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Materials and methods: Using transfer learning and identical experimental
settings, ConvNeXt-Tiny was evaluated against DenseNet169, Xception,
MobileNetV3-Large, CNN+DenseNet169, and ResNet50. Standard evaluation
metrics (accuracy, precision, recall, and F1-score) were used, and Grad-CAM
was applied to visualize model attention for interpretability. Generalization
was further assessed using an independent dataset.

Results: ConvNeXt-Tiny achieved high overall performance (accuracy =0.9924,
F1-score = 0.9918), comparable to DenseNet169 and Xception but with lower
computational cost. The model maintained stable learning behavior, minimal
overfitting, and consistent accuracy on unseen data. Grad-CAM visualizations
confirmed that the network focused on clinically relevant tumor regions,
improving transparency and reliability of predictions.

Conclusion: ConvNeXt-Tiny provides a strong and efficient baseline
for interpretable brain tumor classification, balancing accuracy and
computational efficiency. While the results are promising, differences among
recent architectures were modest, and clinical validation using multi-center
MRI datasets is necessary to confirm broader applicability.

Introduction

The classification of brain tumors using deep
learning techniques has become a transformative
approach in medical imaging, particularly in magnetic
resonance imaging (MRI). This progress is largely
driven by the capability of deep learning models,
especially Convolutional Neural Networks (CNNs),
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adopted to further improve classification accuracy,
with models pre-trained on large datasets being
fine-tuned on specific radiological datasets to better
capture the nuances of brain tumor images.">*¢
For example, the use of ResNetb0 and other
architectures has shown significant improvements in
metrics such as accuracy and F1-score.?’” Moreover,
deep learning approaches have been reported to
outperform traditional diagnostic methods, which often
rely heavily on subjective interpretation.®® Numerous
studies have also explored model optimization
strategies. Hybrid models combining CNNs with
other machine learning classifiers, such as SVMs and
decision trees, have shown improvements in both
performance and generalizability.”®" Architectural
innovations, including attention blocks and multi-tiered
networks, aim to reduce overfitting while enhancing
model interpretability.>'? Additionally, metaheuristic
optimization techniques have been applied for feature
selection to strengthen classification robustness.™
Context-aware deep learning frameworks have further
enriched the capability to segment and classify
brain tumors while also predicting patient survival
rates.’ Multi-faceted strategies of this nature have
demonstrated significant improvements in clinical
outcomes, providing  healthcare practitioners
with effective tools for brain tumor diagnosis and
management.’® Ongoing research continues to
advance deep learning applications in brain tumor
classification, highlighting the potential for future
clinical adoption. The ability to achieve high accuracy
while handling the complex and heterogeneous
nature of brain tumors underscores the critical role
of deep learning in enhancing diagnostic workflows
and patient care. Explainable Artificial Intelligence
(XAI) techniques enhance model transparency and
interpretability, allowing clinicians to understand
the decision-making process behind deep learning
predictions. Techniques such as Local Interpretable
Model-agnostic Explanations (LIME) and Gradient-
weighted Class Activation Mapping (Grad-CAM) have
been employed to explain how CNNs classify tumor
types and detect tumor presence. For instance, Ullah
etal. proposed DeepEBTDNet, which effectively utilized
LIME to interpret MRI-based predictions, achieving a
validation accuracy of 98.96%.'® Similarly, Esmaeili
et al. reported that incorporating interpretable methods
could improve the accuracy of trained models."” Grad-CAM
has been applied to visualize image regions most
influential to the model’s decisions. Goyal and Sharma
used Grad-CAMto highlight features driving brain tumor
detection, enhancing trust in Al-assisted diagnostics.™
Tan et al. demonstrated the practical application of
these visualization techniques in clinical workflows,
improving diagnostic reliability and addressing
concerns about the “black-box” nature of deep
learning models, though reference' does not directly
support Grad-CAM application in this context. Beyond

