະ

Vol. 4:29, 71.

Vol. 5:31, 72.

ນິວັພນ ນກວັພນາ

Vol. 5:117, 72.

ເນດກ ສຸວະຮະຄອຖາສົນ

Vol. 1:1, 43, 68.

Vol. 2:109, 69.

Vol. 3:55, 70.

Vol. 4:145, 71.

Vol. 5:23, 72.

ເນດກເຄສີຍວ ສັນທິກິກ້າຍ

Vol. 3:71, 70.

- ໝ -

ບຸ້ມູພະເຍາວ ເລາທະຈິນກາ

Vol. 3: 161, 70.

ບຸ້ມູຍົງກ ພົງໝໍພາກ

Vol. 5: 17, 72.

ບຸ້ມູຫລງ ສົວະສນບູຮັນ

Vol. 5: 85, 72.

ບົຣົບູຮັນ ພຣົມບູລົຍ

Vol. 3: 157, 70.

- ໝ -

ປະຍຸທົກ ສົງກະສຸກ

Vol. 2: 22, 69.

Vol. 4: 113, 71.

ປະຍຸຮ ອິນບົຣູຮັນ

Vol. 4: 145, 71.

Vol. 5: 43, 91, 123, 201, 72.

ປະໂມທູ່ ວັນຕິຍົຮນາຄມ

Vol. 5: 31, 72.

ບຸ້ມູຈະ ກຸດພູງ

Vol. 3: 77, 91, 70.

Vol. 4: 15, 21, 25, 93, 125, 71.

Vol. 5: 1, 9, 13, 69, 103, 151, 72.

ບຸ້ມູມູ ພັດທິກ່າ

Vol. 4: 145, 71.

- ໝ -

ພັດນ ສົຈຳນັງກ

Vol. 5: 17, 81, 72.

ພ້ອມນິກງ ຄະກະສົມືກ

Vol. 3: 157, 70.

พุนศ์ ธรรมศาสตร์

Vol. 1: 63, 68.

เพญศรี วรรณคูณ

Vol. 4: 153, 71.

- ๔ -

มาลินี เชาวพันธุ์

Vol. 4: 25, 71.

มนี แก้วปัลลัง

Vol. 2: 59, 69.

Vol. 3: 71, 163, 70

Vol. 4: 29, 133, 71.

Vol. 5: 31, 81, 111, 72.

ไม่ครี สุทธิคก

Vol. 5: 201, 72.

- ๕ -

ยุคนธ์ สุวรรณยอก

Vol. 1: 30, 68.

Vol. 2: 117, 69.

ยุพา สุภานิค

Vol. 5: 209, 72.

- ๖ -

เรืองไรวรรณ คุณโนมิค

Vol. 4: 3, 71.

- ๗ -

สำไฟ ศรีสัจจ

Vol. 1: 49, 68.

- ๗ -

วีโอล เจียมงคลกิจพย

Vol. 5: 209, 72.

- ๘ -

สนาน ธรรมจันทร์

Vol. 4: 77, 71.

สนอง ไชยารัศมี

Vol. 1: 11, 68.

สนิท มงคลแก้วเกย์

Vol. 5: 145, 72, (Editorial)

สมชาย รักนศรีทอง

Vol. 5: 185, 72.

สมชาย อัมลาก

Vol. 3: 145, 70.

สวัสดิ์ ลังกาสิทธ

Vol. 2: 59, 69.

เสรี รุ่งเรือง

Vol. 3: 107, 70.

สุนทร ยาโยก

Vol. 5: 81, 72.

สพัคตรา พิรากม

Vol. 4: 65, 71.

สุรเชษฐ์ ทวีพัฒนา

Vol. 3: 91, 70.

สุรพงษ์ มากระกุล

Vol. 5: 201, 72.

January 1973

สุรภา คันธากร

Vol. 5: 91, 72.

สุเทพ คงรอด

Vol. 2: 1, 69.

สุเมธ จินารถ

Vol. 5: 123, 72.

- ๗ -

หัชชา ณ บางช้าง

Vol. 5: 17, 72.

- ๘ -

อรพินธ์ ไชยารักษ์

Vol. 1: 36, 68.

อัญชลี กิตติชนม์รัชช์

Vol. 4: 25, 71.

อนันท์ สุจานันท์

Vol. 4: 113, 71.

อัมพารัตน์ ชุมรุ่ม

Vol. 5: 13, 72.

อัมพา ฉิมมี

Vol. 2: 22, 69.

อุ่นศักดิ์ เหตุชัชช์เจริญ

Vol. 3: 71, 70.

Vol. 4: 133, 71.

