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ABSTRACT

Background: Diabetes mellitus affects 463 million people worldwide and 
necessitates continuous blood glucose monitoring. Current glucose prediction 
systems often lack efficiency, and real-time prediction is essential for timely 
clinical intervention.

Objectives: This study aims to develop and validate a novel Convolutional 
Recurrent Neural Network (CRNN) enhanced with bio-inspired algorithms 
to improve blood glucose prediction and enable real-time detection of 
hypoglycemia and hyperglycemia.

Materials and methods: The proposed framework employs a CRNN architecture 
that combines Convolutional Neural Networks (CNNs) for feature extraction 
with Long Short-Term Memory (LSTM) layers for temporal sequence learning. 
The model was trained and evaluated using the HUPA-UCM diabetes dataset. 
Additionally, the study benchmarks the proposed model against 19 traditional 
Machine Learning (ML) algorithms and compares it with state-of-the-art methods 
from the literature.

Results: The proposed approach demonstrates superior predictive capability, 
consistently delivering promising results across multiple evaluation frameworks. 
The model achieves clinically acceptable prediction intervals, confirming 
its effectiveness in enhancing the accuracy and reliability of blood glucose  
prediction for diabetes management. 

Conclusion: The findings demonstrate that the proposed CRNN model, enhanced 
with bio-inspired algorithms, provides an effective and reliable solution for  
real-time blood glucose prediction. By outperforming conventional ML methods 
and achieving clinically acceptable accuracy levels, the model shows strong 
potential for integration into intelligent diabetes management systems to support 
timely clinical decisions and improve patient outcomes.
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Introduction
Medical background
	 Diabetes is a complex metabolic disorder that 
has become a major global health challenge. In 2014, 
it affected over 8.5% of adults aged 18 and older.1 

The disease is characterized by impaired blood  
glucose regulation and is associated with a high risk of  
complications, including cardiovascular disease,  
nephropathy, retinopathy, and neuropathy.2,3 In 2019, 
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diabetes accounted for 1.5 million deaths worldwide, 
nearly half of which occurred before the age of 70; an 
additional 460,000 kidney disease-related deaths and 
approximately 20% of cardiovascular deaths were  
attributable to hyperglycemia.4 Diabetes develops 
due to insufficient insulin secretion or reduced tissue 
sensitivity to insulin. Insulin is produced by pancreatic 
β-cells and facilitates glucose transport into cells, 
where it is used for energy or stored as glycogen.5  
Insulin deficiency or resistance leads to hyperglycemia, 
whereas excessive secretion can cause hypoglycemia.6 

In non-diabetic individuals, fasting glucose is <1.26 
gm/L (7 mmol/L); values of 1.26-2 gm/L indicate  
prediabetes, and 2 gm/L confirm diabetes.7-9 An HbA1c 
level <7% is widely recommended to minimize the risk 
of long-term complications.10,11 Two main types of diabetes 
are recognized: type 1 (T1D) and type 2 (T2D). T1D results 
from autoimmune destruction of β-cells, leading to  
absolute insulin deficiency; T2D is characterized by  
insulin resistance and reduced secretion. Less common 
forms include gestational diabetes and other specific 
types.12,13 This study focuses on T1D, the most severe 
form, often developing in childhood or adolescence 
and requiring lifelong insulin therapy.14

Motivation and research objectives
	 Continuous blood glucose monitoring is required 
for effective management.15 Previous studies have 
combined CNNs and LSTM networks, for example, 
in CNN-LSTM hybrid architectures and two-headed 
LSTM models.16 Dilated RNNs (DRNNs) have also been 
explored, but there has been no explicit application of 
Convolutional Recurrent Neural Networks (CRNNs) 
targeting both hypo- and hyperglycemia in real time.17 

Indeed, single models are primarily focused on either 
temporal dependencies or localized glucose patterns 
but rarely integrate both aspects in an effective manner. 
RNNs can capture long-term trends for modeling  
temporal dependencies.
	 This study integrates both and presents a CRNN-
based predictive model enhanced with a bio-inspired 
optimizer, applied to real-time glucose monitoring. 
CRNNs are particularly well suited for sequential data 
such as time series and can learn both short- and long-
term dependencies, making them ideal for detecting 
hyper-and hypoglycemia using time-series data. While 
CRNNs are not entirely new, having been initially used 
in speech recognition and video processing, their  
application to healthcare and glucose prediction remains 
relatively recent. They have shown promise in biomedical 
signal analysis, including ECG, EEG, and continuous 
glucose monitoring (CGM) data. In addition, researchers 
have widely adopted bioinspired algorithms for optimizing 
tasks such as CNNs. These algorithms efficiently navigate 
high dimensional hyperparameter spaces without  
resorting to exhaustive and computationally expensive 
exploration. Unlike many previous studies that focus 
solely on blood glucose prediction, this work also  
addresses classification of hypo and hyperglycemia 