interpretability, these techniques also enhance model
robustness and reliability by showing which features
are considered important, enabling practitioners to
validate them against established medical knowledge.?°
Furthermore, attention mechanisms incorporated into
deep learning frameworks allow models to focus on
clinically relevant regions in MRl scans, which is critical
for tumor segmentation and classification. Tonni et al.
introduced a hybrid transfer learning framework
incorporating attention-based features to improve both
interpretability and performance.® Despite significant
advances in deep learning-based brain tumor
classification, several research gaps remain that limit
model robustness and clinical applicability. One major
gapisthereliance on large, well-annotated datasets for
effective model training. Many studies rely on publicly
available datasets that vary in size, balance, and
acquisition conditions, which may lead to overfitting
and reduced generalization when models are applied
to unseen or heterogeneous MRI scans.? This highlights
the importance of evaluating deep learning frameworks
under realistic data availability and heterogeneous
imaging conditions, while avoiding over-reliance on
excessively large or curated clinical datasets. Another
criticalgap isthe lack of interpretability of deep learning
models in clinical practice. Although CNN-based
architectures achieve high accuracy, their “black-box”
nature makes it difficult for clinicians to understand
the rationale behind predictions, reducing trust and
hindering adoption in real-world healthcare settings.?

Materials and methods

This study proposes a deep learning framework for
brain tumor classification from MRl images. The overall
workflow is illustrated in Figure 1.

The methodology consists of five main components:

1. Proposed approach: This study presents a fair
experimental comparison between ConvNeXt-Tiny as the
baseline model and other deep learning architectures
for four-class brain tumor classification. Beyond
multi-class prediction, the proposed approach provides
additional insights through subclass-level tumor analysis.
Furthermore, binary classification between tumor
and no-tumor cases is investigated to offer a clearer
understanding of the model’s diagnostic behavior.

2. Model configuration: The model performance
was also evaluated in comparison with several CNN
architectures, including ResNet50, CNN+DenseNet169,
DenseNet169, MobileNetV3-Large, and Xception, using
transfer learning.

3. Data preprocessing: The images were organized
into training, validation, and test sets. All images were
resized to 224x224 pixels prior to model training.

4. Evaluation: Performance of all models was
assessed using standard metrics, including accuracy,
precision, recall, and F1-score. Confusion matrix was
used to visualize class-wise performance. In addition,
training efficiency was evaluated by recording the
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total training time and the average training time per
epoch. These measurements provide insight into
the computational cost of each model, allowing for a
holistic comparison of predictive performance and
training efficiency.

5. Grad-CAM: To provide insight into model
decisions, Grad-CAM (Gradient-weighted Class Activation

Mapping) was applied to the trained models. Grad-CAM
generates heatmaps highlighting the regions of input
images that contribute most strongly to the predicted
class. This allows visual assessment of whether the
model focuses on relevant tumor regions, supporting
interpretability and trustworthiness of the predictions.

1
Data roader
1
Data normalization
¥
Model architecture & Training
v

Evaluation metrics
t

Confusion matrix

¥

Loss and validation curve
1

Deployability Analysis
¥

Additional Dataset Evaluation

2

Figure 1. Flowchart of methodology.

Contributions

To address these challenges, this study makes
two primary contributions. First, a fair and systematic
comparison is conducted using ConvNeXt-Tiny as the
baseline model to evaluate the performance of other
deep learning architectures underidentical training and
evaluation conditions, thereby ensuring an objective
assessment under identical experimental settings
using a publicly available benchmark dataset. Second,
the framework incorporates interpretability-enhancing
mechanisms, including Grad-CAM analysis, to provide
clear and clinically meaningful explanations for each
classification decision. This integrated approach
enhances diagnostic reliability while fostering clinical
confidence and practical applicability in real-world
brain tumor analysis.

Model architecture

ConvNeXt-Tiny was selected as the baseline
model due to its modern convolutional architecture
that bridges traditional CNNs with transformer-
inspired design principles. By incorporating updated
architectural choices, including larger kernel sizes,
depthwise separable convolutions, and simplified
normalization and activation strategies, ConvNeXt-Tiny

enhances representational capacity while maintaining
computational efficiency. The model was chosen
a priori to balance expressive power and parameter
efficiency, thereby reducing the risk of overfitting and
remaining compatible with gradient-based interpretability
techniques such as Grad-CAM. Larger ConvNeXt variants
and transformer-based architectures were not prioritized
because of their higher computational requirements and
stronger dependence on large-scale training data.

