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Background: Accurate and interpretable brain tumor classification from MRI 
images remains a key challenge in medical image analysis, particularly when 
using publicly available datasets of moderate size.

Objective: This study investigates the performance of a ConvNeXt-Tiny based 
framework for four-class brain tumor classification glioma, meningioma, 
pituitary tumor, and no tumor and compares it with established convolutional 
architectures.

Materials and methods: Using transfer learning and identical experimental 
settings, ConvNeXt-Tiny was evaluated against DenseNet169, Xception, 
MobileNetV3-Large, CNN+DenseNet169, and ResNet50. Standard evaluation 
metrics (accuracy, precision, recall, and F1-score) were used, and Grad-CAM 
was applied to visualize model attention for interpretability. Generalization 
was further assessed using an independent dataset.

Results: ConvNeXt-Tiny achieved high overall performance (accuracy = 0.9924, 
F1-score = 0.9918), comparable to DenseNet169 and Xception but with lower 
computational cost. The model maintained stable learning behavior, minimal 
overfitting, and consistent accuracy on unseen data. Grad-CAM visualizations 
confirmed that the network focused on clinically relevant tumor regions, 
improving transparency and reliability of predictions.    

Conclusion: ConvNeXt-Tiny provides a strong and efficient baseline 
for interpretable brain tumor classification, balancing accuracy and 
computational efficiency. While the results are promising, differences among 
recent architectures were modest, and clinical validation using multi-center 
MRI datasets is necessary to confirm broader applicability.
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Introduction
	 The classification of brain tumors using deep 
learning techniques has become a transformative 
approach in medical imaging, particularly in magnetic 
resonance imaging (MRI). This progress is largely 
driven by the capability of deep learning models, 
especially Convolutional Neural Networks (CNNs), 
to automatically extract features from images and 
improve diagnostic accuracy.1,2 Recent studies have 
demonstrated that integrating advanced architectures, 
such as residual networks and attention mechanisms, 
can enhance performance in differentiating various 
types of brain tumors, including gliomas and 
meningiomas.3,4 Transfer learning has been widely 
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adopted to further improve classification accuracy, 
with models pre-trained on large datasets being  
fine-tuned on specific radiological datasets to better 
capture the nuances of brain tumor images.1,5,6

For example, the use of ResNet50 and other 
architectures has shown significant improvements in 
metrics such as accuracy and F1-score.2,7 Moreover, 
deep learning approaches have been reported to 
outperform traditional diagnostic methods, which often 
rely heavily on subjective interpretation.8,9 Numerous 
studies have also explored model optimization 
strategies. Hybrid models combining CNNs with 
other machine learning classifiers, such as SVMs and 
decision trees, have shown improvements in both 
performance and generalizability.10,11 Architectural 
innovations, including attention blocks and multi-tiered 
networks, aim to reduce overfitting while enhancing 
model interpretability.3,12 Additionally, metaheuristic 
optimization techniques have been applied for feature 
selection to strengthen classification robustness.13 
Context-aware deep learning frameworks have further 
enriched the capability to segment and classify 
brain tumors while also predicting patient survival 
rates.14 Multi-faceted strategies of this nature have 
demonstrated significant improvements in clinical 
outcomes, providing healthcare practitioners 
with effective tools for brain tumor diagnosis and 
management.15 Ongoing research continues to 
advance deep learning applications in brain tumor 
classification, highlighting the potential for future 
clinical adoption. The ability to achieve high accuracy 
while handling the complex and heterogeneous 
nature of brain tumors underscores the critical role 
of deep learning in enhancing diagnostic workflows 
and patient care. Explainable Artificial Intelligence 
(XAI) techniques enhance model transparency and 
interpretability, allowing clinicians to understand 
the decision-making process behind deep learning 
predictions. Techniques such as Local Interpretable 
Model-agnostic Explanations (LIME) and Gradient-
weighted Class Activation Mapping (Grad-CAM) have 
been employed to explain how CNNs classify tumor 
types and detect tumor presence. For instance, Ullah  
et al. proposed DeepEBTDNet, which effectively utilized 
LIME to interpret MRI-based predictions, achieving a 
validation accuracy of 98.96%.16 Similarly, Esmaeili  
et al. reported that incorporating interpretable methods 
could improve the accuracy of trained models.17 Grad-CAM 
has been applied to visualize image regions most 
influential to the model’s decisions. Goyal and Sharma 
used Grad-CAM to highlight features driving brain tumor 
detection, enhancing trust in AI-assisted diagnostics.18 
Tan et al. demonstrated the practical application of 
these visualization techniques in clinical workflows, 
improving diagnostic reliability and addressing 
concerns about the “black-box” nature of deep 
learning models, though reference19 does not directly 
support Grad-CAM application in this context. Beyond 

