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Objective: This paper aims to propose a robust model capable of detection and
classification of breast cancer calcifications in digital mammogram images using
Deep Convolutional Neural Networks (DCNN).

Materials and methods: An expert breast radiologist annotated the 3,265 clinical
mammogram images to create a comprehensive ground truth dataset comprising
2,500 annotations for malignant and benign calcifications. This dataset was utilized
to train our model, a two-stage detection system incorporating a Region-based
Convolutional Neural Network (RCNN) with AlexNet and support vector machines
to enhance the system’s robustness. The proposed model was compared to the
one-stage detection, utilizing YOLOv4 combined with the Cross-Stage Partial
Darknet53 (CSPDarknet53) architecture. A separate dataset of 504 mammogram
images was explicitly set aside for model testing. The efficacy of the proposed
model was evaluated based on key performance metrics, including precision, recall,
F1 score, and mean average precision (mAP).

Results: The results showed that the proposed RCNN-2 model could automatically
identify and categorize calcifications as malignant or benign, outperforming the
YOLOv4 models. The RCNN-2’s overall effectiveness, as evaluated by precision, recall,
F1 score, and mean average precision (mAP), achieved scores of 0.82, 0.85, 0.83,
and 0.74, respectively.

Conclusion: The proposed RCNN-2 model demonstrates very effective detection
and classification of calcification in mammogram images, especially in high-dense
breast images. The performance of the proposed model was compared to that of
YOLOv4, and it can be concluded that the proposed RCNN model yields outstanding
performance. The model can be a helpful tool for radiologists.

Introduction

Breast cancer is one of the most common cancers
and has the highest mortality rate among women
worldwide. In 2022, the World Health Organization (WHO)
reported that the first rank of new cancer cases in Thai
women was breast cancer, with 21,628 patients (23.2%)
and the second-highest cause of death in the same year.!
Mammography is a crucial medical imaging technique
and the gold standard for breast cancer detection.? Digital
mammography, which replaces screen-film technology,
provides superior images.®>® Its widespread use in breast
cancer screening and diagnosis has significantly contributed
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to early detection, reducing breast cancer mortality by
40%.58 Microcalcification is an early indicator of breast
cancer, identified as bright, white spots or dots on the
breast tissue in mammography images.>!® Malignant
calcifications are usually smaller and typically range from
<0.5-1 mm.

In contrast, benign calcifications are generally more
extensive, with a more defined and coarse appearance.'**3
However, breast density influences the diagnostic
sensitivity and efficacy of mammography.'**> The Breast
Imaging Reporting and Data System (BI-RADS), developed
by the American College of Radiology (ACR), indicates
that high-dense breast tissue significantly impacts
mammography’s sensitivity and diagnostic accuracy.!¢®

Artificial intelligence powered by deep learning
with the convolutional neural network (CNN) has
been widely applied in medical imaging.®* They enable
automatic and adaptive feature learning across low to
high-level complexity patterns across spatial levels.?%?! In
Thailand, numerous studies have utilized CNNs for the
classification of breast cancer in various breast imaging.
For instance, Aphinives et al. explored Al development
using free-trial services to detect microcalcifications in
mammography.? Additionally, Intasam et al. investigated
deep learning models for classifying mammograms as
benign or malignant.?® Recently, Labcharoenwongs et al.
developed an automated breast tumor detection and
classification system using deep learning techniques
based on the computerized analysis of breast ultrasound
images.?* Despite these advancements, targeted research
on detecting and classifying microcalcifications remains
relatively limited, especially in high-density breast tissues.

Therefore, this study aims to propose a robust model
capable of detecting and characterizing breast cancer
calcifications in digital mammogram images using Deep
Convolutional Neural Networks (DCNN) by developing a
two-stage network architecture utilizing authentic clinical
breast images in various formats, coupled with critical
parameter adjustments. The model was compared with a
one-stage network to determine the most suitable method
for detecting and classifying breast cancer calcifications in
digital mammography for Thai women.

Malignant Benign Normal
calcification Breast

calcification

Materials and methods

This research is a retrospective diagnosis that
received approval from the Institutional Review Boards
(IRB) of two hospitals that provided digital mammogram
images. Due to the retrospective nature, informed
consents from patients were waived. Mammogram
images from two hospitals were merged to strengthen the
learning model’s robustness. Patient demographics and
pathological data were extracted from electronic medical
records (EMR). The process consists of data preparation,
model construction, and performance evaluation.