Compared with lightweight models such as
MobileNetV3-Large and deeper architectures including
DenseNet169 and ResNet50, ConvNeXt-Tiny offers
a well-balanced trade-off among model complexity,
predictive performance, and generalization capability,
making it a robust and reliable baseline for fair
comparison. To ensure a comprehensive evaluation, six
deep learning models were selected for comparison:
CNN+DenseNet169, Xception, DenseNet169, ConvNeXt-
Tiny, MobileNetV3-Large, and ResNet50. All models
were trained for 20 epochs using the Adam optimizer
with a learning rate of 1x10“ and CrossEntropylLoss
as the objective function on a four-class dataset.
Detailed hyperparameter settings are summarized in
Table 1, and schematic architectures of all models are
illustrated in Figure 2.
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Table 1. Parameter settings of all models.

Model Parameters
CNN+DenseNet169 CNN(Conv2d(64) » BatchNorm »> ReLU > MaxPool » Conv2d(128) » BatchNorm
- ReLU > MaxPool) » Adapter (Conv2d 128->3) > Upsample (224%x224)
> DenseNet169(pretrained) » Dense(num_classes)
Xception Xception(pretrained) > Dense(num_classes)
DenseNet169 DenseNet169(pretrained) > Dense(num_classes)
ConvNeXt-Tiny ConvNeXt-Tiny(pretrained) > Dense(num_classes)
MobileNetV3-Large MobileNetV3-Large(pretrained) > Dense(num_classes)
ResNet50 ResNet50(pretrained) > Dense(num_classes)
Schematic Diagram of CNN & Pretrained Models
CHN + DenseNet169 Xeeption DenseMet168
| eNN Conv2a(64) + BN+ ReLu » MaxPool | | DesnseNet1es (pretrained) |
|CNN Conv2d{128) + BN + Relll + Hah:P\ooll
!
| Adapter Convld 128+ 3 |
l
| Upsample 224=224 |
‘ Dmnum&s{pmra|nnu}|
ConvNeXt-Tiny MobileMetV3-Tiny ResMetS0
| ComvMeaXt-Tiny (pretrainead) | |MnbdlnNEt’U3-Lurg91pmmlnadjl ‘ ResMeathi (pretrained) |
Figure 2. Schematic diagrams of all models.
Dataset available under the CC BY 4.0 license and contains a

In this study, Dataset 1 was adopted from,?' which
is distributed under the CCO license, and was used
as the primary dataset for model training and initial
evaluation. This dataset consists of 5,139 training
images, 573 validation images, and 1,311 test images.
For external validation, Dataset 2 was employed,
namely the Labeled MRI Brain Tumor Dataset Computer
Vision Model curated by Ali Rostami,?? which is publicly

total of 2,443 MRI images. Dataset 2 was exclusively
used to assess the generalization capability of the
proposed model on unseen data. Detailed descriptions
of both datasets, including class composition and
source attribution, are provided in the Supplementary
File. Figure 3 illustrates representative samples from
each class in Dataset 1, while Figure 4 presents
example images from Dataset 2.
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(A)

Figure 3. Sample images from dataset 1. A: glioma, B: meningioma, C: no tumor, D: pituitary tumor.

(A) (B)

(C) (D)

Figure 4. Sample images from alternative dataset. A: glioma, B: meningioma, C: no tumor, D: pituitary tumor.

Data preprocessing

In this study, all MRl images from both datasets
were preprocessed before being used in the deep
learning models. Dataset 1 was divided into training and
validation sets using a 90:10 stratified split to preserve
class balance, while all images in Dataset 2 were used
exclusively for testing. All images were resized to 224x224
pixels, the standard input size for most convolutional
neural networks (CNNs), to ensure consistency across
architectures, and then converted into PyTorch tensors.
The data were loaded using PyTorch’s ImageFolder and
Dataloader with a batch size of 32. Training data were
shuffled at each epoch, whereas validation and test data
were loaded sequentially. The final dataset included
5,139 training images, 573 validation images, and 1,311
test images from Dataset 1, together with all images
from Dataset 2 used for external testing.

Evaluation metrics

Toassessthe performance ofthe proposed models,
the following standard evaluation metrics were used:
accuracy, precision, recall, and F1-score. Accuracy
measures the proportion of correctly classified images
among all images. Precision indicates the proportion
of correctly predicted positive samples among all
samples predicted as positive. Recall represents the
proportion of correctly predicted positive samples
among all actual positive samples. F1-score is the
harmonic means of precision and recall, providing a
balance between the two. All metrics were calculated
using the macro-average approach, which treats each
class equally by computing the metric independently
foreach class and then averaging the results, regardless
of class imbalance.

