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Background: Evaluating image quality in mammography—particularly using
American College of Radiology (ACR) phantom images—is essential for
maintaining diagnostic accuracy. Conventional evaluation relies on human
visual inspection, which is prone to variability due to individual perception
differences.

Objectives: This study examined the capability of multiple convolutional
neural network (CNN)-based artificial intelligence (Al) models to assess the
quality of ACR phantom images and address the limitations of human-based
evaluation.

Materials and methods: Five CNN-based models—LeNet5, AlexNet, VGG19,
GooglLeNet, and ResNet50—were used to classify 231 ACR phantom images
acquired under different exposure settings. Dataset augmentation was performed
by adding and removing artificial noise, increasing the dataset to 1,617 images.
The dataset was then divided into training (70%), validation (10%), and testing
(20%) subsets. Model performance was compared based on phantom image
scoring.

Results: GoogleNet showed the highest performance in evaluating fiber and
mass groups, whereas ResNet50 achieved the best results for the speck group.
The classification accuracy for scoring 16 object positions in ACR phantom
images ranged from 31% to 100%, depending on object size.

Conclusion: To reliably classify acceptable mammographic image quality,
model performance in detecting borderline cases (score 0.5) must improve.
For clinical applicability, accuracy should exceed 80%.

Introduction

Mammography is a widely used imaging modality
that employs low-dose X-rays for breast cancer
screening and diagnosis. Women aged 40 and older
are typically advised to undergo mammographic
screening every 1-2 years." Early detection through
mammography reduces disease severity and mortality
rates.? This highlights the importance of maintaining
highimage quality for effective breast cancer screening.
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Consequently, dependable imaging systems and
standardized image quality evaluation are essential
components of quality control (QC) in mammaography.®

Consistently high image quality is critical for
accurate diagnosis. Routine quality control procedures
are performed to ensure optimal system performance
and to reduce diagnostic errors. A standard approach
involves phantom testing using American College
of Radiology (ACR) phantoms. These tests evaluate
key image quality parameters, including density,
contrast, uniformity, and artifact presence. However,
these evaluations are generally performed through
human visual inspection, which is time-consuming
and inherently subjective. Variations in visual
perception and professional experience can introduce
inconsistencies in the results.

Artificial intelligence (Al) has increasingly
transformed medical imaging. Deep learning methods,
particularly convolutional neural networks (CNNs),
have gained prominence with architectures such as
LeNet, AlexNet, VGGNet, GooglLeNet, and Residual
Network (ResNet). LeNet was originally designed for
handwritten digit classification using the Modified
National Institute of Standards and Technology
database of 28x28 grayscale images.* Its relatively
simple architecture is makes it suitable for low-
complexity datasets and lightweight applications,
including blood cell classification,® pneumonia
detection,®. and breast cancer histopathology
analysis.” AlexNet demonstrated the power of
deep CNNs in large-scale image classification.® Its
innovations—such as deeper convolutional layers,
RelLU activation, and dropout regularization—improved
learning efficiency and reduced overfitting. In medical
imaging, AlexNet has been applied to tasks such as
chest disease classification (e.g., tumor vs. normal
in chest images)® and brain tumor differentiation
using magnetic resonance imaging (MRI)."® VGGNet
uses deep architectures composed of small 3x3
convolutional filters.” This structure allows effective
hierarchical feature learning by stacking multiple
layers. VGGNet has been widely adopted in transfer
learning for medical imaging tasks, including breast
cancer histopathology classification,'> mammography
interpretation,’ and ultrasound image analysis,™
and image quality assessment (IQA)," such as binary
or multi-class scoring of ACR phantom images.
GooglLeNet introduced Inception modules that
integrate multiple convolutional filter sizes (1x1,
3x3, and 5x5) within a single module.' This design
enables efficient multi-scale feature extraction with
fewer parameters. As a result, GooglLeNet is effective
in detecting microcalcifications and small lesions
in mammograms' and is suitable for real-time
classification due to its computational efficiency.
ResNet introduced residual connections to address

the vanishing gradient problem, allowing the training of
very deep networks. It has shown strong performance
in complex medical image analysis," including MRI-
based studies,'” cancer subtype classification from
biopsy images,?® and IQA tasks such as resolution
assessment and phantom image scoring.?'