อุไร โพธรา

Vol. 3: 1, 70.

Kliks, Michael

Vol. 5: 185, 72.

Robert, C. Evans

Vol. 2: 125, 69.

Vol. 3: 43, 70.

Spain, Elizabeth Anne.

Vol. 5: 111, 72.

ABSTRACT INDEX

ABSCESSES

Intracranial. 5:136, 72.

ACTIVITY

Peroxidase, Identification of Blood Monocytes. 5: 53, 72.

Phagocytic, Multiple Myeloma Cell. 5: 27, 72.

ADULT

Listeria Monocytogenes Meningitis. 3: 133, 70.

AGAR

Containing Medium, Isolation of Tubercle bacilli. 2: 91, 69.

Direct Cord Reading. 2: 137, 69.

Eosin-Methylene Blue,

Hekton Enteric,

Salmonella - Shigella,

Xylose Lysine Deoxycholate,

Isolation of Shigella. 5: 60, 72.

AGENT

Reducing, Determination of Inorganic Phosphorus. 4: 165, 71.

ALKALINE PHOSPHATASE

Serum, Micro starch gel electrophoresis. 5: 62, 72.

ALLOGRAFT

Skin, Inhibition in Trichinella-Infected Mice. 3: 87, 70.

AMERICAN MEDICAL ASSOCIATION

How to Apply for Admission to a U.S. School of Med. Tech. 3: 63, 70.

AMPHETAMINES

Urine, Improved Colorimetric Method. 5: 133, 72.

ANALYZER

Superfast. 3: 64, 70.

ANEMIA

Aplastic, RBC Survival. 5: 53, 72.

Megaloblastic, [Enzymatic Diagnostic 5: 138, 72.

ANIMAL

Sera, Susceptibility in Coagulation Test. 5: 57, 72.

ANTIBODIES

D and Kell, Crossmatch Procedure. 5: 61, 72.

Fluorescent Staining. 4: 105, 71.

Vell. 5: 134, 72.

ANTIBIOTICS

Resistance due to Penicillinase. 1:7, 68.

APLASTIC

Anemia, RBC Survival. 5: 53, 72.

AUTOAGGLUTININS

Cold titer, Erroneous on the Model S Coulter Counter. 5: 139, 72.

- B -

BACTEREMIA

Etiology. 1: 7, 68.

Gram-nagative. 2: 136, 69.

Media for detection. 5: 135, 72.

BACTERIA

Gram-negative, [Survival on Plastic compound. 4: 50, 71.

BACTERIOLOGY

Acute Otitis Media. 1: 7, 68.

BACTERIUM ANTITRATUM

Meningitis. 2: 136, 69.

BACTERIURIA

Pregnancy. 2: 136, 69.

Pregnancy, Streptomycin and Sulfa-metopyrazin therapy. 4: 105, 71.

BLOOD

Inorganic Phosphorus. 4: 165, 71.

Malarial Parasite, Staining. 3: 132, 70.

Monocytes, lysozymes and Peroxidase activity. 5: 53, 72.

Phenylpyruvic acid. 4: 167, 71.

RBC Survival in Aplastic anemia. 5: 53, 72.

BLOOD BANK

Factor VIII in Fresh Frozen Plasma. 3: 184, 70.

BODY FLUID

Ethanol, Enzymatic Method. 4: 103, 71.

BRAIN

Rabies infected, Fix and Smear. 4: 50, 71.

BRUCELLA

Melitensis Type II in London. 3: 65, 70.

BUFFY COAT

Preparation tube. 5: 59, 72.

- C -

CALCIUM

Serum, Ultramicro Methods. 3: 131, 70.

Urine, Newer Method. 4: 47, 71.

CARBONDIOXIDE

Effect of, Isolation of Tubercle bacilli. 2: 91, 69.

CARY - BLAIR

Transport Media for *Vibrio parahaemolyticus*. 5: 137, 72.

CELLULOSE ACETATE

Lipoprotein Electrophoresis. 3: 186, 70.

CHILDREN

Giardiasis. 4: 49, 71.

Parasitic Infestation in Egyptian. 2: 91, 69.

Rabies. 4: 168, 71.

CHROMIC CHLORIDE

As Nonabsorbable Gastric Indicators. 5: 54, 72.

CLARK-COLLIP PROCEDURE

Urine Calcium. 4: 47, 71.

COAGULASE

Suitability, Animal Sera. 5: 57, 72.

Tube and Plate Method. 1: 39, 68.

COLLECTION

Sputum, Mycobacteria. 1: 39, 68.

CONTROL SOLUTION

Hemoglobin. 4: 104, 71.

