

Development and applications of recombinant activated factor VII

■ Nutjeera Intasai^{1*}

Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

* ผู้รับผิดชอบบทความ (Email: nutjeera.in@cmu.ac.th).

* Corresponding author (Email: nutjeera.in@cmu.ac.th).

Received December 2016

Accepted as revised May 2017

Abstract

Recombinant activated factor VII (rFVIIa) was initially developed for treatment and prevention of bleeding during surgery and invasive procedures in congenital hemophilia with inhibitors against coagulation factors. Extensive research over the last few decades has contributed to the development of rFVIIa. These thorough studies not only helped to improve the biological activity and half-life of rFVIIa but also to enhance the knowledge regarding the mechanisms of action of rFVIIa to re-establish normal hemostasis. Since rFVIIa has been successfully in use for hemophilia treatment, it has been extended to other coagulopathies which characterized by the impairment of thrombin generation, including acquired hemophilia, Glanzmann's thrombasthenia, and congenital FVII deficiency. The development, the mechanism of action, and the clinical applications of rFVIIa are reviewed in this article.

Journal of Associated Medical Sciences 2017; 50(3): 525-532. Doi: 10.14456/jams.2017.39

Introduction

Hemophilia is a most serious congenital bleeding disorder accounted by deficiency of coagulation factor VIII (FVIII; hemophilia A) and coagulation factor IX (FIX; hemophilia B). Without appropriate treatment, patients with severe hemophilia have a life expectancy of around 16 years.¹ The causes of development of factor inhibitors in hemophilia are multifactorial including genetic mutation, ethnicities, infection/inflammation and related genetics such as TNF-alpha, type of factor concentrate and the regimen of factor concentrate administration (prophylaxis versus on-demand). Large deletions that involve multiple domains have the highest proportion of inhibitor formation of 88%.² An inhibitor incidence of the most common severe FVIII mutation, intron 22 mutation, is 21%.² Patients of African or Hispanic descent have an increased risk of inhibitor formation³, however, the mechanisms that

involved in these racial/ethnic differences remain unclear. Polymorphisms of TNF- α gene and IL-10 are associated with an increased risk of inhibitor formation.^{4, 5} Intensive administration of FVIII or FIX concentrates for treatment of hemophilia A or B could induce inhibitors or antibodies against FVIII or FIX.⁶ Thereafter, treatment with FVIII or FIX concentrates is ineffective. Previously, the other treatment for hemophilia A or B with inhibitors was plasma-derived activated prothrombin complex concentrates (aPCCs) and prothrombin complex concentrates (PCCs). Both products have the same efficacy. The aPCCs contains activated forms of all vitamin K-dependent coagulation factors, FII, FVII, FIX, and FX, and small amounts of coagulation factor VIII.⁷ However, thromboembolic side-effects have been found in patients who were treated with overdosing and rapid infusion of aPCCs.⁸ Activated coagulation factor VII (FVIIa) has been identified as one

of the activated coagulation factors that contains minimal potential for inducing thromboembolic side-effects.⁹

Nonetheless, the plasma-derived products are associated with the potential risk of transfusion-transmitted infections^{8, 10, 11} though the risk is quite low in the era of viral inactivating method during the process of aPCC production. The requirement of newer products for improving the treatment of hemophilia with inhibitors, along with the progress in recombinant DNA technology, led to the development of recombinant activated factor VII (rFVIIa).^{1, 12-14} Recombinant activated factor VII (rFVIIa, eptacog alfa [activated], NovoSeven®, Novo Nordisk A/S, Bagsværd, Denmark) was firstly approved for use in Europe in 1996, in the United States in 1999, and in Japan in 2000. rFVIIa has been commercially available since then. rFVIIa is currently licensed in Europe and in the United States for treatment and prevention of bleeding during surgery or invasive procedures in both congenital hemophilia with inhibitors against coagulation factors and acquired hemophilia.¹⁵ In Europe, it is also approved for prevention of bleeding during surgery or invasive procedures in patients with congenital FVII deficiency, Glanzmann's thrombasthenia (GT), or antibodies to glycoprotein IIb-IIIa and/or human leukocyte antigen (HLA), with history or current refractoriness to platelet transfusions.¹⁵

