

Comparative Study of Enteric Media in the Isolation of *Salmonella* And *Shigella* from Stool Specimens.

Prasit Tharavichitkul M.Sc. (Micro)

Kampol Panas-ampol, M.D.*

Various media have been developed for isolation of gram-negative enteric pathogens from stool specimens. The isolation traditionally uses the combination of MacConkey agar as a differential plating medium, SS agar as a selective plating medium, and Selenite-F broth as an enrichment broth. Recent evidence has shown that MacConkey agar lacks selectivity for *Salmonella* and *Shigella* so lactose fermenters can overgrow or inhibit these organisms (1), whereas SS agar and Selenites-F broth have been to inhibitory for fastidious pathogens such as some species of *Shigella* (2,3,4). Furthermore, many of these media offer little in the way of colonial morphologic differentiation other than the ability of some organisms to ferment lactose.

In 1965, Taylor (5) introduced XLD agar of which the latter studies shown better rate of isolation of enteric pathogens which fewer false-positive organisms (3,4,6,7,8). On this medium the differentiation of *Salmonella* and *Shigella* from other enteric bacilli is based on not only the fermentation of lactose, saccharose, or xylose, but also on lysine decarboxylation and H_2S production.

More recent study of GN broth (3,4,6) have clearly demonstrated in the enhancement of isolation of enteric pathogens. In this paper routine stool specimens have been used to compare Direct Streaking: MacConkey, SS and XLD agar with Enrichment Broths: Selenite-F and GN broths for the isolation of *Salmonella* and *Shigella*.

Materials and Methods

Between 11 March and 5 June 1975, a total of 252 stool specimens from patients seen at Chiang Mai Hospital was examined for *Salmonella* and *Shigella*. Each stool specimen was streaked directly onto the three plates: MacConkey Agar (MC, Eiken), *Salmonella* *Shigella* Agar (SS, Eiken) and Xylose Lysine Deoxycholate Agar (XLD, Eiken) and also placed into the enrichment broths: Selenite Broth (SF, Eiken) and Gram Negative Broth (GN, BBL). After 18-24 hr. of incubation, the broths were streaked on MC and XLD plates. Colonies suspected of being *Salmonella* and *Shigella* were picked and inoculated onto Triple sugar iron agar (TSI) slants. Following overnight incubation, TSI slants showed the reaction: alkaline slants, acid butt with or without H₂S were inoculated into motility-indole, Simon's citrate, urea, lysine decarboxylase and phenylalanine medium. Cultures showing biochemical reactions for *Salmonella* and *Shigella* were tested agglutinably with specific antisera for *Salmonella* and *Shigella* (Difco) respectively.

Results

Of the 252 stool specimens examined, 59 (23.4%) were positive for the enteric pathogens; 37 (14.7%) were *Shigella* and 22 (8.7%) were *Salmonella* (Table 1). Although all three media used for isolation of *Shigella* by direct streaking were approximately equal, no one medium grew all of them. Of the 37 isolates of *Shigella*, all three media used in parallel accounted for 36 (97.3%), whereas one kind of media detected no more than 28 (75.7%).

Comparisons between direct streaking and enrichment methods for isolation of enteric pathogens are shown in Table 2. Selenite enrichment streaked to XLD plate was observed to be greatly superior to both direct streaking and other enrichment methods for detection of *Salmonella*. Of all *Salmonella* isolated only 9 (40.9%) isolates were obtained from direct streaking, whereas SF broth streaked to XLD recovered 19 (86.5%). However, all of them were isolated by the use of both direct streaking and SF enrichment streaked to XLD agar. In contrast, direct streaking

Table 1. Isolation of *Salmonella* and *Shigella* from 252 Stool Specimens.

Organisms	Direct			Streaking			Enrichment			Broths			Total	
	MC	SS	XLD	Sub- total	GN		SF		MC	XLD	Sub- total	No.	Percent	
					MC	XLD	MC	XLD						
Salmonella	No.	1	7	5	9	1	3	6	19	19	22	8.7		
	percent	4.5	31.8	22.7	40.9	4.5	13.6	27.3	86.4	86.4	100			
Shigella	No.	28	26	25	36	5	8	2	2	9	37	14.7		
	percent	75.7	70.3	67.6	97.3	13.5	21.6	5.4	5.4	24.3	100			
Total		29	33	30	45	6	11	8	21	28	59	23.4		

was seen to be clearly superior to enrichment for isolation of *Shigella*. Of the total *Shigella* isolated, direct streaking accounted for 36/37 (97.3%) whereas enrichment broth detected only 9/37 (24.5%).