interpretability, these techniques also enhance model 
robustness and reliability by showing which features 
are considered important, enabling practitioners to 
validate them against established medical knowledge.20 
Furthermore, attention mechanisms incorporated into 
deep learning frameworks allow models to focus on 
clinically relevant regions in MRI scans, which is critical 
for tumor segmentation and classification. Tonni et al. 
introduced a hybrid transfer learning framework 
incorporating attention-based features to improve both 
interpretability and performance.19 Despite significant 
advances in deep learning-based brain tumor 
classification, several research gaps remain that limit 
model robustness and clinical applicability. One major 
gap is the reliance on large, well-annotated datasets for 
effective model training. Many studies rely on publicly 
available datasets that vary in size, balance, and 
acquisition conditions, which may lead to overfitting 
and reduced generalization when models are applied 
to unseen or heterogeneous MRI scans.2 This highlights 
the importance of evaluating deep learning frameworks 
under realistic data availability and heterogeneous 
imaging conditions, while avoiding over-reliance on 
excessively large or curated clinical datasets. Another 
critical gap is the lack of interpretability of deep learning 
models in clinical practice. Although CNN-based 
architectures achieve high accuracy, their “black-box” 
nature makes it difficult for clinicians to understand 
the rationale behind predictions, reducing trust and 
hindering adoption in real-world healthcare settings.20

Materials and methods
	 This study proposes a deep learning framework for 
brain tumor classification from MRI images. The overall 
workflow is illustrated in Figure 1.
	 The methodology consists of five main components:
	 1. Proposed approach: This study presents a fair 
experimental comparison between ConvNeXt-Tiny as the 
baseline model and other deep learning architectures 
for four-class brain tumor classification. Beyond  
multi-class prediction, the proposed approach provides 
additional insights through subclass-level tumor analysis. 
Furthermore, binary classification between tumor 
and no-tumor cases is investigated to offer a clearer 
understanding of the model’s diagnostic behavior.
	 2. Model configuration: The model performance 
was also evaluated in comparison with several CNN 
architectures, including ResNet50, CNN+DenseNet169, 
DenseNet169, MobileNetV3-Large, and Xception, using 
transfer learning.
	 3. Data preprocessing: The images were organized 
into training, validation, and test sets. All images were 
resized to 224×224 pixels prior to model training.
	 4. Evaluation: Performance of all models was 
assessed using standard metrics, including accuracy, 
precision, recall, and F1-score. Confusion matrix was 
used to visualize class-wise performance. In addition, 
training efficiency was evaluated by recording the 
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total training time and the average training time per 
epoch. These measurements provide insight into 
the computational cost of each model, allowing for a 
holistic comparison of predictive performance and 
training efficiency.
	 5. Grad-CAM: To provide insight into model 
decisions, Grad-CAM (Gradient-weighted Class Activation 

Mapping) was applied to the trained models. Grad-CAM 
generates heatmaps highlighting the regions of input 
images that contribute most strongly to the predicted 
class. This allows visual assessment of whether the 
model focuses on relevant tumor regions, supporting 
interpretability and trustworthiness of the predictions.

Figure 1. Flowchart of methodology.

Contributions
	 To address these challenges, this study makes 
two primary contributions. First, a fair and systematic 
comparison is conducted using ConvNeXt-Tiny as the 
baseline model to evaluate the performance of other 
deep learning architectures under identical training and 
evaluation conditions, thereby ensuring an objective 
assessment under identical experimental settings 
using a publicly available benchmark dataset. Second, 
the framework incorporates interpretability-enhancing 
mechanisms, including Grad-CAM analysis, to provide 
clear and clinically meaningful explanations for each 
classification decision. This integrated approach 
enhances diagnostic reliability while fostering clinical 
confidence and practical applicability in real-world 
brain tumor analysis.