Computational resources

All experiments were executed on Google Colab
Pro using an NVIDIA H100 GPU. Model training and
inference were performed using CUDA acceleration,
as indicated by the device configuration (using device:
cuda).

Results

In this study, we hypothesized that the ConvNeXt-
Tiny model could serve as an effective baseline for
comparative evaluation of convolutional architectures
in multi-class brain tumor classification. All models
were trained and evaluated under identical experimental
settings to ensure fair comparison.

Evaluation metrics

The performance of all evaluated models is
summarized in Table 2 Overall, the results show that
several architectures achieved comparably high
performance under identical experimental settings.
DenseNet169 yielded the highest accuracy (0.9969),
followed closely by MobileNetV3-Large (0.9947) and
Xception (0.9939). ConvNeXt-Tiny, used as the main
baselineinthisstudy,alsodemonstrated competitiveresults
(accuracy=0.9924, precision=0.9920, recall=0.9917,
F1-score=0.9918), indicating its reliability and efficiency
for this task. CNN+DenseNet169 performed slightly lower
but remained strong overall, while ResNet50 showed
comparatively lower metrics across all measures. These
findings suggest that multiple convolutional architectures
can achieve similar performance levels in multi-class brain
tumor classification, emphasizing the value of comparative
evaluation rather than reliance on a single model.
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Table 2. Performance of all models.

49

Model Accuracy Precision Recall F1-score
CNN+Densenet169 0.9916 0.9914 0.9909 0.9912
Xception 0.9939 0.9936 0.9934 0.9934
Densenet169 0.9969 0.9969 0.9967 0.9968
ConvNeXt-Tiny 0.9924 0.9920 0.9917 0.9918
MobileNetV3-Large 0.9947 0.9945 0.9942 0.9943
ResNet50 0.9680 0.9672 0.9661 0.9664

Loss and validation curve

Figure 5 illustrates the training and validation loss
and accuracy curves of the baseline ConvNeXt-Tiny
model. Both curves demonstrate a rapid stabilization
during the early training phase, with the loss decreasing
sharply and reaching a steady level around the fifth
epoch, while the accuracy curves gradually converged
and remained closely aligned throughout the remaining
epochs.Thisbehaviorindicatesastabletrainingprocess
with no evident overfitting or divergence between
training and validation performance. Compared with
prior studies employing ConvNeXt-based or other deep
CNN architectures forimage classification, which often

Loss Curve

report longer training schedules ranging from 30 to over
100 epochs depending on the dataset and imaging
modality, the convergence observed within 20 epochs
in this study suggests relatively fast learning dynamics.
Thisbehavioris primarily attributed to the use of transfer
learning, which enables the ConvNeXt-Tiny model to
exploit pretrained feature representations and reduces
the need for extensive parameter updates. In addition,
the relatively consistent structural characteristics
of brain MRI images may facilitate efficient feature
adaptation compared with natural image datasets.

Training and validation loss and accuracy curves
for baseline model are presented in Figure 5.

Accuracy Curve
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Figure 5. Training and validation performance curves of the ConvNeXt-Tiny.

Confusion matrix

To gain further insight into the classification
performance of each model, a confusion matrix was
constructed to illustrate class-wise predictions for the
four brain tumor categories: glioma, meningioma, no
tumor, and pituitary tumor.

Table 3 shows the confusion matrix of the baseline
ConvNeXt-Tiny model on the test set. The model
correctly classified most samples across all four

categories, with only a few misclassifications observed
between glioma and meningioma, and between
meningioma and pituitary. The “no tumor” class was
predicted with perfect consistency, indicating clear
separability from tumor classes under the current
dataset. These results suggest that the baseline model
maintained balanced recognition among categories,
with minor overlaps primarily occurring between
histologically related tumor types.

Table 3. Confusion matrix of the ConvNeXt-Tiny model.

