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Background: Diabetes mellitus affects 463 million people worldwide and
necessitates continuous blood glucose monitoring. Current glucose prediction
systems often lack efficiency, and real-time prediction is essential for timely
clinical intervention.

Objectives: This study aims to develop and validate a novel Convolutional
Recurrent Neural Network (CRNN) enhanced with bio-inspired algorithms
to improve blood glucose prediction and enable real-time detection of
hypoglycemia and hyperglycemia.

Materials and methods: The proposed framework employs a CRNN architecture
that combines Convolutional Neural Networks (CNNs) for feature extraction
with Long Short-Term Memory (LSTM) layers for temporal sequence learning.
The model was trained and evaluated using the HUPA-UCM diabetes dataset.
Additionally, the study benchmarks the proposed model against 19 traditional
Machine Learning (ML) algorithms and compares it with state-of-the-art methods
from the literature.

Results: The proposed approach demonstrates superior predictive capability,
consistently delivering promising results across multiple evaluation frameworks.
The model achieves clinically acceptable prediction intervals, confirming
its effectiveness in enhancing the accuracy and reliability of blood glucose
prediction for diabetes management.

Conclusion: The findings demonstrate that the proposed CRNN model, enhanced
with bio-inspired algorithms, provides an effective and reliable solution for
real-time blood glucose prediction. By outperforming conventional ML methods
and achieving clinically acceptable accuracy levels, the model shows strong
potential for integration into intelligent diabetes management systems to support
timely clinical decisions and improve patient outcomes.

Introduction
Medical background

Diabetes is a complex metabolic disorder that
has become a major global health challenge. In 2014,
it affected over 8.5% of adults aged 18 and older."
The disease is characterized by impaired blood
glucose regulation and is associated with a high risk of
complications, including cardiovascular disease,
nephropathy, retinopathy, and neuropathy.2® In 2019,
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diabetes accounted for 1.5 million deaths worldwide,
nearly half of which occurred before the age of 70; an
additional 460,000 kidney disease-related deaths and
approximately 20% of cardiovascular deaths were
attributable to hyperglycemia.* Diabetes develops
due to insufficient insulin secretion or reduced tissue
sensitivity to insulin. Insulin is produced by pancreatic
B-cells and facilitates glucose transport into cells,
where it is used for energy or stored as glycogen.’
Insulin deficiency or resistance leads to hyperglycemia,
whereas excessive secretion can cause hypoglycemia.®
In non-diabetic individuals, fasting glucose is <1.26
gm/L (7 mmol/L); values of 1.26-2 gm/L indicate
prediabetes, and 2 gm/L confirm diabetes.”® An HbA1c
level <7% is widely recommended to minimize the risk
of long-term complications.’®' Two main types of diabetes
arerecognized: type 1 (T1D) and type 2 (T2D). T1D results
from autoimmune destruction of B-cells, leading to
absolute insulin deficiency; T2D is characterized by
insulin resistance and reduced secretion. Less common
forms include gestational diabetes and other specific
types.'?'® This study focuses on T1D, the most severe
form, often developing in childhood or adolescence
and requiring lifelong insulin therapy.™

Motivation and research objectives

Continuous blood glucose monitoring is required
for effective management.’™ Previous studies have
combined CNNs and LSTM networks, for example,
in CNN-LSTM hybrid architectures and two-headed
LSTM models.' Dilated RNNs (DRNNSs) have also been
explored, but there has been no explicit application of
Convolutional Recurrent Neural Networks (CRNNSs)
targeting both hypo- and hyperglycemia in real time."”
Indeed, single models are primarily focused on either
temporal dependencies or localized glucose patterns
but rarely integrate both aspects in an effective manner.
RNNs can capture long-term trends for modeling
temporal dependencies.

This study integrates both and presents a CRNN-
based predictive model enhanced with a bio-inspired
optimizer, applied to real-time glucose monitoring.
CRNNSs are particularly well suited for sequential data
such as time series and can learn both short- and long-
term dependencies, making them ideal for detecting
hyper-and hypoglycemia using time-series data. While
CRNNSs are not entirely new, having been initially used
in speech recognition and video processing, their
application to healthcare and glucose prediction remains
relatively recent. They have shown promise in biomedical
signal analysis, including ECG, EEG, and continuous
glucose monitoring (CGM) data. In addition, researchers
have widely adopted bioinspired algorithms for optimizing
tasks such as CNNs. These algorithms efficiently navigate
high dimensional hyperparameter spaces without
resorting to exhaustive and computationally expensive
exploration. Unlike many previous studies that focus
solely on blood glucose prediction, this work also
addresses classification of hypo and hyperglycemia