Model architecture
	 ConvNeXt-Tiny was selected as the baseline 
model due to its modern convolutional architecture 
that bridges traditional CNNs with transformer-
inspired design principles. By incorporating updated 
architectural choices, including larger kernel sizes, 
depthwise separable convolutions, and simplified 
normalization and activation strategies, ConvNeXt-Tiny 

enhances representational capacity while maintaining 
computational efficiency. The model was chosen  
a priori to balance expressive power and parameter 
efficiency, thereby reducing the risk of overfitting and 
remaining compatible with gradient-based interpretability 
techniques such as Grad-CAM. Larger ConvNeXt variants 
and transformer-based architectures were not prioritized 
because of their higher computational requirements and 
stronger dependence on large-scale training data.
	 Compared with lightweight models such as 
MobileNetV3-Large and deeper architectures including 
DenseNet169 and ResNet50, ConvNeXt-Tiny offers 
a well-balanced trade-off among model complexity, 
predictive performance, and generalization capability, 
making it a robust and reliable baseline for fair 
comparison. To ensure a comprehensive evaluation, six 
deep learning models were selected for comparison: 
CNN+DenseNet169, Xception, DenseNet169, ConvNeXt- 
Tiny, MobileNetV3-Large, and ResNet50. All models 
were trained for 20 epochs using the Adam optimizer 
with a learning rate of 1×10-4 and CrossEntropyLoss 
as the objective function on a four-class dataset. 
Detailed hyperparameter settings are summarized in 
Table 1, and schematic architectures of all models are 
illustrated in Figure 2.
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Table 1. Parameter settings of all models.

Model Parameters
CNN+DenseNet169 CNN(Conv2d(64) → BatchNorm → ReLU → MaxPool → Conv2d(128) → BatchNorm  

→ ReLU → MaxPool) → Adapter (Conv2d 128→3) → Upsample (224×224)  
→ DenseNet169(pretrained) → Dense(num_classes)

Xception Xception(pretrained) → Dense(num_classes)
DenseNet169 DenseNet169(pretrained) → Dense(num_classes)

ConvNeXt-Tiny ConvNeXt-Tiny(pretrained) → Dense(num_classes)
MobileNetV3-Large MobileNetV3-Large(pretrained) → Dense(num_classes)

ResNet50 ResNet50(pretrained) → Dense(num_classes)

Dataset
	 In this study, Dataset 1 was adopted from,21 which 
is distributed under the CC0 license, and was used 
as the primary dataset for model training and initial 
evaluation. This dataset consists of 5,139 training 
images, 573 validation images, and 1,311 test images. 
For external validation, Dataset 2 was employed, 
namely the Labeled MRI Brain Tumor Dataset Computer 
Vision Model curated by Ali Rostami,22 which is publicly 

Figure 2. Schematic diagrams of all models.

available under the CC BY 4.0 license and contains a 
total of 2,443 MRI images. Dataset 2 was exclusively 
used to assess the generalization capability of the 
proposed model on unseen data. Detailed descriptions 
of both datasets, including class composition and 
source attribution, are provided in the Supplementary 
File. Figure 3 illustrates representative samples from 
each class in Dataset 1, while Figure 4 presents 
example images from Dataset 2.
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Figure 3. Sample images from dataset 1. A: glioma, B: meningioma, C: no tumor, D: pituitary tumor.

Figure 4. Sample images from alternative dataset. A: glioma, B: meningioma, C: no tumor, D: pituitary tumor.

Data preprocessing
	 In this study, all MRI images from both datasets 
were preprocessed before being used in the deep 
learning models. Dataset 1 was divided into training and 
validation sets using a 90:10 stratified split to preserve 
class balance, while all images in Dataset 2 were used 
exclusively for testing. All images were resized to 224×224 
pixels, the standard input size for most convolutional 
neural networks (CNNs), to ensure consistency across 
architectures, and then converted into PyTorch tensors. 
The data were loaded using PyTorch’s ImageFolder and 
DataLoader with a batch size of 32. Training data were 
shuffled at each epoch, whereas validation and test data 
were loaded sequentially. The final dataset included 
5,139 training images, 573 validation images, and 1,311 
test images from Dataset 1, together with all images 
from Dataset 2 used for external testing.

Evaluation metrics
	 To assess the performance of the proposed models, 
the following standard evaluation metrics were used: 
accuracy, precision, recall, and F1-score. Accuracy 
measures the proportion of correctly classified images 
among all images. Precision indicates the proportion 
of correctly predicted positive samples among all 
samples predicted as positive. Recall represents the 
proportion of correctly predicted positive samples 
among all actual positive samples. F1-score is the 
harmonic means of precision and recall, providing a 
balance between the two. All metrics were calculated 
using the macro-average approach, which treats each 
class equally by computing the metric independently 
for each class and then averaging the results, regardless 
of class imbalance.

Computational resources
	 All experiments were executed on Google Colab 
Pro using an NVIDIA H100 GPU. Model training and 
inference were performed using CUDA acceleration, 
as indicated by the device configuration (using device: 
cuda).

