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ABSTRACT

Background: Evaluating image quality in mammography—particularly using 
American College of Radiology (ACR) phantom images—is essential for 
maintaining diagnostic accuracy. Conventional evaluation relies on human 
visual inspection, which is prone to variability due to individual perception 
differences.

Objectives: This study examined the capability of multiple convolutional 
neural network (CNN)-based artificial intelligence (AI) models to assess the 
quality of ACR phantom images and address the limitations of human-based 
evaluation.

Materials and methods: Five CNN-based models—LeNet5, AlexNet, VGG19, 
GoogLeNet, and ResNet50—were used to classify 231 ACR phantom images 
acquired under different exposure settings. Dataset augmentation was performed 
by adding and removing artificial noise, increasing the dataset to 1,617 images. 
The dataset was then divided into training (70%), validation (10%), and testing 
(20%) subsets. Model performance was compared based on phantom image 
scoring.

Results: GoogLeNet showed the highest performance in evaluating fiber and 
mass groups, whereas ResNet50 achieved the best results for the speck group. 
The classification accuracy for scoring 16 object positions in ACR phantom  
images ranged from 31% to 100%, depending on object size. 

Conclusion: To reliably classify acceptable mammographic image quality, 
model performance in detecting borderline cases (score 0.5) must improve. 
For clinical applicability, accuracy should exceed 80%.
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Introduction
	 Mammography is a widely used imaging modality 
that employs low-dose X-rays for breast cancer 
screening and diagnosis. Women aged 40 and older 
are typically advised to undergo mammographic 
screening every 1-2 years.1 Early detection through 
mammography reduces disease severity and mortality 
rates.2 This highlights the importance of maintaining 
high image quality for effective breast cancer screening. 



Chusin T. et al.  Journal of Associated Medical Sciences 2026; 59(1): 235-246236

Consequently, dependable imaging systems and 
standardized image quality evaluation are essential 
components of quality control (QC) in mammography.3

	 Consistently high image quality is critical for 
accurate diagnosis. Routine quality control procedures 
are performed to ensure optimal system performance 
and to reduce diagnostic errors. A standard approach 
involves phantom testing using American College 
of Radiology (ACR) phantoms. These tests evaluate 
key image quality parameters, including density, 
contrast, uniformity, and artifact presence. However, 
these evaluations are generally performed through 
human visual inspection, which is time-consuming 
and inherently subjective. Variations in visual 
perception and professional experience can introduce 
inconsistencies in the results.
	 Artificial intelligence (AI) has increasingly 
transformed medical imaging. Deep learning methods, 
particularly convolutional neural networks (CNNs), 
have gained prominence with architectures such as 
LeNet, AlexNet, VGGNet, GoogLeNet, and Residual 
Network (ResNet). LeNet was originally designed for 
handwritten digit classification using the Modified 
National Institute of Standards and Technology 
database of 28×28 grayscale images.4 Its relatively 
simple architecture is makes it suitable for low-
complexity datasets and lightweight applications, 
including blood cell classification,5 pneumonia 
detection,6 and breast cancer histopathology 
analysis.7 AlexNet demonstrated the power of 
deep CNNs in large-scale image classification.8 Its 
innovations—such as deeper convolutional layers, 
ReLU activation, and dropout regularization—improved 
learning efficiency and reduced overfitting. In medical 
imaging, AlexNet has been applied to tasks such as 
chest disease classification (e.g., tumor vs. normal 
in chest images)9 and brain tumor differentiation 
using magnetic resonance imaging (MRI).10 VGGNet 
uses deep architectures composed of small 3×3 
convolutional filters.11 This structure allows effective 
hierarchical feature learning by stacking multiple 
layers. VGGNet has been widely adopted in transfer 
learning for medical imaging tasks, including breast 
cancer histopathology classification,12 mammography 
interpretation,13 and ultrasound image analysis,14 
and image quality assessment (IQA),15 such as binary 
or multi-class scoring of ACR phantom images. 
GoogLeNet introduced Inception modules that 
integrate multiple convolutional filter sizes (1×1, 
3×3, and 5×5) within a single module.16 This design 
enables efficient multi-scale feature extraction with 
fewer parameters. As a result, GoogLeNet is effective 
in detecting microcalcifications and small lesions 
in mammograms17 and is suitable for real-time 
classification due to its computational efficiency. 
ResNet introduced residual connections to address 

the vanishing gradient problem, allowing the training of 
very deep networks.18 It has shown strong performance 
in complex medical image analysis,11 including MRI-
based studies,19 cancer subtype classification from 
biopsy images,20 and IQA tasks such as resolution 
assessment and phantom image scoring.21

