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ABSTRACT

Background: Detection and classification of microcalcifications in breast tissues is 
crucial for early breast cancer diagnosis and long-term treatment.

Objective: This paper aims to propose a robust model capable of detection and 
classification of breast cancer calcifications in digital mammogram images using 
Deep Convolutional Neural Networks (DCNN).

Materials and methods: An expert breast radiologist annotated the 3,265 clinical 
mammogram images to create a comprehensive ground truth dataset comprising 
2,500 annotations for malignant and benign calcifications. This dataset was utilized 
to train our model, a two-stage detection system incorporating a Region-based 
Convolutional Neural Network (RCNN) with AlexNet and support vector machines 
to enhance the system’s robustness. The proposed model was compared to the 
one-stage detection, utilizing YOLOv4 combined with the Cross-Stage Partial  
Darknet53 (CSPDarknet53) architecture. A separate dataset of 504 mammogram 
images was explicitly set aside for model testing. The efficacy of the proposed 
model was evaluated based on key performance metrics, including precision, recall, 
F1 score, and mean average precision (mAP).

Results: The results showed that the proposed RCNN-2 model could automatically 
identify and categorize calcifications as malignant or benign, outperforming the 
YOLOv4 models. The RCNN-2’s overall effectiveness, as evaluated by precision, recall, 
F1 score, and mean average precision (mAP), achieved scores of 0.82, 0.85, 0.83, 
and 0.74, respectively.

Conclusion: The proposed RCNN-2 model demonstrates very effective detection 
and classification of calcification in mammogram images, especially in high-dense 
breast images. The performance of the proposed model was compared to that of 
YOLOv4, and it can be concluded that the proposed RCNN model yields outstanding 
performance. The model can be a helpful tool for radiologists.
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Introduction 
	 Breast cancer is one of the most common cancers 
and has the highest mortality rate among women 
worldwide. In 2022, the World Health Organization (WHO) 
reported that the first rank of new cancer cases in Thai 
women was breast cancer, with 21,628 patients (23.2%) 
and the second-highest cause of death in the same year.1 

Mammography is a crucial medical imaging technique 
and the gold standard for breast cancer detection.2 Digital 
mammography, which replaces screen-film technology, 
provides superior images.3-5 Its widespread use in breast 
cancer screening and diagnosis has significantly contributed 
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Materials and methods 
	 This research is a retrospective diagnosis that 
received approval from the Institutional Review Boards 
(IRB) of two hospitals that provided digital mammogram 
images. Due to the retrospective nature, informed 
consents from patients were waived. Mammogram 
images from two hospitals were merged to strengthen the 
learning model’s robustness. Patient demographics and 
pathological data were extracted from electronic medical 
records (EMR). The process consists of data preparation, 
model construction, and performance evaluation. 

Data preparation
	 Three thousand two hundred sixty-five clinical 
mammogram images were collected from January 1, 2018, 
to December 31, 2019. The dataset comprises Mediolateral 
Oblique (MLO) and Craniocaudal (CC) views for each breast. 
Breast density categories, routinely assigned by radiologists 
in standard clinical workflows using the BI-RADS system, 
were retrieved from mammography reports.25,26 Malignant 
calcifications on mammograms, identified and reviewed by 
radiologists with histopathological confirmation through 
biopsy, were also utilized as ground truth. Patients lacking 
histopathological data were excluded from the research. 
	 The first step was manually removing artifacts from 
the images, such as location markers and views. Regions 
of Interest (ROIs) were defined and extracted from MLO 
and CC views. The ROIs of suspicious areas were manually 
cropped according to the distribution of calcifications, and 
adjustments were made to ensure that all relevant areas 
were included. ROI criteria were derived from radiological 
and pathological reports executed by expert breast 
radiologists. Each ROIs was saved as a new image with 
227x227 pixels. These ROIs were labeled as one of three 
categories: malignant calcification, benign calcification, or 
normal breast tissue. The number of ROIs per image could 
range from one to four. A total of 5,000 ROI images were 
generated, consisting of 2,500 ROIs identified as malignant 
calcifications, 1,250 as benign calcifications, and another 
1,250 as normal breast tissue. Examples of ROIs for each 
category are shown in Figure 1(a).