Results
	 In this study, we hypothesized that the ConvNeXt-
Tiny model could serve as an effective baseline for 
comparative evaluation of convolutional architectures 
in multi-class brain tumor classification. All models 
were trained and evaluated under identical experimental 
settings to ensure fair comparison.

Evaluation metrics
	 The performance of all evaluated models is 
summarized in Table 2 Overall, the results show that  
several architectures achieved comparably high 
performance under identical experimental settings. 
DenseNet169 yielded the highest accuracy (0.9969), 
followed closely by MobileNetV3-Large (0.9947) and 
Xception (0.9939). ConvNeXt-Tiny, used as the main 
baseline in this study, also demonstrated competitive results 
(accuracy=0.9924, precision=0.9920, recall=0.9917,  
F1-score=0.9918), indicating its reliability and efficiency 
for this task. CNN+DenseNet169 performed slightly lower 
but remained strong overall, while ResNet50 showed 
comparatively lower metrics across all measures. These 
findings suggest that multiple convolutional architectures 
can achieve similar performance levels in multi-class brain 
tumor classification, emphasizing the value of comparative 
evaluation rather than reliance on a single model.
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Table 2. Performance of all models.

Model Accuracy Precision Recall F1-score
CNN+Densenet169 0.9916 0.9914 0.9909 0.9912
Xception 0.9939 0.9936 0.9934 0.9934
Densenet169 0.9969 0.9969 0.9967 0.9968
ConvNeXt-Tiny 0.9924 0.9920 0.9917 0.9918
MobileNetV3-Large 0.9947 0.9945 0.9942 0.9943
ResNet50 0.9680 0.9672 0.9661 0.9664

Loss and validation curve
	 Figure 5 illustrates the training and validation loss 
and accuracy curves of the baseline ConvNeXt-Tiny 
model. Both curves demonstrate a rapid stabilization 
during the early training phase, with the loss decreasing 
sharply and reaching a steady level around the fifth 
epoch, while the accuracy curves gradually converged 
and remained closely aligned throughout the remaining 
epochs. This behavior indicates a stable training process 
with no evident overfitting or divergence between 
training and validation performance. Compared with 
prior studies employing ConvNeXt-based or other deep 
CNN architectures for image classification, which often 

Table 3. Confusion matrix of the ConvNeXt-Tiny model.

Predicted 
glioma

Predicted 
meningioma

Predicted 
notumor

Predicted 
pituitary

Actual glioma 295 4 0 1
Actual meningioma 2 303 1 0
Actual no tumor 0 0 405 0
Actual pituitary 0 2 0 298

report longer training schedules ranging from 30 to over 
100 epochs depending on the dataset and imaging 
modality, the convergence observed within 20 epochs 
in this study suggests relatively fast learning dynamics. 
This behavior is primarily attributed to the use of transfer 
learning, which enables the ConvNeXt-Tiny model to 
exploit pretrained feature representations and reduces 
the need for extensive parameter updates. In addition, 
the relatively consistent structural characteristics 
of brain MRI images may facilitate efficient feature 
adaptation compared with natural image datasets.
	 Training and validation loss and accuracy curves 
for baseline model are presented in Figure 5.

Figure 5. Training and validation performance curves of the ConvNeXt-Tiny.

Confusion matrix
	 To gain further insight into the classification 
performance of each model, a confusion matrix was 
constructed to illustrate class-wise predictions for the 
four brain tumor categories: glioma, meningioma, no 
tumor, and pituitary tumor.
	 Table 3 shows the confusion matrix of the baseline 
ConvNeXt-Tiny model on the test set. The model 
correctly classified most samples across all four 

categories, with only a few misclassifications observed 
between glioma and meningioma, and between 
meningioma and pituitary. The “no tumor” class was 
predicted with perfect consistency, indicating clear 
separability from tumor classes under the current 
dataset. These results suggest that the baseline model 
maintained balanced recognition among categories, 
with minor overlaps primarily occurring between 
histologically related tumor types.
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Learning curve
	 The learning curve (Figure 6) analysis indicates that 
both validation and test accuracy increase consistently 
with the number of training samples, demonstrating 
that the model benefits substantially from additional 
data. Early in training, with fewer than 200 samples, 
accuracy remains relatively low (~0.63-0.88), but a 
marked improvement is observed as the dataset grows 
to 500-1000 samples, reaching ~0.95. Beyond 1000 

samples, gains in accuracy begin to plateau, indicating 
diminishing returns, with the model approaching its 
maximum performance at 5163 samples (~0.99). The 
close alignment between validation and test accuracy 
across all sample sizes suggests minimal overfitting 
and good generalization. 
	 Stratified sampling was used to ensure each class 
contributed equally to the training subsets, preventing 
bias and supporting balanced learning across all classes.