Predicted Predicted Predicted Predicted
glioma meningioma notumor pituitary
Actual glioma 295 4 0 1
Actual meningioma 303 1 0
Actual no tumor 0 405 0
Actual pituitary 2 0 298
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Learning curve

The learning curve (Figure 6) analysis indicates that
both validation and test accuracy increase consistently
with the number of training samples, demonstrating
that the model benefits substantially from additional
data. Early in training, with fewer than 200 samples,
accuracy remains relatively low (~0.63-0.88), but a
marked improvement is observed as the dataset grows
to 500-1000 samples, reaching ~0.95. Beyond 1000

samples, gains in accuracy begin to plateau, indicating
diminishing returns, with the model approaching its
maximum performance at 5163 samples (~0.99). The
close alignment between validation and test accuracy
across all sample sizes suggests minimal overfitting
and good generalization.

Stratified sampling was used to ensure each class
contributed equally to the training subsets, preventing
bias and supporting balanced learning across all classes.

Learning Curve: Model Performance vs Training Set Size
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Figure 6. Effect of training sample size on ConvNeXt-Tiny accuracy
Statistical test statistically significant difference in performance.
Null hypothesis (H,) Specifically, comparisons with CNN+DenseNet169

There is no difference in the proportion of correctly
classified samples between ConvNeXt-Tiny and the
compared model.

Alternative hypothesis (H,)

There is a significant difference in the proportion
of correctly classified samples between ConvNeXt-Tiny
and the compared model.

Table 4 summarized of the results of McNemar’s
tests comparing ConvNeXt-Tiny with other models
indicate that for most comparisons, there is no

(*=0.0, p=1.0), Xception (x’=0.083, p=0.773), DenseNet169
(*=3.125, p=0.077), and MobileNetV3 (x’=0.444, p=0.505)
all yielded p>0.05, indicating that their performance
differences with ConvNeXt-Tiny are not statistically
significant. In contrast, the comparison with ResNet50
()(2=22.881, p<0.001) shows a highly significant
difference, confirming that ConvNeXt-Tiny outperforms
ResNet50. Overall, these results suggest that ConvNeXt-
Tiny performs comparably to most modern architectures
while significantly surpassing the older ResNet50
model.

Table 4. McNemar’s test comparison of ConvNeXt-Tiny with other baseline models.

Baseline Compared Model Chi-square p value Significant (p<0.05)
ConvNeXt-Tiny CNN+DenseNet169 0.0 1.0 No
ConvNeXt-Tiny Xception 0.0833 0.7728 No
ConvNeXt-Tiny DenseNet169 3.1250 0.0771 No
ConvNeXt-Tiny MobileNetV3 0.4444 0.5050 No
ConvNeXt-Tiny ResNet50 22.8810 1.7235%x10° Yes
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The 95% confidence interval (Cl)

According to Table 5, the six models show
clear differences in both accuracy and Macro-F1.
DenseNet169 achieved the highest performance
(Accuracy 0.997%+0.0053, Macro-F1 0.997+0.0054),
indicating consistentand accurate classification across
allclasses. MobileNetV3andXception offercomparable
results with low variability, suitable for lightweight or

fast-inference applications. CNN+DenseNet169 and
ConvNeXt-Tiny also performed well, slightly below
DenseNet169. ResNet50 had the lowest accuracy and
higher variability, suggesting a need for hyperparameter
tuning or additional data augmentation. Overall,
modern architectures provide superior accuracy and
stability, with DenseNet169 representing the optimal
choice for maximal classification performance.

Table 5. Model accuracy and Macro-F1 scores (95% CI).

Model Accuracy (95% CI)

Macro-F1 (95% CI)

CNN + DenseNet169

Xception
DenseNet169
ConvNeXt-Tiny
MobileNetV3
ResNet50

0.992+0.0059
0.994+0.0044
0.997+0.0053
0.992+0.0049
0.995+0.0044
0.968+0.0091

0.991+0.0055
0.993+0.0051
0.997+0.0054
0.992+0.0051
0.994+0.0045
0.966+0.0090

Computational metrics

Table 6 summarizes the GPU memory usage
and training time per epoch for all evaluated models.
Among the models, MobileNetV3-Large required
the least GPU memory (1,423.90 MB) and had the
fastest training time per epoch (25.72 s), reflecting
its lightweight architecture. ConvNeXt-Tiny, while
achieving high overall performance, used moderate
GPU memory (3,721.97 MB) and required 38.00 s per
epoch for training. CNN+DenseNet169 consumed the

most GPU memory (6,770.84 MB) with a training time
of 40.10 s per epoch. Xception and DenseNet169 had
moderate memory usage (4,419.10 MB and 5,037.70
MB, respectively) with training times of 30.19 s and
38.36 s per epoch. ResNet50 required 2,959.80 MB
of GPU memory and 26.91 s per epoch. These results
indicate that lightweight models like MobileNetV3-
Large are highly efficient in terms of resource usage,
while ConvNeXt-Tiny provides a good balance between
classification performance and computational cost.

