

Scopus Indexed & Thai-Journal Citation Index Centre (TCI)

Journal of Associated Medical Sciences

Journal homepage: https://www.tci-thaijo.org/index.php/bulletinAMS/index

Toxicity effects of Cannabidiol (CBD) on immune cells

Kanyaruck Jindaphun¹ Nuchjira Takheaw^{1,2} Witida Laopajon^{1,2} Supansa Pata^{1,2} Watchara Kasinrerk^{1,2*}

¹Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai Province, Thailand.

 2 Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai Province, Thailand.

ARTICLE INFO

Article history: Received 14 September 2023 Accepted as revised 1 November 2023 Available online 4 November 2023

Keywords:

Cannabis, cannabidiol, toxicity, immune cells.

ABSTRACT

Background: Cannabis extract has a long history of being used in the treatment and prevention of several medical conditions. The utilization of cannabis extracts, whether for medical or localized purposes, is widely observed. In cannabis extract, cannabidiol (CBD) is one of the most important non-psychoactive compounds. Several studies have demonstrated that CBD has several benefits in the treatment of various medical conditions. Nevertheless, CBD has also been demonstrated to suppress both innate and adaptive immune responses. Despite CBD has claimed to have many benefits, the toxicity of CBD is often pointed out and discussed. Nonetheless, the data on the toxicity effects of CBD on immune cells are limited.

Objectives: In this study, we aimed to investigate the toxicity effects of various concentrations of CBD on immune cells, including CD4 T cells, CD8 T cells, B cells, NK cells, and monocytes.

Materials and methods: Various concentrations of peripheral blood mononuclear cells (PBMCs) were treated with various concentrations of CBD or relative concentrations of methanol as a diluent control for 12, 24, and 48 hrs. Cell morphology was observed using flow cytometry. The percentage of cell death in the treated cells was determined by cell viability assay. In addition, the toxic effects of CBD on PBMC sub-populations were determined by staining with fluorochromeconjugated zombie viability dye and fluorochrome-conjugated monoclonal antibodies specific to each cell sub-population. Then, the percentage of cell death in each sub-population was assessed using flow cytometry.

Results: CBD at concentrations of 40 and 80 μM showed toxicity effects on PBMCs. At these concentrations, CBD induced both cell morphological changes and cell death. While 20 μ M CBD induced different effects, ranging from none to mild and high toxicity. The toxicity of CBD at 20 μM concentration depends on the individual. In contrast, CBD at ten µM and below showed no toxicity to PBMCs. The observed toxic effects of CBD occurred in all sub-populations of PBMCs, including CD4 T cells, CD8 T cells, B cells, NK cells, and monocytes.

Conclusion: CBD has toxicity effects on immune cells. These effects depend on CBD concentrations, PBMC concentrations, and the duration of CBD exposure. Our findings emphasize the importance of awareness for CBD users when consuming CBD.

Introduction

Recently, several natural plant extracts have been getting attention for their potential in treating various medical conditions. Cannabis extract has become popular in the treatment of various conditions, e.g., epilepsy, anxiety, depression, and cancer.1 Plant cannabis, or phytocannabinoids, contains many components, possibly up to 500 by some estimates. 2 Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are two major components

* Corresponding contributor.

Author's Address: Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiana Mai University, Chiang Mai Province, Thailand. E-mail address: watchara.k@cmu.ac.th

doi: 10.12982/JAMS.2024.010

E-ISSN: 2539-6056

present in cannabis extract.³ THC is widely recognized as a psychoactive compound and is often associated with several adverse effects.⁴ Nevertheless, THC is still used in the medical field. The FDAs of several countries have approved THC for the reduction of chemotherapy-induced nausea and vomiting, as well as for appetite stimulation.⁵ CBD was also demonstrated to have several important positive impacts on many diseases, such as diabetes, Parkinson's disease, Alzheimer's disease, and cancer, but without psychotropic effects.⁶