Statistical test
Null hypothesis (H₀)
	 There is no difference in the proportion of correctly 
classified samples between ConvNeXt-Tiny and the 
compared model.

Alternative hypothesis (H₁)
	 There is a significant difference in the proportion 
of correctly classified samples between ConvNeXt-Tiny 
and the compared model.
	 Table 4 summarized of the results of McNemar’s 
tests comparing ConvNeXt-Tiny with other models 
indicate that for most comparisons, there is no 

Figure 6. Effect of training sample size on ConvNeXt-Tiny accuracy

statistically significant difference in performance. 
Specifically, comparisons with CNN+DenseNet169  
(χ²=0.0, p=1.0), Xception (χ²=0.083, p=0.773), DenseNet169 
(χ²=3.125, p=0.077), and MobileNetV3 (χ²=0.444, p=0.505) 
all yielded p>0.05, indicating that their performance 
differences with ConvNeXt-Tiny are not statistically 
significant. In contrast, the comparison with ResNet50 
(χ²=22.881, p<0.001) shows a highly significant 
difference, confirming that ConvNeXt-Tiny outperforms  
ResNet50. Overall, these results suggest that ConvNeXt-
Tiny performs comparably to most modern architectures 
while significantly surpassing the older ResNet50 
model.

Table 4. McNemar’s test comparison of ConvNeXt-Tiny with other baseline models.

Baseline Compared Model Chi-square p value Significant (p<0.05)
ConvNeXt-Tiny CNN+DenseNet169 0.0 1.0 No
ConvNeXt-Tiny Xception 0.0833 0.7728 No
ConvNeXt-Tiny DenseNet169 3.1250 0.0771 No
ConvNeXt-Tiny MobileNetV3 0.4444 0.5050 No
ConvNeXt-Tiny ResNet50 22.8810 1.7235×10-6 Yes
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The 95% confidence interval (CI)
	 According to Table 5, the six models show 
clear differences in both accuracy and Macro-F1. 
DenseNet169 achieved the highest performance 
(Accuracy 0.997±0.0053, Macro-F1 0.997±0.0054), 
indicating consistent and accurate classification across 
all classes. MobileNetV3 and Xception offer comparable 
results with low variability, suitable for lightweight or 

Table 7. ConvNeXt-Tiny subclass prediction performance.

Model Accuracy Precision Recall F1-score
ConvNeXt-Tiny 0.9923 0.9940 0.9923 0.9931

fast-inference applications. CNN+DenseNet169 and 
ConvNeXt-Tiny also performed well, slightly below 
DenseNet169. ResNet50 had the lowest accuracy and 
higher variability, suggesting a need for hyperparameter 
tuning or additional data augmentation. Overall, 
modern architectures provide superior accuracy and 
stability, with DenseNet169 representing the optimal 
choice for maximal classification performance.

Table 5. Model accuracy and Macro-F1 scores (95% CI).

Model Accuracy (95% CI) Macro-F1 (95% CI)
CNN + DenseNet169 0.992±0.0059 0.991±0.0055
Xception 0.994±0.0044 0.993±0.0051
DenseNet169 0.997±0.0053 0.997±0.0054
ConvNeXt-Tiny 0.992±0.0049 0.992±0.0051
MobileNetV3 0.995±0.0044 0.994±0.0045
ResNet50 0.968±0.0091 0.966±0.0090

Computational metrics
	 Table 6 summarizes the GPU memory usage 
and training time per epoch for all evaluated models. 
Among the models, MobileNetV3-Large required 
the least GPU memory (1,423.90 MB) and had the 
fastest training time per epoch (25.72 s), reflecting 
its lightweight architecture. ConvNeXt-Tiny, while 
achieving high overall performance, used moderate 
GPU memory (3,721.97 MB) and required 38.00 s per 
epoch for training. CNN+DenseNet169 consumed the 

most GPU memory (6,770.84 MB) with a training time 
of 40.10 s per epoch. Xception and DenseNet169 had 
moderate memory usage (4,419.10 MB and 5,037.70 
MB, respectively) with training times of 30.19 s and 
38.36 s per epoch. ResNet50 required 2,959.80 MB 
of GPU memory and 26.91 s per epoch. These results 
indicate that lightweight models like MobileNetV3-
Large are highly efficient in terms of resource usage, 
while ConvNeXt-Tiny provides a good balance between 
classification performance and computational cost.

