

FREE ERYTHROCYTE PORPHYRINS (FEP) IN NORMAL ADULTS AND THALASSEMIC CHILDREN

Boontham Siripipat, B.S. (M.T.)

Boonpayau Lauhachinda, B.S. (M.T.), M.S. (Clin. Path.)*

Panja Kulapongs, M.D.**

ABSTRACT

The level of free erythrocyte porphyrins (FEP) was determined by the micromethod of Piomelli in 46 normal adult males, 12 pregnant women and 31 children with homozygous beta-thalassemia and beta-thalassemia Hb.E disease. The FEP level of 46.34 ± 16.00 (range 15.0-76.5) ug/100 ml red cells in normal adult males was similar to those recently observed by many investigators but slightly higher than those of older reports. This can be explained by the fact that with the present micromethod used the extraction of FEP is more efficient and complete than the older methods. The FEP level of 60.36 ± 16.28 (range 37.2-87.2) ug/100 ml red cells in pregnant women was significantly higher than normal adult male value ($p < 0.01$) and can be explained on the basis of sex difference and the low transferrin saturation. The FEP level of 91.31 ± 51.13 (range 31.3-225.0) ug/100 ml red cells in 31 thalassemic children further indicated that in addition to the primary defect in globin chain synthesis the heme synthesis is also impaired.

Porphyrins are widely distributed in living cells and play essential roles in various metabolic processes such as

photosynthesis, transportation of oxygen and cellular respiration. The most important porphyrin in human is

* Department of Clinical Chemistry Faculty of Associated Medical Sciences, Chiang Mai University.

** Department of Clinical Microscopy, Faculty of Associated Medical Sciences Chiang Mai University.

protoporphyrin 9, type III, which in combination with iron and specific proteins forms such compounds as hemoglobin, cytochrome, peroxidase and catalase. In red cells, in addition to those incorporated into heme small amount of protoporphyrin (less than 1 mole to 24,000 moles of heme) is found in apparently uncombined or free form (free erythrocyte protoporphyrin or FEP) along with smaller quantities of other porphyrins, primarily coproporphyrin (1, 2). Since protoporphyrin is the last intermediate in the biosynthesis of heme increased concentration of FEP is found in various disorders in which the protoporphyrin is not efficiently utilized for heme synthesis, as in erythropoietic porphyrias (3), sideroblastic anemia (4), iron deficiency (1, 5-7), lead intoxication (6, 8-11), and anemia of chronic disorders such as chronic infection (12, 13) and rheumatoid arthritis (14, 15). It seems likely, with the exception of primary disorder in porphyrin synthesis, that the common denominator of increased FEP was an iron supply or incorporation inadequate to meet the needs of the erythroid marrow.

The fundamental defect of thalassemia syndrome is the defective synthesis of globin chains. Nevertheless, accumulated evidences including an increased FEP (16) and the activity of

heme enzyme delta-ALA dehydratase (17) in red cells, and the abnormally increased urinary excretion of PBG, coproporphyrin and dipyrroles (18, 19) strongly indicated that pyrrole metabolism and heme synthesis of thalassemic patients are also disturbed (20-23). The conflicting results regarding the FEP levels in patients with thalassemia major and minor obtained by various investigators (16, 20, 24-26) can be partly explained by the differences in methodology and in the FEP values of control population. The conventional spectrophotometric methods (27, 28) of determination of FEP involve exhaustive extraction with organic solvents and re-extraction from the solvent phase with hydrochloric acid which is not only time consuming but also requires large amount of blood sample. The micromethod recently described by Piomelli (11) is simple, rapid and the extraction of FEP is more efficient and complete than in other methods. With the aid of this technique, the status of FEP levels in our thalassemic children were evaluated.

MATERIALS AND METHODS

Heparinized venous blood samples were obtained from 46 healthy adult male, 12 pregnant women and 31 children with homozygous beta-thalassemia and beta-thalassemia Hb E disease. After a portion of plasma was separa-

ted the volume of packed red cells of each blood sample was determined by the standard microhematocrit technique.

