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architecture. Objective: This study aims to find a relationship between improving image

enhancement and evaluating the performance of deep learning models for
segmenting glioma image data on brain MRI images.

Materials and methods: The BraTs2023 dataset was used in this study. The image
dataset was converted from three dimensions to two dimensions and then subjected
to pre-processing via four image enhancement techniques, including contrast-limited
adaptive histogram equalization (CLAHE), gamma correction (GC), non-local mean
filter (NLMF), and median and Wiener filter (MWF). Subsequently, it was evaluated
for structural similarity index (SSIM) and mean squared error. The deep learning
segmentation model was created using the U-Net architecture and assessed for
dice similarity coefficient (DSC), accuracy, precision, recall, F1-score, and Jaccard
index for tumor segmentation.

Results: The performance of enhanced image results for CLAHE, GC, NLMF, and
MWEF techniques shows SSIM values of 0.912, 0.905, 0.999, and 0.911, respectively.
The dice similarity coefficient (DSC) for segmentation without image enhancement
was 0.817. The DSC of segmentation for CLAHE, GC, NLMF, and MWF techniques
were 0.818, 0.812, 0.820, and 0.797, respectively.

Conclusion: The enhanced image technique could affect the performance of tumor
segmentation. by the enhanced image for use in a trained model may increase or
decrease performance depending on the chosen image enhancement technique
and the parameters determined by each method.

Introduction
Glioma is the most frequent primary central nervous
system cancer in adults, exhibiting extreme intrinsic
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or noninvasive.%? Whether HGG or LGG, there is a similarity
in the tumor volume, including the whole tumor, tumor
core, and active tumor region. As a result, many different
types of MR imaging exist because the T1-weighted MRI
image can’t clearly define the tumor boundary. Therefore,
other types of MR imaging, such as Tl-contrast, T2-
weighted, and T2-FLAIR, are used to indicate the three
tumor regions mentioned clearly. Accurate identification of
brain tumor sub-regions boundaries in MRI is of profound
importance in many clinical applications, such as tumor
detection, treatment planning, image-guided procedures,
and monitoring tumor growth. However, manual tumor
detection and delineation are tedious, time-consuming,
and depend on the experience of the oncologist. This
may cause human error while delineating the boundaries
of the tumor, including disruption of work when dealing
with many patients.® For the above reasons, automatic
tumor boundaries delineation is necessary to reduce the
problems mentioned.

The science of deep learning has been used to
develop knowledge. Deep learning is a part of the science
of artificial intelligence. Since deep learning is more
flexible than machine learning, it can automatically find
features within image data. For this reason, deep learning
is popular in medical image segmentation. Nevertheless,
Lin M et al. 4’s research found a Dice Similarity Coefficient
(DSC) of 0.887. The study of Franziska Knuth et al.> found
a DSC of 0.770, and the research of Zhao C et al.® found
a DSC of 0.774. The results depend on various factors,
including the architecture used, specific details related
to deep learning modeling, and the image quality used
to train the deep learning model. The research of Gilines
AM et al.” shows that image quality affects the quality of
the segmentation model. When the dataset has increased
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noise and artifacts during the training of a large dataset,
the model’s performance increases, which shouldn’t be
the case. Therefore, the researcher is interested in studying
the comparison of pre-processing methods to improve the
performance of image segmentation of glioma on brain
MRI images using deep learning. The objective is to find a
relationship between improving image enhancement and
the performance of deep learning models and to develop
a deep learning model for segmenting glioma image data
on brain MRI images.

Materials and methods

This study conducted a comparative analysis of
pre-processing methods aimed at enhancing glioma
segmentation performance in brain MRI using deep
learning. It consists of two main parts: the first part
compares the effectiveness of various pre-processing
methods, while the second part assesses the performance
of the deep learning model, as shown in Figure 1. Initially,
the input image dataset is fed into the program, followed
by image pre-processing, which involves converting
3D images to 2D grayscale images and resizing them
to 128x128 pixels. Subsequently, the image dataset
undergoes enhancement techniques and is evaluated
using metrics such as the Structural Similarity Index and the
Mean Squared Error. The enhanced dataset is then utilized
to train and test the deep learning model. Finally, the
model’s performance is evaluated using metrics including
the Dice similarity coefficient, F1 score, Jaccard similarity
coefficient, recall, precision, and accuracy. The result is
a predicted mask. The study’s detailed aspects include
patient data preparation, pre-processing techniques,
tumor segmentation architecture, model training, and
statistical analysis.
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Patient data preparing