Overview of FVII

Coagulation factor VII (FVII; UniProt: P08709) is also known as proconvertin and serum protein conversion accelerator (SPCA). FVII is a vitamin K-dependent serine protease with a molecular weight of 55 kDa. Gene encoding FVII is located on chromosome 13 (13q34)¹⁶ and contains 9 exons and spans about 12.8 kb.¹⁷ FVII is synthesized in the liver, and circulates in the blood as inactive zymogen. Circulating FVII is a single-chain polypeptide containing 406 amino acids. It is composed of four discrete domains including a γ -carboxyglutamic acid (Gla)-containing domain, two epidermal growth factor (EGF)-like domains, and a serine protease (catalytic) domain. After the serine protease cleavage of the bond between Arg152 and Ile153 by the coagulation factor IXa, factor Xa, factor XIIa, thrombin or minor proteolysis, this molecule is

converted into an active form, activated factor VII (FVIIa). FVIIa consists of a 20-kDa light chain with γ -carboxyglutamic acid residues, and a 30-kDa heavy chain, which contains the catalytic domain. These two chains are held together by a disulfide bond.¹⁸ FVII contains complex post-translational modification including γ -carboxylation, N- and O-linked glycosylation, and β -hydroxylation.¹⁹ These modifications are necessary for secretion to blood circulation,²⁰ interaction with tissue factor (TF or coagulation factor III),²¹ and platelet surface interaction between FVIIa/TF and its substrate coagulation factor X.^{22, 23} FVIIa forms a complex with the tissue factor to activate the coagulation factors IX, X, and (autocatalytically) FVII.^{16, 17}

Development of rFVIIa

Improvement of the rFVIIa activity has been extensively studied. The following is a review about the progress in the research on rFVIIa. Commercially available rFVIIa, NovoSeven®, is produced in the baby hamster kidney (BHK) cell line. rFVIIa produced from BHK contains a low degree of sialylation and a low degree of γ -carboxylation on the eleventh Gla residue than plasma-derived FVII.²⁴ O-glycans on Ser52 and Ser60 have been found to be different on plasma-derived FVII when compared with rFVII produced from BHK.²⁵ In addition, terminal N-acetyl galactosamines (GalNAc) were detected only on rFVII produced from BHK.^{24, 26, 27} However, the biological activities of this rFVIIa are not affected, and are comparable to those of plasma-derived FVII.²⁸ There are reports of differences in N-glycosylation of rFVII derived from BHK, Chinese hamster ovary (CHO), and human embryonic kidney (HEK) 293 cells.²⁹ CHO-derived rFVII has been found to contain the highest degree of sialylation and no terminal GalNAc, with all other high-quality protein components at high productivity. The higher activity of CHO-derived rFVII in comparison to BHK-derived rFVII may have resulted from the different glycosylation patterns and sialylation content.³⁰

Met306 in FVIIa appears to be involved in the communication between TF and the catalytic center of FVIIa responsible for the allosteric enhancement of FVIIa's activity.^{31, 32} Substitution of Asp for Met306 prevents TF-induced allosteric changes which normally result in

