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ABSTRACT

Background: Glioma is the most common brain tumor in adult patients and requires 
accurate treatment. The delineation of tumor boundaries must be accurate and 
precise, which is crucial for treatment planning. Currently, delineating boundaries 
for tumors is a tedious, time-consuming task and may be prone to human error 
among oncologists. Therefore, artificial intelligence plays a vital role in reducing 
these problems.

Objective: This study aims to find a relationship between improving image 
enhancement and evaluating the performance of deep learning models for 
segmenting glioma image data on brain MRI images.

Materials and methods: The BraTs2023 dataset was used in this study. The image 
dataset was converted from three dimensions to two dimensions and then subjected 
to pre-processing via four image enhancement techniques, including contrast-limited 
adaptive histogram equalization (CLAHE), gamma correction (GC), non-local mean 
filter (NLMF), and median and Wiener filter (MWF). Subsequently, it was evaluated 
for structural similarity index (SSIM) and mean squared error. The deep learning 
segmentation model was created using the U-Net architecture and assessed for 
dice similarity coefficient (DSC), accuracy, precision, recall, F1-score, and Jaccard 
index for tumor segmentation.

Results: The performance of enhanced image results for CLAHE, GC, NLMF, and 
MWF techniques shows SSIM values of 0.912, 0.905, 0.999, and 0.911, respectively. 
The dice similarity coefficient (DSC) for segmentation without image enhancement 
was 0.817. The DSC of segmentation for CLAHE, GC, NLMF, and MWF techniques 
were 0.818, 0.812, 0.820, and 0.797, respectively.

Conclusion: The enhanced image technique could affect the performance of tumor 
segmentation. by the enhanced image for use in a trained model may increase or 
decrease performance depending on the chosen image enhancement technique 
and the parameters determined by each method.
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Introduction
	 Glioma is the most frequent primary central nervous 
system cancer in adults, exhibiting extreme intrinsic 
heterogeneity in appearance, shape, and histology. Gliomas 
can be classified into high-grade glioma (HGG) and low-
grade glioma (LGG). The prognosis of gliomas depends on 
the grade and genomic profile. HGG is a tumor that shows a 
severe clinical prognosis and rapid invasion, with a median 
survival rate of two years or less. It differs from low-grade 
glioma in that it has a worse prognosis and is more invasive 
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or noninvasive.1,2 Whether HGG or LGG, there is a similarity 
in the tumor volume, including the whole tumor, tumor 
core, and active tumor region. As a result, many different 
types of MR imaging exist because the T1-weighted MRI 
image can’t clearly define the tumor boundary. Therefore, 
other types of MR imaging, such as T1-contrast, T2-
weighted, and T2-FLAIR, are used to indicate the three 
tumor regions mentioned clearly. Accurate identification of 
brain tumor sub-regions boundaries in MRI is of profound 
importance in many clinical applications, such as tumor 
detection, treatment planning, image-guided procedures, 
and monitoring tumor growth. However, manual tumor 
detection and delineation are tedious, time-consuming, 
and depend on the experience of the oncologist. This 
may cause human error while delineating the boundaries 
of the tumor, including disruption of work when dealing 
with many patients.3 For the above reasons, automatic 
tumor boundaries delineation is necessary to reduce the 
problems mentioned.
	 The science of deep learning has been used to 
develop knowledge. Deep learning is a part of the science 
of artificial intelligence. Since deep learning is more 
flexible than machine learning, it can automatically find 
features within image data. For this reason, deep learning 
is popular in medical image segmentation. Nevertheless, 
Lin M et al. 4’s research found a Dice Similarity Coefficient 
(DSC) of 0.887. The study of Franziska Knuth et al.5 found 
a DSC of 0.770, and the research of Zhao C et al.6 found 
a DSC of 0.774. The results depend on various factors, 
including the architecture used, specific details related 
to deep learning modeling, and the image quality used 
to train the deep learning model. The research of Güneş 
AM et al.7 shows that image quality affects the quality of 
the segmentation model. When the dataset has increased 

noise and artifacts during the training of a large dataset, 
the model’s performance increases, which shouldn’t be 
the case. Therefore, the researcher is interested in studying 
the comparison of pre-processing methods to improve the 
performance of image segmentation of glioma on brain 
MRI images using deep learning. The objective is to find a 
relationship between improving image enhancement and 
the performance of deep learning models and to develop 
a deep learning model for segmenting glioma image data 
on brain MRI images.