in real time, which is an essential feature for practical
deployment. This study develops and validates its
model using the recent HUPA-UCM dataset'® which
provides rich, multivariate time series data including
CGM readings and insulin doses, thus offering a more
comprehensive input space for modeling. The research
also includes extensive benchmarking, following prior
works such as Tena et al.,"® who compared two ensemble
networks with 10 others; Ruan et al.,?® who evaluated
18 Machine Learning (ML) algorithms including logistic
regression, SGD, k-nearest neighbors, decision tree,
Gaussian naive Bayes, Bernoulli NB, multinomial NB,
support vector machine, quadratic discriminant analysis,
random forest, extra trees, linear discriminant analysis,
AdaBoost, bagging, gradient boosting, XGBoost, and
multi-layer perceptron; and Shi et al., who compared
six algorithms including logistic regression, random forest,
gradient boosting machine, deep neural networks,
XGBoost, and Rulefit.2' Furthermore, the approach
emphasized in this study is predicated on clinically
relevant prediction horizons and actionable alerts,
with a view to aligning model outputs with the practical
management needs of individuals suffering from
diabetes. This study makes a significant contribution
by addressing methodological shortcomings and
enhancing the applicability of predictive models in
real-world settings, thereby advancing the goal of
personalized and proactive diabetes care. Hypoglycemia
classification was evaluated for two thresholds:
mild (BG<4.0 mmol/L) and severe (BG<3.0 mmol/L),
consistent with clinical definitions. The classification
metrics (Precision, Recall, F1, Accuracy, AUROC) were
computed for each threshold using the predicted labels
vs. true labels. Regression performance for continuous
glucose values was evaluated with MAE, RMSE, and R?
on the predicted 30-min-ahead values.

The paper is organized as follows: Section 2 reviews
related work. Section 3 outlines the proposed methodology,
Section 4 presents and discusses the results, and Section
5 concludes the paper.

Related work

Tsichlaki et al. conducted a systematic literature
for hypoglycemia detection in T1D patients.?? In the
following, we present the most important related
works according to hyperglycemia and hypoglycemia
into three main categories: DL, ML and reinforcement-
based approaches.

Deep learning

Jaloli and Cescon propose a CNN-LSTM model to
predict blood glucose (BG) level in people with T1D for
30-, 60, and 90-minute prediction horizons (PH), based
on historical glucose readings, meal data, and insulin
doses.' They evaluated the approach on two datasets:
Replace-BG, reflecting free-living conditions, and
DIAdvisor, representing an in- hospital setting. Aiello
et al. introduced a two-headed LSTM-based Deep
Glucose Forecasting approach for predicting interstitial
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glucose levels in people with T1D, using CGM data,
carbohydrate intake, and recommended insulin therapy.
The architecture was trained on data from 100 virtual
adult patients generated by the UVA/Padova simulator
and was evaluated on both virtual and real patient
datasets, demonstrating strong generalization performance
on previously unseen data. Zhu et al. presented a dilated
recurrent neural network (DRNN) model to generate
30-minute forecasts of glucose levels in individuals
with TIDM."

Additionally, they apply transfer learning to leverage
data from multiple subjects. On the OhioT1DM dataset,
their model achieved a root mean square error (RMSE)
of 18.9 mg/dL, outperforming autoregressive models
(ARX, 20.1 mg/dL), support vector regression (SVR, 21.7
mg/dL), and conventional neural networks for predicting
glucose (NNPG, 22.9 mg/dL). Tena et al.’® introduced
two ensemble neural network models for blood glucose
prediction in people with T1DM at three prediction
horizons (PHs)-30, 60, and 120 minutes and compares
their performance against ten recently proposed neural
networks. All these models are evaluated on the
same OhioT1DM dataset. Karagoz et al. presented a
comparative analysis of transformer models for
multi-horizon BG prediction, evaluating forecasts up to
4 hours ahead using input histories of up to one week.?*
They used the publicly available DCLP3 dataset (N=112),
split 80%-10%-10% for training, validation, and testing,
and the OhioT1DM dataset (N=12) as an external test
set. For short-term prediction, the Crossformer model,
a patch-wise transformer architecture, achieved the
best 30-minute forecast with an RMSE of 15.6 mg/dL
on the OhioT1DM dataset. Munoz-Organero reviewed
the current state of the art in blood glucose prediction
for TIDM patients and proposed, implemented, and
validated a novel hybrid model.?® Specifically, the
differential equations describing carbohydrate and
insulin absorption are modeled using a RNN implemented
with LSTM cells. The results show promising performance.
Alvarado et al. presented a method for predicting and
detecting hypoglycemic events over a 24-hour time
PH.%The approach combines wavelet transform analysis
of glucose time series with CNNs and was validated
using real-world data from 20 individuals with T1D. The
results demonstrate strong performance, with accuracy,
sensitivity, specificity, and precision all exceeding 88.
Mirshekarian et al. presented an RNN approach using
LSTM units to learn a physiological model of blood
glucose.?” Sun et al. introduced a sequential model
consisting of one LSTM layer, one bidirectional LSTM
layer, and several fully connected layers to predict
blood glucose levels across multiple PHs.?® The model
was trained and tested on 26 retrospectively analyzed
datasets from 20 real patients. Idrissi et al. presented
sequential neural network architecture with an LSTM
layer followed by two fully connected layers for blood
glucose prediction.?® Another approach proposed
by lacono et al. highlights the importance of warning
systems while examining the significant problem of