The distribution of 22 isolates of *Salmonella* was shown in Table 3. Of

these, 14 (63.6%) were *Salmonella* serogroup B of which 11 isolates were recovered from XLD inoculated from SF broth. The species of *Shigella* are shown in Table 4. *Shigella flexneri* was the most frequently isolated species: 78.4% of the total *Shigella* isolated and all of them can be found by direct streaking.

Table 2 Comparison of Direct Streaking and Enrichment Broth Methods for Isolation of 22 Isolates of *Salmonella* and 37 isolates of *Shigella*.

Organisms	Direct Streak * only	Enrichment only				Both Methods	Total		
		GN		SF					
		MC	XLD	MC	XLD				
Salmonella	9	1				0	10		
	8		2			1	11		
	7			4		2	13		
	3				13	6	22		
Shigella	31	0				5	36		
	29		1			7	37		
	35			1		1	37		
	35				1	1	37		

Number of organisms isolated from direct streaking method corresponds with one of the four enrichment methods.

Table 3 Distribution of *Salmonella* isolated from 22 Positive Stool Specimens

Organisms	Direct Streaking				Enrichment Broths				Total		
	MC	SS	XLD	Sub-total	GN		SF		Sub-total	No.	
					MC	XLD	MC	XLD			
Salmonella	1	6	4	8	0	3	3	11	11	14	63.6
Serogroup B											
Salmonella	0	1	1	1	1	0	2	4	4	4	18.2
typhi											
Salmonella	0	0	0	0	0	0	1	4	4	4	18.2
serogroup E											
Total	1	7	5	9	1	3	6	19	19	22	100.0

Table 4 Distribution of *Shigella* isolated from 37 Positive Stool Specimens

Organisms	Direct Streaking				Enrichment Broths				Total		
	MC	SS	XLD	Sub-total	GN		SF		Sub-total	No.	
					MC	XLD	MC	XLD			
<i>S. dysenteriae</i>	0	1	0	1	0	1	1	1	1	2	5.4
<i>S. flexneri</i>	24	20	22	29	4	5	0	0	6	29	78.4
<i>S. boydii</i>	2	1	1	2	1	1	1	1	1	2	5.4
<i>S. sonnei</i>	2	4	2	4	0	1	0	0	1	4	10.8
Total	28	26	25	36	5	8	2	2	9	37	100.0

Discussion

The efficacies of MacConkey, SS and XLD agars were similar for isolation of *Shigella* but for *Salmonella* there were fewer isolates from MC than from either SS or XLD agar when the stool specimens were plated directly. In isolation of both organisms,

however, XLD agar was superior to MC when the specimens were plated indirectly with enrichment broth. This result is similar to that reported by Taylor and Schelhart (7) and Morris et. al. (9). Results with combination of media showed that only the combination of direct streaking and enrichment in SF

broth streaked to XLD medium can detect all 59 isolates of enteric pathogens.

Of all pathogens isolated, *Shigella flexneri* was the most frequently isolated species (49.1%). These organisms were all isolated by direct streaking. In isolation of all *Shigella*, direct streaking was markedly superior to GN and SF enrichment. This observation agreed with some reports (1, 3, 9, 11, 12) but others had shown the greater isolation of *Shigella* by the use of enrichment broth (4, 6, 7, 10, 13). In addition, no more than 75.7% of the *Shigella* were obtained from one kind of plates, whereas all three media used in parallel increased up to 97.3% of isolates.

In contrast to the *Shigella* data, Selenite enrichment was observed to be greatly superior to direct streaking for detection of *Salmonella*. Besides, SF broth streaked to XLD was the best enrichment method. This was similar to that reported by Taylor and his colleagues (6, 7, 10, 11).

The results of this study indicate that, in the examination of a stool specimen suspected of harboring either *Salmonella* or *Shigella*, it would be desirable to plate the specimen directly on MC, SS and XLD agar and also to inoculate the same specimen in Selenite broth for enrichment before plating on XLD agar.

ย่อเรื่อง

การคัดแยกเชื้อบำหัวของอาหารโดยใช้แยกเชื้อ *Salmonella* และ *Shigella* จากอุจจาระของผู้ป่วยที่มารับการรักษาที่โรงพยาบาลจุฬารัตน์ในจำนวน 252 ราย อุจจาระแต่ละรายนำไปตรวจโดยใช้วิธี Direct Streaking คือเลี้ยงบน MacConkey Agar SS Agar และ XLD Agar และโดยวิธี Enrichment Broth คือเลี้ยงใน GN Broth และ Selenite Broth และวิธีที่นำไปเลี้ยงท่อ

บน MacConkey และ XLD จากนี้ถึงกล่าวสามารถแยกเชื้อ Enteric pathogens ได้ทั้งหมด 59 isolates ซึ่งในจำนวนนี้แยกเป็น *Shigella* เดียว 37 isolates และ *Salmonella* 22 isolates นอกจ้านั้นยังพบเชื้อ *Shigella flexneri* มากที่สุดคือ พันถ้วง 49.1%