CBD is a naturally occurring cannabinoid. It contains 21 carbon atoms, with the formula C₂₁H₃₀O₂ and a molecular weight of 314.464 g/mol.7 CBD has a wide range of biological effects.⁶ The effects of CBD are mediated through several receptors expressed throughout the body, i.e., cannabinoid receptors of the endocannabinoid system, 5-HT1A serotonin receptors, and TRPV1 channels.8 The effect of CBD is predominantly observed within two major systems, including the nervous system and the immune system.9-11 In the nervous system, CBD has demonstrated significant benefits in experimental models of various neurological disorders, such as seizures, epilepsy, Parkinson's disease, and Alzheimer's disease. 12,13 In the immune system, the induction of immunosuppression by CBD has been reported.¹¹ CBD inhibited both innate and adaptive responses. It had a strong suppressive effect on the release of innate cytokines (IL-1 and TNF) and could induce apoptosis in primary human monocytic cells. 14,15 In adaptive immune cells, CBD inhibited IFN-y production and induced apoptosis in T cells. 16,17 As a result, CBD is often used as an anti-inflammatory drug to treat a variety of inflammatory conditions. 18,19

Even though CBD has exhibited a range of advantageous effects, research in the clinical trial phase of CBD is still limited and controversial. There is only one CBD product (Epidiolex*, GW Pharmaceuticals) approved by the FDAs in 2018 for the treatment of rare pediatric seizure disorders. The toxicity of CBD has also been focused on and highlighted as the significance of dosage considerations. At high doses, CBD exhibits various toxicities on multiple systems within the body, including reduced fertility, hormonal alteration, severe hypotension, and the potential to induce damage to liver cells (hepatocellular damage). However, data on the toxic effect of CBD on immune cells is limited.

In this study, we investigated the toxicity effects of CBD on immune cells. The examinations were composed of various factors, including PBMC concentrations, CBD concentrations, and CBD exposure time. Our study indicated the toxicity effects of CBD on immune cells. These results might raise caution to the CBD user.

Materials and methods

Reagents, antibodies, and cells

Cannabidiol (CBD) solution of 1 mg/mL concentration in methanol (catalog number C-045-1ML) was purchased from Cerilliant (Round Rock, Texas, USA). RPMI 1640 medium and fetal bovine serum (FBS) were purchased from Gibco (Grand Island, New York, USA). Ficoll-Hypaque solution was purchased from Robbins Scientific

Corporation (Sunnyvale, California, USA). 7-AAD solution, BV510 conjugated Zombie dye, FITC-conjugated anti-CD3 mAb, PerCP-conjugated anti-CD4 mAb, BV785-conjugated anti-CD8 mAb, PE-conjugated anti-CD14 mAb, FITC-conjugated anti-CD19 mAb, and PECy5-conjugated anti-CD56 mAb were purchased from BioLegend (San Diego, California, USA).

PBMCs were isolated from the buffy coat of healthy donors obtained from the Thai Red Cross Society (Regional Blood Center X, Chiang Mai, Thailand) or heparinized blood of healthy blood donors using Ficoll-Hypaque gradient centrifugation.

Toxicity effects of CBD on PBMCs

The PBMCs were adjusted into a concentration of $2x10^6$ and $8x10^6$ cells/mL in RPMI-1640 medium supplemented with 10% heat-inactivated FBS, 40 mg/mL gentamicin, and 2.5 mg/mL amphotericin B (10% FBS-RPMI). The PBMCs were plated in a 96-well V-bottom plate, and various concentrations of CBD (0, 10, 20, 40, and 80 μ M) or a relative methanol concentration as a diluent control were added. The cells, in total volume of 100 μ L, were incubated in a humidified atmosphere of 5% CO $_2$ at 37 °C for 12, 24, and 48 hrs. After incubation, the cells were harvested and monitored for cell morphological changes by flow cytometry. Cells were also stained with 7-AAD 0.5 μ g/mL. The percentage of dead cells (7-AAD+cells) was analyzed by BD Accuri C6 plus flow cytometry (BD Bioscience, San Jose, California, USA).

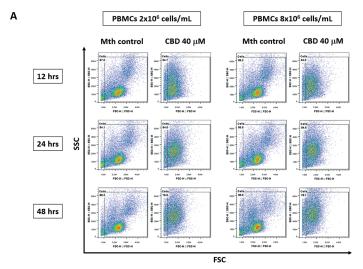
Toxicity effects of CBD on sub-populations of PBMCs