The values of free erythrocyte porphyrins (FEP) were determined by the microfluorometric procedure of Piomelli (11) with slight modification. One tenth ml of the anticoagulated whole blood sample was transferred into a tube containing 5 ml of 5% celite suspension (in 0.9% NaCl) and mixed. After 5 ml of a 4:1 mixture of ethylacetate/acetic acid was added the tube was agitated vigorously on a vortex mixer for 60 seconds and centrifuged at 1,500 RPM for 3 minutes.

$$\text{FEP ug/100 ml RBCs} = \frac{\text{FEP (ug/100 ml blood)}}{\text{Hct.}} \times 100$$

The standard solution of porphyrin (coproporphyrin I) was prepared by diluting the standard coproporphyrin I (5 ug/vial) with 2.5 ml of 0.1 N. HCl and heated for 5 minutes in boiling water. The serial dilutions were made from this stock solution (original concentration was 200 ug/100 ml). The example of standard calibration curve is shown in Figure 1.

RESULTS

The results of our study are summarized in Table 1. The FEP value of 46.34 ± 16.0 ug/100 ml red cells in our normal adult males is

The supernatant fluid was separated. Five ml of 1.5 N. HCl was added to the supernatant fluid and the tube was agitated on a vortex mixer for 60 seconds. An aliquot of the lower (colorless) HCl phase was transferred into a cuvette and the concentration of FEP was determined by reading the % emission in the fluorometer calibrated with a series of standard coproporphyrin I solutions. A blank is prepared in parallel by replacing the whole blood sample with 0.1 ml of saline solution. The final concentration of FEP was calculated from the formula:

similar to those recently found by the others (10, 11, 26, 29). The FEP value of 60.36 ± 16.28 ug/100 ml red cells in pregnant women is significantly higher than normal adult male ($p < 0.01$). The FEP values of both male and female thalassemic children are definitely higher than normal adult value ($p < 0.001$). The difference between FEP values of these two groups of children is not statistically significant ($p > 0.05$). Figure III illustrated the individual value of FEP level in thalassemic children. The dotted lines represent the normal adult level (95% reliability).

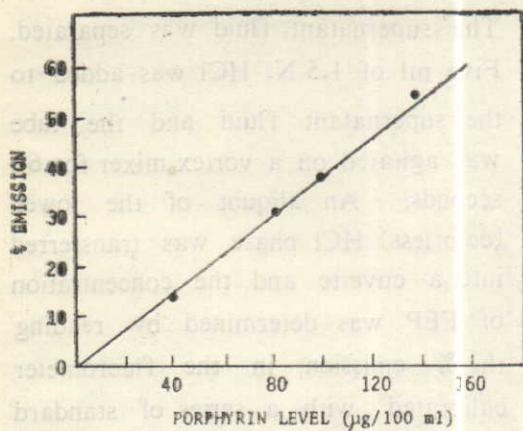


FIGURE I. STANDARD PORPHYRIN CALIBRATION CURVE.

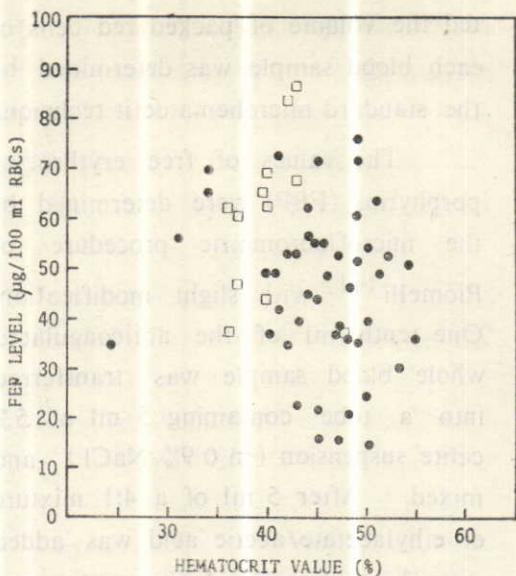


FIGURE II. FEP LEVELS IN NORMAL ADULT MALES (●) AND PREGNANT WOMEN (□).