The MR images used in this study were collected
from a public dataset, the Brain Tumor Segmentation
(BraTS) Challenge 2023 dataset."*® The dataset comprises
T1, post-contrast T1l-weighted (T1Gd), T2-weighted,
and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR)
MR images of 1,470 brain glioma patients. The volume
of 3D MR images is 240x240x155 pixels, and the image
voxel size is 1.0 mm3. The ground truth includes the GD-
enhancing tumor region, the peritumoral edematous
or invaded tissue region, and the necrotic tumor core
region. Experienced neuroradiologists approved these
annotations.

Pre-processing technique

The 3D image files in nii.gz format are converted
to 2D image files with the png extension. This process
involves selecting only the axial MRI images from all four
types of MRl images, with the condition that a mask must
be present and the extent of the tumor is more than
1% compared to all the data within the mask. The result
yields 54,031 axial images for each type. Subsequently,
5,000 images are randomly selected, and the image
and mask data are transformed into numpy arrays (npy
file extension). Additionally, the images are resized and
converted to grayscale, resulting in image and mask data
with dimensions of 128x128x1.

This study applies four image enhancement
techniques, including contrast-limited adaptive histogram
equalization, gamma correction, non-local mean filter,
and median and Wiener filter, to enhance the details of all
images. Each technique is explained in detail as follows:

Contrast-Limited Adaptive Histogram Equalization (CLAHE)

CLAHE is a technique for reducing noise and over-
enhancement by dividing the image into sub-images
or tiles. Each tile expands the image intensity range by
adjusting the difference in intensity of objects within the
image to be similar and limits the height of the histogram
by setting a level to eliminate the histogram (clip limit). This
distributes the signal exceeding the limit to other parts of
the histogram without exceeding the limit.>*° This study
set the parameters as follows: the clip limit (cl) values and
tile sizes (ts) are (0.1, 8x8), (0.2, 2x2), (0.2, 6x6), (0.2, 8x8),
and (0.3, 6x6), respectively.

Gamma Correction (GC)

GC is a technique for image processing that adjusts
the gamma value according to the characteristics of the
image to suit its brightness and contrast.'**? Gamma
correction is given by the following equation (1). When,
the enhanced image will be brighter than the original
image, and when, the enhanced image will be darker
than the original image. The disadvantage of gamma
correction is that it involves an unvaried modification due
to a predefined value.®® This study set the parameters as
follows: the gamma values (g) are 0.7, 1.3, 1.5, 1.7, and
1.9, respectively.

=1, (1)

Where | is maximum pixel intensity, is pixel
max
intensity, and is gamma correction.

Non-local mean filter

NLMF is an algorithm that filters out noise from
images while maintaining the sharpness of the edges of
objects within the image. It also adjusts areas within the
image to be smoother. NLMF calculates the average of
all pixels within the image by considering the similarity
between pixels. The resulting averaging eliminates noise
and gives the pixels of the image similar values.’** This
study set the parameters as follows: set the smoothing
kernel value (s), patch size (p), and window size (w) to
(1, 6, 20), (1, 7, 15), (1, 7, 20), (2, 2, 20), and (2, 8, 15),
respectively.

Median and Wiener filter (MWF)

The Median filter is a filter used to remove noise
from images, especially salt and pepper noise. The Median
Filter works by taking the pixel values around the position
of the pixel of interest, arranging them from least to
greatest, and selecting the median value to use. Next, the
data is processed through WF to reduce noise and improve
signal quality by trying to make the mean square error
between the original image and the enhanced image as
low as possible.! This study set the parameters as follows:
set the kernel sizes (k) to 3x3, 5x5, 7x7, 9x9, and 11x11,
respectively.

In the final step, all four types (CLAHE, GC, NLMF,
and MWF) of MRI images are combined to create a new
dataset with a size of 128x128x4. Subsequently, the
combined dataset is divided into 4,000 training sets and
1,000 validation sets out of the 5,000 sets of image and
mask data. Additionally, 1,000 data sets are randomly
selected to create a test set. In each set, the data will
include a mask or the boundary of the tumor based on the
number of data sets. Therefore, a total of five data sets will
be obtained for training the model, comprising a dataset
with no image enhancement, a dataset enhanced with
the CLAHE technique, a dataset enhanced with the GC
technique, a dataset enhanced with the NLMF technique,
and a dataset enhanced with the MWF technique.