The PBMCs at a concentration of 2x106 cells/ mL were incubated with 20 μM CBD or a relative concentration of methanol in total volume of 100 µL in a 96-well V-bottom plate in a 5% CO, incubator at 37 °C for 24 hrs. After cultivation, the cells were harvested and stained with the BV510-conjugated zombie dye for 15 min at room temperature in a dark box. Then, the cells were washed twice with PBS containing 1% BSA and 0.1% NaN₃ (FACS) buffer. Next, the cells were fixed with 4% paraformaldehyde for 15 min at room temperature. The fixed cells were permeabilized with 0.1% saponin, 5% FCS, and 0.1% NaN, in PBS to allow the antibodies to access the intracellular targets. After that, the cells were blocked by incubation with 10% AB serum in 0.1% saponin, 5% FCS, and 0.1% NaN, in PBS for 30 min at 4 °C. Blocked cells were stained with fluorochrome conjugated antibodies against CD3, CD4, CD8, CD14, CD19, or CD56 (for identifying the cell sub-populations) for 30 minutes at 4 °C. Then, the cells were washed twice with 0.01% saponin, 5% FCS, and 0.1% NaN₃ in PBS. After washing, the cells were fixed with PBS containing 1% paraformaldehyde. The stained cells were then analyzed by BD FACSCelesta flow cytometry (BD Bioscience, San Jose, California, USA) to assess the percentage of dead cells (zombie dye+ cells).

Statistical analysis

Data were analyzed using GraphPad Prism 9 software. An unpaired t-test was used to compare data.

Results


В

Toxicity effects of CBD on PBMCs

To investigate the toxicity effects of CBD on PBMCs, various concentrations of PBMCs (2×10^6 , and 8×10^6 cells/mL) were treated with various concentrations of CBD (0, 10, 20, 40, and 80 μ M) or relative concentrations of methanol as a diluent control. The treated PBMCs were incubated for 12, 24, and 48 hrs and monitored for cell morphological changes and cell death by flow cytometry.

Upon treatment with CBD at 40 and 80 μ M, PBMCs at all concentrations showed morphological change after being incubated for all incubation times (Figure 1A and 1B). The morphological change was not observed in the control group, which was treated with relative concentrations

of methanol diluent (Figure 1A and 1B). These findings indicated that 40 and 80 μM of CBD exhibited cytotoxic effects on PBMCs. We subsequently performed a viability assay to investigate cell death in each condition. As predicted, 40 and 80 μM of CBD could induce cell death in treated PBMCs compared with diluent controls (Figure 1C). It is worth noting that the methanol control did not induce cell death compared with the medium control. The toxicity effect of CBD was dose-dependent. CBD at 80 μM showed a higher toxicity than at 40 μM . Longer exposure time induced more cell death. Taken together, our findings suggest that CBD at concentrations of 40 and 80 μM have cytotoxic effects on PBMCs.

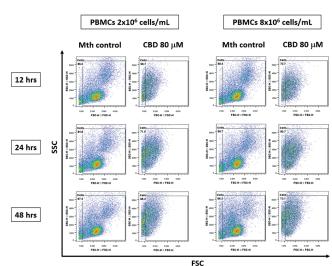
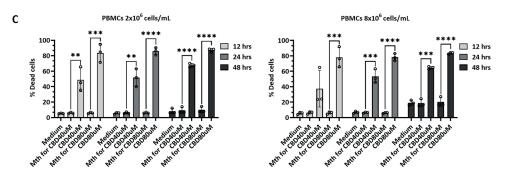



Figure 1. Toxicity effects of CBD at 40 μ M and 80 μ M on PBMCs. The PBMCs (N=3) at concentrations of 2x106 and 8x10⁶ cells/mL (as indicated) were treated with 40 μ M and 80 μ M of CBD or methanol (Mth control) at relative concentrations as a diluent control in total volume of 100 μL for 12, 24, and 48 hrs and analyzed by flow cytometry. The cell morphology of all three treated PBMCs was changed compared to the methanol control. A representative result treated with CBD 40 μM (A) or 80 μ M (B) is shown in the scatter plots (side scatter [SSC] vs forward scatter [FSC]). (C) The viability assay was performed by staining with 7-AAD and analyzed by flow cytometry. The percentages of dead cells of three independent subjects in each condition are shown. Statistical analysis was performed using an unpaired t-test. *p≤0.05, **p≤0.01, ***p<0.0005, ****p<0.0001.

PBMCs 8x10⁶ cells/mL

The PBMCs treated with 20 µM of CBD did not show cell morphological change after being incubated for 12 hrs (Figure 2A). However, the morphological change was observed after 24 and 48 hrs of incubation, compared with the diluent controls (Figure 2A). The 48-hr incubation time showed higher morphological changes than the 24-hr incubation period. Subjects treated with 20 µM CBD at the 24-hr incubation period, however, exhibited a different CBD effect on cell morphology. The morphological changes were found in nine independent subjects (called CBDsensitive subjects) out of sixteen tested subjects, ranging from mild to high alterations (Figure 2B). However, seven out of sixteen tested subjects have no morphological change when compared with the diluent controls. These seven subjects were called CBD-resistant subjects (Figure 2B). Therefore, upon treatment with 20 μM CBD, the tested subjects could be categorized as CBD-sensitive (56.3%) and CBD-resistant individuals (43.7%).