Table 6. Training time and memory usage of all models.

Model GPU memory usage (MB)/epoch  Training time (s)/epoch
CNN + DenseNet169 6770.84 40.10
Xception 4419.10 30.19
DenseNet169 5037.70 38.36
ConvNeXt-Tiny 3721.97 38.00
MobileNetV3-Large 1423.90 25.72
ResNet50 2959.80 26.91

Subclass tumor

Table 7 and Table 8 demonstrate that ConvNeXt-
Tiny achieved high and consistent metrics (accuracy
0.9923, precision 0.9940, recall 0.9923, F1-score 0.9931),
indicating reliable identification of all subclasses.
Specifically, the model correctly predicted glioma
298/300 (99.3%), meningioma 303/306 (99.0%),

and pituitary 298/300 (99.3%), with only seven
misclassifications among 906 test samples. The close
alignment of precision, recall, and F1-score suggests
balanced performance without bias toward any
subclass, supporting its use as a baseline for further
subclass classification studies.

Table 7. ConvNeXt-Tiny subclass prediction performance.

Model Accuracy

Precision Recall

F1-score

ConvNeXt-Tiny 0.9923

0.9940 0.9923 0.9931
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Table 8. Confusion matrix (test set without no tumor).

Predicted glioma

Predicted meningioma

Predicted pituitary

Actual glioma 298 2 0
Actual meningioma 2 303 1
Actual pituitary 0 2 298

No tumor vs tumor

Table 9 and Table 10 demonstrates that ConvNeXt-
Tiny achieved very high and balanced performance
(accuracy 0.9985, precision 0.9982, recall 0.9982,
F1-score 0.9982) on the test set, which included 906
tumor samples and 405 no-tumor samples. The model

correctly identified 905/906 tumor cases and 404/405
no-tumor cases, with minimal misclassifications.
The close alignment of precision, recall, and F1-score
indicates minimal bias toward either class, confirming
its suitability as a reliable baseline model for binary
classification with exceptional diagnostic performance.

Table 9. ConvNeXt-Tiny no tumor vs tumor prediction performance.

Model Accuracy

Precision

Recall F1-score

ConvNeXt-Tiny 0.9985

0.9982

0.9982 0.9982

Table 10. Confusion matrix (test set no tumor vs tumor).

Predicted glioma

Predicted meningioma

Actual tumor 905

Actual no tumor 1

1
404

Grad-CAM

To further interpret model decisions, Gradient-
weighted Class Activation Mapping (Grad-CAM) was
applied to the ConvNeXt-Tiny model.

The resulting heatmaps, illustrated in Figure 7,
clearly highlight the tumor regions that contribute
most strongly to the classification output. For glioma
and meningioma, the model focuses accurately on
irregular and dense tissue structures within the tumor
boundaries, while for pituitary tumors, attention

(A)

Grad-CAM (Pred=0)

Original (Label=0)

(C)

Original (Label=2) Grad-CAM (Pred=2)

is centered around the sellar region. For no-tumor
cases, activation is diffusely distributed, indicating
the absence of focal lesions. These results verify that
ConvNeXt-Tiny not only performs with high numerical
accuracy but also exhibits interpretability consistent
with clinical expectations. The localized activation
patterns confirm that the model relies on medically
relevant image regions rather than background
artifacts, thereby enhancing its trustworthiness and
potential for real-world diagnostic support.

(B)

Original (Label=1) Grad-CAM (Pred=1)

(D)

Original (Label=3) Grad-CAM (Pred=3)

Figure 7. Grad-CAM visualization of ConvNeXt-Tiny for each class.
A: glioma, B: meningioma, C: no tumor, D: pituitary.
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Alternative dataset

To further evaluate the generalization ability of the
baseline ConvNeXt-Tiny model, an alternative dataset
was employed for testing. This dataset consists of

images that were not included in the training process,
providing an unbiased assessment of the model’s
performance on unseen data. The results summarized
in Table 11.

Table 11. Performance of ConvNeXt-Tiny in alternative dataset.