Beyond abnormality detection in radiographic
imaging,?22®>. CNNs have also demonstrated strong
performance in radiological image quality assessment,
including general radiography and mammography.!:24-26
In one study, eight CNN architectures with 3-10
convolutional layers were trained to detect structures
in ACR phantom images, achieving up to 95%
classification accuracy using a six-layer model.!
Another study modified the VGG16 architecture for
ACR image scoring, reporting an F1-score of 0.69 for
multi-class classification and an F1-score of 0.93 with
an area under the receiver operating characteristic
curve (AUC) of 0.97 for binary classification.?*

This study aimed to evaluate and compare
the performance of different CNN architectures in
assessing ACR phantom image quality. Understanding
their capabilities will support the development of Al-
assisted tools that help reduce evaluator variability and
improve consistency in mammography QC.

Materials and methods
Data collection

Phantomimages were acquired using the Planmed
Sophie Classic mammography system (Planmed Oy,
Finland) equipped with a digital image receptor and
the ACR accreditation phantom (Mammo 156 phantom,
Gammex, USA). The phantom contains three test
groups—fiber, specks, and masses—comprising 16
test objects, as illustrated in Figure 1. These objects differ
in shape, diameter, and thickness and are designed to
simulate common breast lesions observed in clinical
mammograms. Specifically, the phantom includes 6
fibers (F1-F6) with diameters of 1.56, 1.12, 0.89, 0.75,
0.54, and 0.40 mm; 5 speck groups (S1-S5), each
containing 6 specks with diameters of 0.54, 0.40, 0.32,
0.24, and 0.16 mm; and 5 mass objects (M1-M5) with
decreasing diameters and thicknesses of 2.00, 1.00,
0.75, 0.50, and 0.25 mm.?%

The phantom images were acquired using different
tube voltage and tube current-time product settings
controlled by the automatic exposure control system.
Tube voltages ranged from 25 to 30 kVp (in 1 kVp
increments), while tube current-time products ranged
from 10 to 303 mAs, corresponding to seven optical
density levels, as shown in Table 1. Each imaging
condition was repeated three times. In total, 231 phantom
images were collected, covering a wide range of image
quality levels, from optimal (27 kVp, 71 mAs) to both
lower and higher extremes.
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Table 1. Number of ACR phantom images captured from the Planmed Sophie Classic
mammography system with various exposure techniques.

Exposure techniques

Target/filter combination

Number of images

kVp mAs

25 18-303 36

26 10-225 39

27 10-161 39
Mo/Mo

28 10-114 39

29 10-85 39

30 10-67 39
Total 231

Note: Mo: molybdenum

Image augmentation

Artificial Gaussian noise was added to, and
subsequently removed from, the original images using
a median filter in Image) version 1.54g. This process
was used to expand the dataset. Three empirically
selected noise levels-10%, 30%, and 100%—were applied
to simulate low, medium, and high noise conditions,
respectively. In this context, the percentages represent
the relative standard deviation parameter of the Gaussian
noise within the software and do not be correspond

to calibrated detector noise levels or specific clinical
exposure settings.

For each of the 231 original images, three noise
levels and two processing conditions (noisy and median-
filtered) were generated, producing 1,386 augmented
images (231x3%x2). When combined with the original
images (N=231), the total dataset consisted of 1,617
images. The dataset was then randomly divided into
training (N=1,134; ~70%), validation (N=161; ~10%),
and test (N=322; ~20%) subsets, as summarized in
Table 2.

Table 2. Number of images used in the training, validation, and testing subsets.

Number of images

ACR phantom 6 Fibers 5 Specks 5 Masses
Training 1,134 (~70%) 6,804 5,670 5,670
Validation 161 (~10%) 805 805
Testing 322 (~20%) 1,932 1,610 1,610
9,702 8,085 8,085
Total 1,617 (100%)
25,872

Image quality scoring by evaluators

This study was approved by the Institutional Review
Board (IRB No. P1-0091/2567). All images in the training
and validation subsets were scored by consensus between
two researchers, while the testing subset was scored
by consensus between two medical physicists. Each of
the 16 phantom objects was assigned a score of 0, 0.5,
or 1 according to the ACR digital mammography phantom
scoring criteria.® All images were displayed on a
2-megapixel monitor, and the window width and level
were adjusted for optimal viewing conditions based on
evaluator judgment to ensure consistent and accurate
scoring.