Materials and methods
	 This study conducted a comparative analysis of 
pre-processing methods aimed at enhancing glioma 
segmentation performance in brain MRI using deep 
learning. It consists of two main parts: the first part 
compares the effectiveness of various pre-processing 
methods, while the second part assesses the performance 
of the deep learning model, as shown in Figure 1. Initially, 
the input image dataset is fed into the program, followed 
by image pre-processing, which involves converting 
3D images to 2D grayscale images and resizing them 
to 128x128 pixels. Subsequently, the image dataset 
undergoes enhancement techniques and is evaluated 
using metrics such as the Structural Similarity Index and the 
Mean Squared Error. The enhanced dataset is then utilized 
to train and test the deep learning model. Finally, the 
model’s performance is evaluated using metrics including 
the Dice similarity coefficient, F1 score, Jaccard similarity 
coefficient, recall, precision, and accuracy. The result is 
a predicted mask. The study’s detailed aspects include 
patient data preparation, pre-processing techniques, 
tumor segmentation architecture, model training, and 
statistical analysis.

Figure 1 Workflows of image enhancement and model.
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Patient data preparing 
	 The MR images used in this study were collected 
from a public dataset, the Brain Tumor Segmentation 
(BraTS) Challenge 2023 dataset.1,3,8 The dataset comprises 
T1, post-contrast T1-weighted (T1Gd), T2-weighted, 
and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) 
MR images of 1,470 brain glioma patients. The volume 
of 3D MR images is 240×240×155 pixels, and the image 
voxel size is 1.0 mm3. The ground truth includes the GD-
enhancing tumor region, the peritumoral edematous 
or invaded tissue region, and the necrotic tumor core 
region. Experienced neuroradiologists approved these 
annotations.

Pre-processing technique
	 The 3D image files in nii.gz format are converted 
to 2D image files with the png extension. This process 
involves selecting only the axial MRI images from all four 
types of MRI images, with the condition that a mask must 
be present and the extent of the tumor is more than 
1% compared to all the data within the mask. The result 
yields 54,031 axial images for each type. Subsequently, 
5,000 images are randomly selected, and the image 
and mask data are transformed into numpy arrays (npy 
file extension). Additionally, the images are resized and 
converted to grayscale, resulting in image and mask data 
with dimensions of 128×128×1.
	 This study applies four image enhancement 
techniques, including contrast-limited adaptive histogram 
equalization, gamma correction, non-local mean filter, 
and median and Wiener filter, to enhance the details of all 
images. Each technique is explained in detail as follows:

Contrast-Limited Adaptive Histogram Equalization (CLAHE)
	 CLAHE is a technique for reducing noise and over-
enhancement by dividing the image into sub-images 
or tiles. Each tile expands the image intensity range by 
adjusting the difference in intensity of objects within the 
image to be similar and limits the height of the histogram 
by setting a level to eliminate the histogram (clip limit). This 
distributes the signal exceeding the limit to other parts of 
the histogram without exceeding the limit.9,10 This study 
set the parameters as follows: the clip limit (cl) values and 
tile sizes (ts) are (0.1, 8×8), (0.2, 2×2), (0.2, 6×6), (0.2, 8×8), 
and (0.3, 6×6), respectively.

Gamma Correction (GC)
	 GC is a technique for image processing that adjusts 
the gamma value according to the characteristics of the 
image to suit its brightness and contrast.11,12 Gamma 
correction is given by the following equation (1). When,  
the enhanced image will be brighter than the original 
image, and when, the enhanced image will be darker 
than the original image. The disadvantage of gamma 
correction is that it involves an unvaried modification due 
to a predefined value.13 This study set the parameters as 
follows: the gamma values (g) are 0.7, 1.3, 1.5, 1.7, and 
1.9, respectively.