We further confirmed CBD-induced cell death using a 7-AAD cell viability assay. 20 µM CBD induced PBMC death was observed at 24- and 48-hr incubation times, but not at 12-hr incubation, in comparison with diluent control (Figure 2C). Our findings suggested that 20 μM of CBD might have different effects on PBMCs individually. Using CBD at this concentration is cautionary due to its cytotoxic effect in some subjects.

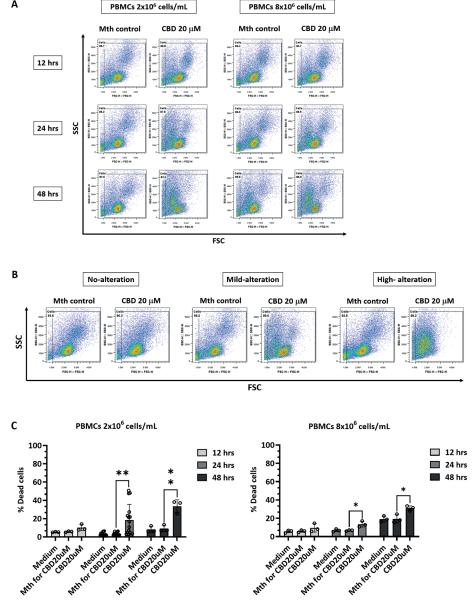
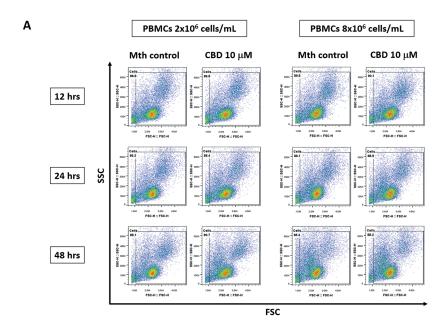



Figure 2. Toxicity effects of CBD at 20 μM on PBMCs. The PBMCs (N=3) at concentrations of 2x10⁶ and 8x10⁶ cells/mL (as indicated) were treated with 20 μM CBD or methanol (Mth control) at relative concentrations as a diluent control in 100 μL total volume for 12, 24, and 48 hrs. The 24-hr PBMCs treatment at a concentration of 2x10⁶ cells/mL was performed with sixteen independent subjects. The cell morphology was investigated using flow cytometry. (A) The morphological change appeared after incubation for 24 and 48 hrs, but not for 12 hrs. (B) The patterns of morphological change in CBD-treated PBMCs at 2x10⁶ cells/mL incubated for 24 hrs are displayed. The extent of morphological change, ranging from no alteration to mild alteration and high alteration of a representative result, is shown. (C) The cell viability was determined using 7-AAD viability assay and analyzed by flow cytometry. The percentages of dead cells in each condition are shown. Statistical analysis was performed using an unpaired t-test. *p≤0.05, **p≤0.01.

The cytotoxic effects of CBD at 10 μ M concentration were also determined. The PBMCs at all concentrations tested upon treatment with 10 μ M CBD did not show any morphological changes after being incubated for 12, 24, and 48 hrs, in comparison with the diluent controls (Figure 3A). The cytotoxic effects of CBD at 10 μ M were determined

by cell viability assay. The percentage of dead cells in the treated PBMCs showed no statistically significant differences compared with the relative concentrations of methanol (Figure 3B). Therefore, these results indicated that 10 μ M of CBD did not have a cytotoxic effect on PBMCs.