CORNEA TEST

Rabies Detection. 4: 168, 71.

COULTER COUNTER

Flow-Through Sample Holder. 1: 40, 68.

Model S, Erroneous. 15: 139, 72.

Model S, Normal MCV Value. 5: 139, 72.

COUNTS

Delayed Leukocytes, Preservation of. 2: 135, 69.

CROSS - MATCH

Detection of Anti-D and Kell. 5: 61, 72.

CULTIVATION

Mycobacteria, Sputum. 1: 39, 68.

- D -

DEATH

Changes after Death. 2: 49, 69.

DEHYDROSTREPTOMYCIN

Isolation of Pathogenic E. coli. 2: 92, 69.

DIABETES

Vermicelli. 3: 66, 70.

DIPHTHERIA

Cultaneous. 3: 65, 70.

DIPHTHEROID

Infection in Man. 2: 135, 69.

DMSO - TRICHROME

Protozoa Staining. 1: 83, 68.

- E -

EGYPTIAN

Infants, Parasite Infestation. 2: 91, 69.

ELECTROCUTE

Detection of. 3: 127, 70.

ELECTROPHORESIS

Hemoglobin S. 5: 137, 72.

Lipoprotein. 3: 185, 70.

Microzone System, Evaluation of 16

sera. 4: 103, 71.

Urocanic acid. 5: 58, 72.

ENZYMATIG DIAGNOSIS

Ethanol in Body Fluid. 4: 103, 71.

Megaloblastic Anemia. 5: 138, 72.

EOSINE-METHYLENE BLUE AGAR

Isolation of Shigella. 5: 60, 72.

EOSINOPHIL

Hypereosinophilic. 5: 53, 72.

ERYTHROCYTE

Protoporphyrin in Thalassemic Syndrome. 5: 217, 72.

ESCHERICHIA COLI

Isolation of. 2: 92, 69.

ESTROGEN

Urine of Pregnancy. 3: 183, 70.

ETHANOL

Enzymatic method. 4: 103, 71.

ETIOLOGY

Bacteriuria. 1: 7, 68.

- F -

FACTOR VIII

Fresh Frozen Plasma. 3: 184, 70.

FAMILY

Anti-Vel, Identification. 5: 134, 72.

FANCONI SYNDROME

Acquired, Due to Degraded Tetracycline. 1: 39, 68.

FECAL SMEAR

Protozoa Staining. 1: 83, 68.

FETOPROTEIN

Adult, Held to denote Hepatoma. 3: 64, 70.

FIXATIVE

Intestinal Parasites. 1: 8, 68.

FLUORESCENT

Antibody Staining. 4: 105, 71.

FRAGILITY

RBC. 5: 218, 72.

- G -

GASTRIC INDICATORS

Chromic Chloride and Phenol Red. 5: 54, 72.

GIARDIASIS

In Children. 4: 49, 71.

GLOBULIN

Serum, Direct Photometric. 4: 166, 71.

GLUCOSE

Assay, Colorimetric Hexokinase System.

5: 133, 72.

Oral Tolerance. 4: 106, 71.

GNATHOSTOMA

Larvae in Thailand. 2: 49, 69.

GONORRHOEAE

Survival in the Mail. 4: 49, 71.

GRAM-NEGATIVE

Bacilli, Survival on Plastic Compound.

4: 51, 71.

Bacteremia. 2: 136, 69.

- H -

HEART DISEASE

Plasma Hydrocortisone Values. 3: 132, 70.

HEKTON-ENTERIC AGAR

Isolation of Shigella. 5: 60, 72.

HEMOGLOBIN

Control Serum. 4: 104, 71.

S, Detection of. 5: 137, 72.

HEPATOMA

Fetoprotein. 3: 64, 70.

HEXACHLOROPHINE

Plastic Compound with, Survival of gram-negative bacteria. 4: 50, 71.

HEXOKINASE

Colorimetric procedure. 5: 133, 72.

HODGKIN'S DISEASE

Anergy and Tryptophan Metabolism. 5: 63, 72.

HORMONE

Steroid Excretion and Thyroid Function. 4: 48, 71.

HOSTS

Larvae of Gnathostoma. 2: 49, 69.

HYDROCORTISONE

Plasma, Values in Heart Disease. 3: 132, 70.

HYPEREOSINOPHILIC SYNDROME

5: 53, 72.

HYPERTHYROID

Plasma TIBC. 4: 47, 71.

- I -

ILEUM

Lipid absorption in adult Rat. 5: 59, 72.

INFANT

Egyptian, Parasitic Infestation. 2: 91, 69.

INFECTION

Brucella Mellitensis Type II. 3: 65, 70.