	 Beyond abnormality detection in radiographic 
imaging,22,23 CNNs have also demonstrated strong 
performance in radiological image quality assessment, 
including general radiography and mammography.21,24-26 
In one study, eight CNN architectures with 3–10 
convolutional layers were trained to detect structures 
in ACR phantom images, achieving up to 95% 
classification accuracy using a six-layer model.21 
Another study modified the VGG16 architecture for 
ACR image scoring, reporting an F1-score of 0.69 for 
multi-class classification and an F1-score of 0.93 with 
an area under the receiver operating characteristic 
curve (AUC) of 0.97 for binary classification.24

	 This study aimed to evaluate and compare 
the performance of different CNN architectures in 
assessing ACR phantom image quality. Understanding 
their capabilities will support the development of AI-
assisted tools that help reduce evaluator variability and 
improve consistency in mammography QC.

 Materials and methods
Data collection
	 Phantom images were acquired using the Planmed 
Sophie Classic mammography system (Planmed Oy, 
Finland) equipped with a digital image receptor and 
the ACR accreditation phantom (Mammo 156 phantom,  
Gammex, USA). The phantom contains three test 
groups—fiber, specks, and masses—comprising 16 
test objects, as illustrated in Figure 1. These objects differ 
in shape, diameter, and thickness and are designed to 
simulate common breast lesions observed in clinical 
mammograms. Specifically, the phantom includes 6 
fibers (F1-F6) with diameters of 1.56, 1.12, 0.89, 0.75, 
0.54, and 0.40 mm; 5 speck groups (S1-S5), each  
containing 6 specks with diameters of 0.54, 0.40, 0.32, 
0.24, and 0.16 mm; and 5 mass objects (M1-M5) with 
decreasing diameters and thicknesses of 2.00, 1.00, 
0.75, 0.50, and 0.25 mm.27

	 The phantom images were acquired using different 
tube voltage and tube current–time product settings 
controlled by the automatic exposure control system.  
Tube voltages ranged from 25 to 30 kVp (in 1 kVp  
increments), while tube current–time products ranged 
from 10 to 303 mAs, corresponding to seven optical  
density levels, as shown in Table 1. Each imaging  
condition was repeated three times. In total, 231 phantom 
images were collected, covering a wide range of image 
quality levels, from optimal (27 kVp, 71 mAs) to both 
lower and higher extremes.
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Image augmentation
	 Artificial Gaussian noise was added to, and  
subsequently removed from, the original images using 
a median filter in ImageJ version 1.54g. This process 
was used to expand the dataset. Three empirically  
selected noise levels-10%, 30%, and 100%—were applied 
to simulate low, medium, and high noise conditions, 
respectively. In this context, the percentages represent 
the relative standard deviation parameter of the Gaussian 
noise within the software and do not be correspond 

to calibrated detector noise levels or specific clinical  
exposure settings.
	 For each of the 231 original images, three noise 
levels and two processing conditions (noisy and median- 
filtered) were generated, producing 1,386 augmented 
images (231×3×2). When combined with the original 
images (N=231), the total dataset consisted of 1,617 
images. The dataset was then randomly divided into 
training (N=1,134; ~70%), validation (N=161; ~10%), 
and test (N=322; ~20%) subsets, as summarized in  
Table 2.

Table 2. Number of images used in the training, validation, and testing subsets.

Number of images

ACR phantom 6 Fibers 5 Specks 5 Masses

Training 1,134 (~70%) 6,804 5,670 5,670

Validation 161 (~10%) 966 805 805

Testing 322 (~20%) 1,932 1,610 1,610

Total 1,617 (100%)
9,702 8,085 8,085

25,872

Table 1. Number of ACR phantom images captured from the Planmed Sophie Classic 
mammography system with various exposure techniques.