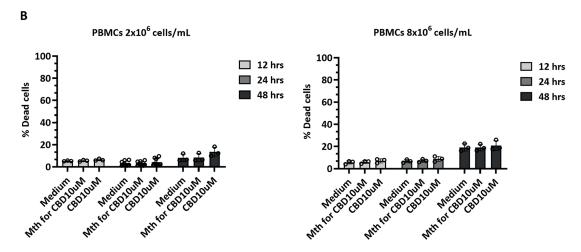
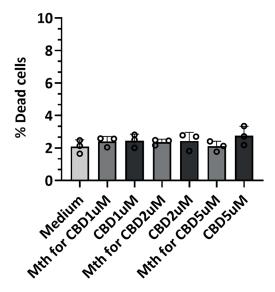



Figure 3. Toxicity effects of CBD at 10 μ M on PBMCs. The PBMCs (N=3) at concentration of 2x10⁶ and 8x10⁶ cells/mL (as indicated) were treated with 10 μ M CBD or methanol (Mth control) in total volume of 100 μ L for 12, 24, and 48 hrs. The 24-hr CBD treatment of PBMCs at a concentration of 2x10⁶ cells/mL was performed with nine independent subjects. Then, the cells were analyzed by flow cytometry. (A) A representative result treated with 10 μ M CBD is shown in the scatter plots (side scatter [SSC] vs forward scatter [FSC]). The morphology of all treated PBMCs did not show morphological changes compared with methanol control. (B) The cell viability was investigated using 7-AAD viability assay and analyzed by flow cytometry. The percentages of dead cells of all independent subjects in each condition are shown. Statistical analysis was performed using an unpaired t-test. No statistically significant differences were observed.

As CBD at 10 μ M was not toxic to the cells, we investigated the toxicity effects of CBD at concentrations of 1, 2, and 5 μ M. In this study, PBMCs at a concentration of 2x10⁶ cells/mL with 24 hrs of incubation time were

selected as a representative condition. As predicted, CBD at these concentrations was not toxic to the PBMCs of any study subjects (Figure 4). This confirms the non-toxic effects of CBD at concentrations below 10 μ M.

Figure 4. Toxicity effects of CBD at 1, 2, and 5 \muM on PBMCs. The PBMCs (N=3) at a concentration of 2x10⁶ cells/mL were treated with 1, 2, and 5 μ M of CBD, or methanol (Mth) or medium alone with total volume of 100 μ L for 24 hrs. The treated cells were stained with 7-AAD and analyzed by flow cytometry. The percentage of dead cells in each condition is shown. Statistical analysis was performed using an unpaired t-test. No statistically significant differences were observed.

Toxicity effects of CBD on PBMC sub-populations

To get insight into CBD's cytotoxic effects on PBMCs, the toxicity of CBD in specific sub-populations of PBMCs, including CD4 T cells, CD8 T cells, B cells, NK cells, and monocytes, was studied. The PBMCs at a concentration of $2x10^6$ cells/mL were incubated for 24 hrs with 20 μ M CBD or relative concentrations of methanol (diluent control). After cultivation, the cells were stained with fluorochromeconjugated zombie dye, which indicated cell death. They were intracellular immunofluorescence stained with fluorochrome-conjugated monoclonal antibodies specific to each cell sub-population. The percentage of dead cells in each PBMC sup-populations was measured.

In this experiment, four independent subjects were performed. The observed morphological changes were significant in two independent subjects (N3, N4), and the other two independent subjects (N1, N2) were modulate-change observed (Figure 5A). The study on cell viability in the specific sub-populations of PBMCs showed that CBD could induce cell death in all PBMC sub-populations, i.e., CD4 T cells, CD8 T cells, B cells, NK cells, and monocytes. Surprisingly, CD4 T cells were less affected, with almost statistically significant difference compared with diluent control (Figure 5B). Our findings suggest that the cytotoxic effect of CBD affects all PBMCs sub-populations.

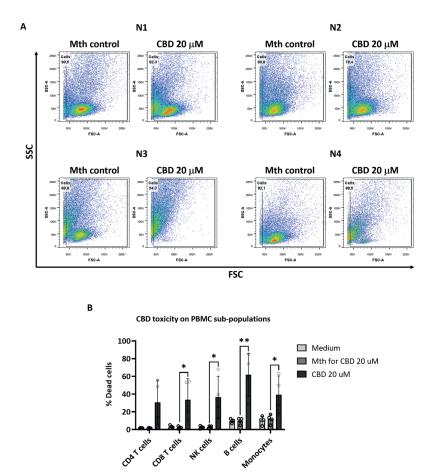


Figure 5. CBD cytotoxic effects on PBMC sub-populations. The PBMCs (N=4) at a concentration of 2×10^6 cells/mL were treated with 20 μ M CBD or methanol (Mth control) as diluent control in 100 μ L total volume for 24 hrs. The cells were analyzed by flow cytometry. (A) The morphological change was observed in all test subjects. The cell morphology is shown in the scatter plots (side scatter [SSC] vs forward scatter [FSC]). (B) The treated cells were stained with BV510-conjugated zombie dye to assess cell viability. The percentage of dead cells of PBMC sub-populations, including CD4 T cells (CD3+/CD4+), CD8 T cells (CD3+/CD8+), NK cells (CD3-/CD56+), B cells (CD19+), and monocytes (CD14+), are shown. Statistical analysis was performed using an unpaired t-test. *p<0.05, **p<0.01.