Tumor segmentation architecture

The U-Net architecture was employed to segment the
tumor from the brain tissue area in the brain MRI images.
The details of the U-Net for this proposed adaptation
were derived from Ronneberger et al.,*” and the structure
consists of an encoder path, decoder path, and connecting
path. These three paths follow the typical architecture of
a conventional network. The encoder path comprises two
3x3 convolutions, with each layer followed by a rectified
linear unit (ReLU) and a 2x2 max-pooling operation with
two strides for downsampling. With each downsampling
step, the number of feature channels increases twofold.
On the other hand, the decoder path consists of two 3x3
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convolutions, with each layer followed by RelLU and 2x2
up-convolutions for upsampling. With each upsampling
step, the number of feature channels decreases twofold.
The decoder path is concatenated with the encoder path

through the connecting path, linking to the corresponding
feature map from the encoder path. Finally, the last layer
consists of a 1x1 convolution, utilizing a sigmoid activation
function for the final output, as shown in Figure 2.
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Figure 2 U-Net architecture of this study.
Model training SSIM = %7 2" 2 f)-9(id) | ]2 (3)

The training used Tensorflow version 2.13 as the
backend in Python version 3.10.9, utilizing an NVIDIA
GeForce RTX 3050 Laptop GPU. The image segmentation
model was trained to employ the Adam optimizer, a
learning rate set at 0.001 with a lower bound on the
learning rate of 0.0000001, a Dice Similarity Coefficient
(DSC) loss function, and a batch size of 32 for 100 epochs.
Initially, the model underwent training with a combination
image dataset without image enhancement. Throughout
the training process, the model was validated using a
validation dataset to estimate errors in the training. The
early stopping technique was employed to mitigate the
overfitting problem. Upon completing the training of the
model with the combination image dataset without image
enhancement, the dataset was modified to a combination
image dataset with image enhancement using four
techniques (CLAHE, GC, NLMF, and MWF).

Statistical analysis

The statistical analysis is divided into image
enhancement and segmentation model performance.

For image enhancement, evaluation involves using
the structural similarity index (SSIM) and mean squared
error (MSE). SSIM serves as a metric (luminance, contrast,
and structure) to measure the similarity between two
given images. At the same time, MSE is employed to
compare the true pixel values of the original image to
the degraded image. The equations for SSIM and MSE are
provided in (2)-(3).

SSIM = i(x,y) x c(x,y) x s(x,y) (2)

Where i is the luminance similarity index, c is the
contrast similarity index, s is the structure similarity index,
x is the original image, and y is the enhanced image.

Where fis the original pixel image, g is the enhanced
pixel image, mis the row number of image, nis the column
number of image, i is the row index, and j is the column
index.

The model performance is assessed through the
confusion matrix, which consists of values such as the dice
similarity coefficient (DSC), Jaccard similarity coefficient,
accuracy, precision, sensitivity (recall), and Fl-score. The
evaluation values for model performance are presented in
equations (4)-(9).

_ 2|AnB|
DSC=TaT+ 181 “
_ |ANB]|
Jaccard—m (5)

Where A and B are datasets A and B, and AnB is the
intersection part of the two datasets.

Accuracy = % (6)
Precision = % o)
Recall = % @)

F1 score = -2XPrecisionxrecall o)

precisionxrecall

Where True Positives (TP) is the model predicting
a tumor boundary when it is a tumor boundary, True
Negatives (TN) is the model correctly predicting it not
to be a tumor boundary, False Positive (FP) is the model
predicting a tumor boundary when it is not a tumor
boundary, and False Negative (FN) is the model predicting
something different than the tumor boundary.
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Results

Evaluation of image enhancement

Table 1showstheresults of the evaluation parameters
for each image enhancement. NLMF exhibits the highest

Table 1 Results of the image enhancement techniques.
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SSIM compared to other techniques, followed by GC,
MWEF, and CLAHE, respectively. Regarding the MSE value,
NLMF has the lowest MSE compared to other techniques,
followed by CLAHE, GC, and MWEF, respectively.

