

Non-transfusion dependent HbE/β⁰-thalassemia as the results of co-existent SEA-α⁰ thalassemia, Hb Constant Spring, and Xmnl-^Gγ site: Thai family studies

Thanusak Tatu^{1*} Wachirawit Tondee² Pornchai Khamtong² Lamplimas Tangphan² Jidapa Jaitiang²

¹Department of Hematology, Clinical Microscopy and Parasitology, Faculty of Medical Technology, Nation University, Lampang Province, Thailand.

²Research Center for Hematology and Health Technology, Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai university, Chiang Mai Province, Thailand.

ARTICLE INFO

Article history:

Received 12 May 2023

Accepted as revised 17 October 2023

Available online 1 November 2023

Keywords:

HbE/β-thalassemia, non-transfusion dependent thalassemia, thalassemia intermedia, α-thalassemia, Xmnl-Gγ polymorphism, β-globin gene mutations

ABSTRACT

Background: Four university students of northern Thai descent were found to be HbE/β⁰-thalassemia. However, they all had a mild form of this disease, categorized as Non-Transfusion Dependent Thalassemia.

Objectives: To analyze involvement of types of β-globin mutations, α-thalassemia, and Xmnl-^Gγ site in mild clinical symptoms observed in four Thai non-transfusion dependent HbE/β⁰-thalassemia cases.

Materials and methods: EDTA blood samples were collected from the patients and their family members after signing the informed consent. Automated complete blood count with blood smear examination, hemoglobin typing, molecular analysis for α and β-globin mutations, β-globin gene haplotypes, and Xmnl-^Gγ site were performed on all blood samples. In addition, nucleotide sequencing of β-globin gene and globin chain separation were performed for patient#3 and their parents.

Results: The first three patients had hemoglobin levels ranging 8.5-11.2 g/dL, while the fourth patient had hemoglobin level of 6.7 g/dL. The first and fourth patients were compound heterozygote for β^E (HBB:c.79G>A) and β¹⁷ (HBB:c.52A>T) alleles with typical hemoglobin pattern of EF. The second patient was compound heterozygote for β^E and β^{41/42} (HBB:c.126_129delCTT) alleles also with typical hemoglobin pattern of EF. The third patient was compound heterozygote of β^E and β^{IVS1-1} (HBB:c.92+1G>T), however, with atypical hemoglobin pattern of EE. Family analysis found co-inheritance of Hb Constant Spring (HBA2:c.427T>C) and the Xmnl-^Gγ site (T at rs7482144) in the first two patients, of SEA-α⁰ thalassemia (NG_000006.1:g.26264_45564del19301) and Xmnl-^Gγ site in the third patient, and of only Xmnl-^Gγ site in the fourth patient.

Conclusion: These family studies proved the fact that co-existence of SEA-α⁰ thalassemia and Hb Constant Spring in HbE/β⁰-thalassemia could lead to mild clinical severity. Minimal effect of Xmnl-^Gγ site on clinical symptoms of this disease was emphasized. This information should be useful in prenatal diagnosis of HbE/β-thalassemia.

* Corresponding contributor.

Author's Address: Department of Hematology, Clinical Microscopy and Parasitology, Faculty of Medical Technology, Nation University, Lampang Province, Thailand.

E-mail address: thanusak_tat@nation.ac.th
doi: 10.12982/JAMS.2024.006

E-ISSN: 2539-6056

Introduction

HbE/β-thalassemia is the syndrome resulting from co-segregation of β^E-gene (HBB:c.79G>A) and β-thalassmia gene.¹ Surveys in Thailand have shown that the affected patients had different clinical symptoms. Some patients had anemia, requiring regular blood transfusions while others in contrast are not anemic and do not need any blood

transfusion throughout their life.² At least 3 determinants have been shown to be linked to mild clinical symptoms of the HbE/β-thalassemia. These include 1). types of β-globin gene mutations, 2). co-existence of α-thalassemia, and 3). co-inheritance of loci involved in increased γ-globin gene expression such as the *XmnI*-Gγ site (T at rs7482144).³ Four university students of northern Thai descent were found to be HbE/β⁰-thalassemia following routine blood tests. However, they all had a mild form of this disease as they required either no or occasional blood transfusion which was categorized as Non-Transfusion Dependent Thalassemia.⁴ This study was therefore aimed to analyze involvement of these three genetic determinants in mild clinical symptoms observed in these propositi. This finding would be useful in predicting the clinical symptoms of *in-utero* fetuses prenatally diagnosed to be HbE/β⁰-thalassemia.

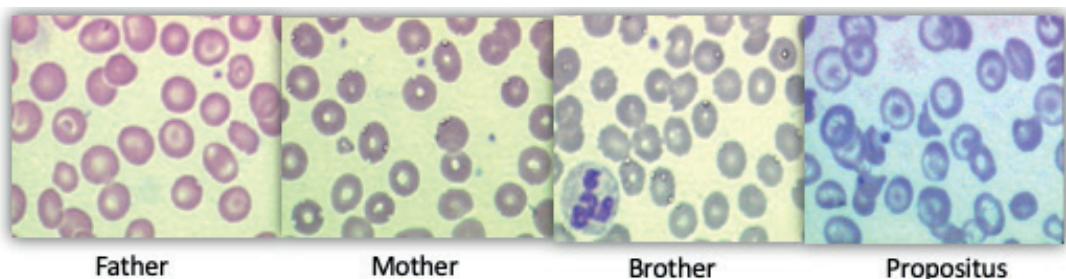
Materials and methods

Subjects and blood samples

Four university students of northern Thai descent and their family members were collectively analyzed. EDTA blood samples were collected from all subjects after signing the informed consents. The protocol of this study was reviewed and approved by the Ethic Committee of Faculty of Medicine, Chiang Mai University, Thailand with the approval number 205/2012.

Blood analysis and Hb typing

Automated complete blood count (Sysmex KX-21 Hematology Analyzer, Sysmex Corporation, Kobe, Japan) with blood smear examination was performed. Hb typing was determined by cation exchange high-performance liquid chromatography (HPLC) using the Primus Variant System 99 (Primus Corporation, Kansas City) and VARIANT II Hemoglobin Testing System (Bio-Rad Laboratories Ltd., Hercules, California).