Discussion

In several countries, including Thailand, cannabis extracts and CBD were suggested to be used in the treatment of various diseases, including central nervous system diseases, inflammatory diseases, cardiovascular disorders. metabolic syndrome-related disorders. and cancer.^{1,12,18,19,24,25} The use of cannabis extracts in treatment, however, usually comes without control of CBD concentration or an understanding of CBD toxicity effect. In a previous study, various CBD concentrations, ranging from 0.03 to 100 µM, were used to evaluate its impact on immune cells.11 The majority of published articles suggest that CBD has immunosuppressive effects. 14-17 Nevertheless, some of these studies did not investigate the direct cytotoxicity of CBD on immune cells. 18,26 The data of the toxicity effect of CBD on immune cells is limited. We speculated that CBD may have a toxic effect on immune cells, suppressing immune cell functions. In the present study, we investigated whether CBD was toxic to immune cells. To investigate the toxicity effects of CBD, various concentrations of PBMCs were treated with various concentrations of CBD over various exposure times. Our study would answer the toxicity effect of CBD.

We found that CBD at 40 and 80 μ M showed strong toxicity in PBMCs. These concentrations induced cell morphological changes of PBMCs in all tested subjects. The results indicated that CBD at these concentrations might disrupt the cell membrane, causing a change in cell morphology. ²⁷ CBD at 40 and 80 μ M concentrations could induce PBMC death, particularly at low concentrations of PBMCs and long exposure time to CBD. A low PBMC:CBD ratio induced a higher percentage of cell death, indicating a higher concentration of CBD per cell led to higher cell toxicity.

Moreover, the toxicity effect of CBD followed a dose-dependent manner. This suggested that CBD at 40 μM and higher was toxic to immune cells; when using CBD for medical treatment, the dosage of CBD needs to be carefully considered. Several in-house cannabis extracts, which had an unknown concentration of CBD, were discovered to be widely in use in several countries. This, therefore, poses a danger to the users.

CBD at 20 μ M, nevertheless, showed a different effect. At 20 μ M, CBD toxicity appeared in some subjects, called CBD-sensitive persons. We found that nine out of sixteen subjects (56.3%) were sensitive to CBD. Cell

morphological change and cell death could be seen in these sensitive subjects. However, 43.7% of tested subjects were not affected by CBD at this concentration. The different observed effects may be because of the levels of CBD receptors, and the membrane fragility of each subject may not be the same. Furthermore, it might be influenced by other biological factors, such as age, sex, blood group, genetics, etc. However, this study did not clarify these influences due to limitations restricted by human ethics. According to the results, we suspected that CBD at 20 μ M might be the cytotoxic threshold dosage. Using CBD at 20 μ M, therefore, needed to be individually considered.

In contrast, CBD at concentrations of 10 µM and lower did not show any cytotoxic effect on PBMCs in all tested subjects. Neither cell morphological change nor cell death was seen at all concentrations of PBMC:CBD ratio and any exposure times at these CBD concentrations. Importantly, the subjects tested with CBD at ten μM were also included in the 20 µM treatment group. Whether classified as CBDsensitive or CBD-resistant based on the effects of CBD at 20 µM, no morphological changes and cell death were observed when these subjects were exposed to CBD at ten µM. Our results align with the previous study, which demonstrated that the toxicity of CBD was approximately in the range of 20-22 µM, depending on the cell type. The highest concentration of CBD that did not cause cell death was 13 μ M.²⁸ In our study, we demonstrated that CBD concentrations at ten μM or lower would be an appropriate condition for any future studies involving CBD effect.

As mentioned, CBD at a high dose has a cytotoxic effect on PBMCs. We asked whether this effect was on all PBMC sub-populations or a specific cell sub-population. We, therefore, investigated the toxicity of CBD on PBMC sub-populations, including T cells, B cells, NK cells, and monocytes. In this study, 4 CBD-sensitive subjects with varied responses to 20 μ M CBD were chosen.