preventing hypoglycemia and hyperglycemia in the
management of T1D.%° The proposed work has investigated
the prediction of future blood glucose levels using DL
models, such as personalized LSTM models. Using LSTM
models, the individualized alarm system demonstrates
promising predictive performance within 40-minutes
prediction horizon, achieving an RMSE of 6.45. It attains
an F-Score of 78/79% for hypoglycemia detection
and 83.87% for hyperglycemia detection. In addition,
the work proposed by Li et al. investigates the use of
CRNN model for blood glucose level forecasting in the
management of type 1 diabetes.®' The proposal combined
a CNN to extract robust features from tile-aligned inputs
sauch as CGM readings, insulin boluses, and meals,
with an RNN to capture temporal dynamics and generate
predictions in 30 and 60 minutes ahead.

Machine learning and statistical models

Kavakiotis et al. explored the use of data mining
and ML in diabetes research, highlighting the critical
role these techniques play in turning massive volumes of
data, including genetic and clinical data from Electronic
Health Records (EHRs), into useful insights.®2 The authors
discovered that ML algorithms, in particular supervised
learning techniques (85% of the cases), were widely
used in diabetes research through a systematic literature
review (focusing on articles from 2011 to 2016). In
addition, Rghioui et al. presented an innovative system
for remotely monitoring diabetes patients, leveraging
contemporary technology like artificial intelligence (Al)
and smart devices to optimize monitoring procedures
and minimize related costs.*® The results show that
the J48 algorithm has a remarkable 99.17% accuracy,
99.47% sensitivity, and 99.32% precision in classification.
In addition, Kodama et al. looked at ML systems trained
for hypoglycemia diagnosis or prediction.** The findings
showed that while current ML algorithms (SVM, XG-
Boost, RF, LR, and ANN) showed moderate potential
in predicting impending hypoglycemia, with sensitivity
and specificity averaging 0.80, they were limited in their
capacity to detect continuing hypoglycemia. In addition,
the research conducted by Shi et al. aimed to create
an ML model that could forecast a probability that
older persons with diabetes would experience severe
hypoglycemia (SH) and require hospitalization.?' To train
the ML model, they selected 258 predictors related to
medical history, drugs, laboratory tests, and demographics
using EHR data from a sizable sample of older persons
in Hong Kong. Six distinct ML algorithms were evaluated
for performance, and the findings showed that the XG-
Boost model performed the best (AUROC=0.978). This
research confirms that older people who are at a high
risk of experiencing severe hypoglycemia could benefit
from preventive intervention by having this ML model
integrated into electronic health record systems.

Reinforcement learning
The purpose of the study of Wang et al.is to enhance
individualized insulin titration in the treatment of T2D
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using a model-based reinforcement learning framework
called RL-DITR.®* This framework analyzes the benefits
of glycemic status using model-patient interaction to
determine the ideal insulin prescription. In the development
stage, RL-DITR achieved a mean absolute error of
1.10+0.03 U, which was superior to other DL models
and conventional clinical techniques for optimizing insulin
titration. With a mean absolute error of 1.18+0.09 U, a
step-by-step clinical validation showed that inpatient
glycemic management was improved in comparison to
junior and intermediate physicians.