Molecular analysis

The α- and β-globin gene mutations were identified by multiplex allele-specific PCR routinely performed in our laboratory.^{5,6} The *XmnI*-Gγ site was identified by PCR-RFLP analysis also routinely performed in our laboratory.^{7,8} The β-globin gene RFLP haplotypes (*HindII*-ε, *HindIII*-Gγ, *HindII*-Aγ, *HindII*-5'ψβ, *HindII*-3'ψβ, *Avall*-β and *HinfI*-β) were determined following the procedure described elsewhere.^{9,10}

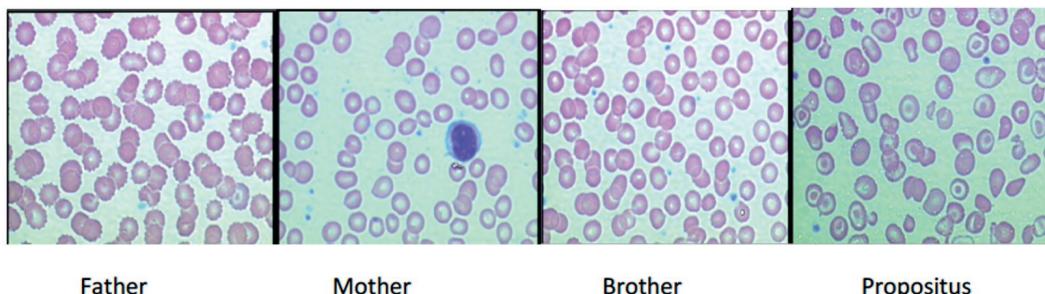
Results

Family 1

Family 1 consisted of a father, mother, brother, and patient (Supplementary Figure 1). Father was β-thalassemia carrier with Hb type of A₂A (Supplementary Figure 2), not anemic with mild change of RBC morphology (Figure 1). He was heterozygous for β¹⁷ mutations (HBB:c.52A>T) (β¹⁷/β^N) and had no co-existence of α thalassemia, Hb Constant Spring (Cs) and *XmnI*-Gγ site (T at rs7482144). The mother was HbE carrier with Hb type of AE (Supplementary Figure 2). She was mildly anemic with mild change of RBC morphology (Figure 1). She was heterozygous for β^E mutation (HBB:c.79G>A) (β^E/β^N) with compound heterozygote of 3.7kb-α thalassemia 2 (NG_000006.1:g.34164_37967del3804) and Hb Constant Spring (ABA2:c.427T>C) (-α^{3.7}/α^{Cs}α). The *XmnI*-Gγ site was in homozygous state (*XmnI*-Gγ : +/+). Brother was HbE carrier with Hb type of AECs (Supplementary Figure 2). He was not anemic with normal RBC morphology (Figure 1). He was heterozygous for β^E mutation, Hb Constant Spring and for *XmnI*-Gγ site, having genotypes as β^E/β^N, α^{Cs}α/αα, *XmnI*-Gγ:+/-, respectively. The patient had HbE/β⁰ thalassemia with Hb type of EF (Supplementary Figure 2). She was mildly anemic with a thalassemia blood picture (Figure 1). She had Mahidol score for clinical severity of zero [11]. She was compound heterozygous for β¹⁷ and β^E mutations (β¹⁷/β^E), inherited from her father and mother, respectively. She was also heterozygous for Hb Constant Spring (α^{Cs}α/αα) and *XmnI*-Gγ site (*XmnI*-Gγ:+/-), inherited from her mother. Details of the hematologic parameters of this family are shown in Table 1.

Figure 1. RBC morphology of Family 1 members. Father and Mother had mild changes in RBC morphology. Brother had normal RBC morphology. The patient had thalassemic RBC morphology.

Table 1. Hematological parameters, Hb typing results, globin gene genotype, and *Xmn1-Gγ* genotype of members in Family 1.


	Father	Mother	Brother	Patient
RBC($\times 10^6/\mu\text{L}$)	5.72	5.09	5.55	5.17
Hb (g/dL)	12.0	10.8	13.8	8.9
Hct (%)	39.9	36.6	43.5	29.9
MCV (fL)	69.8	71.9	78.4	57.8
MCH (pg)	21	21.2	24.9	17.2
MCHC (g/dL)	30.1	29.5	31.7	29.8
RDW (%)	14.8	13.8	14.4	27.3
RBC morphology	Sl. change	Sl. Change	Normal	Thalassemia
Cation-exchange HPLC	A_2A [A_0 65.6%, A_2 5.4%]	EA [A_0 68.8%, E 19.0%]	EA [A_0 64.8%, E 23.6%]	EF [E 61.3%, F22.1%]
α -globin gene	$\alpha\alpha/\alpha\alpha$	$-\alpha^{3.7}/\alpha^{Cs}\alpha$	$\alpha^{Cs}\alpha/\alpha\alpha$	$\alpha^{Cs}\alpha/\alpha\alpha$
β -globin gene	β^{17}/β^{N*}	β^E/β^{N*}	β^E/β^{N*}	β^E/β^{17}
<i>Xmn1-Gγ</i> site	-/-	+/+	+/-	+/-

Note: β^N is normal β -globin gene.

Family 2

Family 2 consisted of a father, mother, brother, and patient (Supplementary Figure 1). The father was HbE carrier with Hb type of AE (Supplementary Figure 3), not anemic, and had normal RBC morphology (Figure 4). He was heterozygous for Hb Constant Spring ($\alpha^{Cs}\alpha/\alpha\alpha$) and homozygous for the *Xmn1-Gγ* site (*Xmn1-Gγ*:+/-). The mother was β -thalassemia carrier with Hb type of A_2A (Supplementary Figure 3). She was mildly anemic with moderate change of RBC morphology (Figure 2). She was heterozygous for $\beta^{41/42}$ mutation ($\beta^{41/42}/\beta^N$) without co-existence α thalassemia, Hb Constant Spring, and the *Xmn1-Gγ* site. Brother was normal with Hb type of A_2A

(Supplementary Figure 3). He was not anemic with normal RBC morphology (Figure 2).. He was heterozygous for Hb Constant Spring ($\alpha^{Cs}\alpha/\alpha\alpha$) and *Xmn1-Gγ* site (*Xmn1-Gγ*:+/-). The patient had HbE/ β^0 thalassemia with Hb type of EF (Supplementary Figure 3). He was mildly anemic with thalassemia blood picture (Figure 2). His Mahidol score for clinical severity was zero.¹¹ He was compound heterozygous for β^E and $\beta^{41/42}$ mutations (HBB:c.126_129delCTT) ($\beta^{41/42}/\beta^E$), inherited from his father and mother, respectively. He was also heterozygous for Hb Constant Spring ($\alpha^{Cs}\alpha/\alpha\alpha$) and *Xmn1-Gγ* site (*Xmn1-Gγ*:+/-), inherited from his father. Details of the hematologic parameters of this family are shown in Table 2.

Figure 2. RBC morphology of Family 2 members. Mother had a moderate change in RBC morphology. Father and Brother had normal RBC morphology. The creation seen in Father RBC was RBC shrinkage due to prolonged storage in EDTA. The patient had thalassemic RBC morphology.

Table 2. Hematological parameters, Hb typing results, globin gene genotype, and *Xmnl*- γ genotype of members in Family 2.