จากการแยกเชื้อ *Shigella* พนัชวิธี Direct Streaking ให้ผลดีกว่าวิธี Enrichment Broth ไม่ว่าจะใช้วิธีใด คือ วิธี Direct Streaking บนอาหารเลี้ยงเชือทง 3 ชนิด

สามารถพบรื้อได้ถึง 97.3 % ขณะที่วิธี Enrichment Broth ตรวจพบเพียง 24.3 % เมื่อเปรียบเทียบอาหารเลี้ยงเชื้อทั้ง 3 ชนิดที่ใช้ในวิธี Direct Streaking พบร่วมกัน แต่ชนิดนี้มีประสิทธิภาพพอๆ กัน และสามารถแยกเชื้อได้ไม่เกิน 75.7%

สำหรับการตรวจแยกเชื้อ *Salmonella* พบร่วมกับผลตรวจข้ามคือ เมื่อใช้วิธี Selenite Enrichment Broth แล้วน้ำไปเลี้ยงบน XLD

Agar สามารถตรวจพบเชื้อได้ถึง 86.4% ขณะที่วิธี Direct Streaking ให้ผลเพียง 40.9 % แต่ถ้าใช้ห้องส่องวิธีดังกล่าวร่วมกันก็จะให้ผลการแยกเชื้อคิดที่สุด จากการศึกษาและสังเกตเห็นว่าการตรวจแยกเชื้อทั้ง *Salmonella* และ *Shigella* จากอุจจาระในเวลาเดียวกัน ควรใช้วิธี Direct Streaking บน MacConkey, SS และ XLD Agars ร่วมกับวิธี Selenite Enrichment Broth ที่ต้องนำไปเลี้ยงท่อนบน XLD Agar.

References

1. Pollock, H.M. and Dahlgren, B.J.: Clinical evaluation of enteric media in the primary isolation of *Salmonella* and *Shigella*. *Appl. Microbiol.* 27 : 197-201, 1974.
2. Isenburg, H D., Kominos, S. and Siegel, M.: Isolation of *salmonellae* and *shigellae* from an artificial mixture of fecal bacteria. *Appl. Microbiol.* 18 : 656-659, 1969.
3. Taylor, W.I. and Harris, B.: Isolation of *shigellae*. II. Comparison of plating media and enrichment broths. *Am. J. Clin. Pathol.* 44 : 476-479, 1965.
4. Taylor, W.I. and Schelhart, D.: Isolation of *shigellae*. IV. comparison of plating media with stools. *Am. J. Clin. Pathol.* 48 : 356-362, 1967.
5. Taylor, W.I.: Isolation of *shigellae*. I. Xylose Lysine Agars. new media for isolation of enteric pathogens. *Am. J. Clin. Pathol.* 44 : 471-475, 1965.
6. Taylor, W.I. and Schelhart, D.: Isolation of *shigellae*. V. Comparison of enrichment broths with stools. *Appl. Microbiol.* 16 : 1383-1386, 1968.
7. Taylor, W.I. and Schelhart, D.: Isolation of *shigellae*. VI. Performance of media with stool specimens. *Appl. Microbiol.* 16 : 1387-1393, 1968.
8. Rollender, W., Beekford, O., Belsky, R.D. and Kostroff, B.: Comparison

Xylose lysine deoxycholate agar and MacConkey agar for the isolation of *Salmonella* and *Shigella* from clinical specimens. *Am. J. Clin. Pathol.* 51: 284-286, 1969.

9. Morris, G.K., Kochler, J.A. Gangarosa, E.J. and Sharrar, R.G.: Comparison of media for direct isolation and transport of shigellae from fecal specimens. *Appl. Microbiol.* 19:434-437, 1970.

10. Taylor, W.I. and Schelhart, D.: Isolation of shigellae VIII. Comparison of Xylose Lysine Deoxycholate Agar, Hektoen Enteric Agar, *Salmonella*-*Shigella* Agar, and Eosin Methylene blue agar with stool specimens. *Appl. Microbiol.* 21:32-37, 1971.

11. Taylor, W.I. and Harris, B.: Isolation of shigellae. III. Comparison of new and traditional media with stool specimens. *Am. J. Clin. Pathol.* 48: 350-355, 1967.

12. Dunn, C. and Martin, W.J.: Comparison of media for isolation of *salmonellae* and shigellae from fecal specimens. *Appl. Microbiol.* 22: 17-22, 1971.

13. Croft, C.E. and Miller, M.J.: Isolation of shigella from rectal swabs with Hajna "GN" broth. *Am. J. Clin. Pathol.* 26:411-417, 1956.