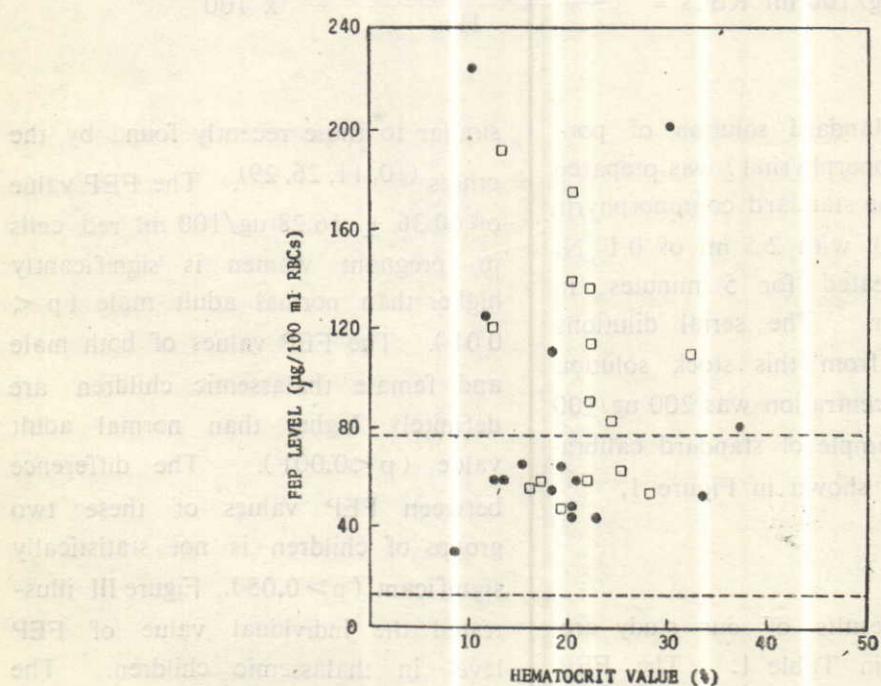


FIGURE III: FEP LEVELS IN MALE (●) AND FEMALE (□) BETA THALASSEMIA CHILDREN

Table 1. Values of Free Erythrocyte Porphyrins (FEP) in Thai Subjects.

SUBJECTS	No.	AGE yr.	HCT %	FEP ug/100 ml. RBCs
Normal Adult Males	46	23.4 \pm 6.8	45.2 \pm 5.9	46.34 \pm 16.00 (15.0-76.5)
Pregnant Women	12	27.3 \pm 12.6	40.0 \pm 3.3	60.36 \pm 16.28 (37.2-87.2)
Thalassemic Children	31	7.6 \pm 3.6	20.1 \pm 6.8	91.31 \pm 51.13 (31.3-225.0)
: Male	16	8.1 \pm 4.1	19.3 \pm 8.2	83.34 \pm 55.93 (31.3-225.0)
: Female	15	7.1 \pm 3.8	20.9 \pm 5.2	99.81 \pm 45.83 (47.4-192.0)

Table 2. Values of Free Erythrocyte Porphyrins (FEP) in Thalassemic Subjects.

AUTHORS	No.	FEP ug/100 ml. RBCs	REFERENCE
THALASSMIA MINOR			
: Sturgeon et al (1955)	9	22 - 75	(24)
: Sturgeon et al (1958)	7	31	(25)
: Ludin (1962)	10	60 - 438	(20)
: Lyberatos et al (1972)	31	70.4 \pm 22.19 (44-108)	(16)
: Stockman et al (1975)	29	38 \pm 14 (11-72)	(26)
THALASSEMIA MAJOR			
: Schwartz-Tiene (1953)	10	96 - 168	(20)
: Sturgeon et al (1955)	7	19 - 110	(24)
: Sturgeon et al (1958)	10	36	(25)
: Lyberatos et al (1972)	20	83.3 \pm 23.42 (55-156)	(16)
: Present Study (1978)	31	91.31 \pm 51.13 (31.3-225.0)	

DISCUSSION

Our mean FEP values in normal adult males is similar to those observed by many investigators (10,11,26,29) but somewhat higher than those found by the others (1). Since there is no breakdown of heme to protoporphyrin occurred in this technique the possible explanation lies in the fact that the extraction of FEP by the very large solvent-erythrocyte ratio is more efficient and complete than in older methods. The higher FEP levels in pregnant women can be explained on the basis of sex difference (30) and most probably due to relative iron deficiency (1). A portion of the normal protoporphyrin does appear to be related to iron deficiency state. In normal subjects, a significant correlation between transferrin saturation and protoporphyrin level is observed. The protoporphyrin level is somewhat higher with lower transferrin saturation. In pregnant women, the progressively decreased transferrin saturation results in accumulation of protoporphyrin in red cells because the nonavailability of iron prevents conversion of protoporphyrin 9 to heme (1).