Model Accuracy

Precision

Recall F1-score

ConvNeXt-Tiny 0.9984

0.9983

0.9982 0.9982

According to Table 11, the ConvNeXt-Tiny model
demonstrates strong generalization capability when
evaluated on the alternative dataset. The model
achieves high performance across all evaluation
metrics, with accuracy, precision, recall, and F1-score
all exceeding 0.998. Although a slight reduction in
accuracy is observed compared to the original training
dataset, the overall performance remains consistently
high, indicating the robustness and reliability of the
proposed model under different data distributions.

Table 12 presents the confusion matrix of the
ConvNeXt-Tiny model evaluated on the alternative
brain tumor dataset. The results indicate that the

model maintains strong generalization performance on
unseen MRI scans, with most predictions concentrated
along the main diagonal, reflecting a high level of
classification accuracy across all four classes: glioma,
meningioma, no tumor, and pituitary tumor. Only a
small number of misclassifications are observed,
mainly between glioma and meningioma, as well
as between no-tumor and tumor classes in a few
cases. These errors may be attributed to overlapping
radiological features in certain MRI samples. Overall,
the confusion matrix demonstrates the robustness of
ConvNeXt-Tiny in accurately distinguishing no-tumor
cases and reliably identifying pituitary tumors.

Table 12. Confusion matrix of the ConvNeXt-Tiny model.

Predicted Predicted Predicted Predicted
glioma meningioma notumor pituitary
Actual glioma 804 1 0 0
Actual meningioma 544 0 1
Actual no tumor 1 481 1
Actual pituitary 0 0 610

Discussion

The comparative evaluation of six convolutional
architectures demonstrates that ConvNeXt-Tiny
provides awell-balancedtrade-offamongthe evaluated
architectures between classification accuracy,
computational efficiency, and interpretability. This
finding is consistent with prior studies employing
ConvNeXt-based models in medical imaging. For
example, recent work using pre-trained ConvNeXt
on the BralS 2019 dataset reported competitive or
state-of-the-art performance when multi-sequence
MRl inputs were available.?® Although the present study
focuses on single-sequence MRI images, ConvNeXt-Tiny
achieves comparable performance, indicatingits strong
feature representation capability under constrained
input settings.

While DenseNet169 achieved the highest raw
accuracy, ConvNeXt-Tiny exhibited nearly equivalent
performance with reduced computational cost and
strong generalization on unseen data. These results
alignwith previous MRI-based braintumor classification
studies using transfer learning, which typically report
accuracies in the range of 96-98% depending on model
complexity and dataset characteristics."%?*McNemar’s
test conducted on paired prediction outcomes

indicated that performance differences between
ConvNeXt-Tiny and other modern CNN architectures
were not statistically significant (p>0.05), suggesting
that ConvNeXt-Tiny should be regarded as competitive
rather than strictly superior.

Grad-CAM visualizations showed that ConvNeXt-Tiny
consistently focused on clinically relevant tumor
regions, supporting findings from prior explainable
Al studies in brain MRI analysis.® From a practical
perspective, ConvNeXt-Tiny occupies a middle ground
between heavy and lightweight models, highlighting
its suitability for clinical scenarios where both
performance and computational efficiency are critical.

Overall, the results position ConvNeXt-Tiny as an
interpretable and generalizable baseline for multi-class
brain tumor MRI classification. Consistent with prior
literature, model selection should consider accuracy
alongside efficiency and explainability. Future work
should extend validation to multi-center clinical
datasets and explore complementary interpretability
techniques to further strengthen clinical reliability. To
avoid potential metric inflation from the inclusion of
the no-tumor class, subtype-specific performance
was additionally evaluated, allowing a more realistic
assessment of differential diagnosis performance.
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Limitations

This study has several limitations. First, all
experiments were conducted using publicly available
MRI datasets, which may not fully reflect the variability
of clinical imaging across different scanners or
institutions. Second, the study focused solely on
image-level classification without incorporating
tumor segmentation, which limits direct clinical
interpretability. Third, the interpretability analysis
relied exclusively on Grad-CAM, providing only coarse
localization rather than precise feature attribution.
Finally, although the proposed model demonstrated
promising accuracy, further investigation is needed
to validate its feasibility for real-time deployment
in practical clinical settings. Future work will aim to
address these limitations.

