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ABSTRACT

Background: Hepatocellular carcinoma (HCC) is a significant global health concern 
that requires early detection for effective treatment.

Objectives: The objective of this study was to develop a system for screening HCC 
in B-mode ultrasound images.

Materials and methods: The dataset consisted of 1665 hemangioma (HEM) images, 
including 961 typical HEM, 704 atypical HEM, and 543 HCC images. Four YOLOv4 
models were trained: one for HCC detection, one for the conventional two-class 
detection of HEM and HCC, one to detect typical HEM and suspicious lesions, and 
the last one was our two-stage model consisting of a detector and classifier. In the 
first stage, a YOLOv4-based detector with ResNet-50 as the backbone was used to 
identify focal liver lesions. The second stage utilized ResNet-50 as a classifier to 
classify the lesions into HCC, atypical HEM, or typical HEM. Differentiating between 
HCC and atypical HEM is not necessary, as both require further investigation with 
CT or MR imaging.

Results: The evaluation of the developed HCC screening system using ten-fold 
cross-validation showed that grouping HCC and atypical HEM together significantly 
increased precision from 0.74 to 0.88 and improved HCC recall from 0.64 to 0.68. 
Furthermore, employing the two-stage method further improved HCC recall from 
0.68 to 0.72.

Conclusion: The results indicate that combining HCC and atypical HEM into a single 
class and using a two-stage approach for detection led to substantial improvements 
in precision and HCC recall. These findings highlight the potential of the developed 
system for effective HCC screening in B-mode ultrasound images. The two-stage 
method provided better detection than the detector-only method. More accurate 
detection was achieved when lesions were classified based on appearance and 
clinical protocols.
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Introduction
	 Ultrasound imaging is the common liver screening 
protocol and often the first tool to detect the early stage 
of hepatocellular carcinoma (HCC), the most common liver 
cancer. However, it must be followed by other imaging 
modals (contrast-enhanced ultrasound: CEUS, computed 
tomography: CT, or magnetic resonance imaging: MR) 
for definite diagnosis due to the shared sonographic 
appearance of HCC and hemangioma (HEM) (Figure 1).1,2  
Deep learning models have been applied for liver lesion 
classification as well as detection.3-11 It is hypothesized that 
the model is capable of capturing the difference invisible 
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•	 2D ultrasound images from a curvilinear transducer. 
Due to the diverse range of ultrasound machine brands 
employed across the two hospitals, the dimensions and 
resolution of the images varied.

•	 HCC and HEM were confirmed by CT or MR reports.

	 The dataset consists of 961 typical HEM, 704 atypical 
HEM, and 543 HCC images. A skilled sonographer drew 
the lesion boundary. Compared to previous studies, Our 
dataset is larger than previous studies, however, it is much 
smaller than Tiyarattanachai et al.12,16,17 
	 For data preparation, all images were converted to 
grayscale and cropped to focus on the liver by removing 
extraneous black areas. They were resized to 224x224 
pixels to fit the input requirement of the ResNet-50 model. 
Patient information was removed. Some images contained 
markers, but their presence did not significantly impact 
the detector due to the mixed presentations (Figure 2). 
Therefore, the markers were not removed in this study. 

Methods
	 The proposed two-stage method is depicted in Figure 
3. The detector in the first stage was trained to detect focal 
liver lesions. Both HCC and HEM are focal liver lesions, so 
the training data becomes a combination of HCC and HEM 
images. The size of the training dataset was larger than the 
model where HEM and HCC were separately considered. 
Furthermore, the shared sonographic appearance of HEM 
and HCC can be exploited for better detection. 
	 The result of the first stage was resized to 224x224 
images and inputted to the classifier in the second stage. 
The classifier categorized lesions into three classes: typical 
HEM, atypical HEM, and HCC. Differentiating HCC from 
atypical HEM was not crucial as both required further 
investigations.

to humans, if it has been trained by a sufficiently large 
dataset. The limited dataset is among the major problems 
of deep learning models. From our survey, the RetinaNet 
in Tiyarattanachai et al was trained by the largest dataset 
(20432 lesions which included 2414 HCC).12 Nevertheless, 
the recall of HCC was the lowest among other liver lesions 
and had the highest deviation. The high deviation indicated 
that the number of data was too small.
	 In this paper, we hypothesized that the available 
dataset was not sufficient for differentiating HCC from 
HEM. Thus, we followed the clinical protocol and 
categorized HEM into two groups, typical and atypical. 
The typical HEM is uniform hyper-echogenicity and a well-
defined margin.13 It will be monitored for change during 
the follow-up. The atypical hemangioma exhibits various 
imaging features and shares similarities with HCC.13 Both 
are grouped into suspicious lesions and will be sent for 
further investigation by CT or MR imaging.2,14,15 We tackled 
the problem of a limited dataset by applying the two-stage 
method which had the detection of HCC and HEM lesions 
followed by the classification to typical HEM, atypical 
HEM, and HCC. 