	Father	Mother	Brother	Patient
RBC($\times 10^6/\mu\text{L}$)	4.81	4.12	5.6	5.54
Hb (g/dL)	14.3	8.2*	14	11.2
Hct (%)	44.2	27.4	43.8	36.4
MCV (fL)	91.9	66.5	78.2	56.9
MCH (pg)	32.4	19.9	25	17.3
MCHC (g/dL)	32.4	29.9	32	30.5
RDW (%)	13.6	15.9	12.9	27.5
RBC morphology	Normal	Mod Change	Normal	Thalassemia
Cation-exchange HPLC	AE [A_0 65.2%, E 25.2%]	A_2A [A_0 71.4%, A_2 4.8%]	A_2A [A_0 86.8%, A_2 2.5%]	EF [E 66.6%, F20.9%]
α -globin gene	$\alpha^{\text{Cs}}\alpha/\alpha\alpha$	$\alpha\alpha/\alpha\alpha$	$\alpha^{\text{Cs}}\alpha/\alpha\alpha$	$\alpha^{\text{Cs}}\alpha/\alpha\alpha$
β -globin gene	$\beta^{\text{E}}/\beta^{\text{N}}^{**}$	$\beta^{41/42}/\beta^{\text{N}}^*$	$\beta^{\text{N}}/\beta^{\text{N}}^*$	$\beta^{\text{E}}/\beta^{41/42}$
<i>Xmnl</i> - γ site	+/+	-/-	+/-	+/-

Note: Co-occurrence of iron deficiency anemia was suspected, ** β^{N} is normal β -globin gene.

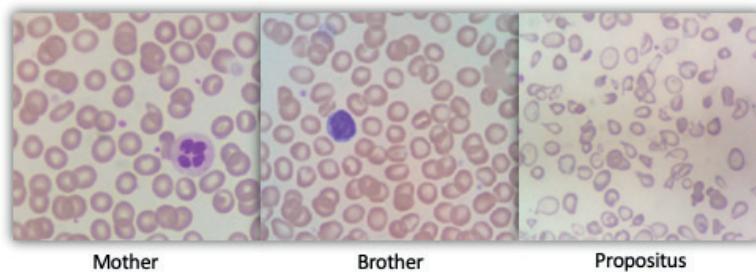
Family 3

Family 3 consisted of a father, mother, and patient (Supplementary Figure 1). The father was HbE carrier with Hb type of AE (Supplementary Figure 4), not anemic, and normal RBC morphology (Figure 3). He was heterozygous for β^{E} -mutation ($\beta^{\text{E}}/\beta^{\text{N}}$) and *Xmnl*- γ site (*Xmnl*- γ :+/-), without co-existence of α -thalassemia and Hb Constant Spring. The mother was β -thalassemia carrier with Hb type of A_2A (Supplementary Figure 4). She was mildly anemic with moderate change of RBC morphology (Figure 3). She was heterozygous for $\beta^{\text{IVS1-1}}$ mutation (HBB:c.92+1G>T) ($\beta^{\text{IVS1-1}}/\beta^{\text{N}}$) with co-existence of SEA- α^0 thalassemia (- $-\text{SEA}/\alpha\alpha$). The patient had HbE/ β^0 thalassemia with Hb type of EE (Supplementary Figure 4). She was mildly anemic with thalassemia blood picture (Figure 3). Her Mahidol score for clinical severity was zero.¹¹ She was compound

heterozygous for β^{E} and $\beta^{\text{IVS1-1}}$ mutations ($\beta^{\text{E}}/\beta^{\text{IVS1-1}}$), inherited from her father and mother, respectively, and typical for HbE/ β^0 -thalassemia (Supplementary Figure 5). She was also heterozygous for the SEA- α^0 thalassemia (- $-\text{SEA}/\alpha\alpha$) and the *Xmnl*- γ site (*Xmnl*- γ :+/-), inherited from her mother and father, respectively. As no HbF peak was seen in HPLC, the Acid-Urea-Triton X (AUT)-Polyacrylamide Gel Electrophoresis (PAGE) of globin chain analysis was performed and found no γ -globin chain band, confirming the Hb typing result of EE without HbF peak (Supplementary Figure 6). Analysis of RFLP haplotype of β -globin gene cluster found that the patient carried haplotypes III and I, inherited from her father and mother, respectively. Details of hematologic parameters of this family are shown in Table 3.

Figure 3. RBC morphology of Family 3 members. Father and Mother had moderate changes in RBC morphology. The patient had thalassemic RBC morphology.

Table 3. Hematological parameters, Hb typing results, globin gene genotype, and *Xmnl*- γ genotype of members in Family 3.


	Father	Mother	Patient
RBC($\times 10^6/\mu\text{L}$)	4.95	4.3	5.3
Hb (g/dL)	13.0	10.3	8.5
Hct (%)	40.7	33.9	29.4
MCV (fL)	82.2	78.8	55.5
MCH (pg)	26.3	24.0	16.0
MCHC (g/dL)	31.9	30.4	28.9
RDW (%)	13.8	17	22.7
RBC morphology	Mild change	Mild change	Severely change
Cation-exchange HPLC	AE [A_0 62.2%, E 25.3%]	A_2A [A_0 83.5%, A_2 4.4%]	EE [E 89.9%]
α -globin gene	$\alpha\alpha/\alpha\alpha$	$-\text{SEA}/\alpha\alpha$	$-\text{SEA}/\alpha\alpha$
β -globin gene	β^E/β^{N*}	$\beta^{\text{IVS}1-1(\text{G}>\text{T})}/\beta^{N*}$	$\beta^{\text{IVS}1-1(\text{G}>\text{T})}/\beta^E$
<i>Xmnl</i> - γ site	+/-	-/-	+/-
β -globin gene haplotype	I/III	I/VII	I/III

* β^N is normal β -globin gene.

Family 4

Family 4 consisted of mother, brother, and patient (Supplementary Figure 1). Mother was HbE carrier with Hb type of AE (Supplementary Figure 7), not anemic and with normal RBC morphology (Figure 4). She was heterozygous for β^E -mutation (β^E/β^N) and the *Xmnl*- γ site (*Xmnl*- γ :+/-). Brother was otherwise normal. The patient was HbE/ β^0 thalassemia with Hb type of EF (Supplementary Figure 7). She was mildly anemic with thalassemia blood picture

(Figure 4). Her Mahidol score for clinical severity was 3.5, indicating moderate degree of clinical severity.¹¹ She was compound heterozygous for β^{17} and β^E mutations (β^E/β^{17}), inherited from her deceased father and mother, respectively. She had no co-inherited α -thalassemia and was only heterozygous for *Xmnl*- γ site (*Xmnl*- γ :+/-). Details of hematologic parameters of this family are shown in Table 4.

Figure 4. RBC morphology of Family 4 members. Mother and Brother had mild changes in RBC morphology. The patient had thalassemic RBC morphology.