in real time, which is an essential feature for practical  
deployment. This study develops and validates its 
model using the recent HUPA-UCM dataset18 which 
provides rich, multivariate time series data including 
CGM readings and insulin doses, thus offering a more 
comprehensive input space for modeling. The research 
also includes extensive benchmarking, following prior 
works such as Tena et al.,19 who compared two ensemble 
networks with 10 others; Ruan et al.,20 who evaluated 
18 Machine Learning (ML) algorithms including logistic 
regression, SGD, k-nearest neighbors, decision tree, 
Gaussian naive Bayes, Bernoulli NB, multinomial NB, 
support vector machine, quadratic discriminant analysis, 
random forest, extra trees, linear discriminant analysis, 
AdaBoost, bagging, gradient boosting, XGBoost, and 
multi-layer perceptron; and Shi et al., who compared 
six algorithms including logistic regression, random forest, 
gradient boosting machine, deep neural networks, 
XGBoost, and Rulefit.21 Furthermore, the approach  
emphasized in this study is predicated on clinically  
relevant prediction horizons and actionable alerts, 
with a view to aligning model outputs with the practical 
management needs of individuals suffering from  
diabetes. This study makes a significant contribution 
by addressing methodological shortcomings and  
enhancing the applicability of predictive models in  
real-world settings, thereby advancing the goal of  
personalized and proactive diabetes care. Hypoglycemia 
classification was evaluated for two thresholds: 
mild (BG<4.0 mmol/L) and severe (BG<3.0 mmol/L),  
consistent with clinical definitions. The classification 
metrics (Precision, Recall, F1, Accuracy, AUROC) were 
computed for each threshold using the predicted labels 
vs. true labels. Regression performance for continuous 
glucose values was evaluated with MAE, RMSE, and R² 
on the predicted 30-min-ahead values.
	 The paper is organized as follows: Section 2 reviews 
related work. Section 3 outlines the proposed methodology, 
Section 4 presents and discusses the results, and Section 
5 concludes the paper.

Related work
	 Tsichlaki et al. conducted a systematic literature  
for hypoglycemia detection in T1D patients.22 In the 
following, we present the most important related  
works according to hyperglycemia and hypoglycemia 
into three main categories: DL, ML and reinforcement- 
based approaches.

Deep learning
	 Jaloli and Cescon propose a CNN-LSTM model to 
predict blood glucose (BG) level in people with T1D for         
30-, 60, and 90-minute prediction horizons (PH), based 
on historical glucose readings, meal data, and insulin 
doses.16 They evaluated the approach on two datasets:  
Replace-BG, reflecting free-living conditions, and  
DIAdvisor, representing an in- hospital setting. Aiello 
et al. introduced a two-headed LSTM-based Deep  
Glucose Forecasting approach for predicting interstitial 
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glucose levels in people with T1D, using CGM data,  
carbohydrate intake, and recommended insulin therapy.23 
The architecture was trained on data from 100 virtual 
adult patients generated by the UVA/Padova simulator  
and was evaluated on both virtual and real patient  
datasets, demonstrating strong generalization performance 
on previously unseen data. Zhu et al. presented a dilated 
recurrent neural network (DRNN) model to generate 
30-minute forecasts of glucose levels in individuals 
with T1DM.17

	 Additionally, they apply transfer learning to leverage 
data from multiple subjects. On the OhioT1DM dataset, 
their model achieved a root mean square error (RMSE) 
of 18.9 mg/dL, outperforming autoregressive models 
(ARX, 20.1 mg/dL), support vector regression (SVR, 21.7 
mg/dL), and conventional neural networks for predicting 
glucose (NNPG, 22.9 mg/dL). Tena et al.19 introduced 
two ensemble neural network models for blood glucose 
prediction in people with T1DM at three prediction 
horizons (PHs)-30, 60, and 120 minutes and compares 
their performance against ten recently proposed neural  
networks. All these models are evaluated on the 
same OhioT1DM dataset. Karagoz et al. presented a  
comparative analysis of transformer models for 
multi-horizon BG prediction, evaluating forecasts up to 
4 hours ahead using input histories of up to one week.24 
They used the publicly available DCLP3 dataset (N=112), 
split 80%-10%-10% for training, validation, and testing, 
and the OhioT1DM dataset (N=12) as an external test 
set. For short-term prediction, the Crossformer model, 
a patch-wise transformer architecture, achieved the 
best 30-minute forecast with an RMSE of 15.6 mg/dL 
on the OhioT1DM dataset. Munoz-Organero reviewed 
the current state of the art in blood glucose prediction 
for T1DM patients and proposed, implemented, and  
validated a novel hybrid model.25 Specifically, the  
differential equations describing carbohydrate and  
insulin absorption are modeled using a RNN implemented 
with LSTM cells. The results show promising performance. 
Alvarado et al.  presented a method for predicting and 
detecting hypoglycemic events over a 24-hour time 
PH.26 The approach combines wavelet transform analysis 
of glucose time series with CNNs and was validated 
using real-world data from 20 individuals with T1D. The 
results demonstrate strong performance, with accuracy, 
sensitivity, specificity, and precision all exceeding 88. 
Mirshekarian et al.  presented an RNN approach using 
LSTM units to learn a physiological model of blood 
glucose.27 Sun et al. introduced a sequential model 
consisting of one LSTM layer, one bidirectional LSTM 
layer, and several fully connected layers to predict 
blood glucose levels across multiple PHs.28 The model 
was trained and tested on 26 retrospectively analyzed 
datasets from 20 real patients. Idrissi et al. presented 
sequential neural network architecture with an LSTM 
layer followed by two fully connected layers for blood 
glucose prediction.29 Another approach proposed 
by Iacono et al. highlights the importance of warning 
systems while examining the significant problem of 