to early detection, reducing breast cancer mortality by 
40%.6-8 Microcalcification is an early indicator of breast 
cancer, identified as bright, white spots or dots on the 
breast tissue in mammography images.9,10 Malignant 
calcifications are usually smaller and typically range from 
<0.5-1 mm.
	 In contrast, benign calcifications are generally more 
extensive, with a more defined and coarse appearance.11-13 

However, breast density influences the diagnostic 
sensitivity and efficacy of mammography.14,15 The Breast 
Imaging Reporting and Data System (BI-RADS), developed 
by the American College of Radiology (ACR), indicates 
that high-dense breast tissue significantly impacts 
mammography’s sensitivity and diagnostic accuracy.16-18 

	 Artificial intelligence powered by deep learning 
with the convolutional neural network (CNN) has 
been widely applied in medical imaging.19 They enable 
automatic and adaptive feature learning across low to 
high-level complexity patterns across spatial levels.20,21 In 
Thailand, numerous studies have utilized CNNs for the 
classification of breast cancer in various breast imaging. 
For instance, Aphinives et al. explored AI development 
using free-trial services to detect microcalcifications in 
mammography.22 Additionally, Intasam et al. investigated 
deep learning models for classifying mammograms as 
benign or malignant.23 Recently, Labcharoenwongs et al. 
developed an automated breast tumor detection and 
classification system using deep learning techniques 
based on the computerized analysis of breast ultrasound 
images.24 Despite these advancements, targeted research 
on detecting and classifying microcalcifications remains 
relatively limited, especially in high-density breast tissues.
	 Therefore, this study aims to propose a robust model 
capable of detecting and characterizing breast cancer 
calcifications in digital mammogram images using Deep 
Convolutional Neural Networks (DCNN) by developing a 
two-stage network architecture utilizing authentic clinical 
breast images in various formats, coupled with critical 
parameter adjustments. The model was compared with a 
one-stage network to determine the most suitable method 
for detecting and classifying breast cancer calcifications in 
digital mammography for Thai women.

Figure 1. Example of ROI in three different classes. (a): ROIs for each category, 
(b): Three sets of generated data from ROIs for training CNN.
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	 The next step was to generate data from ROIs for 
training CNN using grayscale normalization, binarization, 
and logical AND operation to obtain grayscale images, 
binary images, and filtered images that represent 
potential real-life scenarios in mammogram imaging, 
as shown in Figure 1(b). For grayscale normalization, 
ROI images were transformed and normalized into 
grayscale with an intensity range between 0 and 1 to 
ensure consistency and remove variations in intensity 
scaling, allowing us to focus on structural attributes and 
intensity fluctuations within the breast tissue that are 
crucial for detecting abnormalities. For binarization, ROI 
images were converted to binary images using adaptive 
thresholding. The foreground polarity was used to specify 
that the desired foreground (object) is brighter than the 
background. A threshold value was estimated by setting 
the sensitivity parameter to 0.5. Any pixels surpassed this 
threshold value were set to 1 (white), while others were 
set to 0 (black). These binary images facilitate feature 
extraction and region-based analysis. For logical operation, 
the AND operator was applied to each grayscale ROI 
image and a binary image to produce a filtered grayscale 

image that highlighted lesions and minimized background 
distractions. This method helped sharpen lesion visibility, 
reduces noise, and preserves essential intensity details 
for better analysis. Consequently, each dataset comprised 
5,000 ROI images.
	 The final stage was to create a ground truth dataset 
for training and evaluating the proposed and comparative 
models. To establish the ground truth dataset, 2,500 
bounding boxes were drawn on 883 mammogram images 
displaying malignant features and annotated on 552 
images identified with benign features. Each mammogram 
image may contain up to four bounding boxes. Expert 
breast radiologists supervised this entire process.

Model construction
	 The proposed model is a two-stage detection system 
based on RCNN using AlexNet as the base network, as 
shown in Figure 2. All computations were performed by 
MATLAB version R2022a on a personal computer (CPU: 
Intel Core i7, RAM: 24 GB RAM, NVIDIA 64-bit operating 
system). A five-fold cross-validation was employed to 
evaluate and select the model. 

Figure 2. CNN backbone architecture.