Table 4. Hematological parameters, Hb typing results, globin gene genotype and *Xmn1-Gγ* genotype of members in Family 4.

	Mother	Brother	Patient
RBC(x10 ⁶ /μL)	5.24	6.37	4.66
Hb (g/dL)	12.7	16.3	6.7
Hct (%)	40.4	51.7	22.9
MCV (fL)	77.1	81.2	49.1
MCH (pg)	24.2	25.6	14.4
MCHC (g/dL)	31.4	31.5	29.3
RDW (%)	12.0	14.6	26.4
RBC morphology	Normal	Normal	Thalassemia
Cation-exchange HPLC	AE [A ₀ 63.4%, E 26.5%]	A ₂ A [A ₀ 86.7%, A ₂ 3.2%]	EF [E 62.8%, F30.4%]
α-globin gene	αα/αα	αα/αα	αα/αα
β-globin gene	β ^E /β ^{N*}	β ^N /β ^{N*}	β ^E /β ¹⁷
<i>Xmn1-Gγ</i> site	+-	-/-	+-

Note: β^N is normal β-globin gene.

Discussion

HbE/β-thalassemia is genotypically a compound heterozygote of β^E and β^{Thalassemia} alleles. There are broadly two groups of β^{Thalassemia} genes, including the severe β⁰-and mild β⁺-genes. The β¹⁷, β^{41/42}, and β^{IVS1-1} mutations observed in the propositi of this study were all β⁰-mutations, in which no functional β-globin chain is produced. The β¹⁷ is a nonsense mutation (A>T) at codon 17, causing premature stopping of β-globin mRNA translation at this codon. In addition, the β^{41/42} is a frameshift mutation caused by a 4 base pair (bp) deletion at codons ^{41/42} of the β-globin gene. This 4-bp deletion causes a shift of triplet codons that leads to the formation of a premature stop codon at codon 59. In contrast, the IVS1-1 is the G>T mutation at the first nucleotide of intron or intervening sequence (IVS) #1 of the β-globin gene. This mutation abolishes normal splicing of the β-globin mRNA and, as a result, no normal β-globin mRNA is formed, causing the β⁰-type of thalassemia.¹ Compound heterozygote of these β⁰ alleles with the β^E allele can lead to disorder of HbE/β⁰-thalassemia.²

The clinical phenotype of HbE/β⁰-thalassemia varies widely with steady-state hemoglobin levels ranging from 3.0 g/dL to 11.0 g/dL.² Types of β-globin mutations, co-existence of α-thalassemia and co-inheritance of loci linked to increased γ-globin gene expression were shown to ameliorate clinical symptoms of β-thalassemia and HbE/β-thalassemia.^{2,3,12-14} The patients in this report were compound heterozygote for β^E allele and β¹⁷ or β^{41/42} or β^{IVS1-1}, all of which were β⁰-thalassemia genes. Based on the β-globin mutations, all these propositi should be clinically severe with thalassemia major or transfusion-dependent types.¹⁵⁻¹⁹ However, the clinical symptoms of these propositi were only of intermedia types, requiring no or only occasional blood transfusion.

For patients 1 and 2, Hb Constant Spring combined with the *Xmn1-Gγ* site could account for their mild clinical

symptoms. The reduction of free α-globin chain in Hb Constant Spring and the increased formation of HbF in the presence of the *Xmn1-Gγ* site lessened the chance of α-globin aggregation which can destroy red blood cells. Hb Constant Spring is an α-structural variant (α-Constant Spring) that originated from a point mutation (T>C) at a stop codon of α2-globin chain, leading to instability of the α-Constant Spring mRNA.^{20,21} In addition, expression of the downstream α1-globin gene is reduced due to the α-Constant Spring mutation in the α2-globin gene.²² The combination of these two mechanisms leads to the α-globin chain being markedly decreased in Hb Constant Spring, causing severe α⁺-thalassemia. The severe characteristics of Hb Constant Spring were observed in clinical analysis of HbH disease in Thailand, which clearly showed that HbH-Constant Spring disease (-/-α^{CS}α) was more severe than deletional HbH disease (-/-α).^{23,24}

The *Xmn1-Gγ* polymorphism, co-inherited in patients 1, and 2, was shown to be the major *cis*-acting factor for re-activating γ-globin gene expression and HbF/F cells in human adults.²⁵⁻²⁸ It has also been found to reduce clinical symptoms in sickle cell disease, β-thalassemia, and HbE/β thalassemia.^{18,19,29,30} Therefore, a co-occurrence of the *Xmn1-Gγ* site could contribute to reducing even more the clinical symptoms in these two propositi.

However, patient 4, who only had *Xmn1-Gγ* site in the heterozygous form, had more severe clinical symptoms than patients 1, and 2. It was clear from the results that the patient 4 was a compound heterozygote for β^E and β¹⁷ alleles. The β¹⁷ is nonsense mutation (A-T), resulting in the complete absence of β-globin chain synthesis.¹⁹ The β^E is missense mutation (glutamic – lysine) that also causes reduction of β^E globin chain due to random usage of cryptic splice site at codon 25 of β-globin gene during β^E-mRNA production.³³ As a result, synthesis of β-globin chain in patient 4 was markedly decreased, leading to

an overwhelmingly increased quantity of free α -globin chain and α/β -globin chain synthetic ratio. However, it has been known that the γ -globin gene reactivation efficiency of the $Xmnl$ - γ site alone is limited and that the resulting γ -globin chain produced cannot assemble all the free α -globin chain to produce HbF. As a result, the free α -globin chain remaining can aggregate, precipitate, and damage red blood cells.³ In fact, previous surveys in Thailand had reported minimal impact of the heterozygous $Xmnl$ - γ site in reducing the clinical severity of HbE/ β -thalassemia.^{7,18,19,30,32}

Patient 3, who also had very mild HbE/ β^0 -thalassemia with an atypical pattern of Hb typing of EE instead of EF as determined by cation-exchange HPLC (Supplementary Figure 5) had both SEA- α^0 -thalassemia and $Xmnl$ - γ site. Her γ -globin chain was not reactivated as shown by AUT-PAGE (Supplementary Figure 8). Therefore, this atypical Hb pattern could be explained by non-upregulated γ -globin gene expression and mild clinical symptoms of this patient would be attributed to the SEA- α^0 -thalassemia alone. In fact, it has been established that the SEA- α^0 -thalassemia is a severe form of α -thalassemia producing no α -globin chain.^{22,34,35} Thus, reduced chance of α -globin aggregation and precipitation occurred in this patient and her clinical symptoms improved. Further studies on the exact mechanism controlling the expression of the γ -globin gene should clarify the low γ -globin gene expression in this HbE/ β^0 -thalassemia patient.