preventing hypoglycemia and hyperglycemia in the 
management of T1D.30 The proposed work has investigated 
the prediction of future blood glucose levels using DL 
models, such as personalized LSTM models. Using LSTM 
models, the individualized alarm system demonstrates 
promising predictive performance within 40-minutes 
prediction horizon, achieving an RMSE of 6.45. It attains 
an F-Score of 78/79% for hypoglycemia detection 
and 83.87% for hyperglycemia detection. In addition, 
the work proposed by Li et al. investigates the use of 
CRNN model for blood glucose level forecasting in the  
management of type 1 diabetes.31  The proposal combined 
a CNN to extract robust features from tile-aligned inputs 
sauch as CGM readings, insulin boluses, and meals, 
with an RNN to capture temporal dynamics and generate 
predictions in 30 and 60 minutes ahead.

Machine learning and statistical models
	 Kavakiotis et al. explored the use of data mining 
and ML in diabetes research, highlighting the critical 
role these techniques play in turning massive volumes of 
data, including genetic and clinical data from Electronic 
Health Records (EHRs), into useful insights.32 The authors 
discovered that ML algorithms, in particular supervised 
learning techniques (85% of the cases), were widely 
used in diabetes research through a systematic literature  
review (focusing on articles from 2011 to 2016). In  
addition, Rghioui et al. presented an innovative system 
for remotely monitoring diabetes patients, leveraging 
contemporary technology like artificial intelligence (AI) 
and smart devices to optimize monitoring procedures 
and minimize related costs.33 The results show that 
the J48 algorithm has a remarkable 99.17% accuracy, 
99.47% sensitivity, and 99.32% precision in classification.  
In addition, Kodama et al. looked at ML systems trained 
for hypoglycemia diagnosis or prediction.34 The findings 
showed that while current ML algorithms (SVM, XG-
Boost, RF, LR, and ANN) showed moderate potential 
in predicting impending hypoglycemia, with sensitivity 
and specificity averaging 0.80, they were limited in their  
capacity to detect continuing hypoglycemia. In addition,  
the research conducted by Shi et al.  aimed to create 
an ML model that could forecast a probability that 
older persons with diabetes would experience severe  
hypoglycemia (SH) and require hospitalization.21 To train 
the ML model, they selected 258 predictors related to 
medical history, drugs, laboratory tests, and demographics 
using EHR data from a sizable sample of older persons 
in Hong Kong. Six distinct ML algorithms were evaluated 
for performance, and the findings showed that the XG-
Boost model performed the best (AUROC=0.978). This 
research confirms that older people who are at a high 
risk of experiencing severe hypoglycemia could benefit 
from preventive intervention by having this ML model 
integrated into electronic health record systems.

Reinforcement learning
	 The purpose of the study of Wang et al. is to enhance 
individualized insulin titration in the treatment of T2D 
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using a model-based reinforcement learning framework 
called RL-DITR.35 This framework analyzes the benefits 
of glycemic status using model-patient interaction to 
determine the ideal insulin prescription. In the development 
stage, RL-DITR achieved a mean absolute error of 
1.10±0.03 U, which was superior to other DL models 
and conventional clinical techniques for optimizing insulin 
titration. With a mean absolute error of 1.18±0.09 U, a 
step-by-step clinical validation showed that inpatient 
glycemic management was improved in comparison to 
junior and intermediate physicians.
	 To summarize, recent studies on predicting  
hyperglycemia and hypoglycemia have explored various 
ML and DL approaches. CGM forecasting is dominated by 
temporal deep models, such LSTM and CRNN. CRNNs, 
for instance, have demonstrated impressive performance 
by integrating convolutional layers for local pattern 
extraction with recurrent layers for modeling temporal 
dependencies, achieving a low root mean square error 
(RMSE) at 30-60-minute horizons. Overall, deep temporal 
architecture remains the gold standard for CGM- based 
short-term prediction, hybrid models offer incremental 
improvements, and interpretable models remain valuable 
in safety-critical clinical contexts.