Technique Parameter L Tie 12 T2
SSIM MSE SSIM MSE SSIM MSE SSIM MSE
CLAHE No.1 cl=0.1, ts=8 0.721  395.03 0.695 288.53  0.701 314.16 0.703  460.31
CLAHE No.2 cl=0.2, t=2 0.914 6.013 0.91 11.64 0.912 7.358 0.912 8.381
CLAHE No.3 cl=0.2, ts=6 0.743  108.31 0.721 156.38  0.732 92.08 0.735 113.68
CLAHE No.4 cl=0.2, ts=8 0.721  395.03 0.695 288.53 0.701  314.16 0.703  460.31
CLAHE No.5 cl=0.3, ts=6 0.743  108.31 0.721 156.38  0.732 92.08 0.735 113.68
GC No.1 g=0.7 0.923 12312 0.895 2388.57 0.896 2260.82 0.905 1834.04
GC No.2 g=1.3 0.956 684.21 0.938 1311.27 0.94  1241.86 0.945 1012.54
GCNo.3 g=1.5 0.959 624.8 0.938 116796 0.94 1107.54 0.947 912.38
GC No.4 g=1.8 0.957 601.61 0.929 1045.05 0.933  995.04 0.943 845.03
GCNo.5 g=1.9 0.956  607.09 0.924  1020.6  0.929 973.67 0.94 838.26
NLMF No.1  s=1, p=6, w=20  0.999 0.007 0.999 0.015 0.999 0.006 0.999 0.001
NLMF No.2  s=1, p=7,w=15 0.999 0.006 0.999 0.014 0.999 0.001 0.999 0.006
NLMF No.3  s=1,p=7,w=20 0.999 0.007 0.999 0.015 0.999 0.006 0.999 0.001
NLMF No.4  s=2,p=2,w=20 0.999 0.015 0.998 0.212 0.999 0.169 0.999 0.116
NLMF No.5  s=2,p=8,w=15 0.999 0.061 0.999 0.114 0.999 0.023 0.999 0.059
MWF No.1 k=3 0.957 1080.54 0.836 4242.03 0.912 1376.93 0.939 1021.88
MWF No.2 k=5 0.95 1105.33 0.834 4340.87 0906 147432 0.929 1057.57
MWF No.3 k=7 0.942 1132.57 0.832 4425.22 0.897 1572.39 0.919 1092.08
MWF No.4 k=9 0.932 1160.39 0.829 4497.25 0.888 1668.26 0.908 1125.35
MWF No.5 k=11 0.922 1188.02 0.825 4560.84 0.878 1760.5  0.898 1157.18

Evaluation of model performance for segmentation
Figure 3 shows the learning curves of the model

during training with a dataset, with and without the image

enhancement process. We can observe that all models

Trainingand Validation loss

don’t exhibit a gap between training and validation loss;
as a result, none of the models suffer from overfitting or
underfitting problems.
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Figure 3 Loss curve of training and validation set. a: standard MRI image dataset without image enhancement, b-e: MRI
image dataset with image enhancement (CLAHE, GC, NLMF, and MWE, respectively).
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Table 2 presents the results of the evaluation
parameters for various models. A trained model with
original MRI images has a DSC of 0.8171 compared to a
trained model with MRI images via image enhancement
techniques. We can observe that CLAHE and NLMF

137

techniques can increase the DSC value, while GC and MWF
techniques decrease the DSC value. Specifically, CLAHE,
NLMF, GC, and MWF have a maximum DSC of 0.818, 0.820,
0.812, and 0.797, respectively, in this study.

Table 2 The performance of tumor segmentation in various models.