To summarize, recent studies on predicting
hyperglycemia and hypoglycemia have explored various
ML and DL approaches. CGM forecasting is dominated by
temporal deep models, such LSTM and CRNN. CRNNSs,
for instance, have demonstrated impressive performance
by integrating convolutional layers for local pattern
extraction with recurrent layers for modeling temporal
dependencies, achieving a low root mean square error
(RMSE) at 30-60-minute horizons. Overall, deep temporal
architecture remains the gold standard for CGM- based
short-term prediction, hybrid models offer incremental
improvements, and interpretable models remain valuable
in safety-critical clinical contexts.
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Materials and methods

CRNNs have shown strong potential in blood glucose
prediction by combining convolutional layers (for spatial
feature extraction) with recurrent layers (for modeling
temporal dependencies). This integration enables better
modeling of both localized glucose fluctuations and
long-term trends, outperforming models that address
only one aspect. Hyperparameter tuning using
metaheuristics such as Particle Swarm Optimization
(PSO), Grey Wolf Optimizer (GWQO), Cuckoo Search (CS)
and Ant Colony Optimization (ACO) can further enhance
performance.®®

The overall workflow of the proposed approach
is presented in Figure 1 and involves four main steps:
“Data description” where we introduce the used dataset
by outlining its source, size, features, and target variables
relevant to the study. “Data pre-processing” which is a
crucial step for data cleaning, transforming, and
normalizing to ensure consistency and suitability for
model training. “Optimization” where GWO optimization
algorithm is applied to fine-tune parameters or select
features that enhance model performance. And finally,
“Proposed CRNN architecture” The designed Convolutional
Recurrent Neural Network integrates convolutional layers
for feature extraction and recurrent layers for temporal
pattern learning.

CRNN architecture

e

Model training

Data splitting

Figure 1. Proposed approach architecture.
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Data description

Although our study relies on a single dataset HUPA-
UCM diabetes dataset first made available in April
2024, comprises 309,392 rows and 8 columns (see
Table 1)." This choice is justified by the fact that the
dataset is recent, comprehensive, and high-quality,
containing many samples and rich contextual information.
Its size and diversity provide sufficient variability for
robust model training and evaluation, reducing the
risk of overfitting and enabling reliable generalization
within the target population. Moreover, no other publicly
available dataset offers the same level of completeness
or alignment as the specific hyperglycemia-prediction
task addressed in this work.

The dataset aggregates data from 25 type 1 diabetes
(T1D) patients aged 18 to 65 years, collected between
June 13, 2018, and May 18, 2022. Each record is time-
stamped at 5-minute intervals, providing continuous
time-series monitoring over several weeks per patient.
The dataset contains glucose measurements obtained
from a Continuous Glucose Monitor (CGM), physical

Table 1. HUPA-UCM dataset description.

activity indicators (steps, calories burned, and heart
rate), insulininjections (basalrates and bolus volumes),
and carbohydrate intake duringthe interval. Notably, the
dataset shows initial glucose values above 300 mg/dL
and later glucose values in the range of 110-128 mg/dL.
The data enables forecasting tasks such as predicting
blood glucose levels 30-60 minutes in advance and
analyzing responses to diet and treatment. The temporal
variable was converted to minutes to ensure consistency.
No missing values are present, making the dataset
well-suited for analytical and predictive tasks. The average
glucose concentrationis 141.43 mg/dL, with a standard
deviation of 57.09, and values ranging from 40 to 444
mg/dL-indicating substantial glycemic variability. The
average heart rate is 76.99 bpm (SD=85), and the mean
number of steps per interval is 30.83. Mean energy
expenditure is 8.81 calories per interval. In contrast, insulin
delivery parameters (basal and bolus) and carbohydrate
intake exhibit lower average values, consistent with
typical clinical dosing and meal patterns.

Attribute Description

Time Timestamp of each measurement in the format yyyy-MM-dd’T"HH:mm:ss
Glucose Blood glucose concentration (mg/dL)

Calories Calories burned during the time interval

Heart_rate Heart rate (beats per minute)

Steps Number of steps taken during the time interval

Basal_rate Amount of basalinsulin infused during the interval

Bolus_volume_delivered

Volume of bolus insulin injected during the interval

Carb_input

Carbohydrate intake during the interval (1 serving = 10 gm)

Data pre-processing

At this step, the dataset is prepared to ensure its
quality and suitability for the modeling process. First,
the missing values are identified and addressed using
a statistical imputation method, the mean. Statistical
measures such as the inter- quartile range (IQR) or z-score
are used to detect outliers. These are then either removed
or adjusted to reduce their influence. All variables
are made comparable using either standardization or
normalization techniques, which are used to perform
feature scaling. This improves both model convergence
and performance. Finally, the processed data is split
into training and testing subsets, enabling the model to
be evaluated impartially.