Diphtheroid in Man. 2: 135, 69.

Vibro cholera, Ogawa Type. 4: 167, 71.

INFECTIOUS MONONUCLEOSIS

Rapid Slide Test. 2: 138, 69.

Unabsorbed Spot Test. 3: 183, 70.

INFLAMMATORY RESPONSE

Skin Window Test. 5: 56, 72.

INHIBITORS

Lactic Dehydrogenase in NAD. 3: 185, 70.

INTESTINAL PARASITES

Fixative and Technics. 1: 8, 68.

INTRACRANIAL

Abscesses. 5: 136, 72.

INTRAVITAM METHOD

Diagnostic of Rabies. 4:168, 71.

IRON-BIN-LING CAPACITY

Plasma, Normal and Hyperthyroid. 4:47, 71.

ISOLATION

Pathogenic E. coli 2:92, 69.

Shigella. 5:60, 72.

Tubercle bacilli, Effect of CO₂. 2:91, 69.

ISOSPORA BELLII

Infection in New York. 1:83, 68.

- J -

JEJUNUM

Lipid absorption in adult Rat. 5:59, 72.

- L -

LACTIC DEHYDROGENASE

Inhibitors in NAD. 3:185, 70.

LARVAE

Gnathostoma spinigerum. 2:49, 69.

LEUKOCYTES

Preservation for Delayed Count. 2:135, 69.

LIPID

Absorption in adult Rat. 5:59, 72.

LIPOPROTEIN ELECTROPHORESIS

Cellulose acetate and Paper Technics. 3:186, 70.

Cellulose acetate, Simple method. 3:185, 70.

LISTERIA MONOCYTOGENES

Meningitis in Adults. 3:133, 70.

LONDON

Brucella Infection. 3:65, 70.

LYSOZYME

Identification of blood Monocyte. 5:53, 72.

- M -

MAIL

N. Gonorrhoeae, Survival in. 4:49, 71.

MALARAIL

Blood, Staining Method. 3:132, 70.

MEAN CORPUSCULAR VOLUME

Normal Value by Model S Coulter Counter. 5:139, 72.

MEDIA

Agar Containing, Isolation of Tubercle bacilli. 2:91, 69.

Commercially available. 5:135, 72. Otitis. 1:7, 68.

Transport, Vibrio parahemolyticus. 5:137, 72.

MEDICAL

Technologists in USSR. 3:127, 70.

Technology, U.S. School. 3:63, 70.

MEGALOBLASTIC ANEMIA

Enzyme Diagnosis. 5:138, 72.

MENINGITIS

Bacterium Antitratum. 2:136, 69.

Listeria monocytogenes. 3:133, 70.

METAMIZOL

Determination of Inorganic Phosphorus. 4:165, 71.

MICE

Trichinella-infected, inhibition of skin Allograft. 3:187, 70.

MICROZONE SYSTEM

Simultaneous Electrophoresis of 16 sera! 4:103, 71.

MULTIPLE MYELOMA

Phagocytic Activity. 5:217, 72.

MYCOBACTERIA

Cultivation of. 1:39, 68.

MYCOBACTERIOLOGY

Direct Cord Reading Agar. 2:137, 69.

- N -

NAD

LDH inhibitors. 3:185, 70.

NEISSERIA GONORRHOEAE

Survival in the Mail. 4:49, 71.

NEUTROPENIC PATIENTS

Skin Windor test. 5:56, 72.

NEW YORK CITY

Isospora belli Infection. 1:83, 68.

NORMAL VALUES

MCV. 5:139, 72.

TIBC. 4:47, 71.

- O -

OGAWA

Vibrio cholera, Mild case infection. 4:167, 71.

OTITIS

Bacteriology findings. 1:7, 68.

OXYGEN REDUCED TENSION

Hemoglobin S Utilizing. 5:137, 72.

- P -

PARASITES

Blood Malaria. 3:132, 70.

Intestinal. 1:8, 68.

PARASITIC INFESTATION

In Egyptian Infants and Children. 2:91; 69.

PATHOGENIC

E. coli, Isolation of. 2:92, 69.

PENICILLINASE

False Antibiotic Resistance. 1:7, 68.

PEROXIDASE ACTIVITY

Blood Monocytes Identification. 5:53, 72.

PHAGOCYTIC ACTIVITY

Multiple Myeloma cell. 5:217, 72.

PHENOL RED

Gastric Indicators. 5:54, 72.

PHENYL—

Alanine, Deaminase Production 4:168, 71.

Ketonuria, Prognosis of. 4:103, 71.

Pyruvic, blood concentration. 4:167, 71.