	 AlexNet was first trained by 4000 cropped ROI images 
that were resized to 227x227 pixels for the input layer to 
improve the classification accuracy. These input data were 
fed to convolutional layers deploying 96 and 256 kernels 
for the initial feature map that were enhanced with max 
pooling and normalization techniques in the first and 
the second layers. Then, feature analysis was performed 
through successive convolutional layers, utilizing 384 
kernels without pooling until the final convolutional layer. 
The final convolutional layer was constructed by utilizing 
256 kernels. The flattening was used to convert the 
2-dimensional arrays obtained from max pooling into a 
vector. The vector was fed to the fully connected layer. The 
network’s final layer was customized to distinctively craft 
for three classes: malignant, benign, and normal tissue. 
The learning rates were increased for quicker adaptation 
to mammogram data. 
	 A five-fold cross-validation process was employed. 
AlexNet models 1 through 5 represented each model built 
from each validation cycle, where the model performances 
were evaluated from randomly segmented data. The 
AlexNet model that demonstrated the highest diagnostic 
precision was chosen as the base network of the RCNN 
framework, ensuring comprehensive validation against 
various data patterns and potential anomalies. 

	 Among the 5,000 ROI images in each dataset, 1,000 
were used as test data, and the remaining 4,000 ROI images 
were divided into a training set (80%) and a validation 
set (20%). The model with the highest performance was 
selected as the base network of the RCNN model. 
	 The proposed RCNN model for calcification detection 
and classification that consisted of two processes was 
constructed starting from using the edge box method27 to 
find the region proposals that might contain calcification 
and using AlexNet as a base network to classify each region 
proposal whether it is malignant or benign as shown in 
Figure 3. This figure shows the proposed two-stage model 
for detecting and classifying breast calcifications. The 
model begins with an edge box method to locate potential 
regions of interest (ROIs) or region proposals containing 
calcifications. These identified region proposals are then 
processed using AlexNet, which serves as the base 
network of the proposed RCNN model. The process starts 
with feature extraction layers, and the sequence involves 
five convolutional layers (Conv) applying filters to regions 
of interest (ROIs) to extract detailed features. The output 
of each layer feeds into the next, while Local Response 
Normalization (N) is applied after the first and second 
pooling layers to normalize the responses. Max pooling (P) 
is applied after the first, second, and fifth convolutional 
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layers to reduce their dimensionality and processed by 
ReLU activation functions. The extracted features are 
flattened and passed through multiple fully connected 
layers to synthesize the learned information. Finally, a 
Support Vector Machine (SVM) is integrated to enhance 
the classification accuracy by optimally separating the 
identified classes with maximum margins, significantly 
boosting the precision and robustness of the model. The 
process culminates in a softmax output layer that classifies 
the regions into malignant or benign categories, clearly 
depicting the classification results. The proposed RCNN 
model was trained with 2,888 images of the whole breast 
randomly selected from the ground truth dataset. The 
remaining 377 images of the entire breast were used as 
test data. 
	 For comparison, the one-stage network model 
utilizes You Only Look Once version 4 (YOLOv4), known 
for its efficient one-stage object detection was also 

implemented. It incorporated the Cross-Stage-Partial-
connections Darknet-53 (CSPDarknet53), a 53-layer CNN 
that used residual connections and Leaky ReLU activation 
to improve training efficiency and accuracy. YOLOv4 was 
trained and tested using the same ground truth dataset, 
ensuring a consistent basis for comparison. 
	 The proposed RCNN model and YOLOv4 were 
trained to utilize the same ground truth dataset. Critical 
hyperparameters such as learning rate, batch size, and 
epochs were meticulously optimized to enhance model 
performance. This optimization developed distinct 
configurations: RCNN Models 1 and 2 and YOLOv4 Models 
1 and 2. Specifically, RCNN Model 1 and YOLOv4-1 shared 
hyperparameters with a learning rate 0.001, a batch size 
of 128, and 50 epochs. Conversely, RCNN Model 2 and 
YOLOv4-2 were configured with a learning rate 0.0001, 
maintaining the same batch size but extending to 100 
epochs.

Figure 3. The proposed two-stage model.

Performance evaluation
	 This research utilized multi-statistical metrics to 
evaluate CNN backbone and the two-stage model and 
to compare the two-stage and one-stage networks. The 
equations used in this research are displayed in Table 1. The 
models’ performances were determined using confusion 

matrices, employing a 3x3 matrix for the multi-class 
classification by AlexNet and a 2x2 matrix for evaluating 
the performance of the proposed RCNN model and 
YOLOv4. These detailed evaluations thoroughly analyzed 
the models’ accuracies and potential utility in medical 
imaging diagnostics. 