Materials and methods
	 CRNNs have shown strong potential in blood glucose 
prediction by combining convolutional layers (for spatial 
feature extraction) with recurrent layers (for modeling 
temporal dependencies). This integration enables better 
modeling of both localized glucose fluctuations and 
long-term trends, outperforming models that address  
only one aspect. Hyperparameter tuning using  
metaheuristics such as Particle Swarm Optimization 
(PSO), Grey Wolf Optimizer (GWO), Cuckoo Search (CS) 
and Ant Colony Optimization (ACO) can further enhance 
performance.36, 37

	 The overall workflow of the proposed approach 
is presented in Figure 1 and involves four main steps: 
“Data description” where we introduce the used dataset  
by outlining its source, size, features, and target variables  
relevant to the study. “Data pre-processing” which is a 
crucial step for data cleaning, transforming, and  
normalizing to ensure consistency and suitability for 
model training. “Optimization” where GWO optimization 
algorithm is applied to fine-tune parameters or select 
features that enhance model performance. And finally, 
“Proposed CRNN architecture” The designed Convolutional 
Recurrent Neural Network integrates convolutional layers 
for feature extraction and recurrent layers for temporal 
pattern learning.

Figure 1. Proposed approach architecture.
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Data description
	 Although our study relies on a single dataset HUPA- 
UCM diabetes dataset first made available in April 
2024, comprises 309,392 rows and 8 columns (see  
Table 1).17 This choice is justified by the fact that the 
dataset is recent, comprehensive, and high-quality, 
containing many samples and rich contextual information. 
Its size and diversity provide sufficient variability for  
robust model training and evaluation, reducing the 
risk of overfitting and enabling reliable generalization  
within the target population. Moreover, no other publicly 
available dataset offers the same level of completeness 
or alignment as the specific hyperglycemia-prediction 
task addressed in this work.  
	 The dataset aggregates data from 25 type 1 diabetes 
(T1D) patients aged 18 to 65 years, collected between 
June 13, 2018, and May 18, 2022. Each record is time-
stamped at 5-minute intervals, providing continuous 
time-series monitoring over several weeks per patient. 
The dataset contains glucose measurements obtained 
from a Continuous Glucose Monitor (CGM), physical 

activity indicators (steps, calories burned, and heart 
rate), insulin injections (basal rates and bolus volumes), 
and carbohydrate intake during the interval. Notably, the 
dataset shows initial glucose values above 300 mg/dL 
and later glucose values in the range of 110-128 mg/dL. 
The data enables forecasting tasks such as predicting 
blood glucose levels 30-60 minutes in advance and  
analyzing responses to diet and treatment. The temporal 
variable was converted to minutes to ensure consistency. 
No missing values are present, making the dataset 
well-suited for analytical and predictive tasks. The average 
glucose concentration is 141.43 mg/dL, with a standard 
deviation of 57.09, and values ranging from 40 to 444 
mg/dL-indicating substantial glycemic variability. The 
average heart rate is 76.99 bpm (SD=85), and the mean 
number of steps per interval is 30.83. Mean energy  
expenditure is 8.81 calories per interval. In contrast, insulin 
delivery parameters (basal and bolus) and carbohydrate 
intake exhibit lower average values, consistent with 
typical clinical dosing and meal patterns.

Table 1. HUPA-UCM dataset description.

Attribute Description

Time Timestamp of each measurement in the format yyyy-MM-dd’T’HH:mm:ss

Glucose Blood glucose concentration (mg/dL)

Calories Calories burned during the time interval

Heart_rate Heart rate (beats per minute)

Steps Number of steps taken during the time interval

Basal_rate Amount of basal insulin infused during the interval

Bolus_volume_delivered Volume of bolus insulin injected during the interval

Carb_input Carbohydrate intake during the interval (1 serving = 10 gm)

Data pre-processing
	 At this step, the dataset is prepared to ensure its 
quality and suitability for the modeling process. First, 
the missing values are identified and addressed using 
a statistical imputation method, the mean. Statistical 
measures such as the inter- quartile range (IQR) or z-score 
are used to detect outliers. These are then either removed 
or adjusted to reduce their influence. All variables 
are made comparable using either standardization or  
normalization techniques, which are used to perform 
feature scaling. This improves both model convergence 
and performance. Finally, the processed data is split 
into training and testing subsets, enabling the model to 
be evaluated impartially.