	 T(l) =  Imax(Imax

I )ϒ	 (1)

	 Where Imax  is maximum pixel intensity,  is pixel 
intensity, and  is gamma correction.

Non-local mean filter
	 NLMF is an algorithm that filters out noise from 
images while maintaining the sharpness of the edges of 
objects within the image. It also adjusts areas within the 
image to be smoother. NLMF calculates the average of 
all pixels within the image by considering the similarity 
between pixels. The resulting averaging eliminates noise 
and gives the pixels of the image similar values.14,15 This 
study set the parameters as follows: set the smoothing 
kernel value (s), patch size (p), and window size (w) to 
(1, 6, 20), (1, 7, 15), (1, 7, 20), (2, 2, 20), and (2, 8, 15), 
respectively.

Median and Wiener filter (MWF)
	 The Median filter is a filter used to remove noise 
from images, especially salt and pepper noise. The Median 
Filter works by taking the pixel values around the position 
of the pixel of interest, arranging them from least to 
greatest, and selecting the median value to use. Next, the 
data is processed through WF to reduce noise and improve 
signal quality by trying to make the mean square error 
between the original image and the enhanced image as 
low as possible.16 This study set the parameters as follows: 
set the kernel sizes (k) to 3×3, 5×5, 7×7, 9×9, and 11×11, 
respectively.
	 In the final step, all four types (CLAHE, GC, NLMF, 
and MWF) of MRI images are combined to create a new 
dataset with a size of 128×128×4. Subsequently, the 
combined dataset is divided into 4,000 training sets and 
1,000 validation sets out of the 5,000 sets of image and 
mask data. Additionally, 1,000 data sets are randomly 
selected to create a test set. In each set, the data will 
include a mask or the boundary of the tumor based on the 
number of data sets. Therefore, a total of five data sets will 
be obtained for training the model, comprising a dataset 
with no image enhancement, a dataset enhanced with 
the CLAHE technique, a dataset enhanced with the GC 
technique, a dataset enhanced with the NLMF technique, 
and a dataset enhanced with the MWF technique.

Tumor segmentation architecture
	 The U-Net architecture was employed to segment the 
tumor from the brain tissue area in the brain MRI images. 
The details of the U-Net for this proposed adaptation 
were derived from Ronneberger et al.,17 and the structure 
consists of an encoder path, decoder path, and connecting 
path. These three paths follow the typical architecture of 
a conventional network. The encoder path comprises two 
3×3 convolutions, with each layer followed by a rectified 
linear unit (ReLU) and a 2×2 max-pooling operation with 
two strides for downsampling. With each downsampling 
step, the number of feature channels increases twofold. 
On the other hand, the decoder path consists of two 3×3 
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convolutions, with each layer followed by ReLU and 2×2 
up-convolutions for upsampling. With each upsampling 
step, the number of feature channels decreases twofold. 
The decoder path is concatenated with the encoder path 

through the connecting path, linking to the corresponding 
feature map from the encoder path. Finally, the last layer 
consists of a 1×1 convolution, utilizing a sigmoid activation 
function for the final output, as shown in Figure 2.

Figure 2 U-Net architecture of this study.

Model training
	 The training used Tensorflow version 2.13 as the 
backend in Python version 3.10.9, utilizing an NVIDIA 
GeForce RTX 3050 Laptop GPU. The image segmentation 
model was trained to employ the Adam optimizer, a 
learning rate set at 0.001 with a lower bound on the 
learning rate of 0.0000001, a Dice Similarity Coefficient 
(DSC) loss function, and a batch size of 32 for 100 epochs. 
Initially, the model underwent training with a combination 
image dataset without image enhancement. Throughout 
the training process, the model was validated using a 
validation dataset to estimate errors in the training. The 
early stopping technique was employed to mitigate the 
overfitting problem. Upon completing the training of the 
model with the combination image dataset without image 
enhancement, the dataset was modified to a combination 
image dataset with image enhancement using four 
techniques (CLAHE, GC, NLMF, and MWF).