Analysis of 925 Thai HbE/ β -thalassemia patients in 2008 showed that the patients having co-existent SEA- α thalassemia and Hb Constant Spring had later disease onset, less frequent requirement for blood transfusion, fewer episodes of hepatosplenomegaly than those having no α -thalassemia. The hematological parameters were better in the HbE/ β -thalassemia patients having SEA- α^0 -thalassemia and Hb Constant Spring than those having normal α -globin gene.³⁶ In addition, the study of 240 Asian Indian HbE/ β -thalassemia patients by Sharma V and colleagues demonstrated ameliorating effect of α -thalassemia, including Hb Constant Spring, on clinical severity.³⁷ They concluded that the α -thalassemia was the major clinical modifying factor of their HbE/ β -thalassemia patients. The findings in this study supported those raised by these two studies.

In conclusion, these family studies proved the findings of previous cohort studies that SEA- α^0 thalassemia and Hb Constant Spring had the potential in alleviating the clinical symptoms of HbE/ β^0 -thalassemia. The minimal effect of the $Xmnl$ - γ site on clinical severity of HbE/ β^0 -thalassemia was evident. This information may be useful for family counseling during prenatal diagnosis of β -thalassemia syndrome.

Conflict of interest

None

Acknowledgements

The authors would like to thank Prof. Dr. Vip Viprakasit of the Department of Pediatrics, Faculty of Medicine,

Siriraj Hospital, for genotyping the thalassemia gene of the subjects. The authors also would like to thank Dr. Laurence Game, Head of Genomics Laboratory - Honorary Lecturer Imperial College London @ MRC London Institute of Medical Sciences (LMS) - Imperial College London, UK, for valuable suggestions and proofreading of this manuscript. Finally, the authors would like to thank Dr. Denis Sweatman of the Department of Physics and Material Sciences, Faculty of Science, Chiang Mai University, for the English proofreading of this manuscript.

References

- 1] Weatherall DJ, Clegg JB. The Thalassaemia Syndromes. 4th Ed. Oxford: Blackwell Scientific, 2001. doi:10.1002/9780470696705
- [2] Fucharoen S, Weatherall DJ (2012) The hemoglobin E thalassemias. *Cold Spring Harb Perspect Med*. 2012; 2(8): 1-15. doi: 10.1101/cshperspect.a011734.
- [3] Thein SL. Genetic modifiers of β -thalassemia. *Haematologica* 2005; 90(5): 649-60. PMID: 15921380
- [4] Musallam KM, Cappellini MD, Viprakasit V, et al. Revisiting the non-transfusion-dependent (NTDT) vs. transfusion-dependent (TDT) thalassemia classification 10 years later. *Am J Hematol*. 2021; 96(2): E54-E56. doi: 10.1002/ajh.26056.
- [5] Tatu T, Kiewkarnkha T, Khuntarak S, et al. Screening for co-existence of α -thalassemia in β -thalassemia and in HbE heterozygotes via an enzyme-linked immunosorbent assay for Hb Bart's and embryonic ζ -globin chain. *Int J Hematol*. 2012; 95(4): 386-93. doi: 10.1007/s12185-012-1039-4.
- [6] Srisuwan W, Tatu T. Diagnosis of thalassemia carriers commonly found in northern Thailand via a combination of MCV or MCH and PCR-based methods. *Bull Chiang Mai Assoc Med Sci*. 2013; 46(1): 22-32.
- [7] Tatu T, Sritong W, Sa-Nguansermsri T. The associations of SEA- α thalassemia 1, $Xmnl$ - γ polymorphism and β -globin gene mutations with the clinical severity of β -thalassemia syndrome in northern Thailand. *J Med Assoc Thai*. 2014; 97(3): 300-7. PMID: 25123009
- [8] Kerdpoo S, Limweeraprajak E, Tatu T. Effect of Swiss-type heterocellular HPFH from $Xmnl$ - γ and $HBBP1$ polymorphisms on HbF, HbE, MCV and MCH levels in Thai HbE carriers. *Int J Hematol*. 2014; 99(3): 338-44. doi: 10.1007/s12185-014-1516-z.
- [9] Dos Santos Silva W, de Nazare Klautau-Guimaraes M, Grisolia CK. β -globin haplotypes in normal and hemoglobinopathic individuals from Reconcavo Baiano, State of Bahia, Brazil. *Genet Mol Biol*. 2010; 33(3): 411-7. doi: 10.1590/S1415-47572010005000042.
- [10] Sutton M, Bouhassira EE, Nagel RL (1989) Polymerase chain reaction amplification applied to the determination of β -like globin gene cluster haplotypes. *Am J Hematol*. 1989; 32(1): 66-9. doi: 10.1002/ajh.2830320113.
- [11] Sripichai O, Makarasara W, Munkongdee T, et al. A scoring system for the classification of β -thalassemia/ Hb E disease severity. *Am J Hematol*. 2008; 83(6): 482-4. doi: 10.1002/ajh.21130.
- [12] Galanello R, Cao A. Relationship between genotype

and phenotype. *Thalassemia intermedia*. *Ann NY Acad Sci*. 1998; 850: 325-33. doi: 10.1111/j.1749-6632.1998.tb10489.x.

[13] Cao A, Galanello R, Rosatelli MC. Genotype-phenotype correlations in β -thalassemias. *Blood Rev*. 1994; 8(1): 1-12. doi: 10.1016/0268-960x(94)90002-7.

[14] Fucharoen S, Winichagoon P. Clinical and hematologic aspects of hemoglobin E beta-thalassemia. *Curr Opin Hematol*. 2000; 7(2): 106-12. doi: 10.1097/00062752-200003000-00006.

[15] Traivaree C, Monsereenusorn C, Rujkijyanont P, et al. Genotype-phenotype correlation among β -thalassemia and β -thalassemia/HbE disease in Thai children: predictable clinical spectrum using genotypic analysis. *J Blood Med*. 2018; 9: 35-41. doi: 10.2147/JBM.S159295. eCollection 2018.

[16] Viprakasit V, Ekwattanakit S. Clinical Classification, Screening and Diagnosis for Thalassemia. *Hematol Oncol Clin North Am*. 2018; 32(2): 193-211. doi: 10.1016/j.hoc.2017.11.006.

[17] Laboratories of Computer Science & Engineering and Biochemistry & Molecular Biology at the Pennsylvania State University. *Globin Gene Server*. 1999. <https://globin.bx.psu.edu/>. Accessed 25 Sept 2021.

[18] Laosombat V, Wongchanchailert M, Sattayasevana B, et al. Clinical and hematologic features of β^0 -thalassemia (frameshift 41/42 mutation) in Thai patients. *Haematologica*. 2001; 86(2): 138-41. PMID: 11224481

[19] Laosombat V, Wongchanchailert M, Sattayasevana B, et al (2001) Clinical and hematological features of codon 17, A-T mutation of β -thalassemia in Thai patients. *Eur J Haematol*. 2001; 66(2): 126-9. D doi: 10.1034/j.1600-0609.2001.00305.x.