Materials and methods
Dataset
	 The abdominal ultrasound images used in this 
retrospective study encompass both upper abdominal 
ultrasound images and whole abdominal ultrasound 
images. The study received approval from Chulabhorn 
Research Institute, Thailand (CRI No. 098/2563), as well as 
the Institution Review Board of the Faculty of Medicine, 
Chulalongkorn University, Thailand (IRB No. 485/2563). 
The images utilized were obtained from the period 2015 
to 2019 at these two institutions. The inclusion criteria for 
selecting the images are outlined below.

Figure 1 Echogenic patterns of HCC and HEM lesions. Top row: HCC lesions. Bottom row: HEM lesions.
a: hypoechoic, b: hyperechoic, c: isoechoic, d: mixed echoic appearances.
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	 The models for the detector and the classifier were 
selected from the available models in the Deep Learning 
Toolbox of MATLAB 2022a (license number 40662904). 
In the preliminary experiment, we compared the 
performance of four detectors: regions with convolutional 
neural networks (R-CNN), single shot detector (SSD), 
You Only Look Once (YOLO) v2, and YOLOv4. SSD failed 
to provide accurate detection. R-CNN and YOLO had 
comparable accuracy, but R-CNN required much longer 
training times. YOLOv2 and YOLOv4 had comparable 
accuracy but YOLOv4 offered a more precise lesion 
location. Thus, YOLOv4 was chosen as the detector. The 
architecture of YOLO consists of a backbone, neck, and 
head. The backbone acts as the feature extractor, while 
the neck is used to connect the features to the head, which 
provides the detection output. Pretrained convolutional 
networks are used as the backbone. In our preliminary 
experiment, ResNet-50 provided a performance better 
than CSPDarkNet53. Therefore, we used YOLOv4 with 
ResNet-50 as the backbone of this study. For the classifier, 
GoogLeNet, VGG-16, ResNet-18, and ResNet-50 were 
tested. ResNet-50 offered the highest accuracy, so it was 
selected as the classifier. All CNN networks were pre-
trained using the ImageNet database.

Setting
	 All models were implemented in MATLAB 2022a on a 
personal computer (CPU: Intel Xeon, RAM: 128 GB, Video 
Card: NVIDIA 16 GB). Ten-fold cross-validation was used 
for performance comparison. We compared the proposed 
two-stage method with the following three detectors.

1.	Model 1: HCC detector trained by HCC images only.
2.	Model 2: HCC and HEM detector where HCC and 

HEM were considered as separate classes.

3.	Model 3: typical HEM and suspicious lesion detector.  
HEM was divided into a typical HEM and an atypical 
HEM. Atypical HEM and HCC were grouped into 
suspicious lesion classes. 

	 In most previous works detectors were trained to 
find HCC as a distinct lesion from HEM.3,7,12,16,17 So, the first 
two models were used as the baseline models. The third 
model follows the clinical protocol and divided the lesions 
into typical HEMs for future monitoring and suspicious 
lesions for additional investigation. These three models 
were compared with Model 4, which is the initial stage 
of our two-stage method. Model 4 was trained to detect 
focal liver lesions which combine HCC and HEM in the 
same class. 
	 To address the variability in the direction of the  
ultrasound beam, which can depend on the user 
(radiologist/sonographer), image data augmentation 
techniques were employed. Specifically, a rotation of ±5 
degrees and vertical/horizontal flipping were applied. 
The dataset for the classifier consisted of manually drawn 
lesion areas extracted from the image dataset used to train 
the detector. These lesion areas were resized to 224x224 
pixels.
	 The experiment was divided into three parts to assess 
the performance of the proposed two-stage method. The 
first part focused on investigating the detector’s accuracy 
and error. The second part examined the classification 
accuracy of the ResNet-50 model. Finally, the overall 
accuracy of the two-stage method was evaluated against 
the detector-only method.

Performance evaluation
	 Intersection over Union (IoU) is the ratio of the 

Figure 2 Ultrasound images with and without markers. HEMs and HCCs show inside a dashed circle. a: HEM without a 
marker, b: HCC without a marker, c: a marker for hepatic cyst in HEM image, d: a marker for vessels near HCC.