Optimization

Metaheuristic algorithms have been extensively
adopted for optimizing CNNs due to their capacity to
navigate high-dimensional hyperparameter spaces efficiently
without resorting to exhaustive and computationally
expensive searches. Recent studies have shown how

well various metaheuristic algorithms can be used to
optimize CNNs for healthcare tasks which improved
accuracy and reduced error rates through optimized
parameter selection. We have used GWO for our proposal
because it is widely used for medical and prediction
tasks. GWO optimization algorithm is a metaheuristic
proposed by which mimics the leadership hierarchy
and hunting mechanism of grey wolves in nature.* It is
based on the hierarchy-based hunting characteristics of
the Canidae family. The GWO principles focus on hunting
behaviors highlight the dynamic nature of addressing
convergence concerns. GWO algorithm uses the dynamic
features of the Canidae population to solve this problem.
This enhances the algorithm’s capacity to attain superior
global optimal convergence compared to other optimization
techniques that often converge with local optimal solutions.
Additionally, it fosters enhanced stability between the
exploitation and exploration phases. When grey wolves
are present, the hierarchy-based hunting phenomenon
involves a leading grey wolf, a representative grey wolf, an
obeying grey wolf and a scapegoat grey wolf. The leadership
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hierarchy is simulated using four types of grey wolf: alpha,
beta, delta and omega. In addition, three main steps of
hunting are implemented.

These are searching for prey, encircling prey and
attacking prey. These steps are used to perform optimization.
The purpose of this step is to optimize the hyperparameters
to achieve good accuracy in reduced time. In GWO,
candidate solutions are modeled as wolves, and the
best three solutions so far are considered q, B, and 3.
Wolves encircle prey using position update equations
that simulate hunting strategies. Two key coefficient
vectors (A and C) control the movement toward prey
and the balance between exploration and exploitation.
The encircling is modeled by computing distances from
each wolf to a, B, and d, then estimating three possible
positions. The new position is the average of these
three positions, encouraging convergence toward optimal
solutions. The parameter a decrease linearly from 2
to 0 over iterations, gradually shifting the search from
exploration to exploitation. At each iteration, fitness is
evaluated, and the top three wolves are updated.

Finally, the algorithm stops after a fixed number
of iterations, returning the best-found solution (a). The
hyperparameter search space for GWO was defined
based on commonly reported ranges in the literature and
guided by preliminary experiments to ensure efficient
exploration and stable convergence. Specifically:

= Population size: 20-40 wolves, balancing search

diversity and computational cost.

= Number of iterations: 30-50, allowing convergence

without excessive runtime.

= Search bounds for model hyperparameters:

= L earning rate: 0.0001-0.01

= Number of neurons per layer: 16-256

= Batch size: 16-128

Input Convolutional

layer

CNN

Convolutional recurrent neural network

Feedback loop

These ranges were chosen to cover realistic and
meaningful values while avoiding unstable regions. We
will clarify these details in the revised manuscript to
ensure full transparency and reproducibility.

In this study, GWO is used exclusively for hyper
parameter optimization rather than for training the
model’s weights. The CNN-LSTM hyperparameters—
such as the number of filters, kernel size, LSTM units,
dropout rate, and window length—are non-differentiable
and form a highly non-convex search space, making
gradient-based optimizers unsuitable. GWO provides a
gradient-free global search strategy that can effectively
explore this complex space and identify better-performing
configurations, while the internal network weights are
still trained using a standard gradient-based optimizer

Proposed CRNN architecture

CNN and RNN are combined into a powerful hybrid
DL model. A main application of CNNs aims to learn to
extract features from sequential data. CRNNs follow
exactly this approach, as the connections of a CNN
within the model learn relevant features in a timeseries
input in a self-supervised manner. RNNs, mainly LSTMs:
RNNs are used for modelling temporal dependencies
that are part of the series. LSTMs solve the problem of
vanishing gradients in RNNs so that long-term dependencies
can be modeled. As shown in Figure 2, the CRNN modelis
built with a feedback mechanism for glucose prediction.
The modelreceives the data via the input layer. This input
passes through the CNN components. These components
are designed to ex back mechanism refines the prediction
process over time and allows the model to be used for
real-time predictions.

Output Dutput
layer

RNN

Figure 2. The proposed CRNN architecture.
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Metrics
The following metrics were applied as the most
used for evaluating classification models:
= Mean Absolute Error (MAE): This metric measures
the average magnitude of errors without considering
their direction.
= Mean Squared Error (MSE): This metric emphasizes
larger errors by squaring the differences.
= Root Mean Squared Error (RMSE): These metric
computes error in the same units as the target
variable.
Precision: The proportion of correctly predicted
positive instances among all predicted positives.
Accuracy measures the proportion of correctly
predicted instances (both positive and negative)
out of the total predictions made. It reflects the
overall correctness of a classification model.
= Recall: measures the proportion of actual positive
cases that are correctly identified by the model.
It indicates how well the model detects true
positives.
F1-score: The F1-score is the harmonic mean
of Precision and Recall, providing a balanced
measure of a model’s accuracy when both false
positives and false negatives are important. It is
especially useful for evaluating models on imbalanced
datasets.
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CRNN XGBoost Gradient Random
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= Clarke Error Grid is a metric used to evaluate
blood glucose predictions by classifying each
predicted value based on its clinical impact on
the patient. It distinguishes acceptable errors
from potentially dangerous ones, assessing the
safety of a model or device.