Data preparation

Three thousand two hundred sixty-five clinical
mammogram images were collected from January 1, 2018,
to December 31, 2019. The dataset comprises Mediolateral
Oblique (MLO) and Craniocaudal (CC) views for each breast.
Breast density categories, routinely assigned by radiologists
in standard clinical workflows using the BI-RADS system,
were retrieved from mammography reports.?>?¢ Malignant
calcifications on mammograms, identified and reviewed by
radiologists with histopathological confirmation through
biopsy, were also utilized as ground truth. Patients lacking
histopathological data were excluded from the research.

The first step was manually removing artifacts from
the images, such as location markers and views. Regions
of Interest (ROIs) were defined and extracted from MLO
and CC views. The ROIs of suspicious areas were manually
cropped according to the distribution of calcifications, and
adjustments were made to ensure that all relevant areas
were included. ROI criteria were derived from radiological
and pathological reports executed by expert breast
radiologists. Each ROIs was saved as a new image with
227x227 pixels. These ROIs were labeled as one of three
categories: malignant calcification, benign calcification, or
normal breast tissue. The number of ROls per image could
range from one to four. A total of 5,000 ROl images were
generated, consisting of 2,500 ROlIs identified as malignant
calcifications, 1,250 as benign calcifications, and another
1,250 as normal breast tissue. Examples of ROIs for each
category are shown in Figure 1(a).

Malignant
calcification

Benign
calcification

Normal
Breast

(b)

(a)

Figure 1. Example of ROI in three different classes. (a): ROIs for each category,
(b): Three sets of generated data from ROIs for training CNN.
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The next step was to generate data from ROIs for
training CNN using grayscale normalization, binarization,
and logical AND operation to obtain grayscale images,
binary images, and filtered images that represent
potential real-life scenarios in mammogram imaging,
as shown in Figure 1(b). For grayscale normalization,
ROl images were transformed and normalized into
grayscale with an intensity range between 0 and 1 to
ensure consistency and remove variations in intensity
scaling, allowing us to focus on structural attributes and
intensity fluctuations within the breast tissue that are
crucial for detecting abnormalities. For binarization, ROI
images were converted to binary images using adaptive
thresholding. The foreground polarity was used to specify
that the desired foreground (object) is brighter than the
background. A threshold value was estimated by setting
the sensitivity parameter to 0.5. Any pixels surpassed this
threshold value were set to 1 (white), while others were
set to 0 (black). These binary images facilitate feature
extraction and region-based analysis. For logical operation,
the AND operator was applied to each grayscale ROI
image and a binary image to produce a filtered grayscale

ROI Extraction

Three datasets Convolutional layer

image that highlighted lesions and minimized background
distractions. This method helped sharpen lesion visibility,
reduces noise, and preserves essential intensity details
for better analysis. Consequently, each dataset comprised
5,000 ROl images.

The final stage was to create a ground truth dataset
for training and evaluating the proposed and comparative
models. To establish the ground truth dataset, 2,500
bounding boxes were drawn on 883 mammogram images
displaying malignant features and annotated on 552
images identified with benign features. Each mammogram
image may contain up to four bounding boxes. Expert
breast radiologists supervised this entire process.

Model construction

The proposed model is a two-stage detection system
based on RCNN using AlexNet as the base network, as
shown in Figure 2. All computations were performed by
MATLAB version R2022a on a personal computer (CPU:
Intel Core i7, RAM: 24 GB RAM, NVIDIA 64-bit operating
system). A five-fold cross-validation was employed to
evaluate and select the model.

Malignant Calcification

Out put
Soft Benign Calcification

Max

m»| Normal Breast

Fully Connected layer

Figure 2. CNN backbone architecture.

AlexNet was first trained by 4000 cropped ROl images
that were resized to 227x227 pixels for the input layer to
improve the classification accuracy. These input data were
fed to convolutional layers deploying 96 and 256 kernels
for the initial feature map that were enhanced with max
pooling and normalization techniques in the first and
the second layers. Then, feature analysis was performed
through successive convolutional layers, utilizing 384
kernels without pooling until the final convolutional layer.
The final convolutional layer was constructed by utilizing
256 kernels. The flattening was used to convert the
2-dimensional arrays obtained from max pooling into a
vector. The vector was fed to the fully connected layer. The
network’s final layer was customized to distinctively craft
for three classes: malignant, benign, and normal tissue.
The learning rates were increased for quicker adaptation
to mammogram data.