Figure 3 Proposed two-stage method.
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area of overlap and the area of union. It is often used to 
evaluate the result of a detector. In this experiment, the 
result of the detector was considered correct if the IoU 
was at least 50%. The classification was then evaluated by 
the following metrics.

	 accuracy =   TP + TN + FP + FN
TP + TN

		  (i)

			   recall =   TP + FN
TP

		  (ii)

			   precision =   TP + FP
TP

	 (iii)

	 negative predictive value =   TN + FN
TN

	 (iv)

	 F1 - score =   precision + sensitivity
2 x precision x sensitivity 	 (v)

	 where TP, TN, FP and FN are the number of true 
positive, true negative, false positive, and false negative, 
respectively. 

	 In these evaluation metrics, a value close to 1 
indicates good performance, while lower values indicate 
poorer performance. In addition, the average precision 
was also used. The average precision is the precision 
averaged over all the detection results. The higher the 
average precision indicates the better detector. Since ten-
fold cross-validation was used, all metrics were averaged 
from the 10 experiments. Note that recall will be mostly 
focused since it is the most important metric for screening 
tools.

Result and discussion
Performance evaluation: detector
	 The detection result is presented in Table 1. The 
target lesion was considered positive. All models were 
tested with both HCC and HEM images. The results 
indicated that the detector trained to specifically detect 
HCC (Model 1), achieved a higher recall rate compared to 
the two-class model used in Model 2, but it came at the 
cost of the inability to differentiate HEM from HCC (low 
precision). The recall of Model 2 varied from 0.53 to 0.97 

which indicated low repeatability. Model 3 had a high 
recall rate for detecting suspicious lesions, but when only 
HCC was considered, the recall rate dropped to 0.68. 
	 The finding is consistent with other studies on the 
detection of malignant tumors, such as Cao et al. who 
used SSD to detect breast tumors in ultrasound images, 
and Tanaka et al. who developed a computer-aided 
diagnosis (CAD) system for classifying breast cancer but 
achieved a detection rate of less than 50% of breast 
tumors in ultrasound images.18,19 A recent study in 2021 
by Tiyarattanachai et al.12 reported a high recall of 0.74 for 
HCC detection using RetinaNet, but this was achieved by 
lowering the IoU threshold to 0.2.
	 The best detection result was achieved by Model 4. 
The combination of HEM and HCC in the focal liver lesion 
group provided a larger dataset that could be used to 
train the detector to identify the distinct characteristics 
of both types. Notably, the detector successfully detected 
HCC lesions missed by the first three models, as shown in 
Figure 4.
	 To ensure that the higher recall of Model 4 led to 
better HCC detection. The detection result was categorized 
into 3 classes: HCC, HEM, and others (incorrect detection) 
and shown in Table 2. It is worth noting that certain images 
contained multiple HEM/HCC lesions, and YOLOv4 did not 
detect all of them. Some lesions were detected multiple 
times, as shown in the last row of Table 2 and Figure 5. 
The result indicated that Model 4 outperformed the other 
three models, with recall rates of 0.78 for HCC and 0.86 for 
HEM.
	 Model 4 exhibited two types of detection errors. The 
first type involved the failure to detect focal liver lesions, 
impacting the recall of the two-stage method. The second 
type was the misdetection of other areas/lesions as focal 
liver lesions, affecting precision. The second type of error 
constituted less than 5% of the total test data and could be 
easily dismissed by radiologists during follow-up.
	 Among 135 undetected HCC, 118 lesions (87%) did 
not have the sonographic appearance of HCC. Most of 
these lesions displayed features such as faint opacity, 
isoechoic tumor, or incomplete border. These lesions were 

Table 1 Detection results of four YOLOv4 models. The values in the parenthesis were the range of the matrices. 
Model 1 Model 2 Model 3 Model 4

1 class
543 HCC

2 classes
1) 1665 HEM
2) 543 HCC

2 classes
1) 961 typical HEM
2) 1247 suspicions

1 class
2208 HEM and HCC 

like lesions
Accuracy 0.52 (0.39-0.61) 0.85 (0.73-0.89) 0.72 (0.70–0.77) 0.86 (0.82-0.88)#

Precision 0.54 (0.43-0.61) 0.74 (0.50-0.88) 0.88 (0.84-0.93)# 0.88 (0.82-0.91)

Recall HCC
0.67 (0.54-0.86)