extremely increased FVIIa activity.³³ In addition, substitution of Val for Leu305 increases the enzymatic activity of FVIIa.³⁴ Furthermore, the most active FVIIa variants carry concurrent substitution at positions 158, 296, and 298.³⁵ Substitution of Val for Glu296 and Gln for Met298 has been observed to increase the intrinsic amidolytic activity in comparison with wild-type FVIIa.³⁶ An additive effect was observed upon their combination. Substitution of Gln for Met298 is required for increased factor X activation, and the simultaneous substitutions of Asp for Val158, Val for Glu296, and Gln for Met298 (Mutant V158D/E296V/M298Q-FVIIa) resulted in the most profound effect on intrinsic amidolytic activity.³⁶ The rFVIIa analog DVQ (V158D/E296V/M298Q mutations; also called NN1731 and Vatreptacog alfa) was found to have higher proteolytic activity than rFVIIa in the tissue factor (TF)-independent activity on the surface of activated platelets, but was found to retain the same activity as rFVIIa in the presence of TF.³⁷ The DVQ analog has been shown to have increased procoagulant and antifibrinolytic activities in *in vitro* models of hemophilia at up to 50-fold lower concentration when compared to rFVIIa.^{38,39} In a later study, a new FVIIa variant with high intrinsic activity, called FVIIaVEAY or L305V/S314E/K337A/F374Y-FVIIa, was reported.⁴⁰ FVIIaVEAY was found to possess 22 times higher catalytic efficiency than wild-type FVIIa. Activation of factor X in solution occurred about 10 times faster with FVIIaVEAY than with wild-type FVIIa.⁴⁰ Recently, several rFVIIa analogs have been developed to have substantially higher tissue factor (TF)-independent activity than rFVIIa. Disulfide locked variants of factor VIIa with a restricted β -strand conformation were constructed to enhance the enzymatic activity.⁴¹ These variants do not require TF as a cofactor for maximal activity in amidolytic assays.

Since the commercially available rFVIIa, NovoSeven[®], has a very short half-life of approximately 2.4 hours, albumin fusion technology was introduced to overcome this problem. Using this approach, albumin is genetically fused to the C-terminus of rFVIIa *via* a glycine serine linker.^{42,43} The half-life of the rFVIIa fusion protein (rFVIIa-FP) was extended to 6- to 7-fold compared with wild-type rFVIIa, and its hemostatic properties were comparable to wild-type rFVIIa. PEGylation is an alternative approach to prolong the half-life of rFVIIa (N7-GP). The half-life on the N7-GP was

also extended to 4- to 5-fold compared with wild-type rFVIIa,⁴⁴ and its enzymatic activity was fully retained.⁴⁵

NovoSeven[®], the rFVIIa, is secreted as an inactive, single chain rFVII into the culture medium. The single chain rFVII is autoactivated *in vitro* in the presence of a positively charged surface during purification.⁴⁶ The secreted rFVIIa is successfully obtained by co-transfection of human factor VII and hepsin genes to the Chinese hamster ovary (CHO) cell line.⁴⁷ The rFVIIa derived from the hepsin activation was sufficient to initiate the coagulation pathway and lead to thrombin formation.

The limitations of the mammalian expression system are low level of expression and high cost; a variety of recombinant protein expression systems have been developed as a resource of FVII gene expression. In 2010, the insect expression system which is considered as a higher eukaryotic expression system was tested in an attempt to produce rFVII in combination with the baculovirus expression vector system.⁴⁸ Due to the lack of endogenous vitamin K-dependent carboxylase, simultaneous expressions of human γ -carboxylase and human FVII genes were generated to achieve the functional rFVII.⁴⁸ rFVII production by the Lizard Leishmania expression system has also been reported.⁴⁹ However, functional rFVII obtained from this system was only 9%. This may be related to its post-translational modifications like γ -carboxylation. Thus, more investigations are required in order to determine post-translational γ -carboxylation of glutamic acid residues in the Gla domain of this product in Leishmania cells. In addition, an efficient protocol to enhance the expression of the recombinant coagulation factor VII (rFVII) in CHO cells by optimizing the signal peptides in the fed-batch culture was successfully established.⁵⁰

Mechanism of action of rFVIIa

Based on the information from cell-based models of hemostasis, hemostasis occurs on the cell surfaces of TF-bearing cells and thrombin-activated platelets.^{51,52} The cell-based model of hemostasis is composed of three phases: initiation, amplification, and propagation. The initial phase of coagulation occurs when the damaged vessel wall brings plasma into contact with TF-bearing cells. This

leads to the formation of the TF-FVIIa complex on the cell surface at the injury site. This complex activates factor X (FX) and generates small amounts of thrombin.⁵¹ This limited amount of thrombin is not enough to form the fibrin clot, but it activates the platelets at the site of injury. In the amplification phase, thrombin accelerates the platelet activation, and this results in the activation of FV, FVIII, and FXI.⁵¹ The assembly of FVIII-IXa and FXa-FV complexes on activated platelets initiates the third stage of hemostasis, the propagation phase, and results in a burst of thrombin generation. This large amount of thrombin enhances the recruitment and adherence of additional platelets and the cleaving of fibrinogen into fibrin. This polymerization leads to the strengthening of the initial platelet plug into a stable fibrin clot.⁵³