A five-fold cross-validation process was employed.
AlexNet models 1 through 5 represented each model built
from each validation cycle, where the model performances
were evaluated from randomly segmented data. The
AlexNet model that demonstrated the highest diagnostic
precision was chosen as the base network of the RCNN
framework, ensuring comprehensive validation against
various data patterns and potential anomalies.

Among the 5,000 ROI images in each dataset, 1,000
were used as test data, and the remaining 4,000 ROl images
were divided into a training set (80%) and a validation
set (20%). The model with the highest performance was
selected as the base network of the RCNN model.

The proposed RCNN model for calcification detection
and classification that consisted of two processes was
constructed starting from using the edge box method? to
find the region proposals that might contain calcification
and using AlexNet as a base network to classify each region
proposal whether it is malignant or benign as shown in
Figure 3. This figure shows the proposed two-stage model
for detecting and classifying breast calcifications. The
model begins with an edge box method to locate potential
regions of interest (ROIs) or region proposals containing
calcifications. These identified region proposals are then
processed using AlexNet, which serves as the base
network of the proposed RCNN model. The process starts
with feature extraction layers, and the sequence involves
five convolutional layers (Conv) applying filters to regions
of interest (ROIs) to extract detailed features. The output
of each layer feeds into the next, while Local Response
Normalization (N) is applied after the first and second
pooling layers to normalize the responses. Max pooling (P)
is applied after the first, second, and fifth convolutional
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layers to reduce their dimensionality and processed by
RelLU activation functions. The extracted features are
flattened and passed through multiple fully connected
layers to synthesize the learned information. Finally, a
Support Vector Machine (SVM) is integrated to enhance
the classification accuracy by optimally separating the
identified classes with maximum margins, significantly
boosting the precision and robustness of the model. The
process culminates in a softmax output layer that classifies
the regions into malignant or benign categories, clearly
depicting the classification results. The proposed RCNN
model was trained with 2,888 images of the whole breast
randomly selected from the ground truth dataset. The
remaining 377 images of the entire breast were used as
test data.

For comparison, the one-stage network model
utilizes You Only Look Once version 4 (YOLOv4), known
for its efficient one-stage object detection was also
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implemented. It incorporated the Cross-Stage-Partial-
connections Darknet-53 (CSPDarknet53), a 53-layer CNN
that used residual connections and Leaky RelU activation
to improve training efficiency and accuracy. YOLOv4 was
trained and tested using the same ground truth dataset,
ensuring a consistent basis for comparison.

The proposed RCNN model and YOLOv4 were
trained to utilize the same ground truth dataset. Critical
hyperparameters such as learning rate, batch size, and
epochs were meticulously optimized to enhance model
performance. This optimization developed distinct
configurations: RCNN Models 1 and 2 and YOLOv4 Models
1 and 2. Specifically, RCNN Model 1 and YOLOv4-1 shared
hyperparameters with a learning rate 0.001, a batch size
of 128, and 50 epochs. Conversely, RCNN Model 2 and
YOLOv4-2 were configured with a learning rate 0.0001,
maintaining the same batch size but extending to 100
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Figure 3. The proposed two-stage model.

Performance evaluation

This research utilized multi-statistical metrics to
evaluate CNN backbone and the two-stage model and
to compare the two-stage and one-stage networks. The
equations used in this research are displayed in Table 1. The
models’ performances were determined using confusion

Table 1. Confusion matrix of three models.

matrices, employing a 3x3 matrix for the multi-class
classification by AlexNet and a 2x2 matrix for evaluating
the performance of the proposed RCNN model and
YOLOv4. These detailed evaluations thoroughly analyzed
the models’ accuracies and potential utility in medical
imaging diagnostics.

Evaluation metrics Equation Description

True positive TP Predicted that a bounding box exists, object is was correct

False positive FP Predicted that a bounding box exists, but object is was wrong

False negative FN Did not predict a bounding box, even though an object is there

True negative TN Not typically defined in the context of object detection evaluation
metrics.

Precision TP Correct Predictions Probability of the predicted bounding boxes that matched the

(Positive predictive value) TP+FP _ Total Predictions actual ground truth boxes

Recall TP Correct Predictions Probability of correctly detecting ground truth objects

(Sensitivity, True positive rate) TP +FN Total GroundTruth

F1 Score Precision X Recall A balanced performance measure of the model performance

Precision + Recall

(harmonic mean precision and recall)

Micro average F1-Score
€ S TR

i=1 TR + 1/2(X1, FP + XiL, FNy)

Sums result from all classes, including TP, FN, and FP, to compute
an overall F1 score, making it suitable for evaluating models on
imbalanced datasets.