Table 6. Training time and memory usage of all models.

Model GPU memory usage (MB)/epoch Training time (s)/epoch
CNN + DenseNet169 6770.84 40.10
Xception 4419.10 30.19
DenseNet169 5037.70 38.36
ConvNeXt-Tiny 3721.97 38.00
MobileNetV3-Large 1423.90 25.72
ResNet50 2959.80 26.91

Subclass tumor
	 Table 7 and Table 8 demonstrate that ConvNeXt-
Tiny achieved high and consistent metrics (accuracy 
0.9923, precision 0.9940, recall 0.9923, F1-score 0.9931), 
indicating reliable identification of all subclasses. 
Specifically, the model correctly predicted glioma 
298/300 (99.3%), meningioma 303/306 (99.0%),  

and pituitary 298/300 (99.3%), with only seven 
misclassifications among 906 test samples. The close 
alignment of precision, recall, and F1-score suggests 
balanced performance without bias toward any 
subclass, supporting its use as a baseline for further 
subclass classification studies.
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Table 8. Confusion matrix (test set without no tumor).

Predicted glioma Predicted meningioma Predicted pituitary
Actual glioma 298 2 0
Actual meningioma 2 303 1
Actual pituitary 0 2 298

No tumor vs tumor
	 Table 9 and Table 10 demonstrates that ConvNeXt-
Tiny achieved very high and balanced performance 
(accuracy 0.9985, precision 0.9982, recall 0.9982, 
F1-score 0.9982) on the test set, which included 906 
tumor samples and 405 no-tumor samples. The model 

correctly identified 905/906 tumor cases and 404/405 
no-tumor cases, with minimal misclassifications. 
The close alignment of precision, recall, and F1-score 
indicates minimal bias toward either class, confirming 
its suitability as a reliable baseline model for binary 
classification with exceptional diagnostic performance.

Table 9. ConvNeXt-Tiny no tumor vs tumor prediction performance.

Model Accuracy Precision Recall F1-score
ConvNeXt-Tiny 0.9985 0.9982 0.9982 0.9982

Table 10. Confusion matrix (test set no tumor vs tumor).

Predicted glioma Predicted meningioma
Actual tumor 905 1
Actual no tumor 1 404

Grad-CAM
	 To further interpret model decisions, Gradient-
weighted Class Activation Mapping (Grad-CAM) was 
applied to the ConvNeXt-Tiny model.
	 The resulting heatmaps, illustrated in Figure 7, 
clearly highlight the tumor regions that contribute 
most strongly to the classification output. For glioma 
and meningioma, the model focuses accurately on 
irregular and dense tissue structures within the tumor 
boundaries, while for pituitary tumors, attention 

is centered around the sellar region. For no-tumor 
cases, activation is diffusely distributed, indicating 
the absence of focal lesions. These results verify that 
ConvNeXt-Tiny not only performs with high numerical 
accuracy but also exhibits interpretability consistent 
with clinical expectations. The localized activation 
patterns confirm that the model relies on medically 
relevant image regions rather than background 
artifacts, thereby enhancing its trustworthiness and 
potential for real-world diagnostic support.

(B)(A)

(C) (D)

Figure 7. Grad-CAM visualization of ConvNeXt-Tiny for each class. 
A: glioma, B: meningioma, C: no tumor, D: pituitary.
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Alternative dataset
	 To further evaluate the generalization ability of the 
baseline ConvNeXt-Tiny model, an alternative dataset 
was employed for testing. This dataset consists of 

images that were not included in the training process, 
providing an unbiased assessment of the model’s 
performance on unseen data. The results summarized 
in Table 11.

Table 11. Performance of ConvNeXt-Tiny in alternative dataset.