The elevation of FEP level in beta-thalassemic red cells may be explained by the fact that although its primary defect involves the globin chain synthesis, there is impairment of heme synthesis as well. The synthesis

of heme and globin are closely linked (31). Defective globin synthesis results in a decreased heme synthesis through a feed back control mechanism (32) while the porphyrin synthetic enzyme delta-ALA dehydratase is increased (17). The experimental study of porphyrin production indicated that when red cells or hemolysates are incubated in vitro free porphyrins tend to accumulated. Hemolysates of thalassemic red cells showed rapid incorporation of ALA into protoporphyrin indicating that the enzymatic steps between the two are intact (33). Thalassemic hemolysates tended to accumulated a greater proportion of protoporphyrin than non-thalassemic hemolysates, suggesting a block in hemoglobin synthesis beyond the formation of protoporphyrin (21, 33, 34). The question whether this is actually reflects incompleteness of hemoglobin synthesis or because of the preponderance of young cells in thalassemia has been raised (20). It is now known that protoporphyrin exists within the red cell in a stable form, is not increased with a young population of cells and that reticulocytes per se do not have an increased protoporphyrin concentration (1). Reports of the association between elevated protoporphyrin level and reticulocytosis (2, 35-39) can be explained by relative iron deficiency (1).

The acid-extracted porphyrins from red cell of normal individuals as well as those from the patients with primary porphyrias (erythropoietic protoporphyrinia or EPP) and secondary erythrocyte porphyrias (including lead intoxication, iron deficiency anemia etc.) are all chemically, physically, and spectrally identical to pure protoporphyrin-9 in acid aqueous solution (40). It has been incorrectly assumed that the natural state of the FEP in EPP and in other secondary porphyrias was identical. The detailed spectrofluorometric studies disclosed two distinct protoporphyrin species in this group of patients (40). The first species which is found in large quantities in red cells of patients with lead intoxication, iron deficiency anemia and chronic infection (and present in a very small amount in red cells of normal persons, patients with porphyria cutanea tarda and EPP) is the globin-bound zinc - protoporphyrin 9 (41). Acid-extraction of this protoporphyrin results in the loss of the chelated zinc from the protoporphyrin moiety. The resultant product exhibits spectral identity with the second species of protoporphyrin, metal-free protoporphyrin as found in EPP patients. There are several other differences in the nature of these protoporphyrin species which are obscured by chemical changes occurring during extraction

process. These differences may be part of the explanation for the difference in cutaneous photosensitivity between EPP, who are exquisitely light sensitive, and iron deficiency, lead intoxication and thalassemia patients who are not at all light sensitive.

บทคัดย่อ

ผลการศึกษาปริมาณของ Free erythrocyte porphyrins (FEP) ในชาวยไทย ทั้งทั้งกรรภ์และเด็กที่ป่วยเป็นโรค thalassemia syndrome ด้วยวิธี microfluorometric technique ของ Piomelli ปรากฏว่าชาวยไทยมีสูตรของสมบูรณ์ 46 คน มีระดับของ FEP ใกล้เคียงกันที่ค่าเฉลี่ยผู้รายงานไว้หลายราย คือ 46.34 ± 16.0 (15.0-76.5) $\mu\text{g}/\text{dl}$ red cells ค่าที่ได้สูงกว่าการวัดด้วยวิธีเก่าเด็กน้อย เนื่องจากวิธีใหม่ที่ใช้น้ำสามารถแยก FEP ออกจากเม็ดเดือดแดงได้ดีกว่าวิธีเดิม ทั้งทั้งกรรภ์ 12 คน มีระดับ FEP 60.30 ± 16.28 (37.2-87.2) $\mu\text{g}/\text{dl}$ red cells ซึ่งสูงกว่าชาวยที่มีสูตรของสมบูรณ์อย่างมีนัยสำคัญ ($p < 0.01$) ผู้ป่วยเด็กที่เป็นโรค beta-thalassemia ทั้งชนิด homozygous และชนิดเกิร์วัมกับ Hb. E disease จำนวน 31 คน มีระดับ FEP สูงมาก คือ 91.31 ± 51.13 (31.3-225.0) $\mu\text{g}/\text{dl}$ red cells ($p < 0.0001$) ซึ่งสูงนับจนว่าผู้ป่วยที่เป็น beta-thalassemia นั้นยกจากจะมีความผิดปกติในการสร้าง globin chain และยังมีความผิดปกติในการสร้าง heme ด้วย.