HCC
0.64 (0.53-0.97)

Suspicion
0.70 (0.63-0.75)

HEM and HCC
0.84 (0.79-0.89)#

F1-score 0.71 (0.64-0.87) 0.68 (0.51-0.93) 0.78 (0.75-0.82) 0.86 (0.83-0.89)#

NPV* 0.60 (0.48-0.70) 0.87 (0.82-0.92)# 0.72 (0.65-0.76) 0.86 (0.81-0.88)
mAP** 0.50 (0.32-0.68) 0.49 (0.37-0.61) 0.60 (0.51-0.65) 0.76 (0.73-0.84)#

Note: #the best result for the given evaluation matrix, *NPV: negative predictive value, **mAP: mean average precision
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Figure 4 Training YOLOv4 to detect HEM and HCC as one class improved HCC detection (bottom row) 
compared to training them as separate classes (top row) which failed to detect the lesions.

Table 2 Detection results of Model 4 as grouped by lesion type.

Detector model YOLOv4
The number of detected lesions (actual value)

HCC HEM Others Total*

Images
472 (543)
86.92%

1455 (1665)
87.39%

68 (0)
1927 (2208)

87.73%

Lesions
480 (615)
78.05%

1479 (1721)
85.94%

68 (0)
1954 (2336)

83.64%

Lesion + Redundancy
489 (624)
78.37%

1494 (1734)
86.16%

68 (0)
1983 (2358)

84.10%
*Total is the sum of the HCC and HEM only. Other lesions were not considered. 

Figure 5 Examples of multiple detection of the same lesion by YOLOv4.
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detected in further CT or MR scanning. In clinical protocol, 
if a new lesion appears where nothing was shown in the 
previous scanning, irrespective of the appearance, CT or 
MR scan is requested. Without the previous records, it is 
impossible to detect these HCC. Furthermore, if one HCC 
is detected, the entire liver will be scanned by CT or MR 
imaging. Thus, the detections of every HCC or at least one 
in an image have the same outcome. In this sense, it is 
possible to conclude that YOLOv4 could detect 86.92% of 
HCC patients. However, it is not guaranteed that at least 
one lesion would be detected, so all undetected HCC was 
considered false negative in this study. We concluded that 
the focal liver lesion detector had a 0.78 recall rate for 
HCC. 

Performance evaluation: classifier
	 ResNet-50 was applied to classify focal liver lesions 
into three classes: typical HEM, atypical HEM, and HCC. 
Table 3 presents the confusion metric of the classification, 
where only the correct results of the first stage were 
considered. The 472 HCC images detected by the first-
stage detector had 480 lesions (from Table 2), and the 
1455 HEM images had 1479 lesions (570 atypical and 909 
typical HEMs). Note that the number of detected HCC was 
489 due to the multiple detection of some HCC lesions. 
	 With the limited dataset, it is impossible to prove 
whether the deep learning model can differentiate the 
difference between atypical HEM and HCC in a B-mode 
ultrasound image. However, the further treatment plan 
for both lesions is the same, i.e., scheduled for CT or MRI 
examination. Therefore, the detection of HCC as atypical 
HEM did not pose a health risk. Table 3 was modified to 
Table 4 where the HCC incorrectly detected as atypical 
HEM is accepted as the correct classification. According to 
Table 4, the HCC recall rate of 0.92 (448/489) was achieved. 
The accuracy and the negative predictive value (HEM = 
negative) were 0.90 and 0.97, respectively. When HCC was 

considered positive, the precision (0.74) was much lower 
than the other values. This is because ultrasound imaging 
is not a tool to differentiate HCC from atypical HEM. Among 
157 errors, 59 images were atypical HEMs. If atypical HEM 
was considered the same class as HCC (instead of HEM), 
the precision would jump to 0.82.
	 A more serious problem was an HCC incorrectly 
classified as a typical HEM.  Out of the 41 HCC incorrectly 
classified as typical HEM, 22 lesions closely resembled 
typical HEM. These 22 lesions were well-defined and 
hyperechoic (Figure 6). Some of these lesions were 
detected in further CT or MR examinations because they 
were either presented 1) in a liver with multiple HCCs or 2) 
new lesions that appeared in the area without any lesions 
during the previous ultrasound screenings. Furthermore, 
some misclassification occurred, because the detector did 
not extract enough area of the HCC lesion as shown in the 
leftmost image of Figure 5.
	 The classifier was trained by the ground truth lesions. 
The classification result would be better if the classifier 
was also trained using the detection result. However, we 
would like to evaluate the performance independent of 
the detector, so the ground truth was used.  