Clinical application of rFVIIa

In hemophilia patients with inhibitors, the low affinity binding of FVIIa to platelets leads to the use of pharmacological doses of rFVIIa to trigger hemostasis in hemophilia patients.⁵⁴ In addition, platelets from different individuals have been found to vary widely in procoagulant activity.^{52, 54} Titrating rFVIIa into platelet-rich hemophilia A plasma and initiating coagulation with either TF or direct platelet activators has confirmed the importance of the platelet binding of rFVIIa.^{13, 55} According to findings from cell-based models of hemostasis, increasing the amount of rFVIIa results in an increase in the thrombin burst in a dose-dependent manner.⁵⁴ The formation of a well-structured fibrin plug from the increased generation of thrombin is more resistant to premature lysis.⁵⁶ In substitution therapy with FVIII or FIX concentrates in hemophilia patients without inhibitors, dosing can be adjusted until the plasma level of these factors reaches the hemostatic level. However, this strategy cannot be applied to rFVIIa because an uncertain dose of rFVIIa is required in blood circulation to trigger enough local thrombin to provide strong and well-structured fibrin plugs at the site of injury.

In Glanzmann's thrombasthenia (GT), the hallmark of the disease is the deficiency or dysfunction of platelet-surface glycoprotein $\alpha_{IIb}-\beta_3$ integrin (originally termed glycoprotein IIb-IIIa [gpIIb-IIIa]), and it leads to the

impairment of thrombin generation and platelet aggregation.⁵⁷ Bleeding in GT is variable, and could include epistaxis, menorrhagia, hematuria, gingival hemorrhage, easy bruising, ecchymoses, and hemarthrosis.^{57, 58} Platelet transfusion is the standard treatment for bleeding. However, developing of antibodies to glycoprotein IIb-IIIa and/or HLA may occur.⁵⁷ In 2004, rFVIIa was approved by the European Medicines Agency (EMA) for GT patients with a history of platelet refractoriness to platelet transfusion.⁵⁹ rFVIIa is effective and relatively safe for the treatment of bleeding and for surgical prophylaxis in patients with GT.⁵⁹

Normal Factor VII plasma concentration is 0.5 μ g/mL. Factor VII levels of 15-25% (0.075–0.125 μ g/mL) are generally sufficient to achieve normal hemostasis.⁶⁰ Congenital FVII deficiency is a rare autosomal bleeding disorder. The clinical phenotypes range from asymptomatic to severe, life-threatening, and disabling bleeding.⁶¹ Treatment in congenital FVII deficiency consists of fresh frozen plasma (FFP), prothrombin complex concentrates (PCCs), or factor VII concentrates.⁶² rFVIIa is an excellent alternative treatment and seems to be safe and effective for congenital FVII deficiency.⁶² In addition, side effects or evidence of bleeding tendency have rarely been reported. In an estimated 4,500 rFVIIa-treated patients, 7 episodes of myocardial infarction, 5 episodes of DIC, 5 episodes of deep vein thrombosis, 4 incidents of cerebrovascular ischemia or infarction, and 1 episode of intestinal gangrene have been reported. However, most of these cases had apparent comorbid or predisposing factors.⁶³ rFVIIa seems to be effective in controlling life-threatening bleeding episodes in non-hemophilic patient with uncontrolled hemorrhage, who have not responded to all available standard treatments, including patients with Dengue Shock Syndrome^{64, 65}, and in a patient with massive postpartum hemorrhage.⁶⁶ One thrombotic event in a nonhemophilic pediatric patient that related to administration of rFVIIa has been reported; however, no other serious adverse effects were published.⁶⁷

Conclusions

From the literature data, it can be understood that several approaches were introduced to improve the biological activity and half-life of rFVIIa. This obviously demonstrates the fact that rFVIIa is a safe and effective treatment option for congenital hemophilia with inhibitors, acquired hemophilia, GT, and congenital factor VII deficiency. This strategy has improved both the treatment outcomes of bleeding patients as well as the quality of their life. However, the dose, timing and efficacy of rFVIIa in non-hemophilic patients with massive

bleeding and uncontrolled bleeding should be considered on a case-by-case basis.