Macro average F1 score T F1_Score;

n

Averages the F1 scores for all classes, treating each equally, and
is ideal for assessing model performance across varied class
distributions.

Weighted average F1 score
Wi X F1_Score;

i=1

Multiplying each class’s F1 score by its proportion in the dataset
and then summing these values, providing a metric that accounts
for class imbalance.

Mean average precision
(mAP)

k=n
Z APk
=1

Performance measurement across multiple classes
AP, is AP of class k, n is the number of classes
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Results

The performances of AlexNet across three datasets
of 5,000 ROIl-cropped images using five-fold cross-
validation are shown in Table 2. The results highlight
that AlexNet4, AlexNet5, and AlexNet6 achieved the
highest accuracies of 90.40%, 87.10%, and 85.00% for
the grayscale, binary, and filtered grayscale datasets,
respectively. The top-performing model for each dataset
was further evaluated on a separate test set of 1,000 ROI
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images, with the classification outcomes depicted through
a 3x3 confusion matrix for each dataset, as shown in
Figure 4. Furthermore, the evaluation of the three AlexNet
models includes micro average F1 score, macro average F1
score, and weighted average F1 score, as shown in Table 3.
Notably, the AlexNet4 model using the grayscale dataset
outperforms all other F1 scores, leading to its selection as
the base network of the proposed RCNN model.

Table 2. Performances of AlexNet models on three datasets.

Model Grayscale Binary Filtered grayscale
AlexNet1 89.60 85.30 85.00
AlexNet2 88.80 85.30 84.30
AlexNet3 88.80 86.20 83.80
AlexNet4 90.40 84.30 83.30
AlexNet5 89.33 87.10 85.00
True Class True Class True Class
Malignant Normal Benign Malignant Normal Benign Malignant Normal Benign

calcification Breast Calcification calcification
£
z8 2§
28 462 28 450
S o
e (924%) Eed  (90.0%)
=3 o =3
£
8 £ 2 1 2 3E g 0
0. 0. =} .|
E S5 (0.2%) (0.8%) %25 (0.0%)
o [
F .- £ <
5% £s
& 186 23
oS (74.4%) =
8 @2
(3]

Breast Calcification calcification Breast Calcification

Malignant
calcification

250

0 0 0
(0.0%) (0.0%) (100%) (0.0%)

Normal

Predicted Class
Calcification Breast

Benign

Class Precision  Recall F1-Score Class

Precision _ Recall F1-Score Class Precision _ Recall _ F1-Score

Malignant calcification 0.88 0.92 0.90

Malignant calcification

0.82 0.90 0.86 Malignant calcification 0.84 0.92 0.88

Benign Calcification 0.83 0.74 0.79 Benign Calcification

0.60 0.75 0.67 Benign Calcification 0.80 0.65 0.72

Normal Breast 0.99 0.99 0.99 Normal Breast

1.00 1.00 1.00 Normal Breast 1.00 1.00 1.00

(a)

(b) (c)

Figure 4. The 3x3 confusion matrices represent the classification results. (a): AlexNet4 on grayscale ROIs, (b): AlexNet5 on
binary ROIs, (c): AlexNet5 on filtered grayscale ROIs with precision, recall, and F1-score for each class.

Table 3. Performances of the best AlexNet models across three variations of ROl images.

Micro average F1

Macro average F1 Weighted F1

Dataset

AlexNet4 on grayscale 0.90
AlexNet5 on binary 0.85
AlexNet5 on filtered grayscale 0.87

0.89 0.89
0.84 0.85
0.86 0.87

The proposed RCNN models employing AlexNet4 and
YOLOv4 with CSPDarknet53 underwent training using the
same ground truth dataset. The trainings were conducted
under two different configurations to assess the model’s

effectiveness and the influence of hyperparameters on
their performances compared to YOLOv4, as shown in
Table 4.

Table 4. Hyperparameters and training time of the detection and classification models.