[20] Hunt DM, Higgs DR, Winichagoon, P, et al. Haemoglobin Constant Spring has an unstable α chain messenger RNA. *Br J Haematol*. 1982; 51(3): 405-13. doi: 10.1111/j.1365-2141.1982.tb02796.x.

[21] Waggoner SA, Liebhaber SA. Regulation of α -globin mRNA stability. *Exp Biol Med (Maywood)* 2003; 228(4): 387-95. doi: 10.1177/153537020322800409.

[22] Bernini LF, Harteveld CL (1998) Alpha-Thalassemia. In: Rodgers GP, editor. *Bailliere's Clinical Haematology, International Practice and Research, Sickle cell disease and Thalassaemia*. London: Bailliere Tindall; 1998. pp. 53-90.

[23] Charoenkwan P, Taweephon R, Sae-Tung R, et al. Molecular and clinical features of Hb H disease in northern Thailand. *Hemoglobin*. 2005; 29(2): 133-40. PMID: 15921165

[24] Fucharoen S, Viprakasit V. Hb H disease: clinical course and disease modifiers. *Hematology Am Soc Hematol Educ Program*. 2009: 26-34. doi: 10.1182/asheducation-2009.1.26.

[25] Garner C, Tatu T, Reittie JE, et al. Genetic influences on F cells and other hematologic variables: a twin heritability study. *Blood*. 2000; 95(1): 342-6. PMID: 10607722

[26] Thein SL, Craig JE. Genetics of Hb F/F cell variance in adults and heterocellular hereditary persistence of fetal hemoglobin. *Hemoglobin*. 1998; 22(5-6): 401-14. doi: 10.3109/03630269809071538.

[27] Thein SL, Menzel S. Discovering the genetics underlying foetal haemoglobin production in adults. *Br J Haematol*. 2009; 145(4): 455-67. doi: 10.1111/j.1365-2141.2009.07650.x.

[28] Thein SL, Menzel S, Lathrop M, et al. Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. *Hum Mol Genet*. 2009; 18(R2): R216-23. doi: 10.1093/hmg/ddp401.

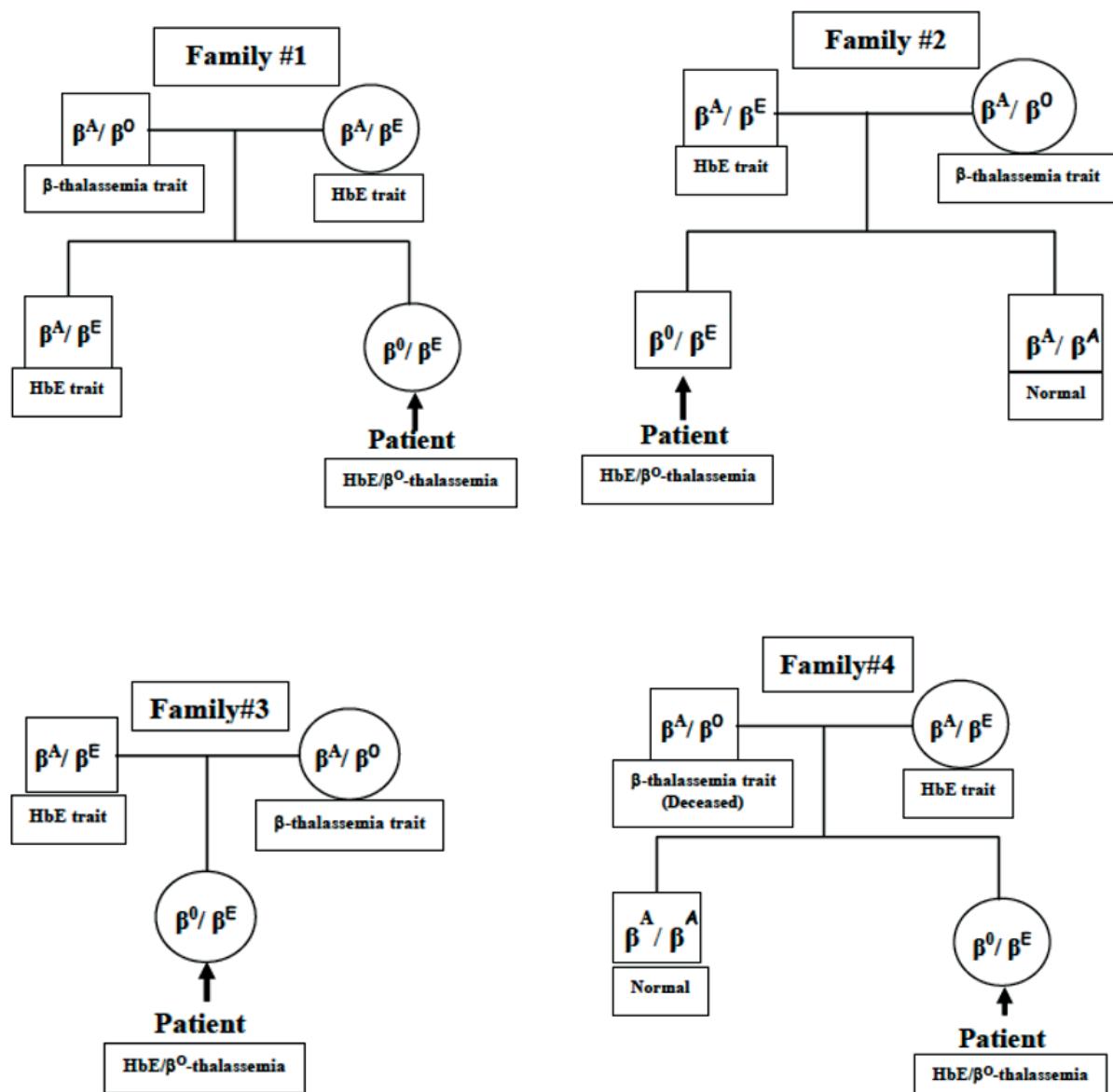
[29] Alaoui-Ismaili FZ, Laghmi A, Ghailani-Nourouti N, et al. *Xmn1* polymorphism in sickle cell disease in north Morocco. *Hemoglobin*. 2020; 44(3): 190-4. doi: 10.1080/03630269.2020.1772284.

[30] Laosombat V, Wongchanchailert M, Sattayasevana B, et al. Clinical and hematological features of β^+ -thalassemia (IVS-1 nt 5, G-C mutation) in Thai patients. *Eur J Haematol* 2001; 67(2): 100-4. doi: 10.1034/j.1600-0609.2001.t01-1-00431.x.