Acknowledgment

The author gratefully acknowledges Assoc. Prof. Dr. Preeyanat Vongchan for her guidance in the preparation of this review and the Research Administration Center, Office of the University, Chiang Mai University for English proofing.

References

1. Hedner U, Brun NC. Recombinant factor VIIa (rFVIIa): its potential role as a hemostatic agent. *Neuroradiology*. 2007;49(10):789-93.
2. Oldenburg J, Schroder J, Brackmann HH, Muller-Reible C, Schwaab R, Tuddenham E. Environmental and genetic factors influencing inhibitor development. *Semin Hematol*. 2004;41(1 Suppl 1):82-8.
3. Miller CH, Benson J, Ellingsen D, Driggers J, Payne A, Kelly FM, et al. F8 and F9 mutations in US haemophilia patients: correlation with history of inhibitor and race/ethnicity. *Haemophilia*. 2012;18(3):375-82.
4. Astermark J, Oldenburg J, Carlson J, Pavlova A, Kavakli K, Berntorp E, et al. Polymorphisms in the TNFA gene and the risk of inhibitor development in patients with hemophilia A. *Blood*. 2006;108(12):3739-45.
5. Astermark J, Oldenburg J, Pavlova A, Berntorp E, Lefvert AK, Group MS. Polymorphisms in the IL10 but not in the IL1beta and IL4 genes are associated with inhibitor development in patients with hemophilia A. *Blood*. 2006;107(8):3167-72.
6. Athale AH, Marcucci M, Iorio A. Immune tolerance induction for treating inhibitors in people with congenital haemophilia A or B. *Cochrane Database Syst Rev*. 2014;4:CD010561.
7. Cromwell C, Aledort LM. FEIBA: a prohemostatic agent. *Semin Thromb Hemost*. 2012;38(3):265-7.
8. Lusher JM. Thrombogenicity associated with factor IX complex concentrates. *Semin Hematol*. 1991;28(3 Suppl 6):3-5.
9. Hedner U, Kisiel W. Use of human factor VIIa in the treatment of two hemophilia A patients with high-titer inhibitors. *J Clin Invest*. 1983;71(6):1836-41.
10. Blajchman MA, Vamvakas EC. The continuing risk of transfusion-transmitted infections. *N Engl J Med*. 2006;355(13):1303-5.
11. Tapper ML. Emerging viral diseases and infectious disease risks. *Haemophilia*. 2006;12 Suppl 1:3-7; discussion 26-8.
12. Kisiel W. Recollections on the discovery of factor VIIa as a novel therapeutic agent for hemophiliacs with inhibitors. *J Thromb Haemost*. 2009; 7(7): 1053-6.
13. Hedner U. Factor VIIa and its potential therapeutic use in bleeding-associated pathologies. *Thromb Haemost*. 2008; 100(4): 557-62.