Technique Parameter DSC F1 Jaccard Recall Precision Accuracy
Normal - 0.817 0.892 0.815 0.943 0.860 0.994
CLAHE No.1 cl=0.1, ts=8 0.817 0.896 0.820 0.943 0.865 0.994
CLAHE No.2 cl=0.2, ts=2 0.818 0.895 0.818 0.940 0.866 0.994
CLAHE No.3 cl=0.2, ts=6 0.811 0.884 0.801 0.926 0.858 0.994
CLAHE No.4 cl=0.2, ts=8 0.814 0.888 0.806 0.938 0.854 0.994
CLAHE No.5 cl=0.3, ts=6 0.812 0.886 0.805 0.931 0.858 0.994
GC No.1 g=0.7 0.812 0.885 0.801 0.922 0.861 0.994
GC No.2 g=1.3 0.811 0.890 0.809 0.930 0.863 0.994
GCNo.3 g=1.5 0.808 0.878 0.792 0.923 0.851 0.993
GC No.4 g=1.8 0.803 0.872 0.782 0.917 0.844 0.993
GC No.5 g=1.9 0.802 0.870 0.780 0.917 0.843 0.993
NLMF No.1 s=1, p=6, w=20 0.819 0.899 0.824 0.942 0.870 0.994
NLMF No.2 s=1, p=7, w=15 0.819 0.895 0.818 0.950 0.856 0.994
NLMF No.3 s=1, p=7, w=20 0.820 0.900 0.826 0.946 0.869 0.994
NLMF No.4 s=2, p=2, w=20 0.819 0.898 0.823 0.940 0.870 0.994
NLMF No.5 s=2,=8, w=15 0.820 0.900 0.827 0.948 0.867 0.994
MWF No.1 k=3 0.797 0.866 0.774 0.900 0.851 0.993
MWF No.2 k=5 0.792 0.859 0.763 0.893 0.842 0.992
MWF No.3 k=7 0.781 0.846 0.744 0.880 0.831 0.992
MWF No.4 k=9 0.789 0.855 0.755 0.892 0.833 0.992
MWF No.5 k=11 0.761 0.816 0.702 0.854 0.800 0.990

Normal

CLAHE

GC

NLMF

MWEF

(a) (b) (c)
Figure 4 Image of image enhancement and mark prediction from the model. A: T1-weighted, b: post-contrast T1,
c: T2-weighted, d: T2-FLAIR, e: gound truth or mask, e: mask prediction.

(d)

(e)

(f)
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Table 3 compares each image enhancement
technique’s DSC and average SSIM values.

Table 3 Comparative of DSC and average SSIM values.

Technique Parameter DSC  Average SSIM
CLAHE No.1 cl=0.1, ts=8 0.817 0.705
CLAHE No.2 cl=0.2, ts=2 0.818 0.912
CLAHE No.3 cl=0.2, ts=6 0.811 0.733
GC No.1 g=0.7 0.812 0.905
GC No.2 g=1.3 0.811 0.945
GC No.3 g=1.5 0.808 0.946
NLMF No.1  s=1,p=6,w=20 0.819 0.999
NLMF No.2 s=1, p=7, w=15 0.819 0.999
NLMF No.5 s=2,p=8,w=15 0.820 0.999
MWF No.1 k=3 0.797 0.911
MWF No.4 k=9 0.789 0.889
MWEF No.5 k=11 0.761 0.881
Discussion

This study examines the relationship between
image enhancement and the performance of deep
learning models, comparing the results of enhancement
techniques to increase the efficiency of glioma tumor
segmentation on brain MRI images. Four image quality
enhancement techniques, CLAHE, GC, NLMF, and MWF,
are used to assess image quality based on SSIM and
MSE values. Additionally, this report investigates a deep
learning model for glioma tumor image segmentation
on brain MRI images, developing the model using the
U-net architecture. The study compares models trained
with image datasets that have undergone all four image
enhancement techniques.

Regarding the relationship between image
enhancement and deep learning model performance,
it was observed that image quality significantly impacts
the performance of deep learning models, as indicated
in Table 3 when comparing the same techniques. For
instance, the trained model with the CLAHE technique
(CLAHE No. 1), featuring a cliplimit parameter of 0.1 and
a tile size of 8, displayed a DSC value of 0.817 and an SSIM
value of 0.705. In comparison, adjusting the parameters
to cliplimit equal to 0.2 and tile size equal to 6 (CLAHE
No. 3) resulted in a DSC value of 0.811 and an SSIM value
of 0.733. It is evident that, despite the improved image
quality of the CLAHE No. 3 model, it reduces the efficiency

of the model. Furthermore, models trained with datasets
of similar image quality exhibited varying performance,
as seen in the CLAHE No.2 and MWF No.1 models, in the
MWF No.4 and MWF No.5 models, and the GC No.2 and
GC No.3 models. These results indicate that poorer image
quality may contribute to better model performance,
aligning with the research by Giines AM et al., which
stated that reducing the image quality of training data by
reducing contrast or adding artifacts makes the resulting
model more effective.”