Results

In this section, the performance of the proposed
model is evaluated in comparison to different baseline
models in terms of hypoglycemia detection (classification)
and prediction of continuous glucose values (regression).
The training performance and model stability are analyzed.
Inaddition, thecurrentliterature modeliscomparedwith
clinical validations. The proposed model is trained and
tested on the HUPA-UCM diabetes dataset. The model
integrates layer-wise CNN layers for extracting short-
term patterns and LSTM layers for capturing long-term
dependencies in the time series data. The proposed
architecture, as shown in Figure 3, is based on a 1D
convolutional layer with 64 filters and a kernel size of 3.
These layers process the input data, including the glucose
measurements and the associated health metrics. This
is followed by a max-pooling layer with a size of 2 to
reduce dimensionality and explore salient features. In
addition, the sequential structure contains two LSTM
layers, with each layer consisting of 50 slices. The first
50 layers provide the sequences, and the second 50
layers provide the final output; they are designed to
capture the temporal dependencies at different levels.

Extra trees

Bagging AdaBoost Bernoulll Gaussmn

Figure 3. Top 10 classification models.
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The proposed model (CRNN+GWO) is evaluated
against 19 baseline ML algorithms and recent state-
of-the-art methods demonstrating strong performance
in both classification and regression tasks. As shown
in Table 2, the proposal consistently outperforms all
traditional ML approaches. As can be seen on Table 2,
our model achieves improved precision (0.97), recall (0.98),
and F1-score (0.98), which is a significant improvement
overtraditional ML approach. These improvements lead
to an accuracy of 99%, outperforming all compared
algorithms. This sets a new bench- mark for the
classification of glucose events. In addition, the AUROC
analysis showed that the hybrid model has a performance
of 0.98, while the classification accuracy of CRNN
improved by 1% compared to the best-performing

ensemble methods (XGBoost and Gradient Boosting
with 97%). Figure 3 shows the 10 most accurate models.
The performance of ten models in the classification of
hypoglycemia was compared with the proposed model
demonstrating superiority in both accuracy and robustness.
The area under the curve (AUROC) value for CRNN is
0.97, and the precision, recall, and F1 scores for both
mild (BG<4) and severe (BG<3) hypoglycemia are all
above 0.96. These results indicate that the proposed CRNN
hybridized with GWO exhibits exceptional consistency and
clinical reliability. It is noteworthy that an increase in
the training epoch number from 50 to 100 results in a
complete absence of change in the classification metrics.
This serves to con- firm the stability and early convergence
of the model.

Table 2. Classification performance comparison — hypoglycemia.

Model AUROC Precision Recall F1score Precision Recall F1score Classification
(BG<4) (BG<4) (BG<4) (BG<3) (BG<3) (BG<3) accuracy
CRNN (50 Epochs) + GWO 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.99
CRNN (100 Epochs) + GWO 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.99
CRNN (50 Epochs) 0.97 0.96 0.97 0.96 0.96 0.97 0.96 0.98
CRNN (100 Epochs) 0.97 0.96 0.97 0.96 0.96 0.97 0.96 0.98
XGBoost 0.96 0.88 0.70 0.78 0.97 0.67 0.79 0.97
Gradient boosting 0.96 0.87 0.70 0.78 0.96 0.67 0.79 0.97
RF 0.94 0.86 0.67 0.75 0.96 0.66 0.78 0.95
Extra Trees 0.93 0.85 0.68 0.76 0.94 0.66 0.78 0.94
Bagging 0.93 0.84 0.70 0.76 0.93 0.67 0.78 0.94
AdaBoost 0.89 0.68 0.60 0.64 0.63 0.46 0.53 0.91
LDA 0.88 0.69 0.75 0.72 0.72 0.72 0.72 0.90
Bernoulli NB 0.82 0.60 0.60 0.60 0.47 0.67 0.55 0.86
Gaussian NB 0.81 0.47 0.68 0.56 0.33 0.81 0.47 0.85
Decision Tree 0.81 0.70 0.71 0.70 0.68 0.73 0.70 0.85
SVM 0.79 0.73 0.10 0.18 0.41 0.10 0.16 0.83
QDA 0.77 0.23 0.96 0.37 0.15 0.97 0.26 0.82
Passive aggressive 0.76 0.46 0.25 0.32 0.33 0.10 0.15 0.81
Multinomial NB 0.75 0.10 0.10 0.10 0.10 0.10 0.10 0.80
SGD 0.74 0.12 0.10 0.11 0.10 0.10 0.10 0.80
MLP 0.74 0.57 0.17 0.26 0.47 0.14 0.22 0.80
LR 0.73 0.48 0.10 0.17 0.39 0.10 0.16 0.79
KNN 0.62 0.40 0.18 0.25 0.30 0.15 0.20 0.70