Target/filter combination
Exposure techniques

Number of images
kVp mAs

Mo/Mo

25 18-303 36

26 10-225 39

27 10-161 39

28 10-114 39

29 10-85 39

30 10-67 39

Total 231
Note: Mo: molybdenum

Image quality scoring by evaluators
	 This study was approved by the Institutional Review 
Board (IRB No. P1-0091/2567). All images in the training 
and validation subsets were scored by consensus between 
two researchers, while the testing subset was scored 
by consensus between two medical physicists. Each of 
the 16 phantom objects was assigned a score of 0, 0.5, 
or 1 according to the ACR digital mammography phantom 
scoring criteria.28 All images were displayed on a 
2-megapixel monitor, and the window width and level 
were adjusted for optimal viewing conditions based on 
evaluator judgment to ensure consistent and accurate 
scoring.

Image quality scoring by CNN-based AI models 
	 All scored images in the training, validation, and 
testing subsets were cropped at the 16 predefined object 

locations, as shown in Figure 1. From each phantom 
image, 16 object-level images were extracted. This 
resulted in 18,144 training images (1,134×16), 2,576 
validation images (161×16), and 5,152 testing images 
(322×16), as summarized in Table 2. Each object-level 
image was classified into one of three score categories 
(0, 0.5, 1) based on the corresponding image quality 
score. Five convolutional neural network (CNN)-based 
models—LeNet5,4 AlexNet,8 VGG19,11 GoogLeNet,16 
and ResNet5018—were trained and validated for each 
of the 16 test objects. The LeNet5 model was trained 
from scratch using random weight initialization. In  
contrast, AlexNet, VGG19, GoogLeNet, and ResNet50 
were initialized using pre-trained ImageNet weights 
and then fine-tuned on the phantom image dataset. 
This transfer learning strategy was employed to improve  
convergence of the deeper networks considering the 
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relatively small dataset size. All CNN models were 
trained on Google Colab with a Tesla T4 GPU. A learning 
rate of 0.000001 and a batch size of 32 were applied 
consistently across all models. The number of training 
epochs was set to 20 for VGG19, 20 for GoogLeNet, 
30 for AlexNet, 50 for ResNet50, and 60 for LeNet5. 
Training and validation loss and accuracy curves were 

generated for each object and model. These curves 
were used to assess network convergence and to con-
firm the optimization of training parameters, including 
batch size and number of epochs. During inference, the 
trained CNN models predicted image quality scores of 
0, 0.5, or 1 for each test object. 

Figure 1. A: original ACR phantom image, B: a cropped image of 1074x1044 pixels, 
C: A 268x261 pixel cropped image for the 16 test objects. 

Table 3. Analysis of the CNN-based AI models’ performance based on multi-confusion matrix scoring.

Image scoring by CNN-based AI Image scoring by medical physicists

1 0.5 0

1 TP1, TN0.5, TN0 FP1, FN0.5, TN0 FP1, TN0.5, FP0

0.5 FN1, FP0.5, TN0 TN1, TP0.5, TN0 TN1, FP0.5, FP0

0 FN1, TN0.5, FN0 TN1, FN0.5, FN0 TN1, TN0.5, TP0
	 Where:
		  True Positive (TP): AI model correctly scored an image as 1 or 0.5, as marked by the medical physicists.
		  False Positive (FP): AI model incorrectly scored an image, assigning a higher score than the medical physicists.
		  False Negative (FN): AI model incorrectly scored an image, assigning a lower score than the medical physicists.
		  True Negative (TN): AI model correctly scored an image as 0, as marked by the medical physicists.

﻿Performance comparisons for CNN-based AI models 
	 This study compared the performance of five 
CNN-based AI models: LeNet5, AlexNet, VGG19,  
GoogLeNet, and ResNet50. Model performance was 

	 Performance of the five CNN-based AI models 
was then evaluated using accuracy, precision, sensitivity, 
specificity (recall), F1-score, and false positive rate 
(FPR), calculated using Equations (1) to (6) as follows:

	 Accuracy =   TP+FP+FN+TN
TP + TN   	 (1)

	 Precision =   TP+FP
TP   	 (2)

	 Sensitivity =   TP+FN
TP 	 (3)

	 Specificity =   TN+FP
TN   	 (4)

evaluated using a multi-class confusion matrix, in 
which predicted scores were compared against three 
predefined image labels (0, 0.5, and 1) assigned by two 
medical physicists, as presented in Table 3.