REFERENCES

1. Langer, E.E., Haining, R.G., Labbe, R.F., Jacobs, P., Crosby, E.F., and Finch, C.A.: Erythrocyte protoporphyrin. *Blood* 40: 112, 1972.
2. Schwartz, S., Wikoff, H.M.: The relation of erythrocyte coproporphyrin and protoporphyrin to erythropoiesis. *J. Biol. Chem.* 194: 563, 1952.
3. Scholnick, P., Marver, H.S., and Schmid, R.: Erythropoietic protoporphyrin: evidence for multiple sites of excess protoporphyrin formation. *J. Clin. Invest.* 50: 203, 1971.
4. Kushner, J.P., Lee, G.P., Winthrobe, M.M., and Cartwright, G.E.: Idiopathic refractory sideroblastic anemia. Clinical and laboratory investigation of 17 patients and review of the literature. *Medicine* 50: 139, 1971.
5. Pagliardi, E., Prato, V., Giangrandi, E., and Fiorina, L.: Behaviour of the free erythrocyte protoporphyrin and of the erythrocyte copper in iron deficiency anemias. *Brit. Haemat.* 5: 217, 1959.
6. Lichtman, H.C., and Feldman, F.: In vitro pyrrole and porphyrin synthesis in lead poisoning and iron deficiency. *J. Clin. Invest.* 42: 830, 1963.
7. Dagg, J.H., Goldberg, A., and Lochhead, A.: Value of erythrocyte protoporphyrin in the diagnosis of latent iron deficiency. *Brit. J. Haemat.* 12: 326, 1966.
8. Kammholz, L.P., Thatcher, L.G., Blodgett, F.M., and Good, T.A.: Rapid protoporphyrin quantitation for detection of lead poisoning. *Pediatrics* 50: 625, 1972.
9. Piomelli, S., Davidow, B., Guinee, V.F., Young, P., and Gay, G.: The FEP (free erythrocyte porphyrins) test: a screening method for lead poisoning. *Pediatrics* 51: 254, 1973.
10. Orfanos, A.P., Murphy, W.H., and Guthrie, R.: A simple fluorometric assay of protoporphyrin in erythrocyte (EPP) as a screening test for lead poisoning. *J. Lab. Clin. Med.* 89: 659, 1977.
11. Piomelli, S.: A micromethod for free erythrocyte porphyrins: the FEP test. *J. Lab. Clin. Med.* 81: 932, 1973.
12. Cartwright, G.E., Huguely, C.M. Jr., Ashenbrucker, H., Fay, J., and Winthrobe, M.M.: Studies on free erythrocyte protoporphyrin, plasma iron and plasma copper in normal and anemic subjects. *Blood* 3: 501, 1948.
13. Krammer, A., Cartwright, G.E., and Winthrobe, M.M.: The anemia of infection. XIX. Studies on free erythrocyte coproporphyrin

and protoporphyrin. *Blood* 9: 183, 1954.

14. Owen, E.T., and Lawson, A.A.H.: Nature of anaemia in rheumatoid arthritis. VI. Metabolism of endogenous iron. *Ann. Rheum. Dis.* 25: 547, 1966.

15. Gutniak, O., Kopec, M., and Nieczaj, J.: Porphyrin biosynthesis in the erythrocytes of patients with sideropenic anaemias. *J. Clin. Path.* 24: 356, 1971.

16. Lyberatos, C., Chalevelakis, G., Platis, A., Stathakis, N., Panani, A., and Gardikas, C.: Erythrocyte content of free protoporphyrin in thalassemic syndrome. *Acta Haemat.* 47: 164, 1972.

17. Lyberatos, C., Mitsiou, C., Philippidou, A., Papayannis, A.G., Chalevelakis, G., and Gardikas, C.: Erythrocyte α -aminolevulinic acid dehydratase in homozygous B-thalassemia. *Scand. J. Haemat.* 12: 81, 1974.

18. Kreimer-Birnbaum, M., Pinkerton, P.H., Bannerman, R.M., and Hutchison, H.E.: Urinary "dipyrrroles"; their occurrence and significance in thalassemia and other disorders. *Blood* 28:993, 1966.

19. Lyberatos, C., Papadopoulos, N., Papasteriadis, E., Mitsiou, C., Philippidou, A., and Gardikas, C.: Urine porphyrins and their precursors in homozygous B-thalasssemia. *Acta Haemat.* 54:95, 1975.