14. Hedner U, Lee CA. First 20 years with recombinant FVIIa (NovoSeven). *Haemophilia*. 2011; 17(1): e172-82.
15. Franchini M, Lippi G. Recombinant activated factor VII: mechanisms of action and current indications. *Semin Thromb Hemost*. 2010; 36(5): 485-92.
16. Millar DS, Kemball-Cook G, McVey JH, Tuddenham EG, Mumford AD, Attock GB, et al. Molecular analysis of the genotype-phenotype relationship in factor VII deficiency. *Hum Genet*. 2000; 107(4): 327-42.
17. O'Hara PJ, Grant FJ, Haldeman BA, Gray CL, Insley MY, Hagen FS, et al. Nucleotide sequence of the gene coding for human factor VII, a vitamin K-dependent protein participating in blood coagulation. *Proc Natl Acad Sci U S A*. 1987; 84(15): 5158-62.
18. Hagen FS, Gray CL, O'Hara P, Grant FJ, Saari GC, Woodbury RG, et al. Characterization of a cDNA coding for human factor VII. *Proc Natl Acad Sci U S A*. 1986; 83(8): 2412-6.
19. Kaufman RJ. Post-translational modifications required for coagulation factor secretion and function. *Thromb Haemost*. 1998; 79(6): 1068-79.
20. Bolt G, Steenstrup TD, Kristensen C. All post-translational modifications except propeptide cleavage are required for optimal secretion of coagulation factor VII. *Thromb Haemost*. 2007; 98(5): 988-97.
21. Iino M, Foster DC, Kisiel W. Functional consequences of mutations in Ser-52 and Ser-60 in human blood coagulation factor VII. *Arch Biochem Biophys*. 1998; 352(2): 182-92.
22. Kao YH, Lee GF, Wang Y, Starovasnik MA, Kelley RF, Spellman MW, et al. The effect of O-fucosylation on the first EGF-like domain from human blood coagulation factor VII. *Biochemistry*. 1999; 38(22): 7097-110.
23. Hoffman M, Volovyk Z, Persson E, Gabriel DA, Ezban M, Monroe DM. Platelet binding and activity of a factor VIIa variant with enhanced tissue factor independent activity. *J Thromb Haemost*. 2011; 9(4): 759-66.
24. Thim L, Bjoern S, Christensen M, Nicolaisen EM, Lund-Hansen T, Pedersen AH, et al. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells. *Biochemistry*. 1988; 27(20): 7785-93.
25. Bjoern S, Foster DC, Thim L, Wiberg FC, Christensen M, Komiyama Y, et al. Human plasma and recombinant factor VII. Characterization of O-glycosylations at serine residues 52 and 60 and effects of site-directed mutagenesis of serine 52 to alanine. *J Biol Chem*. 1991; 266(17): 11051-7.
26. Fenaille F, Groseil C, Ramon C, Riande S, Siret L, Chtourou S, et al. Mass spectrometric characterization of N- and O-glycans of plasma-derived coagulation factor VII. *Glycoconj J*. 2008; 25(9): 827-42.
27. Sutkeviciute I, Mistiniene E, Sereikaite J, Bumelis VA. The influence of different glycosylation patterns on factor VII biological activity. *Biochimie*. 2009; 91(9): 1123-30.
28. Hedner U, Ljundberg J, Lund-Hansen T. Comparison of the effect of plasma-derived and recombinant human FVIIa in vitro and in a rabbit model. *Blood Coagul Fibrinolysis*. 1990; 1(2):145-51.
29. Bohm E, Seyfried BK, Dockal M, Graninger M, Hasslacher M, Neurath M, et al. Differences in N-glycosylation of recombinant human coagulation factor VII derived from BHK, CHO, and HEK293 cells. *BMC Biotechnol*. 2015; 15: 87.
30. Morfini M, Jimenez-Yuste V, Eichler H, Fischer R, Kirchmaier CM, Scharling B, et al. Pharmacokinetic properties of two different recombinant activated factor VII formulations. *Haemophilia*. 2012; 18(3): 431-6.
31. Dickinson CD, Kelly CR, Ruf W. Identification of surface residues mediating tissue factor binding and catalytic function of the serine protease factor VIIa. *Proc Natl Acad Sci U S A*. 1996; 93(25): 14379-84.