We found that in strong 20 μ M CBD-sensitive persons, the high toxicity of CBD was observed in all PBMC sub-populations, including CD4 T cells, CD8 T cells, B cells, NK cells, and monocytes. While, in individuals who are less sensitive to CBD, low cytotoxicity of CBD was observed in all PBMC sub-population. The mechanism of CBD cell toxicity is still unproven in this study.

To the best of our knowledge, this is the first time the toxicity effect of CBD on PBMCs has been demonstrated. Our results of the toxicity of CBD are in line with the previous studies, which reported that CBD could induce immune suppression, both in innate and adaptive immune responses. The effects of CBD on the suppression of immune cell function may be due to the toxicity of CBD that affects both innate immune cells, monocytes and NK cells, and adaptive immune cells, T and B lymphocytes if the high concentration of CBD were used in the study. The researchers who perform experiments on the function of CBD need to monitor the toxicity of CBD on the tested cells concurrently in their research.

Conclusion

In this study, we investigated the toxic effects of CBD on each PBMC sub-population. Our study indicated that CBD had toxicity effects on immune cells in a dose-dependent manner. The toxicity effect of CBD was influenced by CBD concentrations, PBMC concentration, and exposure time. Specifically, the percentage of dead cells increased with a high CBD:cell concentration ratio and an extended exposure time. The obtained results are a caution for CBD users to be aware of the concentration of CBD being consumed.

Conflict of interests

The authors declare no conflict of interest.

Ethics approval

The human ethics of this study was approved by the Ethics Committee of the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand (study code; AMSEC-66EX-013).

Acknowledgements

Kanyaruck Jindaphun has received Teaching Assistance/Research Assistance (TA/RA) Scholarship supported from Graduate school, Chiang Mai University.

References

- [1] Pattnaik F, Nanda S, Mohanty S, Dalai AK, Kumar V, Ponnusamy SK, et al. Cannabis: Chemistry, extraction and therapeutic applications. Chemosphere. 2022; 289: 133012. doi: 10.1016/j.chemosphere.2021.
- [2] Radwan MM, Chandra S, Gul S, ElSohly MA. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules. 2021; 26(9): 2774. doi: 10.3390/molecules26092774.
- [3] Pagano C, Navarra G, Coppola L, Avilia G, Bifulco M, Laezza C. Cannabinoids: Therapeutic Use in Clinical Practice. Int J Mol Sci. 2022; 23(6): 3344. doi: 10.90/ijms23063344.
- [4] D'Souza DC, Perry E, MacDougall L, Ammerman Y, Cooper T, Wu YT, et al. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacol. 2004; 29(8): 1558-72. doi: 10.038/sj.npp.1300496.
- [5] Bajtel A, Kiss T, Toth B, Kiss S, Hegyi P, Vorhendi N, et al. The Safety of Dronabinol and Nabilone: A Systematic Review and Meta-Analysis of Clinical Trials. Pharmaceuticals (Basel). 2022; 15(1): 100. doi: 10.3390/ph15010100.
- [6] Zuardi AW. Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action. Braz J Psychiatry. 2008; 30(3): 271-80. doi: 10.1590/s16-44462008000300015.
- [7] Atalay S, Jarocka-Karpowicz I, Skrzydlewska E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants (Basel). 2019; 9(1): 21. doi: 10.3390/antiox9010021.
- [8] de Almeida DL, Devi LA. Diversity of molecular