Table 1. Confusion matrix of three models.
Evaluation metrics Equation Description
True positive
False positive 
False negative 
True negative

TP
FP
FN
TN

Predicted that a bounding box exists, object is was correct
Predicted that a bounding box exists, but object is was wrong
Did not predict a bounding box, even though an object is there
Not typically defined in the context of object detection evaluation 
metrics.

Precision 
(Positive predictive value)

Probability of the predicted bounding boxes that matched the 
actual ground truth boxes

 Recall 
(Sensitivity, True positive rate)

Probability of correctly detecting ground truth objects

F1 Score A balanced performance measure of the model performance 
(harmonic mean precision and recall)

Micro average F1-Score Sums result from all classes, including TP, FN, and FP, to compute 
an overall F1 score, making it suitable for evaluating models on 
imbalanced datasets.

Macro average F1 score Averages the F1 scores for all classes, treating each equally, and 
is ideal for assessing model performance across varied class 
distributions.

Weighted average F1 score Multiplying each class’s F1 score by its proportion in the dataset 
and then summing these values, providing a metric that accounts 
for class imbalance.

Mean average precision 
(mAP)

Performance measurement across multiple classes
APk is AP of class k, n is the number of classes
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Results
	 The performances of AlexNet across three datasets 
of 5,000 ROI-cropped images using five-fold cross-
validation are shown in Table 2. The results highlight 
that AlexNet4, AlexNet5, and AlexNet6 achieved the 
highest accuracies of 90.40%, 87.10%, and 85.00% for 
the grayscale, binary, and filtered grayscale datasets, 
respectively. The top-performing model for each dataset 
was further evaluated on a separate test set of 1,000 ROI 

images, with the classification outcomes depicted through 
a 3x3 confusion matrix for each dataset, as shown in 
Figure 4. Furthermore, the evaluation of the three AlexNet 
models includes micro average F1 score, macro average F1 
score, and weighted average F1 score, as shown in Table 3. 
Notably, the AlexNet4 model using the grayscale dataset 
outperforms all other F1 scores, leading to its selection as 
the base network of the proposed RCNN model.

Table 2. Performances of AlexNet models on three datasets.
Model Grayscale Binary Filtered grayscale
AlexNet1 89.60 85.30 85.00
AlexNet2 88.80 85.30 84.30
AlexNet3 88.80 86.20 83.80
AlexNet4 90.40 84.30 83.30
AlexNet5 89.33 87.10 85.00

Table 3. Performances of the best AlexNet models across three variations of ROI images.
Dataset Micro average F1 Macro average F1 Weighted F1
AlexNet4 on grayscale 0.90 0.89 0.89
AlexNet5 on binary 0.85 0.84 0.85
AlexNet5 on filtered grayscale 0.87 0.86 0.87

Figure 4. The 3x3 confusion matrices represent the classification results. (a): AlexNet4 on grayscale ROIs, (b): AlexNet5 on 
binary ROIs, (c): AlexNet5 on filtered grayscale ROIs with precision, recall, and F1-score for each class.

	 The proposed RCNN models employing AlexNet4 and 
YOLOv4 with CSPDarknet53 underwent training using the 
same ground truth dataset. The trainings were conducted 
under two different configurations to assess the model’s 

effectiveness and the influence of hyperparameters on 
their performances compared to YOLOv4, as shown in 
Table 4.

Table 4. Hyperparameters and training time of the detection and classification models.
Detector network model Learn rate (LR) Batch size (BS) Epochs Training hours
R-CNN-1 0.001 128 50 34.31+3.50
R-CNN-2 0.0001 128 100 66.77+3.53
YOLOv4-1 0.001 128 50 1.87+0.14
YOLOv4-2 0.0001 128 100 3.46+0.14
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	 RCNN-1, RCNN-2, YOLOv4-1, and YOLOv4-2 were 
performed using a test set of 377 mammogram images. 
Table 5 summarizes the performances of four models 
across various metrics, considering both scenarios with 
a confidence score at a threshold value equal to 0.5 (CF) 
and without a confidence score (No CF), which provides 

a holistic view of model performances. Furthermore, the 
use of five-fold cross-validation and varying confidence 
score threshold values enable detailed calculations of 
average precision and recall for each class, enhancing the 
robustness and clarity of the evaluation.