Image quality scoring by CNN-based Al models
All scored images in the training, validation, and
testing subsets were cropped at the 16 predefined object

locations, as shown in Figure 1. From each phantom
image, 16 object-level images were extracted. This
resulted in 18,144 training images (1,134x16), 2,576
validation images (161x16), and 5,152 testing images
(322x16), as summarized in Table 2. Each object-level
image was classified into one of three score categories
(0, 0.5, 1) based on the corresponding image quality
score. Five convolutional neural network (CNN)-based
models—LeNet5,* AlexNet,® VGG19,"" GoogleNet,
and ResNet50'®—were trained and validated for each
of the 16 test objects. The LeNet5 model was trained
from scratch using random weight initialization. In
contrast, AlexNet, VGG19, GooglLeNet, and ResNet50
were initialized using pre-trained ImageNet weights
and then fine-tuned on the phantom image dataset.
This transfer learning strategy was employed to improve
convergence of the deeper networks considering the
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relatively small dataset size. All CNN models were
trained on Google Colab with a Tesla T4 GPU. A learning
rate of 0.000001 and a batch size of 32 were applied
consistently across all models. The number of training
epochs was set to 20 for VGG19, 20 for GooglLeNet,
30 for AlexNet, 50 for ResNet50, and 60 for LeNet5.
Training and validation loss and accuracy curves were

A

generated for each object and model. These curves
were used to assess network convergence and to con-
firm the optimization of training parameters, including
batch size and number of epochs. During inference, the
trained CNN models predicted image quality scores of
0, 0.5, or 1 for each test object.

B

Figure 1. A: original ACR phantom image, B: a cropped image of 1074x1044 pixels,
C: A268x261 pixel cropped image for the 16 test objects.

Performance comparisons for CNN-based Al models

This study compared the performance of five
CNN-based Al models: LeNet5, AlexNet, VGG19,
GooglLeNet, and ResNet50. Model performance was

evaluated using a multi-class confusion matrix, in
which predicted scores were compared against three
predefined image labels (0, 0.5, and 1) assigned by two
medical physicists, as presented in Table 3.

Table 3. Analysis of the CNN-based Al models’ performance based on multi-confusion matrix scoring.

Image scoring by CNN-based Al

Image scoring by medical physicists

1 0.5 0
1 TP, TN, ., TN, FP,,FN ., TN, FP, TN, ., FP,
0.5 FN,, FP_ ., TN, TN, TP ., TN, TN, FP ., FP,
0 FN,, TN ., FN, TN, FN_,, FN, TN, TN ., TP,
Where:

True Positive (TP): Al model correctly scored an image as 1 or 0.5, as marked by the medical physicists.

False Positive (FP): Al modelincorrectly scored an image, assigning a higher score than the medical physicists.
False Negative (FN): Al modelincorrectly scored an image, assigning a lower score than the medical physicists.
True Negative (TN): Al model correctly scored an image as 0, as marked by the medical physicists.

Performance of the five CNN-based Al models
was then evaluated using accuracy, precision, sensitivity,
specificity (recall), F1-score, and false positive rate
(FPR), calculated using Equations (1) to (6) as follows:

TP+TN
AcCCUracy = 1p,rp+EN+TN (1)
Precision = % (2)
Sensitivity = ﬁ (3)
Specificity = % (4)

_ 2 xprecision x sensitivity 5
F1-score = precision + sensitivity ®)
False Positive Rate = 1 — Specificity (6)

Equation (7) was used to calculate the percentage
accuracy of each model. Unlike confusion matrix-based
metrics, accuracy is calculated by comparing the
number of correctly predicted images to the total number
of images, without distinguishing between the FP and
FN.

Number of corrected prediction image 7)

0, =
Y%Accuracy Total number of images
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Results precision, sensitivity, specificity (recall), F1-score, and
The performance of five CNN-based Al models— FPR. These results are presented in Figures 2-5. The
LeNet5, AlexNet, VGG19, GooglLeNet, and ResNet50— analysis focused on classifying fibers, specks, and
was evaluated using key statistical metrics: accuracy, masses in ACR phantom images.
Fiber group
1.0 EmVGG19
0.9
0.8 m ResNet50
g 0.7 = AlexNet
e 0.6
o 0.5 LeNet5
g 04
P . m GooglLeNet
s 03
< 02
0.1
0.0
Accuracy Sensitivity Specification Precision F1 Score

Figure 2. Statistical metrics compared to all CNN-based Al models for classifying fiber objects.