32. Dickinson CD, Ruf W. Active site modification of factor VIIa affects interactions of the protease domain with tissue factor. *J Biol Chem.* 1997; 272(32): 19875-9.
33. Persson E, Nielsen LS, Olsen OH. Substitution of aspartic acid for methionine-306 in factor VIIa abolishes the allosteric linkage between the active site and the binding interface with tissue factor. *Biochemistry.* 2001; 40(11): 3251-6.
34. Persson E, Bak H, Olsen OH. Substitution of valine for leucine 305 in factor VIIa increases the intrinsic enzymatic activity. *J Biol Chem.* 2001; 276(31): 29195-9.
35. Persson E, Kjalke M, Olsen OH. Rational design of coagulation factor VIIa variants with substantially increased intrinsic activity. *Proc Natl Acad Sci U S A.* 2001; 98(24): 13583-8.
36. Persson E, Olsen OH. Assignment of molecular properties of a superactive coagulation factor VIIa variant to individual amino acid changes. *Eur J Biochem.* 2002; 269(23): 5950-5.
37. Mahlangu JN, Welding KN, Lentz SR, Kaicker S, Karim FA, Matsushita T, et al. Changes in the amino acid sequence of the recombinant human factor VIIa analog, vatreptacog alfa, are associated with clinical immunogenicity. *J Thromb Haemost.* 2015; 13(11): 1989-98.
38. Allen GA, Persson E, Campbell RA, Ezban M, Hedner U, Wolberg AS. A variant of recombinant factor VIIa with enhanced procoagulant and antifibrinolytic activities in an in vitro model of hemophilia. *Arterioscler Thromb Vasc Biol.* 2007; 27(3): 683-9.
39. Tranholm M, Kristensen K, Kristensen AT, Pyke C, Rojkjaer R, Persson E. Improved hemostasis with superactive analogs of factor VIIa in a mouse model of hemophilia A. *Blood.* 2003; 102(10): 3615-20.
40. Persson E, Bak H, Ostergaard A, Olsen OH. Augmented intrinsic activity of Factor VIIa by replacement of residues 305, 314, 337 and 374: evidence of two unique mutational mechanisms of activity enhancement. *Biochem J.* 2004; 379(Pt 2): 497-503.
41. Maun HR, Eigenbrot C, Raab H, Arnott D, Phu L, Bullens S, et al. Disulfide locked variants of factor VIIa with a restricted beta-strand conformation have enhanced enzymatic activity. *Protein Sci.* 2005; 14(5): 1171-80.
42. Weimer T, Wormsbacher W, Kronthaler U, Lang W, Liebing U, Schulte S. Prolonged in-vivo half-life of factor VIIa by fusion to albumin. *Thromb Haemost.* 2008; 99(4): 659-67.
43. Schulte S. Use of albumin fusion technology to prolong the half-life of recombinant factor VIIa. *Thromb Res.* 2008; 122 Suppl 4: S14-9.
44. Moss J, Rosholm A, Lauren A. Safety and pharmacokinetics of a glycoPEGylated recombinant activated factor VII derivative: a randomized first human dose trial in healthy subjects. *J Thromb Haemost.* 2011; 9(7): 1368-74.
45. Ghosh S, Ezban M, Persson E, Pendurthi U, Hedner U, Rao LV. Activity and regulation of factor VIIa analogs with increased potency at the endothelial cell surface. *J Thromb Haemost.* 2007; 5(2): 336-46.
46. Pedersen AH, Lund-Hansen T, Bisgaard-Frantzen H, Olsen F, Petersen LC. Autoactivation of human recombinant coagulation factor VII. *Biochemistry.* 1989; 28(24): 9331-6.
47. Halabian R, Roudkenar MH, Esmaeili NS, Masroori N, Roushandeh AM, Najafabadi AJ. Establishment of a cell line expressing recombinant factor VII and its subsequent conversion to active form FVIIa through hepsin by genetic engineering method. *Vox Sang.* 2009; 96(4): 309-15.
48. Masroori N, Halabian R, Mohammadipour M, Roushandeh AM, Rouhbakhsh M, Najafabadi AJ, et al. High-level expression of functional recombinant human coagulation factor VII in insect cells. *Biotechnol Lett.* 2010; 32(6): 803-9.

49. Mirzaahmadi S, Asaadi-Tehrani G, Bandehpour M, Davoudi N, Tahmasbi L, Hosseinzadeh N, et al. Expression of recombinant human coagulation factor VII by the Lizard *Leishmania* expression system. *J Biomed Biotechnol*. 2011; 2011: 873874.