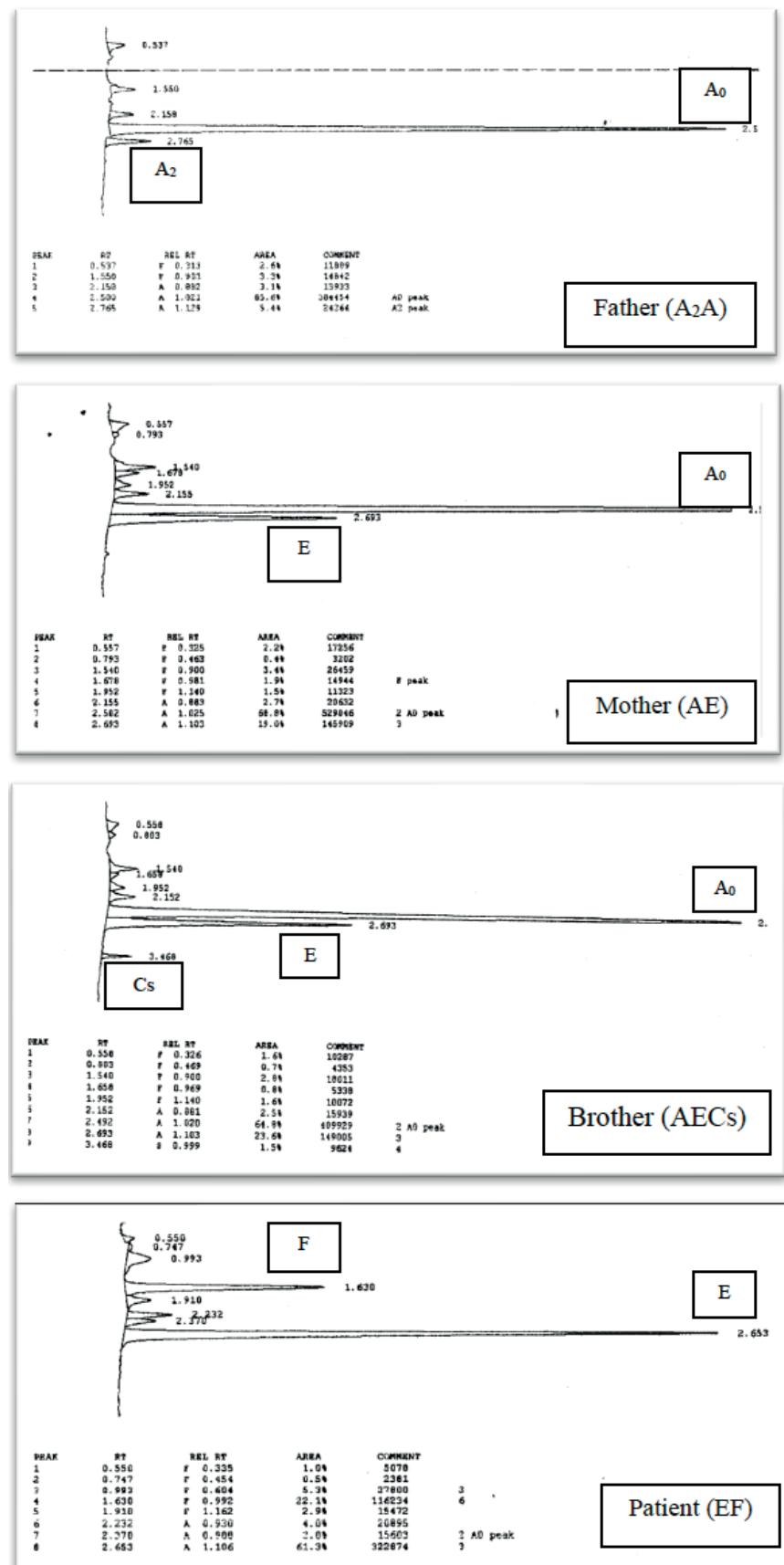
[31] Winichagoon P, Fucharoen S, Chen P, et al. Genetic factors affecting clinical severity in beta-thalassemia syndromes. *J Pediatr Hematol Oncol*. 2000; 22(6): 573-80. doi: 10.1097/00043426-200011000-00026.

[32] Charoenkwan P, Teerachaimahit P, Sanguansermsri T. The correlation of α -globin gene mutations and the *Xmn1* polymorphism with clinical severity of Hb E/ β -thalassemia. *Hemoglobin*. 2014; 38(5): 335-8. doi: 10.3109/03630269.2014.952744.

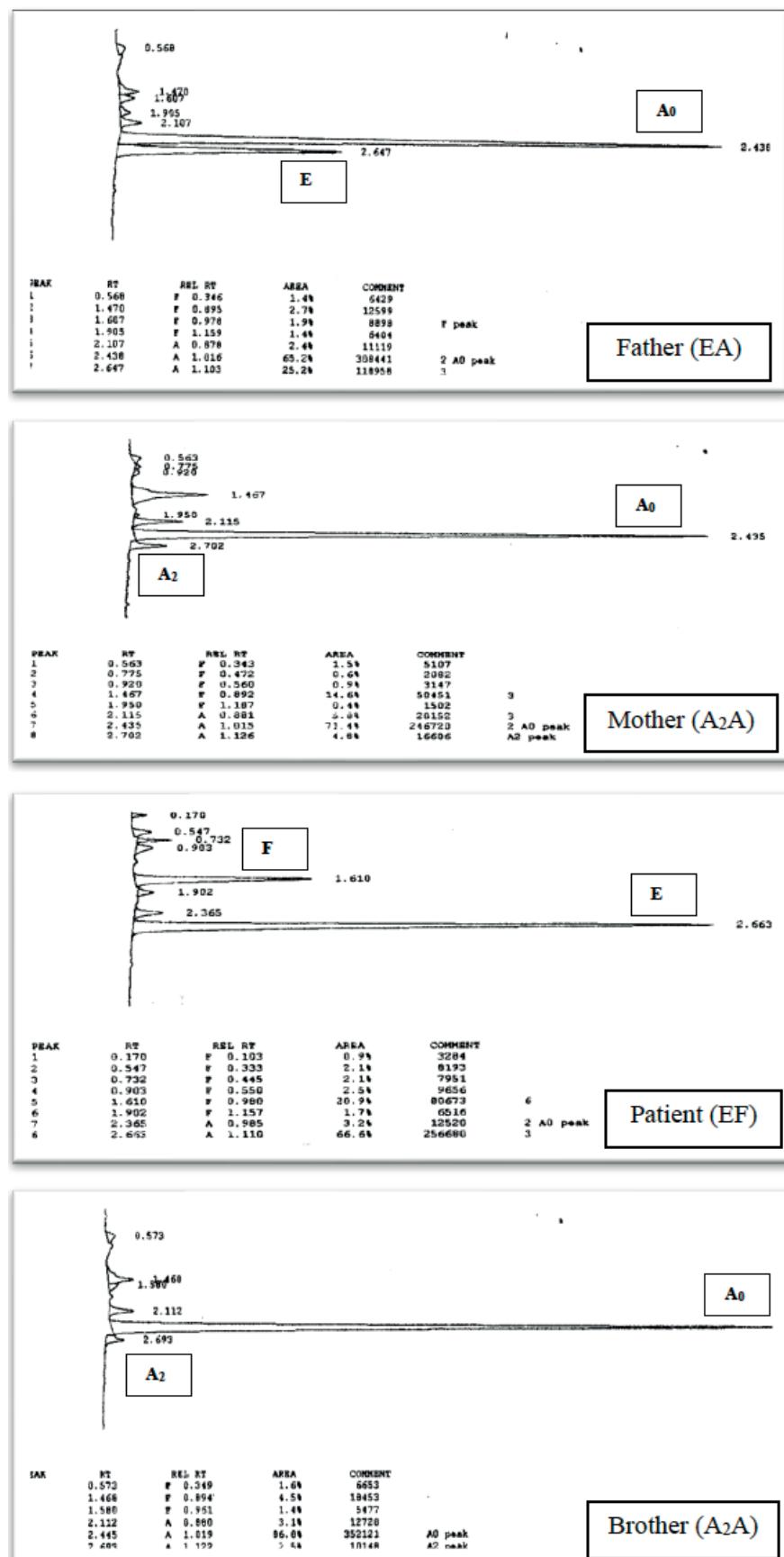
[33] Winichagoon P, Fucharoen S, Wilairat P, Chihara K, Fukumaki Y. Role of alternatively spliced β^E -globin mRNA on clinical severity of β -thalassemia/hemoglobin E disease. *Southeast Asian J Trop Med Public Health*. 1995; 26(Suppl 1): 241-5. PMID: 8629114