- targets and signaling pathways for CBD. Pharmacol Res Perspect. 2020; 8(6): e00682. doi: 10.1002/prp2.682.
- [9] Britch SC, Babalonis S, Walsh SL. Cannabidiol: pharmacology and therapeutic targets. Psychopharmacology (Berl). 2021; 238(1): 9-28. doi: 10.1007/ s00213-020-5712-8.
- [10] Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014; 55(6): 791-802. doi: 10.1111/epi.12631.
- [11] Nichols JM, Kaplan BLF. Immune Responses Regulated by Cannabidiol. Cannabis Cannabinoid Res. 2020; 5(1): 12-31. doi: 10.1089/can.2018.0073.
- [12] Hill AJ, Williams CM, Whalley BJ, Stephens GJ. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther. 2012; 133(1): 79-97. doi: 10.1016/j.pharmthera.2011.09.002.
- [13] Bhunia S, Kolishetti N, Arias AY, Vashist A, Nair M. Cannabidiol for neurodegenerative disorders: A comprehensive review. Front Pharmacol. 2022; 13: 989717. doi: 10.3389/fphar.2022.
- [14] Wu HY, Huang CH, Lin YH, Wang CC, Jan TR. Cannabidiol induced apoptosis in human monocytes through mitochondrial permeability transition pore-mediated ROS production. Free Radic Biol Med. 2018; 124: 311-8. doi: 10.1016/j.freeradbiomed.2018.06.023.
- [15] Watzl B, Scuderi P, Watson RR. Marijuana components stimulate human peripheral blood mononuclear cell secretion of interferon-gamma and suppress interleukin-1 alpha in vitro. Int J Immunopharmacol. 1991; 13(8): 1091-7. doi: 10.16/0192-561(91)90160-9.
- [16] Watzl B, Scuderi P, Watson RR. Influence of marijuana components (THC and CBD) on human mononuclear cell cytokine secretion in vitro. Adv Exp Med Biol. 1991; 288: 63-70. doi: 10.1007/978-1-4684-5925-8_7.
- [17] McKallip RJ, Jia W, Schlomer J, Warren JW, Nagarkatti PS, Nagarkatti M. Cannabidiol-induced apoptosis in human leukemia cells: A novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol Pharmacol. 2006; 70(3): 897-908. doi: 10.1124/ mol.106.023937.
- [18] Couch DG, Tasker C, Theophilidou E, Lund JN, O'Sullivan SE. Cannabidiol and palmitoylethanolamide are anti-inflammatory in the acutely inflamed

- human colon. Clin Sci (Lond). 2017; 131(21): 2611-26. doi: 10.1042/cs20171288.
- [19] Peyravian N, Deo S, Daunert S, Jimenez JJ. The Anti-Inflammatory Effects of Cannabidiol (CBD) on Acne. J Inflamm Res. 2022; 15: 2795-801. doi: 10.147/jir. S355489.
- [20] Sholler DJ, Schoene L, Spindle TR. Therapeutic Efficacy of Cannabidiol (CBD): A Review of the Evidence from Clinical Trials and Human Laboratory Studies. Curr Addict Rep. 2020; 7(3): 405-12. doi: 10.1007/s40429-020-00326-8.
- [21] Rosenkrantz H, Fleischman RW, Grant RJ. Toxicity of short-term administration of cannabinoids to rhesus monkeys. Toxicol Appl Pharmacol. 1981; 58(1): 118-31. doi: 10.1016/0041-008x(81)90122-8.
- [22] Chesney E, Oliver D, Green A, Sovi S, Wilson J, Englund A, et al. Adverse effects of cannabidiol: a systematic review and meta-analysis of randomized clinical trials. Neuropsychopharmacol. 2020; 45(11): 1799-806. doi: 10.038/s41386-020-0667-2.
- [23] Garberg HT, Solberg R, Barlinn J, Martinez-Orgado J, Loberg EM, Saugstad OD. High-Dose Cannabidiol Induced Hypotension after Global Hypoxia-Ischemia in Piglets. Neonatology. 2017; 112(2): 143-9. doi: 10.1159/000471786.
- [24] Kogan NM, Mechoulam R. Cannabinoids in health and disease. Dialogues Clin Neurosci. 2007; 9(4): 413-30. doi: 10.31887/DCNS.2007.9.4/nkogan.
- [25] Assanangkornchai S, Thaikla K, Talek M, Saingam D. Medical cannabis use in Thailand after its legalization: a respondent-driven sample survey. PeerJ. 2022; 10: e12809. doi: 10.7717/peerj.
- [26] Huang Y, Wan T, Pang N, Zhou Y, Jiang X, Li B, et al. Cannabidiol protects livers against nonalcoholic steatohepatitis induced by high-fat high cholesterol diet via regulating NF-κB and NLRP3 inflammasome pathway. J Cell Physiol. 2019; 234(11): 21224-34.
- [27] Guard SE, Chapnick DA, Poss ZC, Ebmeier CC, Jacobsen J, Nemkov T, et al. Multiomic Analysis Reveals Disruption of Cholesterol Homeostasis by Cannabidiol in Human Cell Lines. Mol Cell Proteomics. 2022; 21(10): 100262. doi: 10.1016/j.mcpro.2022.
- [28] Holland ML, Panetta JA, Hoskins JM, Bebawy M, Roufogalis BD, Allen JD, et al. The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells. Biochem Pharmacol. 2006; 71(8): 1146-54. doi: 10.016/j.bcp.2005.12.033.