In contrast, ensemble models such as XGBoost
and Gradient Boosting demonstrate robust overall
performance yet exhibit diminished recall values (0.67-
0.70), particularly under BG3 conditions, signifying a
diminished capacity to capture severe hypoglycemia
events. Conventional methods, including RF, Extra
Trees, and Bagging, demonstrate moderate performance,
with Area Under the Receiver Operating Characteristic
Curve (AUROC) values ranging from 0.93 to 0.94 and

F1 scores approximating 0.75 to 0.78. This suggests a
limited degree of sensitivity.

It has been demonstrated that simpler models,
including SVM, LR, and NB variants, exhibit poor recall
(<0.2) and unstable F1 scores. This renders them
unreliable for real- world hypoglycemia detection. It is
interesting to note that QDA achieves a high recall rate
of approximately 0.97 but extremely low precision, which
renders it susceptible to false positives. As a result, the



80 Bouhissi H. E. et al. Journal of Associated Medical Sciences 2026; 59(2): 72-83

present study demonstrates that CRNN hybridized with
GWO exhibits an optimal balance between detection
capability and false alarm mitigation, rendering it highly
conducive to the development of early hypoglycemia
warning systems.

On the other hand, the regression analysis has
shown that our model outperforms existing state-of-
the-art approaches. Table 3 shows the comparison of
regression performance with the current literature. As
can be seen, our model achieved an improved RMSE of

10.0 mg/dL and an MAE) of 7.0 mg/dL with an R-squared
value of 0.92, indicating good accuracy in predicting
continuous glucose levels. In addition, clinical accept-
ability according to Clarke Error Grid Analysis is 92%,
which is an excellent performance for continuous
monitoring applications. The approach closest to our
model is which gives an RMSE of 35.19 mg/dL for LSTM
and 36.08 mg/dL for self-attention networks. The maximum
clinical acceptability achieved by both algorithms was
91% using Clarke Error Grid analysis.

Table 3. Regression performance comparison —Blood glucose value prediction.

Model/Study RMSE MAE R?/Correlation Dataset Prediction horizon Clinical Real-time
(mg/dL) (mg/dL) (minute) acceptance accuracy
Our CRNN Real-time
- 0, 0,
(50 Epochs) + GWO 10 7 0.92 HUPA-UCM (5-min) 92% 90%
Our CRNN Real-time
1 7 .92 HUPA-UCM 2% %
(100 Epochs) + GWO 0 0-9 UPA-UC (5-min) 92% 90%
“Bi-LSTM 19.49:542 14.93:420 043202 Life-log data C”(r(r;_’:i;')me . .
33L.STM 35.19 - - OhioT1DM 30-60 >91% (CEG) -
3SAN 36.08 - - Multiple 30-60 >91% (CEG) -
33CNN ~37-40 - - Multiple 30-60 >91% (CEQG) -
3TCN ~37-40 - - Multiple 30-60 >91% (CEG) -

Table 4 shows the training performance analysis
with 50 and 100 epochs. The analysis revealed optimal
generalization properties where the improvement over
RMSE during training was from 9.2 mg/dL (50 Epochs)
to 8.8 mg/dL (100 Epochs). Also, the test set RMSE
remained stable at 10.0 mg/dL for prediction tasks,
which is an indicator of generalization without over-
fitting. Comparing CRNN+GWO models trained for 50
and 100 epochs shows a high degree of model stability
with only slight improvements in training performance.
Training RMSE improved slightly from 9.2 mg/dL to 8.8
mg/dL (a 4.3% reduction), suggesting modest learning
progress with additional epochs. However, the test
RMSE and real-time RMSE remained unchanged at
10.0 and 15.0 mg/dL, respectively, strongly indicating
that the model did not overfit de- spite the longer training
period. Similarly, R-squared (0.92) stayed constant,
confirming that the model’s ability to explain variance

was already optimized and consistent across epochs.
The minor decrease in MAE (from 9.3 to 9.2 mg/dL)
shows slightly better average prediction accuracy, but
the effect is minimal. Classification metrics—F1 score,
precision, recall, and accuracy—remained unchanged,
all at strong values, con- firming that the modelis highly
stable in terms of event classification across both
training configurations. The clinical acceptance score
(0.92) and real-time accuracy (0.90) also showed no
change, further reinforcing confidence in the model’s
performance when deployed in a clinical setting. Overall,
the results suggest that the hybridized GWO based CRNN
architecture achieves rapid convergence, with performance
metrics stabilizing after 50 epochs. Extending training
to 100 epochs does not degrade performance but offers
diminishing returns, demonstrating that the model is
efficient, stable, and robust under extended training.
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Table 4. Training performance analysis.