Statistical analysis
	 The statistical analysis is divided into image 
enhancement and segmentation model performance.
	 For image enhancement, evaluation involves using 
the structural similarity index (SSIM) and mean squared 
error (MSE). SSIM serves as a metric (luminance, contrast, 
and structure) to measure the similarity between two 
given images. At the same time, MSE is employed to 
compare the true pixel values of the original image to 
the degraded image. The equations for SSIM and MSE are 
provided in (2)-(3).
	
	 SSIM = i(x,y) × c(x,y) × s(x,y)	 (2)
	 Where i is the luminance similarity index, c is the 
contrast similarity index, s is the structure similarity index, 
x is the original image, and y is the enhanced image.

	 SSIM = mn
1 ∑0

m-1 ∑0
n-1||f(i,j)-g(i,j)||2 	 (3)

	 Where f is the original pixel image, g is the enhanced 
pixel image, m is the row number of image, n is the column 
number of image, i is the row index, and j is the column 
index.
	 The model performance is assessed through the 
confusion matrix, which consists of values such as the dice 
similarity coefficient (DSC), Jaccard similarity coefficient, 
accuracy, precision, sensitivity (recall), and F1-score. The 
evaluation values for model performance are presented in 
equations (4)-(9).

	 DSC = |A| + |B|
2|A∩B| 	 (4)

	 Jaccard = |A| + |B|-|A∩B|
|A∩B| 	 (5)

	 Where A and B are datasets A and B, and A∩B is the 
intersection part of the two datasets.

	 Accuracy = TP+TN+FP+FN
TP + TN 	 (6)

	 Precision = TP + FP
TP 	 (7)

	 Recall = TP + FN
TP 	 (8)

	 F1 score = precision×recall
2×precision×recall 	 (9)

	 Where True Positives (TP) is the model predicting 
a tumor boundary when it is a tumor boundary, True 
Negatives (TN) is the model correctly predicting it not 
to be a tumor boundary, False Positive (FP) is the model 
predicting a tumor boundary when it is not a tumor 
boundary, and False Negative (FN) is the model predicting 
something different than the tumor boundary.
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Results
Evaluation of image enhancement
	 Table 1 shows the results of the evaluation parameters 
for each image enhancement. NLMF exhibits the highest 

SSIM compared to other techniques, followed by GC, 
MWF, and CLAHE, respectively. Regarding the MSE value, 
NLMF has the lowest MSE compared to other techniques, 
followed by CLAHE, GC, and MWF, respectively.

Table 1 Results of the image enhancement techniques.

Technique Parameter
T1 T1c T2 T2f

SSIM MSE SSIM MSE SSIM MSE SSIM MSE
CLAHE No.1 cl= 0.1, ts=8 0.721 395.03 0.695 288.53 0.701 314.16 0.703 460.31
CLAHE No.2 cl=0.2, t=2 0.914 6.013 0.91 11.64 0.912 7.358 0.912 8.381
CLAHE No.3 cl=0.2, ts=6 0.743 108.31 0.721 156.38 0.732 92.08 0.735 113.68
CLAHE No.4 cl=0.2, ts=8 0.721 395.03 0.695 288.53 0.701 314.16 0.703 460.31
CLAHE No.5 cl=0.3, ts=6 0.743 108.31 0.721 156.38 0.732 92.08 0.735 113.68

GC No.1 g=0.7 0.923 1231.2 0.895 2388.57 0.896 2260.82 0.905 1834.04
GC No.2 g=1.3 0.956 684.21 0.938 1311.27 0.94 1241.86 0.945 1012.54
GC No.3 g=1.5 0.959 624.8 0.938 1167.96 0.94 1107.54 0.947 912.38
GC No.4 g=1.8 0.957 601.61 0.929 1045.05 0.933 995.04 0.943 845.03
GC No.5 g=1.9 0.956 607.09 0.924 1020.6 0.929 973.67 0.94 838.26