Optimization
	 Metaheuristic algorithms have been extensively 
adopted for optimizing CNNs due to their capacity to 
navigate high-dimensional hyperparameter spaces efficiently 
without resorting to exhaustive and computationally 
expensive searches. Recent studies have shown how 

well various metaheuristic algorithms can be used to 
optimize CNNs for healthcare tasks which improved 
accuracy and reduced error rates through optimized  
parameter selection. We have used GWO for our proposal 
because it is widely used for medical and prediction 
tasks. GWO optimization algorithm is a metaheuristic 
proposed by which mimics the leadership hierarchy 
and hunting mechanism of grey wolves in nature.37 It is 
based on the hierarchy-based hunting characteristics of 
the Canidae family. The GWO principles focus on hunting 
behaviors highlight the dynamic nature of addressing 
convergence concerns. GWO algorithm uses the dynamic 
features of the Canidae population to solve this problem. 
This enhances the algorithm’s capacity to attain superior 
global optimal convergence compared to other optimization 
techniques that often converge with local optimal solutions. 
Additionally, it fosters enhanced stability between the  
exploitation and exploration phases. When grey wolves 
are present, the hierarchy-based hunting phenomenon 
involves a leading grey wolf, a representative grey wolf, an 
obeying grey wolf and a scapegoat grey wolf. The leadership 
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hierarchy is simulated using four types of grey wolf: alpha, 
beta, delta and omega. In addition, three main steps of 
hunting are implemented.
	 These are searching for prey, encircling prey and 
attacking prey. These steps are used to perform optimization. 
The purpose of this step is to optimize the hyperparameters 
to achieve good accuracy in reduced time. In GWO, 
candidate solutions are modeled as wolves, and the 
best three solutions so far are considered α, β, and δ. 
Wolves encircle prey using position update equations 
that simulate hunting strategies. Two key coefficient 
vectors (A and C) control the movement toward prey 
and the balance between exploration and exploitation. 
The encircling is modeled by computing distances from 
each wolf to α, β, and δ, then estimating three possible 
positions. The new position is the average of these 
three positions, encouraging convergence toward optimal 
solutions. The parameter a decrease linearly from 2 
to 0 over iterations, gradually shifting the search from 
exploration to exploitation. At each iteration, fitness is 
evaluated, and the top three wolves are updated.
	 Finally, the algorithm stops after a fixed number 
of iterations, returning the best-found solution (α). The 
hyperparameter search space for GWO was defined 
based on commonly reported ranges in the literature and 
guided by preliminary experiments to ensure efficient 
exploration and stable convergence. Specifically:
	 	Population size: 20-40 wolves, balancing search 

diversity and computational cost.
	 	Number of iterations: 30-50, allowing convergence 

without excessive runtime.
	 	Search bounds for model hyperparameters:
	 	Learning rate: 0.0001-0.01
	 	Number of neurons per layer: 16-256
	 	Batch size: 16-128

	 These ranges were chosen to cover realistic and 
meaningful values while avoiding unstable regions. We 
will clarify these details in the revised manuscript to  
ensure full transparency and reproducibility.
	 In this study, GWO is used exclusively for hyper 
parameter optimization rather than for training the 
model’s weights. The CNN-LSTM hyperparameters—
such as the number of filters, kernel size, LSTM units, 
dropout rate, and window length—are non-differentiable 
and form a highly non-convex search space, making 
gradient-based optimizers unsuitable. GWO provides a 
gradient-free global search strategy that can effectively 
explore this complex space and identify better-performing 
configurations, while the internal network weights are 
still trained using a standard gradient-based optimizer

Proposed CRNN architecture
	 CNN and RNN are combined into a powerful hybrid 
DL model. A main application of CNNs aims to learn to 
extract features from sequential data. CRNNs follow  
exactly this approach, as the connections of a CNN 
within the model learn relevant features in a timeseries 
input in a self-supervised manner. RNNs, mainly LSTMs: 
RNNs are used for modelling temporal dependencies 
that are part of the series. LSTMs solve the problem of 
vanishing gradients in RNNs so that long-term dependencies 
can be modeled. As shown in Figure 2, the CRNN model is 
built with a feedback mechanism for glucose prediction. 
The model receives the data via the input layer. This input 
passes through the CNN components. These components 
are designed to ex back mechanism refines the prediction 
process over time and allows the model to be used for 
real-time predictions.

Figure 2. The proposed CRNN architecture.
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Metrics
	 The following metrics were applied as the most 
used for evaluating classification models:
	 	Mean Absolute Error (MAE): This metric measures 

the average magnitude of errors without considering 
their direction.

	 	Mean Squared Error (MSE): This metric emphasizes 
larger errors by squaring the differences.

	 	Root Mean Squared Error (RMSE): These metric 
computes error in the same units as the target 
variable.

	 	Precision: The proportion of correctly predicted 
positive instances among all predicted positives.

	 	Accuracy measures the proportion of correctly 
predicted instances (both positive and negative) 
out of the total predictions made. It reflects the 
overall correctness of a classification model.