Speck group

1.0 mVGG19

0.9

0.8 = ResNet50
g 0.7 = AlexNet
T>g' 0.6
g’o 0.5 LeNet5
s 04 m GooglLeNet
g 0.3
< 0.2

0.1 I

0.0

Accuracy  Sensitivity Specification Precision F1 Score

Figure 3. Statistical metrics compared to all CNN-based Al models for classifying speck objects.
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Mass group

1.0 mVGG19

0.9

0.8 m ResNet50
3 0.7 = AlexNet
g 0.6
(X 0.5 LeNet5
s 0.4
g 0.3 m GooglLeNet
< 0.2

I
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Accuracy

Sensitivity Specification Precision

F1 Score

Figure 4. Statistical metrics compared to all CNN-based Al models for classifying mass objects.
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Figure 5. Percentage accuracy compared to all CNN-based Al models for classifying fiber, speck and mass objects.

The results showed that VGG19 and LeNet5 were
unable to effectively differentiate object features,
including size and density. Both models consistently
produced the same output score of 1 for all testimages,
indicating a failure to distinguish among object classes.
As a result, these two models were excluded as viable
classifiers for fiber, speck, and mass objects in the
phantom dataset.

The optimal CNN-based Al model for each object
group was selected based on comparative statistical
performance.

For the fiber group, GooglLeNet achieved the
highest classification accuracy and underperformed
the other models across most statistical metrics,
while also demonstrating the lowest FPR. Therefore,
GoogleNet was identified as the most effective model
for fiber evaluation.

For the speck group, although VGG19 and
LeNet5 produced high statistical values, their ability
to differentiate object features (due to identical
output predictions) limited their usability. In contrast,
ResNet50 demonstrated the highest accuracy, superior
performance across key metrics, and the lowest FPR.
Thus, ResNet50 was selected as the best model for
speck classification.

For the mass group, VGG19 and GooglLeNet
exhibited similarly high statistical values. However,
VGG19 was excluded due to its inability to distinguish
object features, consistently outputting a score of
1. Although AlexNet achieved the highest accuracy,
its performance across other statistical metrics was
inferior to GoogleNet. Therefore, GooglLeNet was
determined to be the most suitable model for mass
object evaluation because it combined the highest
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accuracy with stronger overall metric performance and
the lowest FPR.

Figure 6 illustrates the performance of GooglLeNet
in classifying fiber objects in ACR phantom images. In
general, the FPR increased as fiber size and density
decreased, except for F6, which had the smallest size
and lowest density. In contrast, the other statistical
metrics tended to decrease as fiber size and density
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decreased, except for F6. The GooglLeNet model
demonstrated strong performance for F1, F2, and F3,
with FPR values below 0.12 and other performance
metrics exceeding 0.76.

Figure 7 shows the performance of the ResNet50
modelin classifying speck objects. The model achieved
FPR values below 0.09 and other statistical metrics
greater than 0.82 for all speck groups, except S4.
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Figure 6. Performance of GooglLeNet model in classifying fiber objects in ACR phantom images.
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Figure 7. Performance of ResNet50 model in classifying speck objects in ACR phantom images.
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Figure 8 presents the performance of the
GooglLeNet model in classifying mass objects. The FPR
values were below 0.12, while the remaining statistical
metrics exceeded 0.75 across all mass groups.

Figure 9 illustrates the classification accuracy of
the GoogleNet model for fiber and mass objects and
the ResNet50 model for speck objects. The accuracy

2
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0.0 0.1 0.2 0.3
M1 M2
= FPR 0.007 0.115
® F1 Score 0.985 0.77
Precision 0.985 0.77
m Specification 0.993 0.885
H Sensitivity 0.985 0.77
B Accuracy 0.99 0.846
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percentages for all 16 object positions were as follows:
fibers-F1 (98.76%), F2 (91.51%), F3 (75.96%), F4
(53.33%), F5 (30.90%), and F6 (42.37%); specks-S1
(99.61%), S2 (99.03%), S3 (82.38%), S4 (64.20%), and
S5 (100%); masses-M1 (98.53%), M2 (76.96%), M3
(75.37%), M4 (84.30%), and M5 (89.13%).