Detector network model Learn rate (LR)  Batch size (BS) Epochs  Training hours
R-CNN-1 0.001 128 50 34.31+3.50
R-CNN-2 0.0001 128 100 66.77+3.53
YOLOv4-1 0.001 128 50 1.87+0.14
YOLOv4-2 0.0001 128 100 3.46+0.14
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RCNN-1, RCNN-2, YOLOv4-1, and YOLOv4-2 were
performed using a test set of 377 mammogram images.
Table 5 summarizes the performances of four models
across various metrics, considering both scenarios with
a confidence score at a threshold value equal to 0.5 (CF)
and without a confidence score (No CF), which provides

a holistic view of model performances. Furthermore, the
use of five-fold cross-validation and varying confidence
score threshold values enable detailed calculations of
average precision and recall for each class, enhancing the
robustness and clarity of the evaluation.

Table 5. Classification performances of RCNN-1, RCNN-2, YOLOv4-1, and YOLOv4-2 based on precision and recall.

Precision Recall
Model Class
No CF CF 0.5 No CF CF 0.5
Malignant calcification Average 0.31 0.76 0.51 0.58
SD 0.03 0.04 0.02 0.01
R-CNN-1
Benign calcification Average 0.34 0.75 0.54 0.61
SD 0.03 0.03 0.01 0.03
Malignant calcification Average 0.57 0.82 0.83 0.84
SD 0.05 0.03 0.01 0.02
R-CNN-2
Benign calcification Average 0.60 0.83 0.83 0.85
SD 0.05 0.02 0.02 0.02
Malignant calcification Average 0.32 0.79 0.53 0.55
SD 0.03 0.01 0.03 0.01
YOLOv4-1
Benign calcification Average 0.34 0.78 0.54 0.56
SD 0.02 0.03 0.03 0.01
Malignant calcification Average 0.44 0.73 0.65 0.75
SD 0.05 0.04 0.02 0.03
YOLOv4-2
Benign calcification Average 0.43 0.78 0.66 0.78
SD 0.04 0.07 0.02 0.02

Note: No CF: without a confidence factor, CF 0.5: confidence factor at threshold value equal to 0.5.

Table 6 shows the comparative performance metrics
of the four models based on average precision, recall, F1-
score, and mean Average Precision (mAP). These values are
presented along with their ranges to account for variability

in the five-fold cross-validation process. The results
indicate that RCNN-2 achieves superior performance
metrics compared to other models.

Table 6. Performance metrics for the four models.

Model Precision Recall F1 Score mAP
RCNN.L 0.72 0.66 0.69 0.66
(0.66-0.78) (0.58-0.74) (0.65-0.73) (0.65-0.67)
R.CNN-2 0.82 0.85 0.83 0.74
(0.80-0.84) (0.83-0.87) (0.82-0.84) (0.73-0.75)
0.72 0.57 0.64 0.70
YOLOv4-1 (0.64-0.80) (0.54-0.60) (0.54-0.74) (0.63-0.77)
0.77 0.78 0.77 0.70
YOLOv4-2 (0.73-0.81) (0.74-0.80) (0.76-0.78) (0.66-0.74)

The proposed RCNN model with a grayscale dataset
achieved superior performance, as evidenced by the
highest F1 scores. As presented in Figure 5, the comparison
across different dataset forms clearly shows the advantages
of using grayscale images. In the grayscale image (Figure 5a),

essential intensity details are maintained, aiding in the
more precise differentiation of classes. On the other hand,
binary and filtered grayscale images (Figure 5b and c) might
simplify the foreground but at the cost of losing fine details,
which can be detrimental when analyzing tiny lesions.
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(b)

Figure 5. Images of malignant calcification and benign calcification of breast tissue.
(a): grayscale, (b): binary, (c): filtered grayscale.

This paper proposes the RCNN model that
underscores the importance of precise hyperparameter
adjustments, notablyin learningrates. Such fine-tuning was
the key to the RCNN-2 model’s exceptional performance,
enabling it to analyze complex mammographic patterns
accurately. Despite newer CNN models, RCNN was
chosen for its proven efficacy in object-scale datasets like
mammograms. The RCNN-2 model with a learning rate
0.0001 and 100 epochs yields the highest precision, recall,
F1 score, and Map. A low learning rate facilitates a gradual

Confidence score filter

understanding of complex patterns in mammogram
images that could lead to better convergence and enhance
performance, showcasing its ability to differentiate subtle
details in dense breast images and, furthermore, setting
the confidence score threshold at 0.5 enhanced detection
accuracy across all four models. This threshold level could
effectively reduce less reliable detections, particularly in
the cases that contributed to partial false positives and
false negatives, as depicted in Figure 6. Confidence scoring
is pivotal in refining model performance.