	 	Recall: measures the proportion of actual positive 
cases that are correctly identified by the model.  
It indicates how well the model detects true 
positives.

	 	F1-score: The F1-score is the harmonic mean 
of Precision and Recall, providing a balanced 
measure of a model’s accuracy when both false 
positives and false negatives are important. It is  
especially useful for evaluating models on imbalanced 
datasets.

	 	Clarke Error Grid is a metric used to evaluate 
blood glucose predictions by classifying each 
predicted value based on its clinical impact on 
the patient. It distinguishes acceptable errors 
from potentially dangerous ones, assessing the 
safety of a model or device.

Results
	 In this section, the performance of the proposed 
model is evaluated in comparison to different baseline 
models in terms of hypoglycemia detection (classification) 
and prediction of continuous glucose values (regression). 
The training performance and model stability are analyzed. 
In addition, the current literature model is compared with 
clinical validations. The proposed model is trained and 
tested on the HUPA-UCM diabetes dataset. The model 
integrates layer-wise CNN layers for extracting short-
term patterns and LSTM layers for capturing long-term 
dependencies in the time series data. The proposed 
architecture, as shown in Figure 3, is based on a 1D 
convolutional layer with 64 filters and a kernel size of 3. 
These layers process the input data, including the glucose 
measurements and the associated health metrics. This 
is followed by a max-pooling layer with a size of 2 to 
reduce dimensionality and explore salient features. In 
addition, the sequential structure contains two LSTM 
layers, with each layer consisting of 50 slices. The first 
50 layers provide the sequences, and the second 50 
layers provide the final output; they are designed to 
capture the temporal dependencies at different levels.

Figure 3. Top 10 classification models.
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	 The proposed model (CRNN+GWO) is evaluated 
against 19 baseline ML algorithms and recent state-
of-the-art methods demonstrating strong performance 
in both classification and regression tasks. As shown 
in Table 2, the proposal consistently outperforms all 
traditional ML approaches. As can be seen on Table 2, 
our model achieves improved precision (0.97), recall (0.98), 
and F1-score (0.98), which is a significant improvement 
over traditional ML approach. These improvements lead 
to an accuracy of 99%, outperforming all compared  
algorithms. This sets a new bench- mark for the  
classification of glucose events. In addition, the AUROC 
analysis showed that the hybrid model has a performance 
of 0.98, while the classification accuracy of CRNN  
improved by 1% compared to the best-performing  

ensemble methods (XGBoost and Gradient Boosting 
with 97%). Figure 3 shows the 10 most accurate models. 
The performance of ten models in the classification of 
hypoglycemia was compared with the proposed model 
demonstrating superiority in both accuracy and robustness. 
The area under the curve (AUROC) value for CRNN is 
0.97, and the precision, recall, and F1 scores for both 
mild (BG<4) and severe (BG<3) hypoglycemia are all 
above 0.96. These results indicate that the proposed CRNN 
hybridized with GWO exhibits exceptional consistency and 
clinical reliability. It is noteworthy that an increase in 
the training epoch number from 50 to 100 results in a 
complete absence of change in the classification metrics. 
This serves to con- firm the stability and early convergence 
of the model. 

Table 2. Classification performance comparison – hypoglycemia. 
Model AUROC Precision

(BG<4)
Recall
(BG<4)

F1 score
(BG<4)

Precision
(BG<3)

Recall
(BG<3)

F1 score
(BG<3)