20. Bannerman, R.M.; Abnormalities of heme and pyrrole metabolism in thalassemia. *Ann. N. Y. Acad. Sci.* 119:503, 1964.

21. Feldman, F., and Lichtman, H.C.: In vitro porphobilinogen and porphyrin synthesis in thalassemia major and sickle cell anemia. *Ann. N. Y. Acad. Sci.* 119:540, 1964.

22. Steiner, M., Baldini, M., and Dameshek, W.: Enzymatic defects of heme synthesis in thalassemia. *Ann. N.Y. Acad. Sci.* 119:548, 1964.

23. Vavra, J., and Kirchoff - Mayer, V.: In vitro porphyrin synthesis by human blood. Porphyrin synthesis by thalassemic erythrocytes. *J. Lab. Clin. Med.* 63:754, 1964.

24. Sturgeon, P., Itano, H.A., and Bergren, W.T.: Genetic and biochemical studies of intermediate types of Cooley's anemia. *Brit. J. Haemat.* 1:264, 1955.

25. Sturgeon, P., Chen, L., and Bergren, W.T.: Free erythrocyte porphyrins in thalassemia: preliminary observations. *Proc. Sixth Congr. Intern. Soc. Hemat.*, 1958.

26. Stockman, J.A., III., Weiner, L.S., Simon, G.E., Stuart, M.J., and Oski, F.A.: The measurement of free erythrocyte porphyrin (FEP) as a simple means of distinguishing iron deficiency from beta-thalasssemia trait in subjects with microcytosis. *J. Lab. Clin. Med.* 85: 113, 1975.

27. Schwarz, S., Berg, M. H., Bossenmeier, I., and Dinsmore, H.: Determination of protoporphyrin in biological materials. *Meth. Biochem. Anal.* 8: 221, 1960.
28. Wranne, L.: Free erythrocyte copro- and protoporphyrin: methodological and clinical study. *Acta Paediat.* 49: (Suppl 124): 1, 1960.
29. Ward, E., and Mason, L.: Free erythrocyte protoporphyrin. *J. Clin. Invest.* 29: 905, 1950.
30. Watson, C.J.: The erythrocyte coproporphyrin. Variations in respect to erythrocyte protoporphyrin and reticulocytes in certain of the anemias. *Arch. Intern. Med.* 86: 797, 1950.
31. Rinington, C.: The biosynthesis of hemoglobin. *Proc. Roy. Soc. Med.* 51: 639, 1958.
32. Harris, J.W., and Kellermeyer, R.W.: *The Red Cell*. Harvard University Press, Cambridge, 1970. p. 210.
33. Vavra, J.D., Mayer, V.K.: In vitro porphyrin synthesis by human blood: porphyrin synthesis by thalassemic erythrocytes. *J. Lab. Clin. Med.* 63: 254, 1964.
34. Erlandson, M.E., Wehman, J., Stern, G., Hilgartner, M., and Smith, C.H.: Heme synthesis in thalassemia: defect in conversion of glycine to d-aminolevulinic acid. *Am. J. Dis. Child.* 102:590, 1961.
35. Watson, C.J., and Clarke, W.O.: The occurrence of protoporphyrin in the reticulocytes. *Proc. Soc. Exp. Biol. Med.* 36:65, 1937.
36. Watson C.J., Grinstein, M., and Hawkinson, V.: Studies of protoporphyrin. IV. A comparison of the erythrocyte protoporphyrin concentration with the reticulocyte percentage under experimental and clinical conditions. *J. Clin. Invest.* 23: 69, 1944.
37. Grinstein, M., Silva, J.A., and Winthrobe, M.M.: The anemia in infection VI. The significance of free erythrocyte protoporphyrin, together with some observation on the meaning of the "easily split-off" iron. *J. Clin. Invest.* 27: 245, 1948.
38. Eriksen, L.: So-called free erythrocyte protoporphyrin and its possible role in hemoglobin formation. *Acta Physiol. Scand.* 53: 288, 1961.
39. Prato, V., and Mazza, U.: Some aspects of porphyrin metabolism in thalassemia. *Panminerva Med.* 4: 344, 1962.
40. Poh-Fitzpatrick, M.B., and Lamola, A.A.: Direct spectrofluorometry of diluted erythrocytes and plasma: a rapid diagnostic method in primary and secondary porphyrinemias. *J. Lab. Clin. Med.* 87: 362, 1976.
41. Lamola, A.A., and Yamane, T.: Zinc - protoporphyrin in the erythrocytes of patients with lead intoxication and iron deficiency anemia. *Science* 186:936, 1974.