	 F1 - score =   precision + sensitivity
2 x precision x sensitivity  	 (5)

	 False Positive Rate = 1 − Specificity	 (6)

	 Equation (7) was used to calculate the percentage 
accuracy of each model. Unlike confusion matrix-based 
metrics, accuracy is calculated by comparing the  
number of correctly predicted images to the total number 
of images, without distinguishing between the FP and 
FN. 

	 %Accuracy =   Total number of images
Number of corrected prediction image  	(7)
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Results
	 The performance of five CNN-based AI models—
LeNet5, AlexNet, VGG19, GoogLeNet, and ResNet50—
was evaluated using key statistical metrics: accuracy, 

precision, sensitivity, specificity (recall), F1-score, and 
FPR. These results are presented in Figures 2-5. The 
analysis focused on classifying fibers, specks, and 
masses in ACR phantom images.

Figure 2. Statistical metrics compared to all CNN-based AI models for classifying fiber objects.

Figure 3. Statistical metrics compared to all CNN-based AI models for classifying speck objects.
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Figure 4. Statistical metrics compared to all CNN-based AI models for classifying mass objects.

Figure 5. Percentage accuracy compared to all CNN-based AI models for classifying fiber, speck and mass objects.

	 The results showed that VGG19 and LeNet5 were 
unable to effectively differentiate object features, 
including size and density. Both models consistently 
produced the same output score of 1 for all test images, 
indicating a failure to distinguish among object classes. 
As a result, these two models were excluded as viable 
classifiers for fiber, speck, and mass objects in the 
phantom dataset.
	 The optimal CNN-based AI model for each object 
group was selected based on comparative statistical 
performance.
	 For the fiber group, GoogLeNet achieved the 
highest classification accuracy and underperformed 
the other models across most statistical metrics, 
while also demonstrating the lowest FPR. Therefore, 
GoogLeNet was identified as the most effective model 
for fiber evaluation.

	 For the speck group, although VGG19 and 
LeNet5 produced high statistical values, their ability 
to differentiate object features (due to identical 
output predictions) limited their usability. In contrast, 
ResNet50 demonstrated the highest accuracy, superior 
performance across key metrics, and the lowest FPR. 
Thus, ResNet50 was selected as the best model for 
speck classification.
	 For the mass group, VGG19 and GoogLeNet 
exhibited similarly high statistical values. However, 
VGG19 was excluded due to its inability to distinguish 
object features, consistently outputting a score of 
1. Although AlexNet achieved the highest accuracy, 
its performance across other statistical metrics was 
inferior to GoogLeNet. Therefore, GoogLeNet was 
determined to be the most suitable model for mass 
object evaluation because it combined the highest 
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accuracy with stronger overall metric performance and 
the lowest FPR.
	 Figure 6 illustrates the performance of GoogLeNet 
in classifying fiber objects in ACR phantom images. In 
general, the FPR increased as fiber size and density 
decreased, except for F6, which had the smallest size 
and lowest density. In contrast, the other statistical 
metrics tended to decrease as fiber size and density 

decreased, except for F6. The GoogLeNet model 
demonstrated strong performance for F1, F2, and F3, 
with FPR values below 0.12 and other performance 
metrics exceeding 0.76.
	 Figure 7 shows the performance of the ResNet50 
model in classifying speck objects. The model achieved 
FPR values below 0.09 and other statistical metrics 
greater than 0.82 for all speck groups, except S4.

Figure 6. Performance of GoogLeNet model in classifying fiber objects in ACR phantom images.

Figure 7. Performance of ResNet50 model in classifying speck objects in ACR phantom images.
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Figure 8. Performance of GoogLeNet model in classifying mass objects in ACR phantom images.

Figure 9. Percentage accuracy of GoogLeNet in classifying fiber and mass objects, 
and the ResNet50 model in classifying speck objects.