Table 5. Classification performances of RCNN-1, RCNN-2, YOLOv4-1, and YOLOv4-2 based on precision and recall.

Model Class
  Precision Recall
  No CF CF 0.5 No CF CF 0.5

R-CNN-1

Malignant calcification Average 0.31 0.76 0.51 0.58
  SD 0.03 0.04 0.02 0.01
Benign calcification Average 0.34 0.75 0.54 0.61
  SD 0.03 0.03 0.01 0.03

R-CNN-2

Malignant calcification Average 0.57 0.82 0.83 0.84
  SD 0.05 0.03 0.01 0.02
Benign calcification Average 0.60 0.83 0.83 0.85
  SD 0.05 0.02 0.02 0.02

YOLOv4-1

Malignant calcification Average 0.32 0.79 0.53 0.55
  SD 0.03 0.01 0.03 0.01
Benign calcification Average 0.34 0.78 0.54 0.56
  SD 0.02 0.03 0.03 0.01

YOLOv4-2

Malignant calcification Average 0.44 0.73 0.65 0.75
  SD 0.05 0.04 0.02 0.03
Benign calcification Average 0.43 0.78 0.66 0.78
  SD 0.04 0.07 0.02 0.02

Note: No CF: without a confidence factor, CF 0.5: confidence factor at threshold value equal to 0.5.

Table 6. Performance metrics for the four models.
Model Precision Recall F1 Score mAP

R-CNN-1 0.72
(0.66-0.78)

0.66
(0.58-0.74)

0.69
(0.65-0.73)

0.66
(0.65-0.67)

R-CNN-2 0.82
(0.80-0.84)

0.85
(0.83-0.87)

0.83
(0.82-0.84)

0.74
(0.73-0.75)

YOLOv4-1 0.72
(0.64-0.80)

0.57
(0.54-0.60)

0.64
(0.54-0.74)

0.70
(0.63-0.77)

YOLOv4-2 0.77
(0.73-0.81)

0.78
(0.74-0.80)

0.77
(0.76-0.78)

0.70
(0.66-0.74)

	 Table 6 shows the comparative performance metrics 
of the four models based on average precision, recall, F1-
score, and mean Average Precision (mAP). These values are 
presented along with their ranges to account for variability 

in the five-fold cross-validation process. The results 
indicate that RCNN-2 achieves superior performance 
metrics compared to other models.

Discussion
	 The proposed RCNN model with a grayscale dataset 
achieved superior performance, as evidenced by the 
highest F1 scores. As presented in Figure 5, the comparison 
across different dataset forms clearly shows the advantages 
of using grayscale images. In the grayscale image (Figure 5a), 

essential intensity details are maintained, aiding in the 
more precise differentiation of classes. On the other hand, 
binary and filtered grayscale images (Figure 5b and c) might 
simplify the foreground but at the cost of losing fine details, 
which can be detrimental when analyzing tiny lesions. 
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Figure 5. Images of malignant calcification and benign calcification of breast tissue. 
(a): grayscale, (b): binary, (c): filtered grayscale.

	 This paper proposes the RCNN model that 
underscores the importance of precise hyperparameter 
adjustments, notably in learning rates. Such fine-tuning was 
the key to the RCNN-2 model’s exceptional performance, 
enabling it to analyze complex mammographic patterns 
accurately. Despite newer CNN models, RCNN was 
chosen for its proven efficacy in object-scale datasets like 
mammograms. The RCNN-2 model with a learning rate 
0.0001 and 100 epochs yields the highest precision, recall, 
F1 score, and Map. A low learning rate facilitates a gradual 

understanding of complex patterns in mammogram 
images that could lead to better convergence and enhance 
performance, showcasing its ability to differentiate subtle 
details in dense breast images and, furthermore, setting 
the confidence score threshold at 0.5 enhanced detection 
accuracy across all four models. This threshold level could 
effectively reduce less reliable detections, particularly in 
the cases that contributed to partial false positives and 
false negatives, as depicted in Figure 6. Confidence scoring 
is pivotal in refining model performance.

Figure 6. Utilization of a confidence score helped reduce the impact of unreliable detections that resulted in 
false positives (FP) and false negatives (FN).