Model Accuracy Precision Recall F1-score
ConvNeXt-Tiny 0.9984 0.9983 0.9982 0.9982

	 According to Table 11, the ConvNeXt-Tiny model 
demonstrates strong generalization capability when 
evaluated on the alternative dataset. The model 
achieves high performance across all evaluation 
metrics, with accuracy, precision, recall, and F1-score 
all exceeding 0.998. Although a slight reduction in 
accuracy is observed compared to the original training 
dataset, the overall performance remains consistently 
high, indicating the robustness and reliability of the 
proposed model under different data distributions.
	 Table 12 presents the confusion matrix of the 
ConvNeXt-Tiny model evaluated on the alternative 
brain tumor dataset. The results indicate that the 

model maintains strong generalization performance on 
unseen MRI scans, with most predictions concentrated 
along the main diagonal, reflecting a high level of 
classification accuracy across all four classes: glioma, 
meningioma, no tumor, and pituitary tumor. Only a 
small number of misclassifications are observed, 
mainly between glioma and meningioma, as well 
as between no-tumor and tumor classes in a few 
cases. These errors may be attributed to overlapping 
radiological features in certain MRI samples. Overall, 
the confusion matrix demonstrates the robustness of 
ConvNeXt-Tiny in accurately distinguishing no-tumor 
cases and reliably identifying pituitary tumors.

Table 12. Confusion matrix of the ConvNeXt-Tiny model.

Predicted 
glioma

Predicted 
meningioma

Predicted 
notumor

Predicted 
pituitary

Actual glioma 804 1 0 0
Actual meningioma 0 544 0 1
Actual no tumor 0 1 481 1
Actual pituitary 0 0 0 610

Discussion 
	 The comparative evaluation of six convolutional 
architectures demonstrates that ConvNeXt-Tiny 
provides a well-balanced trade-off among the evaluated 
architectures between classification accuracy, 
computational efficiency, and interpretability. This 
finding is consistent with prior studies employing 
ConvNeXt-based models in medical imaging. For 
example, recent work using pre-trained ConvNeXt 
on the BraTS 2019 dataset reported competitive or  
state-of-the-art performance when multi-sequence 
MRI inputs were available.23 Although the present study 
focuses on single-sequence MRI images, ConvNeXt-Tiny 
achieves comparable performance, indicating its strong 
feature representation capability under constrained 
input settings.
	 While DenseNet169 achieved the highest raw 
accuracy, ConvNeXt-Tiny exhibited nearly equivalent 
performance with reduced computational cost and 
strong generalization on unseen data. These results 
align with previous MRI-based brain tumor classification 
studies using transfer learning, which typically report 
accuracies in the range of 96-98% depending on model 
complexity and dataset characteristics.1,6,24 McNemar’s 
test conducted on paired prediction outcomes 

indicated that performance differences between 
ConvNeXt-Tiny and other modern CNN architectures 
were not statistically significant (p>0.05), suggesting 
that ConvNeXt-Tiny should be regarded as competitive 
rather than strictly superior.
	 Grad-CAM visualizations showed that ConvNeXt-Tiny 
consistently focused on clinically relevant tumor 
regions, supporting findings from prior explainable 
AI studies in brain MRI analysis.6 From a practical 
perspective, ConvNeXt-Tiny occupies a middle ground 
between heavy and lightweight models, highlighting 
its suitability for clinical scenarios where both 
performance and computational efficiency are critical.
	 Overall, the results position ConvNeXt-Tiny as an 
interpretable and generalizable baseline for multi-class 
brain tumor MRI classification. Consistent with prior 
literature, model selection should consider accuracy 
alongside efficiency and explainability. Future work 
should extend validation to multi-center clinical 
datasets and explore complementary interpretability 
techniques to further strengthen clinical reliability. To 
avoid potential metric inflation from the inclusion of 
the no-tumor class, subtype-specific performance 
was additionally evaluated, allowing a more realistic 
assessment of differential diagnosis performance.
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Limitations
	 This study has several limitations. First, all 
experiments were conducted using publicly available 
MRI datasets, which may not fully reflect the variability 
of clinical imaging across different scanners or 
institutions. Second, the study focused solely on 
image-level classification without incorporating 
tumor segmentation, which limits direct clinical 
interpretability. Third, the interpretability analysis 
relied exclusively on Grad-CAM, providing only coarse 
localization rather than precise feature attribution. 
Finally, although the proposed model demonstrated 
promising accuracy, further investigation is needed 
to validate its feasibility for real-time deployment 
in practical clinical settings. Future work will aim to 
address these limitations.