	 Figure 8 presents the performance of the 
GoogLeNet model in classifying mass objects. The FPR 
values were below 0.12, while the remaining statistical 
metrics exceeded 0.75 across all mass groups.
	 Figure 9 illustrates the classification accuracy of 
the GoogLeNet model for fiber and mass objects and 
the ResNet50 model for speck objects. The accuracy 

percentages for all 16 object positions were as follows: 
fibers-F1 (98.76%), F2 (91.51%), F3 (75.96%), F4 
(53.33%), F5 (30.90%), and F6 (42.37%); specks-S1 
(99.61%), S2 (99.03%), S3 (82.38%), S4 (64.20%), and 
S5 (100%); masses-M1 (98.53%), M2 (76.96%), M3 
(75.37%), M4 (84.30%), and M5 (89.13%).
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Discussion
	 This study evaluated the performance of five CNN-
based AI models—LeNet5, AlexNet, VGG19, GoogLeNet, 
and ResNet50—in classifying fiber, speck, and mass 
objects in ACR phantom images. Model outputs were 
validated against object classifications performed by 
two medical physicists. The objects differed in shape, 
size, and density, which correspond to characteristics 
of typical lesions observed in clinical mammographic 
images.
	 VGG19 and LeNet5 failed to effectively differentiate 
object features because both models produced uniform 
outputs (score=1) across all test cases. This behavior 
indicates that the models did not learn meaningful 
decision boundaries. A possible cause is activation 
function saturation. Specifically, the original LeNet5 
architecture uses the sigmoid activation function, which 
is prone to saturation. This leads to near-zero gradients, 
causing the vanishing gradient problem and limiting 
effective learning, particularly in deeper architectures. 
Furthermore, training VGG19 from scratch is known 
to be challenging. Issues such as improper weight 
initialization and unsuitable activation functions can 
prevent effective feature learning. These limitations 
may result in constant model outputs, indicating a 
failure to capture discriminative information from the 
input images.
	 According to ACR guidelines, mammographic image 
quality is considered acceptable when the visual image 
score reaches 4 or at least four fibers (F1-F4) are visible, 
a score of 3 or at least three specks (S1-S3) are identified, 
and a score of 3 or at least three masses (M1-M3) are 
detected, covering objects from large to small sizes. 
Based on the results of this study, the GoogLeNet model 
accurately classified F1, F2, and M1 with accuracy 
above 80%. The ResNet50 model effectively classified 
specks S1, S2, and S3, also exceeding 80% accuracy. 
These findings suggest that the prediction performance 
of GoogLeNet and ResNet50 must be improved,  
particularly for F3, F4, M2, and M3, to fully meet clinical 
image quality standards.
	 Although this study provides meaningful  
contributions, several limitations must be considered. 
First, all mammographic images were acquired using a 
single mammography system from one manufacturer 
with a Mo/Mo target/filter combination. Although data 
augmentation increased the dataset size, it did not add 
diversity in terms of vendors, system models, or beam 
qualities. Consequently, the reported performance of 
the CNN-based models may not generalize to phantom 
images acquired on other mammography systems or 
different target/filter combinations (e.g., Mo/Rh or Rh/Rh), 
which are commonly used in clinical quality control. 
To achieve robust and generalizable performance, the 
CNN models must be retrained or fine-tuned using 
phantom images acquired under clinically relevant  
exposure and target/filter configurations for each system.