0.5 0.6 0.7 0.8 0.9 1.0
M3 M4 M5
0.123 0.079 0.054
0.754 0.843 0.891
0.754 0.843 0.891
0.877 0.921 0.946
0.754 0.843 0.891
0.836 0.895 0.928

Figure 8. Performance of GooglLeNet model in classifying mass objects in ACR phantom images.

100

9

o

8

Accuracy (%)
W B 4] [+2] N
o o o o o o

N
o

1

o

F5 F6 S1

Fiber group

Speck group

S2

S3 S4 s5 M1 M2 M3 M4 M5

Mass group

Figure 9. Percentage accuracy of GooglLeNet in classifying fiber and mass objects,
and the ResNet50 model in classifying speck objects.
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This study evaluated the performance of five CNN-
based Al models—LeNet5, AlexNet, VGG19, GoogleNet,
and ResNet50—in classifying fiber, speck, and mass
objects in ACR phantom images. Model outputs were
validated against object classifications performed by
two medical physicists. The objects differed in shape,
size, and density, which correspond to characteristics
of typical lesions observed in clinical mammographic
images.

VGG19 and LeNet5 failed to effectively differentiate
objectfeatures because both models produced uniform
outputs (score=1) across all test cases. This behavior
indicates that the models did not learn meaningful
decision boundaries. A possible cause is activation
function saturation. Specifically, the original LeNet5
architecture usesthe sigmoidactivationfunction, which
is prone to saturation. This leads to near-zero gradients,
causing the vanishing gradient problem and limiting
effective learning, particularly in deeper architectures.
Furthermore, training VGG19 from scratch is known
to be challenging. Issues such as improper weight
initialization and unsuitable activation functions can
prevent effective feature learning. These limitations
may result in constant model outputs, indicating a
failure to capture discriminative information from the
input images.

According to ACR guidelines, mammographic image
quality is considered acceptable when the visual image
score reaches 4 or at least four fibers (F1-F4) are visible,
a score of 3 or at least three specks (S1-S3) are identified,
and a score of 3 or at least three masses (M1-M3) are
detected, covering objects from large to small sizes.
Based on the results of this study, the GooglLeNet model
accurately classified F1, F2, and M1 with accuracy
above 80%. The ResNet50 model effectively classified
specks S1, S2, and S3, also exceeding 80% accuracy.
These findings suggest that the prediction performance
of GooglLeNet and ResNet50 must be improved,
particularly for F3, F4, M2, and M3, to fully meet clinical
image quality standards.

Although this study provides meaningful
contributions, several limitations must be considered.
First, all mammographic images were acquired using a
single mammography system from one manufacturer
with a Mo/Mo target/filter combination. Although data
augmentation increased the dataset size, it did not add
diversity in terms of vendors, system models, or beam
qualities. Consequently, the reported performance of
the CNN-based models may not generalize to phantom
images acquired on other mammography systems or
different target/filter combinations (e.g., Mo/Rh or Rh/Rh),
which are commonly used in clinical quality control.
To achieve robust and generalizable performance, the
CNN models must be retrained or fine-tuned using
phantom images acquired under clinically relevant
exposure and target/filter configurations for each system.

A further limitation involves the imbalance in object
score distribution. Images with an intermediate score
of 0.5 were relatively scarce in both the training and
test sets. This imbalance was most evident for smaller
objects, which are less likely to be captured by the
mammography system or reliably detected by human
observers. Consequently, objects such as F4, F5, S4,
and M4 often received intermediate scores of 0.5. In
contrast, larger objects are more consistently captured
and detected, leading to a score of 1 for F1, F2, M1, M2,
S1, and S2. The smallest objects, although often not
captured by the imaging system, were typically classified
as non-visible and assigned a score of 0, as observed
for F6, S5, and M5. Consequently, images with scores
of 0 and 1 were more prevalent than those with a score
of 0.5. In this study, scores of 1, 0.5, and 0 accounted
for 56.5%, 19.0%, and 24.5% of all images, respectively,
confirming that 0.5-score samples were significantly
underrepresented.