NLMF No.1 s=1, p=6, w=20 0.999 0.007 0.999 0.015 0.999 0.006 0.999 0.001
NLMF No.2 s=1, p=7, w=15 0.999 0.006 0.999 0.014 0.999 0.001 0.999 0.006
NLMF No.3 s=1, p=7, w=20 0.999 0.007 0.999 0.015 0.999 0.006 0.999 0.001
NLMF No.4 s=2, p=2, w=20 0.999 0.015 0.998 0.212 0.999 0.169 0.999 0.116
NLMF No.5 s=2, p=8, w=15 0.999 0.061 0.999 0.114 0.999 0.023 0.999 0.059
MWF No.1 k = 3 0.957 1080.54 0.836 4242.03 0.912 1376.93 0.939 1021.88
MWF No.2 k = 5 0.95 1105.33 0.834 4340.87 0.906 1474.32 0.929 1057.57
MWF No.3 k = 7 0.942 1132.57 0.832 4425.22 0.897 1572.39 0.919 1092.08
MWF No.4 k = 9 0.932 1160.39 0.829 4497.25 0.888 1668.26 0.908 1125.35
MWF No.5 k = 11 0.922 1188.02 0.825 4560.84 0.878 1760.5 0.898 1157.18

Evaluation of model performance for segmentation
	 Figure 3 shows the learning curves of the model 
during training with a dataset, with and without the image 
enhancement process. We can observe that all models 

don’t exhibit a gap between training and validation loss; 
as a result, none of the models suffer from overfitting or 
underfitting problems.

Figure 3 Loss curve of training and validation set. a: standard MRI image dataset without image enhancement, b-e: MRI 
image dataset with image enhancement (CLAHE, GC, NLMF, and MWF, respectively).
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	 Table 2 presents the results of the evaluation 
parameters for various models. A trained model with 
original MRI images has a DSC of 0.8171 compared to a 
trained model with MRI images via image enhancement 
techniques. We can observe that CLAHE and NLMF 

Table 2 The performance of tumor segmentation in various models.
Technique Parameter DSC F1 Jaccard Recall Precision Accuracy