PHOSPHORUS

Blood and Urine. 4:165, 71.

PHOTOMETRIC DETERMINATION

Serum Globulin. 4:166, 71.

PLASMA

Hydrocortisone in Heart Disease. 3:132, 70.

Fresh Frozen, Factor VIII. 3:184, 70.

TIBC. 4:47, 71.

PLASTIC COMPOUND

Gram-negative Bacteria Survival in. 4:50, 71.

PREGNANCY

Bacteriuria. 2:136, 69.

Bacteriuria, Single Dose Therapy. 4:105, 71.

Test. 4:51, 71.

Urine Estrogen. 3:181, 70.

PRESERVATION

Leukocyte for Delayed counts. 2: 135, 69.

Urine Sediments. 2: 91, 69.

PROTOPORPHYRIN

Erythrocyte Content in Thalassemic Syndrom. 5: 217, 72.

PROTOZOA

Staining. 1: 83, 68.

- R -

RABIES

Cornea Test. 4: 168, 71.

Infected Brain. 4: 50, 71.

RAT

Morphology of Lipid Absorption. 5: 59, 72.

RBC FRAGILITY

Macro and Micro Method. 5: 218, 72.

REDUCING AGENTS

Inorganic Phosphorus Determination. 4: 165, 71.

- S -

SEDIMENTS

Urine, Preservation of. 2: 91, 69.

SERUM

Alkaline Phosphatase. 5: 62, 72.

Animal, Coagulation Test. 5: 57, 72.

Calcium, Ultramicromethod. 3: 131, 70.

Globulin, Direct Photometric Method. 4: 166, 71.

Simultaneous Electrophoresis. 4: 103, 71.

SHIGELLA

Isolation of. 5: 60, 72.

SICKLEDEX SOLUBILITY

Utilizing, Hemoglobin S Determination. 5: 137, 72.

SKIN

Allograft, Inhibition in Trichinella-Infected Mice. 3: 187, 70.

Skin Window Test, 5: 56, 72.

SPUTUM

Collection, Cultivation of Mycobacteria. 1: 39, 68.

STAINING

Fluorescent - Antibody Technique. 4: 105, 71.

Malarial Parasite in Blood. 3: 132, 70.

STACH GEL ELECTROPHORESIS

Serum Alkaline Phosphatase. 5: 62, 72.

STEROID HORMONE

Excretion, and Thyroid Function. 4: 48, 71.

STOOL

Isolation of Shigella. 5: 60, 72.

STREPTOMYCIN AND SULFAMETOPY-RAZIN

Single Dose Therapy for Bacteriuria. 4: 105, 71.

- T -

TETRACYCLINE

Degraded, Acquired Fanconi Syndrom. 1: 39, 68.

THAILAND

Gnathostoma spinigerum. 2: 49, 69.

THALASSEMIC SYNDROME

Erythrocyte Protoporphyrin content. 5: 217, 72.

THERAPY

Single Dose, for Bacteriuria during Pregnancy 4: 105, 71.

THYROID

Function and Steroid Hormone Excretion. 4: 48, 71.

THYROXYPHENYLACETIC ACID

Urine, Diurnal Variation. 4: 106, 71.

TUBERCLE BACILLI

Isolation on Agar-Containing Medium. 2: 91, 69.

TRICHINELLA

Infected Mice, Inhibition of Skin Allograft. 3: 187, 70.

TRYPTOPHAN

Metabolism in Hodgkin's Disease. 5: 63, 72.

- U -

ULTRAMICROMETHOD

Serum Calcium. 3: 131, 70.

UREASE

And Phenylalanine Deaminase Production. 4: 168, 71.

URINE

Amphetamine. 5: 133, 72.

Calcium. 4: 47, 71.

Estrogen. 3: 183, 70.

Inorganic Phosphorus. 4: 165, 71.

Sediments. 2: 91, 69.

o-Thyroxyphenylacetic acid. 4: 103, 71.

Urocanic acid. 5: 58, 72.

UROCANIC ACID

Urine, Paper Electrophoresis. 5: 58, 72.

U.S. SCHOOL OF MED. TECH.

How to Apply for Admission to. 3: 63, 71.

USSR

Medical Technologists. 3: 127, 70.

- V -

VERMICELLI

Diabetes. 3: 66, 70.

VIBRIO

Ogawa Type, Mild Case Infection. 4: 167, 71.

Parahemolyticus, Transport Media for. 5: 137, 72.

VOGES-PROSKAUER TEST

Two Quick Methods. 1: 8, 68.

- X -

XYLOSE LYSINE DEOXYCHOLATE

AGAR

Isolation of Shigella. 5: 60, 72.