Classification
accuracy

CRNN (50 Epochs) + GWO 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.99

CRNN (100 Epochs) + GWO 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.99

CRNN (50 Epochs) 0.97 0.96 0.97 0.96 0.96 0.97 0.96 0.98

CRNN (100 Epochs) 0.97 0.96 0.97 0.96 0.96 0.97 0.96 0.98

XGBoost 0.96 0.88 0.70 0.78 0.97 0.67 0.79 0.97

Gradient boosting 0.96 0.87 0.70 0.78 0.96 0.67 0.79 0.97

RF 0.94 0.86 0.67 0.75 0.96 0.66 0.78 0.95

Extra Trees 0.93 0.85 0.68 0.76 0.94 0.66 0.78 0.94

Bagging 0.93 0.84 0.70 0.76 0.93 0.67 0.78 0.94

AdaBoost 0.89 0.68 0.60 0.64 0.63 0.46 0.53 0.91

LDA 0.88 0.69 0.75 0.72 0.72 0.72 0.72 0.90

Bernoulli NB 0.82 0.60 0.60 0.60 0.47 0.67 0.55 0.86

Gaussian NB 0.81 0.47 0.68 0.56 0.33 0.81 0.47 0.85

Decision Tree 0.81 0.70 0.71 0.70 0.68 0.73 0.70 0.85

SVM 0.79 0.73 0.10 0.18 0.41 0.10 0.16 0.83

QDA 0.77 0.23 0.96 0.37 0.15 0.97 0.26 0.82

Passive aggressive 0.76 0.46 0.25 0.32 0.33 0.10 0.15 0.81

Multinomial NB 0.75 0.10 0.10 0.10 0.10 0.10 0.10 0.80

SGD 0.74 0.12 0.10 0.11 0.10 0.10 0.10 0.80

MLP 0.74 0.57 0.17 0.26 0.47 0.14 0.22 0.80

LR 0.73 0.48 0.10 0.17 0.39 0.10 0.16 0.79

KNN 0.62 0.40 0.18 0.25 0.30 0.15 0.20 0.70

	 In contrast, ensemble models such as XGBoost 
and Gradient Boosting demonstrate robust overall  
performance yet exhibit diminished recall values (0.67-
0.70), particularly under BG3 conditions, signifying a 
diminished capacity to capture severe hypoglycemia 
events. Conventional methods, including RF, Extra 
Trees, and Bagging, demonstrate moderate performance, 
with Area Under the Receiver Operating Characteristic 
Curve (AUROC) values ranging from 0.93 to 0.94 and 

F1 scores approximating 0.75 to 0.78. This suggests a  
limited degree of sensitivity.
	 It has been demonstrated that simpler models, 
including SVM, LR, and NB variants, exhibit poor recall 
(<0.2) and unstable F1 scores. This renders them  
unreliable for real- world hypoglycemia detection. It is 
interesting to note that QDA achieves a high recall rate 
of approximately 0.97 but extremely low precision, which 
renders it susceptible to false positives. As a result, the 
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present study demonstrates that CRNN hybridized with 
GWO exhibits an optimal balance between detection 
capability and false alarm mitigation, rendering it highly 
conducive to the development of early hypoglycemia 
warning systems.
	 On the other hand, the regression analysis has 
shown that our model outperforms existing state-of-
the-art approaches. Table 3 shows the comparison of 
regression performance with the current literature. As 
can be seen, our model achieved an improved RMSE of 

10.0 mg/dL and an MAE) of 7.0 mg/dL with an R-squared 
value of 0.92, indicating good accuracy in predicting 
continuous glucose levels. In addition, clinical accept-
ability according to Clarke Error Grid Analysis is 92%, 
which is an excellent performance for continuous  
monitoring applications. The approach closest to our 
model is which gives an RMSE of 35.19 mg/dL for LSTM 
and 36.08 mg/dL for self-attention networks. The maximum 
clinical acceptability achieved by both algorithms was 
91% using Clarke Error Grid analysis.

Table 3. Regression performance comparison – Blood glucose value prediction.
Model/Study RMSE

(mg/dL)
MAE

(mg/dL)
R2/Correlation Dataset Prediction horizon

(minute)
Clinical

acceptance
Real-time
accuracy

Our CRNN
(50 Epochs) + GWO 10 7 0.92 HUPA-UCM Real-time

(5-min) 92% 90%

Our CRNN
(100 Epochs) + GWO 10 7 0.92 HUPA-UCM Real-time

(5-min) 92% 90%

35Bi-LSTM 19.49±5.42 14.93±4.20 0.43±0.2 Life-log data Current time
(0-min) - -

33LSTM 35.19 - - OhioT1DM 30-60 >91% (CEG) -
33SAN 36.08 - - Multiple 30-60 >91% (CEG) -
33CNN ~37-40 - - Multiple 30-60 >91% (CEG) -
33TCN ~37-40 - - Multiple 30-60 >91% (CEG) -

	 Table 4 shows the training performance analysis 
with 50 and 100 epochs. The analysis revealed optimal 
generalization properties where the improvement over 
RMSE during training was from 9.2 mg/dL (50 Epochs) 
to 8.8 mg/dL (100 Epochs). Also, the test set RMSE  
remained stable at 10.0 mg/dL for prediction tasks, 
which is an indicator of generalization without over-
fitting. Comparing CRNN+GWO models trained for 50 
and 100 epochs shows a high degree of model stability 
with only slight improvements in training performance. 
Training RMSE improved slightly from 9.2 mg/dL to 8.8 
mg/dL (a 4.3% reduction), suggesting modest learning 
progress with additional epochs. However, the test 
RMSE and real-time RMSE remained unchanged at 
10.0 and 15.0 mg/dL, respectively, strongly indicating 
that the model did not overfit de- spite the longer training  
period. Similarly, R-squared (0.92) stayed constant, 
confirming that the model’s ability to explain variance 