	 The RCNN-2 model excels with precision (0.82) 
and recall (0.85), showcasing its strength in accurate 
classification and valid positive identification, resulting in 
an F1 score of 0.83 and mAP of 0.74. Meanwhile, YOLOv4-2 
closely follows precision (0.77) and recall (0.78), with an 
F1 score of 0.77 and mAP of 0.70. Despite lower metrics, 
RCNN-1 and YOLOv4-1 still post F1 scores of 0.69 and 0.64 
with a mAP of 0.70 each. RCNN-2 notably outperforms in 
detecting and classifying calcifications in dense breasts, a 
challenging task due to the overlapping characteristics of 

benign and malignant calcifications. 
	 The proposed model demonstrates its capability to 
distinguish between benign and malignant microcalcifications 
in dense breast tissue, as shown in Figure 7(a). This ability 
indicates that the proposed model can extract and analyze 
distinctive patterns and characteristics hidden within the 
highly dense breasts. Figure 7(b) exemplifies highly dense 
breast tissue accuracy with two correctly classified region 
proposals. Figure 7(c) highlights the ease of detection in a 
non-dense breast due to its sharper background.
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Figure 7. Examples of mammogram images. (a): model’s ability to differentiate between benign and malignant 
microcalcifications in dense breast tissue, (b): two correctly classified region proposals, 

(c): clear detection in a non-dense breast.

	 In clinical validation, the assessment outcomes stem 
from comparing the model results with the diagnostic 
results from the radiologist. This section employed the 
latest mammogram images and preliminary tests to 
demonstrate the model’s effectiveness with current clinical 
mammogram images. The expert breast radiologists agree 
with the detection and classification results obtained 
from the proposed model, demonstrating the model’s 
proficiency in interpreting and classifying mammographic 
abnormalities. Furthermore, it signifies the model’s 
potential as an auxiliary tool in the diagnostic process. 
However, it is essential to acknowledge that the images 
can sometimes lead to disparities in classification. These 
discrepancies typically arise when the contents of some 
images present subtle or ambiguous features that require 
subjective interpretation, especially in high-dense breast 
mammogram images. 	
	 In comparing our research with other studies on 
breast cancer using deep learning, it is evident that 
each approach offers unique insights. Aphinives et al. 
highlighted AI’s capability in detecting microcalcifications 
with a precision of 80.0% and a recall of 12.5%, depending 
on training duration.22 Intasam et al. reported an accuracy 
of 86.76% by evaluating various CNN architectures.23 
Labcharoenwongs et al. advanced a system for tumor 
detection and volume estimation in ultrasound images, 
achieving high accuracy and robust classification.24 Our 
study employs a two-stage detection system using RCNN 
integrated with AlexNet, improving robustness and 
accuracy and addressing both detection and classification 
of microcalcifications in high-density breast tissues. This 
comprehensive approach enhances diagnostic tools for 
early breast cancer detection, especially in challenging 

dense breast tissues, and has been validated in clinical 
settings by expert breast radiologists.

Limitation
	 The limitation of this research is the lack of 
information on female patients who might be suspected 
of having breast cancer; it does not consistently offer 
complete care information, such as pathological reports 
that affect the collection of mammogram images and 
the model’s ability to fully understand and predict based 
on localized demographic and clinical nuances. The 
computational constraints also impact the deep learning 
model’s effectiveness and increase processing times. 

Conclusion 
	 In conclusion, this research successfully addresses 
its objective to develop a robust two-stage Deep 
Convolutional Neural Network (DCNN) model for detecting 
and classifying breast cancer calcifications in digital 
mammogram images. The proposed RCNN model, built 
upon the proposed CNN based on AlexNet, demonstrates 
significant potential in aiding radiologists in identifying 
microcalcifications, particularly within high-density breast 
tissues of Thai subjects. The comparative analysis with the 
one-stage YOLOv4 underscored the superior precision and 
recall scores achieved by our RCNN model, emphasizing 
the benefits of model fine-tuning and training with varied 
datasets. Future research will explore other alternative 
models and develop specifically address the distinct 
features of Thai female breasts, aiming to enhance the 
precision and dependability of breast cancer diagnostics. 
This study also highlights that the identification of breast 
cancer calcifications in highly dense breasts by expert 
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radiologists, combined with a model that, while not the 
latest version, still maintains high capability and is tuned 
with appropriate parameters, can result in artificial 
intelligence aiding healthcare professionals in early breast 
cancer detection. This is particularly crucial in dense 
breast tissues, where traditional mammography may 
falter, aiming to improve patient outcomes and screening 
efficiency.
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