Performance comparison: two-stage method
	 In this experiment, we compared the proposed two-
stage method (Model 4) with the detector-only model 
(Model 3). Since atypical HEM and HCC have the same 
appearance and require further CT or MR examination, 
distinguishing between them is unnecessary. We 
compared the results of Model 3 with the proposed two-
stage method. HCC was considered positive, while HEM 
was considered negative. The incorrect detection of Model 
4 was not classified but would be considered as getting a 
negative (HEM) classification. The accuracy and the recall 
rate were calculated based on the number of actual HCC 
(not the number of detected areas). If an HCC lesion was 

Table 3 Results of YOLOv4 Detector and ResNet50 Classifier on 3x3 confusion matrix.

Pr
ed

ic
te

d 
Cl

as
s

Actual Class
Class HCC Atypical HEM Typical HEM Total
HCC 337 59 98 494

Atypical HEM 111 486 135 732

Typical HEM 41 29 687 757
Total 489 574 920 1983

Table 4 Results of modified 3x3 confusion matrix as 2x2 confusion matrix. 

Pr
ed

ic
te

d 
Cl

as
s Actual Class

Class HCC HEM Total

HCC 448 157 605
HEM 41 1337 1378
Total 489 1494 1983
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Table 5 Results of HCC detection by the detector only and the two-stage methods. 

Model 3
Two-stage method

Model 4 Classifier Overall

Accuracy 0.72 0.86 0.90 0.77*

Precision 0.88* 0.88*

Recall Suspicious
0.70 

HCC+HEM
0.84 0.90

HCC+HEM
0.76*

HCC
0.68

HCC
0.78

HCC
0.92

HCC
0.72*

F1-score 0.78 0.86*

Negative predictive value 0.72 0.86

Mean average precision 0.60 0.76*

Figure 6 Small oval-shaped hyperechoic HCC lesions were misclassified as typical HEM by the Classifier.

detected more than once, only one instance classified as 
HCC was enough for further examination and would be 
considered as correct. The result is presented in Table 
5. Except for precision, the proposed two-stage method 
provided better performance. Both detectors-only and 
two-stage methods provided the same precision.  
	 The two-stage method outperformed the detector-
only method in the experiment, improving the HCC recall 
from 0.68 to 0.72. This enhancement signifies a meaningful 
improvement in the ability to correctly identify and detect 
HCC cases. Despite using out-of-the-box models not 
specifically designed for medical imaging, the achieved 
recall rate of 0.72 was comparable to previous findings.12 
The dataset in our work is smaller so the number of the 
training image was much lower (615 HCC vs 2414 HCC). 
Furthermore, Tiyarattanachai et al.12 reported a recall rate 
of 0.74 by setting the accepted IoU threshold to 0.2, which 
was considered incorrect detection in our work. There 
were other works that demonstrated high accuracy.16,17 
However, the database was too small to make a solid 
conclusion.  
	 Our two-stage method allows for easy improvement 
as the detector and classifier can be trained separately. 
YOLOv4, the detector used in our study, has been surpassed 
by the more recent YOLOv8 (available at https://ultralytics.
com/yolov8). Replacing YOLOv4 with YOLOv8 would lead 
to quick improvements in our method. Additionally, while 

ResNet-50 provided good classification, optimal results 
could be achieved by pre-training the network with 
medical images instead of the ImageNet database. We 
are currently developing a shallow network specifically for 
lesion classification in liver ultrasound images due to the 
limitations of training ResNet-50 with a small database. 

Limitation
	 Two limitations of this experiment are dataset 
limitations and lack of external validation in real clinical 
settings that could limit the reliability and real-world 
applicability of the developed model. Additionally, the 
use of YOLOv4, as a deep learning model, may present 
challenges in understanding the decision-making process.

Conclusion
	 The proposed method for HCC detection from 
ultrasound images is a two-stage approach. In the first 
stage, a detector was trained to capture all focal liver 
lesions. In the second stage, the classifier was trained 
to distinguish HCC, atypical HEM, and typical HEM. The 
classification of HCC was not strict in the sense that HCC 
is allowed to be detected as atypical HEM since the future 
plan for HCC and atypical HEM is the same. The experiment 
showed that the two-stage method outperformed the 
detector-only method in HCC detection.    The findings 
suggest that training separate models: detection and 

Note : *  the best result for the given evaluation matrix.
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classification models, led to higher efficiency and accuracy
in detecting and classifying hepatic lesions.
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