50. Peng L, Yu X, Li C, Cai Y, Chen Y, He Y, et al. Enhanced recombinant factor VII expression in Chinese hamster ovary cells by optimizing signal peptides and fed-batch medium. *Bioengineered*. 2016; 7(3): 189-97.

51. Hoffman M. A cell-based model of coagulation and the role of factor VIIa. *Blood Rev*. 2003; 17 Suppl 1: S1-5.

52. Monroe DM, Hoffman M, Roberts HR. Platelets and thrombin generation. *Arterioscler Thromb Vasc Biol*. 2002; 22(9): 1381-9.

53. Hoffman M, Dargaud Y. Mechanisms and monitoring of bypassing agent therapy. *J Thromb Haemost*. 2012; 10(8): 1478-85.

54. Allen GA, Wolberg AS, Oliver JA, Hoffman M, Roberts HR, Monroe DM. Impact of procoagulant concentration on rate, peak and total thrombin generation in a model system. *J Thromb Haemost*. 2004; 2(3): 402-13.

55. Augustsson C, Persson E. In vitro evidence of a tissue factor-independent mode of action of recombinant factor VIIa in hemophilia. *Blood*. 2014; 124(20): 3172-4.

56. He S, Blomback M, Jacobsson Ekman G, Hedner U. The role of recombinant factor VIIa (FVIIa) in fibrin structure in the absence of FVIII/FIX. *J Thromb Haemost*. 2003; 1(6): 1215-9.

57. Franchini M, Favaloro EJ, Lippi G. Glanzmann thrombasthenia: an update. *Clin Chim Acta*. 2010; 411(1-2): 1-6.

58. Kannan M, Ahmad F, Yadav BK, Kumar R, Choudhry VP, Saxena R. Molecular defects in ITGA2B and ITGB3 genes in patients with Glanzmann thrombasthenia. *J Thromb Haemost*. 2009; 7(11): 1878-85.

59. Poon MC. Clinical use of recombinant human activated factor VII (rFVIIa) in the prevention and treatment of bleeding episodes in patients with Glanzmann's thrombasthenia. *Vasc Health Risk Manag*. 2007; 3(5): 655-64.

60. Bauer KA. Treatment of factor VII deficiency with recombinant factor VIIa. *Haemostasis*. 1996; 26 Suppl 1:155-8.

61. Mariani G, Bernardi F. Factor VII Deficiency. *Semin Thromb Hemost*. 2009; 35(4): 400-6.

62. Midathada MV, Mehta P, Waner M, Fink LM. Recombinant factor VIIa in the treatment of bleeding. *Am J Clin Pathol*. 2004; 121(1): 124-37.

63. Poon MC. Use of recombinant factor VIIa in hereditary bleeding disorders. *Curr Opin Hematol*. 2001; 8(5): 312-8.

64. Chuansumrit A, Tangnarakratchakit K, Lektakul Y, Pongthanapisith V, Nimjaroenniyom N, Thanarattanakorn P, et al. The use of recombinant activated factor VII for controlling life-threatening bleeding in Dengue Shock Syndrome. *Blood Coagul Fibrinolysis*. 2004; 15(4): 335-42.

65. Chuansumrit A, Wangruangsatid S, Lektrakul Y, Chua MN, Zeta Capeding MR, Bech OM, et al. Control of bleeding in children with Dengue hemorrhagic fever using recombinant activated factor VII: a randomized, double-blind, placebo-controlled study. *Blood Coagul Fibrinolysis*. 2005; 16(8): 549-55.

66. Agarwal A, Jain R, Sharma S, Airun M, Bharti B. Effectiveness of Recombinant Activated Factor VII (rFVII a) for Controlling Intractable Postpartum Bleeding in a case of Dengue Hemorrhagic Fever. *J Obstet Gynaecol India*. 2016; 66(3): 188-91.

67. Blatny J, Mathew P, Monagle P, Ovesna P, Fiamoli V. Safety and efficacy of recombinant activated factor VII in nonhemophilia children with severe or life-threatening bleeding: a report from the SeveNBleeeP registry. *Blood Coagul Fibrinolysis*. 2014; 25(4): 326-32.