Conclusion
	 This study evaluated the performance of multiple 
convolutional neural network architectures for multi-class 
brain tumor classification using MRI images. Among 
the evaluated models, ConvNeXt-Tiny was employed 
as the baseline model and demonstrated competitive 
performance, achieving high accuracy along with 
balanced precision, recall, and F1-scores, while 
maintaining a reasonable computational cost. In 
addition, the model provided interpretable Grad-CAM 
visualizations that corresponded well with relevant 
tumor regions, indicating its potential to support more 
transparent and explainable diagnostic modeling.
	 Although ConvNeXt-Tiny exhibited strong overall 
performance, the performance differences among 
modern architectures such as DenseNet169 and 
MobileNetV3-Large were relatively small. These 
observations were further supported by statistical 
analysis, which revealed no statistically significant 
differences among the models compared. This 
suggests that recent CNN-based architectures can 
achieve comparable classification performance when 
appropriately trained and optimized.
	 Overall, the findings highlight ConvNeXt-Tiny as 
a promising and efficient baseline for comparative 
research rather than a definitive solution for direct 
clinical deployment. Future work will focus on further 
validation in practical usage scenarios, incorporating 
segmentation-based analysis, and extending 
interpretability methods beyond Grad-CAM to enhance 
reliability and transparency in real-world medical 
imaging applications.
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Supplymentary
1. Dataset source
	 Dataset 1
	 The brain MRI dataset used in this study was compiled from multiple publicly available sources to form a four-class 
classification problem consisting of glioma, meningioma, pituitary tumor, and no-tumor categories. Images for the 
glioma, meningioma, and pituitary tumor classes were primarily obtained from the figshare dataset, which contains 
T1-weighted contrast-enhanced MRI scans acquired using clinical scanners from Nanfang Hospital (Guangzhou, China) 
and Tianjin Medical University General Hospital between 2005 and 2010. This dataset provides slice-level annotations 
for three tumor types and has been widely adopted in prior brain tumor classification studies. The no-tumor class 
was sourced from the Br35H dataset, which consists of brain MRI images from healthy subjects and is commonly 
used for binary and multi-class brain tumor classification tasks. Although the SARTAJ dataset was initially considered 
as an additional source for tumor images, the glioma subclass was excluded due to observed label inconsistencies, 
as indicated by prior studies and confirmed through our own experimental results. To ensure label reliability and 
reduce scanner-induced bias, glioma samples were therefore retained exclusively from the figshare dataset. The 
final curated dataset contains 7,023 MRI images with clearly defined class origins, enabling consistent multi-class 
training and evaluation.

	 Alternative Dataset
	 This project constructed a labeled brain MRI dataset for multi-class tumor analysis, covering four categories: 
pituitary tumor, meningioma tumor, glioma tumor, and no tumor. The dataset consists of a total of 2,443 MRI images, 
which were systematically divided into training, validation, and test subsets comprising 1,695, 502, and 246 images, 
respectively; however, in this study, all available images were additionally merged and used as an external test set 
to evaluate the generalization capability of the proposed models. All images are magnetic resonance imaging (MRI) 
scans, and each sample was annotated by medical experts following a standardized labeling protocol. The annotations 
include tumor presence and tumor type, with additional information on tumor location when applicable. This dataset 
is designed to support the development and evaluation of machine learning and deep learning models for automated 
brain tumor classification, with potential applications in assisting radiologists during clinical diagnosis and facilitating 
research toward improved diagnostic tools and treatment planning.

Figure S1. Training and validation performance curves of the CNN+DenseNet169.

Figure S2. Training and validation performance curves of the Xception.

2. Loss curve
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Figure S3. Training and validation performance curves of the DenseNet169.

Figure S4. Training and validation performance curves of the ConvNextTiny.

Figure S5. Training and validation performance curves of the MobileNetV3.

Figure S6. Training and validation performance curves of the ResNet50.
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3. Confusion matrix

Figure S7. Confusion matrix of the CNN+DenseNet169 model.

Figure S8. Confusion matrix of the Xception model.

Confusion matrix (Test set)

Confusion matrix (Test set)
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Figure S9. Confusion matrix of the DenseNet169 model.

Figure S10. Confusion matrix of the ConvNextTiny model.

Confusion matrix (Test set)

Confusion matrix (Test set)



Pongphaw N. and Buaphan P. Journal of Associated Medical Sciences 2026; 59(2): 44-6260

Figure S11. Confusion matrix of the MobileNetV3 model.

Figure S12. Confusion matrix of the ResNet50 model.

Confusion matrix (Test set)

Confusion matrix (Test set)
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4. Subclass tumor

Figure S13. Training and validation performance curves of the ConvNextTiny.

Figure S14. Confusion matrix of the ConvNextTiny model.

5. Tumor vs no tumor

Figure S15. Training and validation performance curves of the ConvNextTiny.

Confusion matrix (Test set - without no tumor)
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Figure S16. Confusion matrix of the ConvNextTiny model.

Figure S17. Set distributions.

Confusion matrix - Binary classification