Metric CRNN CRNN Change

(50 Epochs) (100 Epochs)
RMSE (Training set) 9.2 mg/dL 8.8 mg/dL -0.4 (-4.3%)
RMSE (Test set — Prediction) 10.0 mg/dL 10.0 mg/dL 0.0(0.0%)
RMSE (Real-time) 15.0 mg/dL 15.0 mg/dL 0.0(0.0%)
R-squared (R2) 0.92 0.92 0.00 (0.0%)
MAE (Prediction) 7.1 mg/dL 7.0 mg/dL -0.1(-1.4%)
MAE (Real-time) 10.0 mg/dL 10.0 mg/dL 0.0(0.0%)
F1 Score >0.95 >0.95 No significant change
Precision 0.97 0.97 No significant change
Recall 0.98 0.98 No significant change
Classification accuracy 0.99 0.99 No change
Clinical acceptance 0.92 0.92 No change
Real-time accuracy 0.90 0.90 No change

Table 5 compares our results with four recent
studies using clinical validation metrics. The proposed
CRNN model achieved 92% clinical acceptability and
99% accuracy for hypoglycemia detection, surpassing
the best values reported in those studies. However,
since our model was evaluated on the HUPA-UCM

Table 5. Comparison of blood glucose prediction models.

dataset whereas other works used different datasets,
these comparisons are not one-to-one. We report them
for context, but direct performance ranking should be
interpreted with caution. Future evaluations on common
datasets will be necessary for a fair comparison.

Study & Model Classification Clinical Real-time Dataset Key findings
accuracy acceptance performance
Our CRNN 99% classification  92% clinical 90% real-time HUPA-UCM  Superior across all evaluation modes
(100 Epochs)+GWO  ~>"° ° ° P
>91%

33 0, H H H

LSTM (CEG Safe zone) >91% (CEG) Not reported OhioT1DM  Best generalization across datasets
o >91% 5019 . )

SAN (CEG safe zone) 91% (CEG) Not reported Multiple Second-best performance
5|.STM Physs'?)ff:a“y - Notreported  OhioT1IDM  SHAP-validated interpretability

Correlation:

35Ri_ _ . .

Bi-LSTM 0.43+0.2 Not reported Life-log Virtual CGM framework

Note: CEG: Clarke error grid; CGM: ???, SAN: self-attention network, CRNN: convolutional recurrent neural network.

An avenue for further improvement is the use
of Transformer-based models, which have achieved
state-of-the-art results in blood glucose prediction.
These models leverage self-attention to capture long-
term dependencies and have outperformed traditional
CNN/LSTM in some scenarios. We did not evaluate
Transformers in this study, as our focus was on CNN/
LSTM hybrids; however, future work will compare the
CRNN approach against Transformers to ensure the
proposed model remains competitive with the latest
deep learning techniques.

A limitation of this study is that the model was
trained and tested on a single dataset (HUPA-UCM). No
external or cross-population evaluation was performed,
which may affect the generalizability of the results. In

future work, we plan to validate the model on additional
datasets (e.g., OhioT1DM) and across different patient
populations, as well as exploring additional Al architectures
and bio-inspired optimization algorithms to further enhance
predictive performance.

Conclusion

In this paper, we present a CRNN architecture,
enhanced with a GWO for hyperparameter tuning, applied
to the task of predicting hyperglycemia and hypoglycemia.
Among the tested configurations, the CRNN+GWO hybrid
achieved the lowest RMSE and MAE, outperforming the
baseline CRNN. While our model outperforms others in
point estimates of accuracy, we acknowledge that we
did not perform statistical significance testing. Thus,
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differences, especially when within a few percentage
points, should be interpreted with caution. Using a recent
large-scale dataset, we benchmarked our results
against recent state-of-the-art approaches. Our primary
objective was to maximize accuracy in the early prediction
of hypo and hyperglycemic events and to enable real-
time detection. The proposed model achieved 99%
accuracy on offline data with low mean squared and
absolute errors, and nearly 90% accuracy in simulated
real-time scenarios. It can trigger timely alerts for
abnormal glucose levels, offering strong potential for
improving patient health outcomes. The combination
of CNN, RNN—particularly LSTM and GWO proved robust
across DL tasks in this domain.
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