All images, including those containing artificial
Gaussian noise, were scored after data augmentation.
The added noise can reduce the effective signal-to-
noise ratio and, in some cases, shift clearly visible
objects (score 1) into borderline cases (score 0.5),
particularly for low-contrast fibers and masses. However,
these borderline classifications were influenced not
only by Gaussian noise but also by intrinsic object size
and contrast, exposure conditions, and system noise,
rather than by Gaussian noise alone. Another limitation
is that data augmentation was limited to additive
Gaussian noise followed by median filtering. Although
this method directly targets quantum noise, it does not
simulate other real-world variations, such as changes in
positioning, geometric distortions, or subtle differences
in object shape and contrast. Future studies should
incorporate more advanced augmentation techniques,
including small rotations and translations, elastic
deformations, and controlled contrast or blur adjustments,
to generate a more realistic and diverse training dataset.

As previously mentioned, CNN-based Al models
have limited learning capacity when trained on under-
represented image categories, particularly those assigned
a score of 0.5. This class imbalance contributed to the
reduced detection performance for F4, F5, S4, and
M4. Increasing the number of images across all score
categories, particularly for the 0.5 class, would likely
improve model generalization and overall classification
performance.

Sung Soo Park et al.?* proposed a deep neural
network-based phantom scoring method using the
VGG16Net model for ACR phantom image quality
evaluation. They applied two classification approaches:
Multi-Class Classification (MCC), using scores of 0, 0.5,
and 1, and Binary Classification (BCC), where scores
of 0.5-1 were labeled as passing and 0 as failing. Their
reported F1-score was 0.69 for MCC and 0.93 for BCC.
This result indicates inferior performance for MCC,
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primarily due to class imbalance, especially the limited
number of images with a score of 0.5. In the present
study, the average F1-score for MCC was 0.592, which
supportsthe same conclusion. The scarcity of 0.5-score
images restricted model performance in both studies,
emphasizing the need for a more balanced dataset.

Veli-Matti Sundell et al.?" performed ACR phantom
image quality scoring using a CNN-based Al model
composed of six convolutional layers and achieved an
overall accuracy of 95%. Their model was trained on a
large dataset of 90,288 images, including 4,752 images
with visible objects (score of 1) and 14,256 images
with non-visible objects (score of 0), collected from
eight mammography systems manufactured by three
manufacturers. The substantial dataset size and system
diversity enhanced model learning and improved
generalization. However, their model sensitivity decreased
as object size decreased, which is consistent with the
reduced sensitivity for smaller objects observed in this
study.

To address these limitations, future studies should
use a larger and more diverse dataset that includes
images of varying quality from multiple imaging systems
to improve both model training and generalizability
of CNN-based Al models. Beyond increasing dataset
size, specific strategies are needed to enrich borderline
cases (score of 0.5), which are critical for quality control
decisions. Potential approaches include: (1) acquiring
additional phantom images at exposure settings that
produce near-threshold visibility for specific objects;
(2) applying controlled contrast reduction and localized
mild blurring to high-quality images to simulate subtle loss
of conspicuity; (3) generating synthetic phantom images
or using generative models to simulate near-threshold
object visibility while preserving realistic background
and noise characteristics; and (4) employing training
strategies such as class-balanced sampling, focal loss,
and cost-sensitive learning to reduce the impact of
residual class imbalance during model optimization.

Conclusion

This study evaluated five CNN-based Al models for
classifying objects in ACR phantom images. GooglLeNet
demonstrated the best performance for fiber and
mass classification, whereas ResNet50 was most
effective for speck classification. GooglLeNet accurately
classified fibers F1-F3 with an FPR below 0.12 and other
statistical metrics above 0.76. It also demonstrated
strong performance for mass classification, achieving
an FPR below 0.12 and other statistical values exceeding
0.75. ResNet50 performed best for speck classification,
with an FPR below 0.09 and other statistical metrics
above 0.82, except for S4. Using the best-performing
models across all 16 object positions, classification
accuracies were as follows: fibers-F1 (98.76%), F2
(91.51%), F3 (75.96%), F4 (53.33%), F5 (30.90%), and
F6 (42.37%); specks-S1 (99.61%), S2 (99.03%), S3
(82.38%), S4 (64.20%), and S5 (100%); and masses-M1
(98.53%), M2 (76.96%), M3 (75.37%), M4 (84.30%), and

M5 (89.13%). Overall, GooglLeNet achieved accuracies
ranging from 30.9% to 98.8% for fibers and masses,
whereas ResNet50 achieved 64.2% to 100% for specks.
To improve clinical applicability and align with ACR
guidelines, future work should prioritize increasing
prediction accuracy for intermediate objects, particularly
for F3, F4, M2, and M3.
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