Conclusion

This study evaluated the performance of multiple
convolutional neural network architectures for multi-class
brain tumor classification using MRl images. Among
the evaluated models, ConvNeXt-Tiny was employed
as the baseline model and demonstrated competitive
performance, achieving high accuracy along with
balanced precision, recall, and F1-scores, while
maintaining a reasonable computational cost. In
addition, the model provided interpretable Grad-CAM
visualizations that corresponded well with relevant
tumor regions, indicating its potential to support more
transparent and explainable diagnostic modeling.

Although ConvNeXt-Tiny exhibited strong overall
performance, the performance differences among
modern architectures such as DenseNet169 and
MobileNetV3-Large were relatively small. These
observations were further supported by statistical
analysis, which revealed no statistically significant
differences among the models compared. This
suggests that recent CNN-based architectures can
achieve comparable classification performance when
appropriately trained and optimized.

Overall, the findings highlight ConvNeXt-Tiny as
a promising and efficient baseline for comparative
research rather than a definitive solution for direct
clinical deployment. Future work will focus on further
validation in practical usage scenarios, incorporating
segmentation-based analysis, and extending
interpretability methods beyond Grad-CAM to enhance
reliability and transparency in real-world medical
imaging applications.
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Supplymentary
1. Dataset source

Dataset 1

The brain MRl dataset used in this study was compiled from multiple publicly available sources to form a four-class
classification problem consisting of glioma, meningioma, pituitary tumor, and no-tumor categories. Images for the
glioma, meningioma, and pituitary tumor classes were primarily obtained from the figshare dataset, which contains
T1-weighted contrast-enhanced MRI scans acquired using clinical scanners from Nanfang Hospital (Guangzhou, China)
and Tianjin Medical University General Hospital between 2005 and 2010. This dataset provides slice-level annotations
for three tumor types and has been widely adopted in prior brain tumor classification studies. The no-tumor class
was sourced from the Br35H dataset, which consists of brain MRI images from healthy subjects and is commonly
used for binary and multi-class brain tumor classification tasks. Although the SARTAJ dataset was initially considered
as an additional source for tumor images, the glioma subclass was excluded due to observed label inconsistencies,
as indicated by prior studies and confirmed through our own experimental results. To ensure label reliability and
reduce scanner-induced bias, glioma samples were therefore retained exclusively from the figshare dataset. The
final curated dataset contains 7,023 MRI images with clearly defined class origins, enabling consistent multi-class
training and evaluation.

Alternative Dataset

This project constructed a labeled brain MRI dataset for multi-class tumor analysis, covering four categories:
pituitary tumor, meningioma tumor, glioma tumor, and no tumor. The dataset consists of a total of 2,443 MRl images,
which were systematically divided into training, validation, and test subsets comprising 1,695, 502, and 246 images,
respectively; however, in this study, all available images were additionally merged and used as an external test set
to evaluate the generalization capability of the proposed models. All images are magnetic resonance imaging (MRI)
scans, and each sample was annotated by medical experts following a standardized labeling protocol. The annotations
include tumor presence and tumor type, with additional information on tumor location when applicable. This dataset
is designed to support the development and evaluation of machine learning and deep learning models for automated
brain tumor classification, with potential applications in assisting radiologists during clinical diagnosis and facilitating
research toward improved diagnostic tools and treatment planning.
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Figure S1. Training and validation performance curves of the CNN+DenseNet169.
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Figure S2. Training and validation performance curves of the Xception.
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Figure S3. Training and validation performance curves of the DenseNet169.
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Figure S4. Training and validation performance curves of the ConvNextTiny.
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Figure S5. Training and validation performance curves of the MobileNetV3.
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Figure S6. Training and validation performance curves of the ResNet50.
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Figure S7. Confusion matrix of the CNN+DenseNet169 model.
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Figure S8. Confusion matrix of the Xception model.
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Figure S9. Confusion matrix of the DenseNet169 model.
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Figure S10. Confusion matrix of the ConvNextTiny model.
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Figure S11. Confusion matrix of the MobileNetV3 model.
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Figure S12. Confusion matrix of the ResNet50 model.
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Figure S13. Training and validation performance curves of the ConvNextTiny.
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Figure S14. Confusion matrix of the ConvNextTiny model.
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Figure S15. Training and validation performance curves of the ConvNextTiny.
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