Figure 6. Utilization of a confidence score helped reduce the impact of unreliable detections that resulted in
false positives (FP) and false negatives (FN).

The RCNN-2 model excels with precision (0.82)
and recall (0.85), showcasing its strength in accurate
classification and valid positive identification, resulting in
an F1score of 0.83 and mAP of 0.74. Meanwhile, YOLOv4-2
closely follows precision (0.77) and recall (0.78), with an
F1 score of 0.77 and mAP of 0.70. Despite lower metrics,
RCNN-1 and YOLOv4-1 still post F1 scores of 0.69 and 0.64
with a mAP of 0.70 each. RCNN-2 notably outperforms in
detecting and classifying calcifications in dense breasts, a
challenging task due to the overlapping characteristics of

benign and malignant calcifications.

The proposed model demonstrates its capability to
distinguish between benign and malignant microcalcifications
in dense breast tissue, as shown in Figure 7(a). This ability
indicates that the proposed model can extract and analyze
distinctive patterns and characteristics hidden within the
highly dense breasts. Figure 7(b) exemplifies highly dense
breast tissue accuracy with two correctly classified region
proposals. Figure 7(c) highlights the ease of detection in a
non-dense breast due to its sharper background.
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Figure 7. Examples of mammogram images. (a): model’s ability to differentiate between benign and malignant
microcalcifications in dense breast tissue, (b): two correctly classified region proposals,
(c): clear detection in a non-dense breast.

In clinical validation, the assessment outcomes stem
from comparing the model results with the diagnostic
results from the radiologist. This section employed the
latest mammogram images and preliminary tests to
demonstrate the model’s effectiveness with current clinical
mammogram images. The expert breast radiologists agree
with the detection and classification results obtained
from the proposed model, demonstrating the model’s
proficiency in interpreting and classifying mammographic
abnormalities. Furthermore, it signifies the model’s
potential as an auxiliary tool in the diagnostic process.
However, it is essential to acknowledge that the images
can sometimes lead to disparities in classification. These
discrepancies typically arise when the contents of some
images present subtle or ambiguous features that require
subjective interpretation, especially in high-dense breast
mammogram images.

In comparing our research with other studies on
breast cancer using deep learning, it is evident that
each approach offers unique insights. Aphinives et al.
highlighted Al’s capability in detecting microcalcifications
with a precision of 80.0% and a recall of 12.5%, depending
on training duration.?? Intasam et al. reported an accuracy
of 86.76% by evaluating various CNN architectures.?
Labcharoenwongs et al. advanced a system for tumor
detection and volume estimation in ultrasound images,
achieving high accuracy and robust classification.?* Our
study employs a two-stage detection system using RCNN
integrated with AlexNet, improving robustness and
accuracy and addressing both detection and classification
of microcalcifications in high-density breast tissues. This
comprehensive approach enhances diagnostic tools for
early breast cancer detection, especially in challenging

dense breast tissues, and has been validated in clinical
settings by expert breast radiologists.

Limitation

The limitation of this research is the lack of
information on female patients who might be suspected
of having breast cancer; it does not consistently offer
complete care information, such as pathological reports
that affect the collection of mammogram images and
the model’s ability to fully understand and predict based
on localized demographic and clinical nuances. The
computational constraints also impact the deep learning
model’s effectiveness and increase processing times.

Conclusion

In conclusion, this research successfully addresses
its objective to develop a robust two-stage Deep
Convolutional Neural Network (DCNN) model for detecting
and classifying breast cancer calcifications in digital
mammogram images. The proposed RCNN model, built
upon the proposed CNN based on AlexNet, demonstrates
significant potential in aiding radiologists in identifying
microcalcifications, particularly within high-density breast
tissues of Thai subjects. The comparative analysis with the
one-stage YOLOv4 underscored the superior precision and
recall scores achieved by our RCNN model, emphasizing
the benefits of model fine-tuning and training with varied
datasets. Future research will explore other alternative
models and develop specifically address the distinct
features of Thai female breasts, aiming to enhance the
precision and dependability of breast cancer diagnostics.
This study also highlights that the identification of breast
cancer calcifications in highly dense breasts by expert
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radiologists, combined with a model that, while not the
latest version, still maintains high capability and is tuned
with appropriate parameters, can result in artificial
intelligence aiding healthcare professionals in early breast
cancer detection. This is particularly crucial in dense
breast tissues, where traditional mammography may
falter, aiming to improve patient outcomes and screening
efficiency.
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