The developed deep learning model for glioma
tumor segmentation on brain MRI images revealed that
trained models with datasets that did not undergo image
enhancement techniques had a DSC value of 0.817, while
the image segmentation trained model with the CLAHE
enhancement technique had a DSC value of 0.818, GC
had a DSC value of 0.812, NLMF had a DSC value of 0.820,
and MWF had a DSC value of 0.797. Table 3 indicates
that the model with image enhancement using the NLMF
technique has the highest DSC value, while the model
with image enhancement using the MWF technique
has the least, being 2.4% lower than the trained model
without image enhancement techniques. Table 2 shows
that the Fl-score, Jaccard, recall, precision, and accuracy
values of the trained model without image enhancement
techniques were 89.2%, 81.5%, 94.3%, 86.0%, and 99.4%,
respectively. For the trained models with the CLAHE
technique, the values were 89.5%, 81.8%, 94.0%, 86.6%,
and 99.4%, respectively. The GC values were 88.5%, 80.1%,
92.2%, 86.1%, and 99.4%, respectively. NLMF values were
90.0%, 82.7%, 94.8%, 86.7%, and 99.4%, respectively, and
MWEF values were 86.6%, 77.4%, 90.0%, 85.1%, and 99.3%,
respectively.

Comparing the trained model with the enhanced
dataset with previous works on glioma segmentation
on brain MRI images, Table 4 shows that the DSC values
of the U-Net+CLAHE, U-Net+GC, U-Net+NLMF, and
U-Net+CLAHE models are lower than all previous works,
both in the trained model with similar and completely
different datasets. Adding image enhancmore than
ement techniques alone is sufficient to increase model
performance. However, the proposed model accuracy and
recall demonstrate high performance for all models, at
least 0.993 for U-Net+MWF, close to Ghosh S. 2019*® and
Al Nasim MA 2022.*°
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Table 4 Compares of previous works.

Author Image Network Recall Precision Accuracy DSC
U-Net+ResNeXt50 - - 0.996 0.932

Ghosh S. 20198 TCGA-LGG
U-Net+FPN - - 0.993 0.899
Al Nasim MA 2022% BraTS2019  U-Net+empirical analysis 0.997 - 0.998 0.920
Manasa K. 2022%° Brast2018 U-Net+Zernile Moments 0.877 0.810 - 0.852
Yan C. 2022% BraTS2018  SEResU-Net 0.923 - - 0.911
U-Net+CLAHE 0.940 0.866 0.994 0.818
U-Net+GC 0.922 0.861 0.994 0.812

Our proposed BraTS2023
U-Net+NLMF 0.948 0.867 0.994 0.820
U-Net+MWF 0.900 0.851 0.993 0.797

Limitation

Limitations related to this study: First, using image
datasets in two dimensions may reduce the quality of
model training because the original image dataset used
for training is designed in 3D. Second, different types
of MRI images should be separated for enhancement
because each type has distinct characteristics. However,
this study used the same parameters for enhanced
images in each technique since the mask design is used
to label the tumor’s boundaries, designed for all four
MRI types together. Finally, this study did not introduce
imperfections within the dataset to compare image
enhancements, which would help better understand the
relationship between increased image enhancement and
model performance.

Conclusion

In conclusion, the study explores the relationship
between image enhancement and the performance of
deep learning models, aiming to develop a deep learning
model for segmenting glioma tumors on MRI images
using the U-net architecture with image enhancement
techniques. The results demonstrate that pre-processing
significantly improves image quality and can enhance
brain segmentation on brain MRI images. Specifically, the
non-local mean filter technique performed best, followed
by gamma correction, median and wiener filter technique,
and contrast-limited adaptive histogram equalization was
the lowest. However, when using enhanced images for
trained models, it was found that image enhancement
techniques can increase performance, precisely the non-
local mean filter technique, the contrast-limited adaptive
histogram equalization technique, while the gamma
correction technique and the median and wiener filter
decrease model performance. Enhanced images for
trained models may increase or decrease performance
depending on the chosen image enhancement technique
and the parameters determined by each method.
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