was already optimized and consistent across epochs. 
The minor decrease in MAE (from 9.3 to 9.2 mg/dL) 
shows slightly better average prediction accuracy, but 
the effect is minimal. Classification metrics—F1 score, 
precision, recall, and accuracy—remained unchanged, 
all at strong values, con- firming that the model is highly 
stable in terms of event classification across both  
training configurations. The clinical acceptance score 
(0.92) and real-time accuracy (0.90) also showed no 
change, further reinforcing confidence in the model’s 
performance when deployed in a clinical setting. Overall, 
the results suggest that the hybridized GWO based CRNN 
architecture achieves rapid convergence, with performance 
metrics stabilizing after 50 epochs. Extending training 
to 100 epochs does not degrade performance but offers 
diminishing returns, demonstrating that the model is  
efficient, stable, and robust under extended training.
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	 Table 5 compares our results with four recent 
studies using clinical validation metrics. The proposed 
CRNN model achieved 92% clinical acceptability and 
99% accuracy for hypoglycemia detection, surpassing 
the best values reported in those studies. However, 
since our model was evaluated on the HUPA-UCM 

dataset whereas other works used different datasets, 
these comparisons are not one-to-one. We report them 
for context, but direct performance ranking should be 
interpreted with caution. Future evaluations on common 
datasets will be necessary for a fair comparison.

Table 4. Training performance analysis.

Metric CRNN
(50 Epochs)

CRNN
(100 Epochs)

Change

RMSE (Training set) 9.2 mg/dL 8.8 mg/dL -0.4 (-4.3%)

RMSE (Test set – Prediction) 10.0 mg/dL 10.0 mg/dL 0.0 (0.0%)

RMSE (Real-time) 15.0 mg/dL 15.0 mg/dL 0.0 (0.0%)

R-squared (R2) 0.92 0.92 0.00 (0.0%)

MAE (Prediction) 7.1 mg/dL 7.0 mg/dL -0.1 (-1.4%)

MAE (Real-time) 10.0 mg/dL 10.0 mg/dL 0.0 (0.0%)

F1 Score >0.95 >0.95 No significant change

Precision 0.97 0.97 No significant change

Recall 0.98 0.98 No significant change

Classification accuracy 0.99 0.99 No change

Clinical acceptance 0.92 0.92 No change

Real-time accuracy 0.90 0.90 No change

Table 5. Comparison of blood glucose prediction models.
Study & Model Classification 

accuracy
Clinical 

acceptance
Real-time 

performance
Dataset Key findings

Our CRNN
(100 Epochs)+GWO 99% classification 92% clinical 90% real-time HUPA-UCM Superior across all evaluation modes

33LSTM >91%
(CEG Safe zone) >91% (CEG) Not reported OhioT1DM Best generalization across datasets

33SAN >91%
(CEG safe zone) >91% (CEG) Not reported Multiple Second-best performance

35LSTM Physiologically
sound – Not reported OhioT1DM SHAP-validated interpretability

35Bi-LSTM – Correlation:
0.43±0.2 Not reported Life-log Virtual CGM framework

Note: CEG: Clarke error grid; CGM: ???, SAN: self-attention network, CRNN: convolutional recurrent neural network.

	 An avenue for further improvement is the use 
of Transformer-based models, which have achieved 
state-of-the-art results in blood glucose prediction. 
These models leverage self-attention to capture long-
term dependencies and have outperformed traditional 
CNN/LSTM in some scenarios. We did not evaluate 
Transformers in this study, as our focus was on CNN/
LSTM hybrids; however, future work will compare the 
CRNN approach against Transformers to ensure the 
proposed model remains competitive with the latest 
deep learning techniques.
	 A limitation of this study is that the model was 
trained and tested on a single dataset (HUPA-UCM). No 
external or cross-population evaluation was performed, 
which may affect the generalizability of the results. In 

future work, we plan to validate the model on additional 
datasets (e.g., OhioT1DM) and across different patient 
populations, as well as exploring additional AI architectures 
and bio-inspired optimization algorithms to further enhance 
predictive performance.

Conclusion
	 In this paper, we present a CRNN architecture,  
enhanced with a GWO for hyperparameter tuning, applied 
to the task of predicting hyperglycemia and hypoglycemia. 
Among the tested configurations, the CRNN+GWO hybrid 
achieved the lowest RMSE and MAE, outperforming the 
baseline CRNN. While our model outperforms others in 
point estimates of accuracy, we acknowledge that we 
did not perform statistical significance testing. Thus, 
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differences, especially when within a few percentage 
points, should be interpreted with caution. Using a recent 
large-scale dataset, we benchmarked our results 
against recent state-of-the-art approaches. Our primary 
objective was to maximize accuracy in the early prediction 
of hypo and hyperglycemic events and to enable real- 
time detection. The proposed model achieved 99% 
accuracy on offline data with low mean squared and 
absolute errors, and nearly 90% accuracy in simulated 
real-time scenarios. It can trigger timely alerts for  
abnormal glucose levels, offering strong potential for 
improving patient health outcomes. The combination 
of CNN, RNN—particularly LSTM and GWO proved robust 
across DL tasks in this domain.
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