Normal - 0.817 0.892 0.815 0.943 0.860 0.994

CLAHE No.1 cl=0.1, ts=8 0.817 0.896 0.820 0.943 0.865 0.994

CLAHE No.2 cl=0.2, ts=2 0.818 0.895 0.818 0.940 0.866 0.994

CLAHE No.3 cl=0.2, ts=6 0.811 0.884 0.801 0.926 0.858 0.994

CLAHE No.4 cl=0.2, ts=8 0.814 0.888 0.806 0.938 0.854 0.994

CLAHE No.5 cl=0.3, ts=6 0.812 0.886 0.805 0.931 0.858 0.994

GC No.1 g=0.7 0.812 0.885 0.801 0.922 0.861 0.994

GC No.2 g=1.3 0.811 0.890 0.809 0.930 0.863 0.994

GC No.3 g=1.5 0.808 0.878 0.792 0.923 0.851 0.993

GC No.4 g=1.8 0.803 0.872 0.782 0.917 0.844 0.993

GC No.5 g=1.9 0.802 0.870 0.780 0.917 0.843 0.993

NLMF No.1 s= 1, p=6, w=20 0.819 0.899 0.824 0.942 0.870 0.994

NLMF No.2 s=1, p=7, w=15 0.819 0.895 0.818 0.950 0.856 0.994

NLMF No.3 s=1, p=7, w=20 0.820 0.900 0.826 0.946 0.869 0.994

NLMF No.4 s=2, p=2, w=20 0.819 0.898 0.823 0.940 0.870 0.994

NLMF No.5 s=2, =8, w=15 0.820 0.900 0.827 0.948 0.867 0.994

MWF No.1 k=3 0.797 0.866 0.774 0.900 0.851 0.993

MWF No.2 k=5 0.792 0.859 0.763 0.893 0.842 0.992

MWF No.3 k=7 0.781 0.846 0.744 0.880 0.831 0.992

MWF No.4 k=9 0.789 0.855 0.755 0.892 0.833 0.992

MWF No.5 k=11 0.761 0.816 0.702 0.854 0.800 0.990

techniques can increase the DSC value, while GC and MWF 
techniques decrease the DSC value. Specifically, CLAHE, 
NLMF, GC, and MWF have a maximum DSC of 0.818, 0.820, 
0.812, and 0.797, respectively, in this study.

Figure 4 Image of image enhancement and mark prediction from the model. A: T1-weighted, b: post-contrast T1,
c: T2-weighted, d: T2-FLAIR, e: gound truth or mask, e: mask prediction.



K. Naknaem and T. Kaewlek.  Journal of Associated Medical Sciences 2024; 57(2): 132-140138

	 Table 3 compares each image enhancement 
technique’s DSC and average SSIM values.

Table 3 Comparative of DSC and average SSIM values.
Technique Parameter DSC Average SSIM
CLAHE No.1 cl=0.1, ts=8 0.817 0.705
CLAHE No.2 cl=0.2, ts=2 0.818 0.912
CLAHE No.3 cl=0.2, ts=6 0.811 0.733
GC No.1 g=0.7 0.812 0.905
GC No.2 g=1.3 0.811 0.945
GC No.3 g=1.5 0.808 0.946
NLMF No.1 s=1, p=6, w=20 0.819 0.999
NLMF No.2 s=1, p=7, w=15 0.819 0.999
NLMF No.5 s=2, p=8, w=15 0.820 0.999
MWF No.1 k=3 0.797 0.911
MWF No.4 k=9 0.789 0.889
MWF No.5 k=11 0.761 0.881

Discussion
	 This study examines the relationship between 
image enhancement and the performance of deep 
learning models, comparing the results of enhancement 
techniques to increase the efficiency of glioma tumor 
segmentation on brain MRI images. Four image quality 
enhancement techniques, CLAHE, GC, NLMF, and MWF, 
are used to assess image quality based on SSIM and 
MSE values. Additionally, this report investigates a deep 
learning model for glioma tumor image segmentation 
on brain MRI images, developing the model using the 
U-net architecture. The study compares models trained 
with image datasets that have undergone all four image 
enhancement techniques.
	 Regarding the relationship between image 
enhancement and deep learning model performance, 
it was observed that image quality significantly impacts 
the performance of deep learning models, as indicated 
in Table 3 when comparing the same techniques. For 
instance, the trained model with the CLAHE technique 
(CLAHE No. 1), featuring a cliplimit parameter of 0.1 and 
a tile size of 8, displayed a DSC value of 0.817 and an SSIM 
value of 0.705. In comparison, adjusting the parameters 
to cliplimit equal to 0.2 and tile size equal to 6 (CLAHE 
No. 3) resulted in a DSC value of 0.811 and an SSIM value 
of 0.733. It is evident that, despite the improved image 
quality of the CLAHE No. 3 model, it reduces the efficiency 

of the model. Furthermore, models trained with datasets 
of similar image quality exhibited varying performance, 
as seen in the CLAHE No.2 and MWF No.1 models, in the 
MWF No.4 and MWF No.5 models, and the GC No.2 and 
GC No.3 models. These results indicate that poorer image 
quality may contribute to better model performance, 
aligning with the research by Güneş AM et al., which 
stated that reducing the image quality of training data by 
reducing contrast or adding artifacts makes the resulting 
model more effective.7