	 A further limitation involves the imbalance in object 
score distribution. Images with an intermediate score 
of 0.5 were relatively scarce in both the training and 
test sets. This imbalance was most evident for smaller 
objects, which are less likely to be captured by the 
mammography system or reliably detected by human 
observers. Consequently, objects such as F4, F5, S4, 
and M4 often received intermediate scores of 0.5. In 
contrast, larger objects are more consistently captured 
and detected, leading to a score of 1 for F1, F2, M1, M2, 
S1, and S2. The smallest objects, although often not 
captured by the imaging system, were typically classified 
as non-visible and assigned a score of 0, as observed 
for F6, S5, and M5. Consequently, images with scores 
of 0 and 1 were more prevalent than those with a score 
of 0.5. In this study, scores of 1, 0.5, and 0 accounted 
for 56.5%, 19.0%, and 24.5% of all images, respectively, 
confirming that 0.5-score samples were significantly 
underrepresented.
	 All images, including those containing artificial 
Gaussian noise, were scored after data augmentation. 
The added noise can reduce the effective signal-to-
noise ratio and, in some cases, shift clearly visible 
objects (score 1) into borderline cases (score 0.5), 
particularly for low-contrast fibers and masses. However, 
these borderline classifications were influenced not 
only by Gaussian noise but also by intrinsic object size 
and contrast, exposure conditions, and system noise, 
rather than by Gaussian noise alone. Another limitation  
is that data augmentation was limited to additive 
Gaussian noise followed by median filtering. Although 
this method directly targets quantum noise, it does not 
simulate other real-world variations, such as changes in 
positioning, geometric distortions, or subtle differences 
in object shape and contrast. Future studies should  
incorporate more advanced augmentation techniques, 
including small rotations and translations, elastic  
deformations, and controlled contrast or blur adjustments, 
to generate a more realistic and diverse training dataset.
	 As previously mentioned, CNN-based AI models 
have limited learning capacity when trained on under-
represented image categories, particularly those assigned 
a score of 0.5. This class imbalance contributed to the 
reduced detection performance for F4, F5, S4, and 
M4. Increasing the number of images across all score  
categories, particularly for the 0.5 class, would likely 
improve model generalization and overall classification 
performance.
	 Sung Soo Park et al.24 proposed a deep neural  
network-based phantom scoring method using the 
VGG16Net model for ACR phantom image quality  
evaluation. They applied two classification approaches: 
Multi-Class Classification (MCC), using scores of 0, 0.5, 
and 1, and Binary Classification (BCC), where scores 
of 0.5–1 were labeled as passing and 0 as failing. Their  
reported F1-score was 0.69 for MCC and 0.93 for BCC. 
This result indicates inferior performance for MCC, 
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primarily due to class imbalance, especially the limited 
number of images with a score of 0.5. In the present 
study, the average F1-score for MCC was 0.592, which 
supports the same conclusion. The scarcity of 0.5-score 
images restricted model performance in both studies, 
emphasizing the need for a more balanced dataset.
	 Veli-Matti Sundell et al.21 performed ACR phantom 
image quality scoring using a CNN-based AI model 
composed of six convolutional layers and achieved an 
overall accuracy of 95%. Their model was trained on a 
large dataset of 90,288 images, including 4,752 images  
with visible objects (score of 1) and 14,256 images 
with non-visible objects (score of 0), collected from 
eight mammography systems manufactured by three  
manufacturers. The substantial dataset size and system 
diversity enhanced model learning and improved  
generalization. However, their model sensitivity decreased 
as object size decreased, which is consistent with the 
reduced sensitivity for smaller objects observed in this 
study.
	 To address these limitations, future studies should 
use a larger and more diverse dataset that includes  
images of varying quality from multiple imaging systems 
to improve both model training and generalizability 
of CNN-based AI models. Beyond increasing dataset 
size, specific strategies are needed to enrich borderline  
cases (score of 0.5), which are critical for quality control 
decisions. Potential approaches include: (1) acquiring 
additional phantom images at exposure settings that 
produce near-threshold visibility for specific objects;  
(2) applying controlled contrast reduction and localized 
mild blurring to high-quality images to simulate subtle loss 
of conspicuity; (3) generating synthetic phantom images 
or using generative models to simulate near-threshold 
object visibility while preserving realistic background 
and noise characteristics; and (4) employing training 
strategies such as class-balanced sampling, focal loss, 
and cost-sensitive learning to reduce the impact of  
residual class imbalance during model optimization.

Conclusion
	 This study evaluated five CNN-based AI models for 
classifying objects in ACR phantom images. GoogLeNet  
demonstrated the best performance for fiber and  
mass classification, whereas ResNet50 was most  
effective for speck classification. GoogLeNet accurately 
classified fibers F1-F3 with an FPR below 0.12 and other 
statistical metrics above 0.76. It also demonstrated 
strong performance for mass classification, achieving 
an FPR below 0.12 and other statistical values exceeding 
0.75. ResNet50 performed best for speck classification, 
with an FPR below 0.09 and other statistical metrics 
above 0.82, except for S4. Using the best-performing 
models across all 16 object positions, classification 
accuracies were as follows: fibers-F1 (98.76%), F2 
(91.51%), F3 (75.96%), F4 (53.33%), F5 (30.90%), and 
F6 (42.37%); specks-S1 (99.61%), S2 (99.03%), S3 
(82.38%), S4 (64.20%), and S5 (100%); and masses-M1 
(98.53%), M2 (76.96%), M3 (75.37%), M4 (84.30%), and 

M5 (89.13%). Overall, GoogLeNet achieved accuracies 
ranging from 30.9% to 98.8% for fibers and masses,  
whereas ResNet50 achieved 64.2% to 100% for specks. 
To improve clinical applicability and align with ACR  
guidelines, future work should prioritize increasing  
prediction accuracy for intermediate objects, particularly 
for F3, F4, M2, and M3.
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