	 The developed deep learning model for glioma 
tumor segmentation on brain MRI images revealed that 
trained models with datasets that did not undergo image 
enhancement techniques had a DSC value of 0.817, while 
the image segmentation trained model with the CLAHE 
enhancement technique had a DSC value of 0.818, GC 
had a DSC value of 0.812, NLMF had a DSC value of 0.820, 
and MWF had a DSC value of 0.797. Table 3 indicates 
that the model with image enhancement using the NLMF 
technique has the highest DSC value, while the model 
with image enhancement using the MWF technique 
has the least, being 2.4% lower than the trained model 
without image enhancement techniques. Table 2 shows 
that the F1-score, Jaccard, recall, precision, and accuracy 
values of the trained model without image enhancement 
techniques were 89.2%, 81.5%, 94.3%, 86.0%, and 99.4%, 
respectively. For the trained models with the CLAHE 
technique, the values were 89.5%, 81.8%, 94.0%, 86.6%, 
and 99.4%, respectively. The GC values were 88.5%, 80.1%, 
92.2%, 86.1%, and 99.4%, respectively. NLMF values were 
90.0%, 82.7%, 94.8%, 86.7%, and 99.4%, respectively, and 
MWF values were 86.6%, 77.4%, 90.0%, 85.1%, and 99.3%, 
respectively.
	 Comparing the trained model with the enhanced 
dataset with previous works on glioma segmentation 
on brain MRI images, Table 4 shows that the DSC values 
of the U-Net+CLAHE, U-Net+GC, U-Net+NLMF, and 
U-Net+CLAHE models are lower than all previous works, 
both in the trained model with similar and completely 
different datasets. Adding image enhancmore than 
ement techniques alone is sufficient to increase model 
performance. However, the proposed model accuracy and 
recall demonstrate high performance for all models, at 
least 0.993 for U-Net+MWF, close to Ghosh S. 201918 and 
Al Nasim MA 2022.19
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Table 4 Compares of previous works.
Author Image Network Recall Precision Accuracy DSC

Ghosh S. 201918 TCGA-LGG
U-Net+ResNeXt50 - - 0.996 0.932
U-Net+FPN - - 0.993 0.899

Al Nasim MA 202219 BraTS2019 U-Net+empirical analysis 0.997 - 0.998 0.920
Manasa K. 202220 Brast2018 U-Net+Zernile Moments 0.877 0.810 - 0.852
Yan C. 202221 BraTS2018 SEResU-Net 0.923 - - 0.911

Our proposed BraTS2023

U-Net+CLAHE 0.940 0.866 0.994 0.818
U-Net+GC 0.922 0.861 0.994 0.812
U-Net+NLMF 0.948 0.867 0.994 0.820
U-Net+MWF 0.900 0.851 0.993 0.797

Limitation
	 Limitations related to this study: First, using image 
datasets in two dimensions may reduce the quality of 
model training because the original image dataset used 
for training is designed in 3D. Second, different types 
of MRI images should be separated for enhancement 
because each type has distinct characteristics. However, 
this study used the same parameters for enhanced 
images in each technique since the mask design is used 
to label the tumor’s boundaries, designed for all four 
MRI types together. Finally, this study did not introduce 
imperfections within the dataset to compare image 
enhancements, which would help better understand the 
relationship between increased image enhancement and 
model performance.

Conclusion
	 In conclusion, the study explores the relationship 
between image enhancement and the performance of 
deep learning models, aiming to develop a deep learning 
model for segmenting glioma tumors on MRI images 
using the U-net architecture with image enhancement 
techniques. The results demonstrate that pre-processing 
significantly improves image quality and can enhance 
brain segmentation on brain MRI images. Specifically, the 
non-local mean filter technique performed best, followed 
by gamma correction, median and wiener filter technique, 
and contrast-limited adaptive histogram equalization was 
the lowest. However, when using enhanced images for 
trained models, it was found that image enhancement 
techniques can increase performance, precisely the non-
local mean filter technique, the contrast-limited adaptive 
histogram equalization technique, while the gamma 
correction technique and the median and wiener filter 
decrease model performance. Enhanced images for 
trained models may increase or decrease performance 
depending on the chosen image enhancement technique 
and the parameters determined by each method.
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