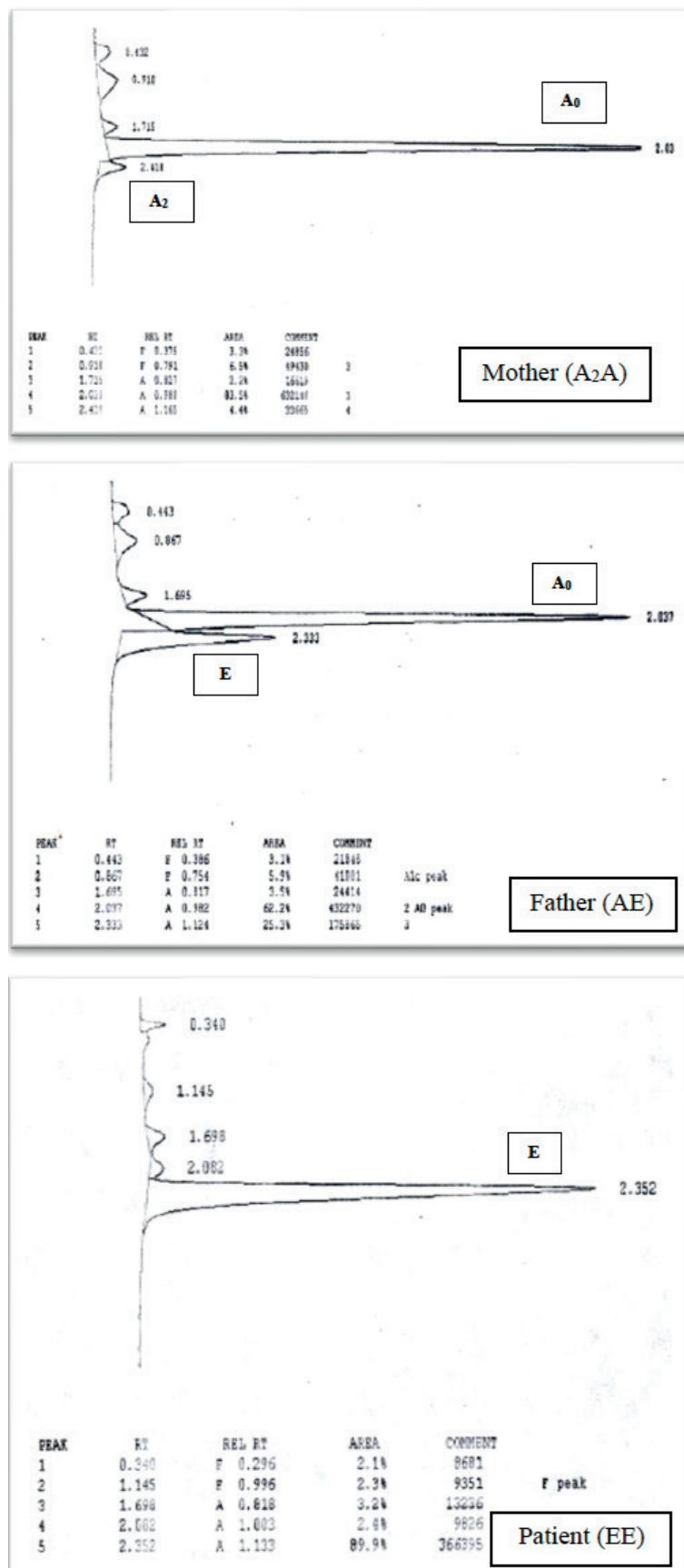

[34] Harteveld CL, Higgs DR. Alpha-thalassaemia. *Orphanet J Rare Dis*. 2010; 5: 13. doi: 10.1186/1750-1172-5-13.

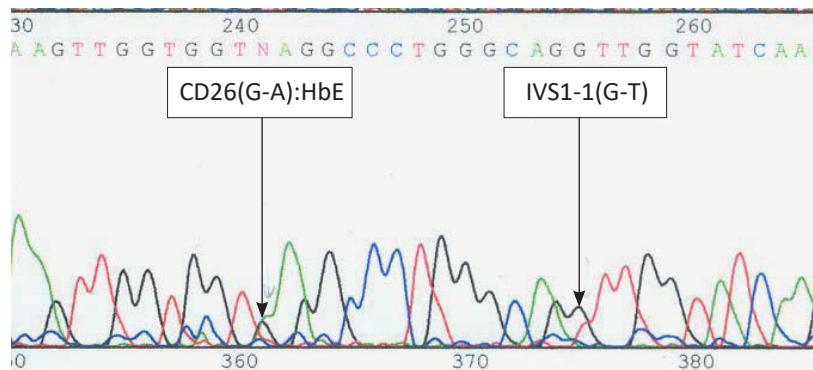
[35] Higgs DR, Weatherall DJ. The Alpha Thalassaemias. *Cell Mol Life Sci*. 2009; 66(7): 1154-62. doi: 10.1007/s00018-008-8529-9.

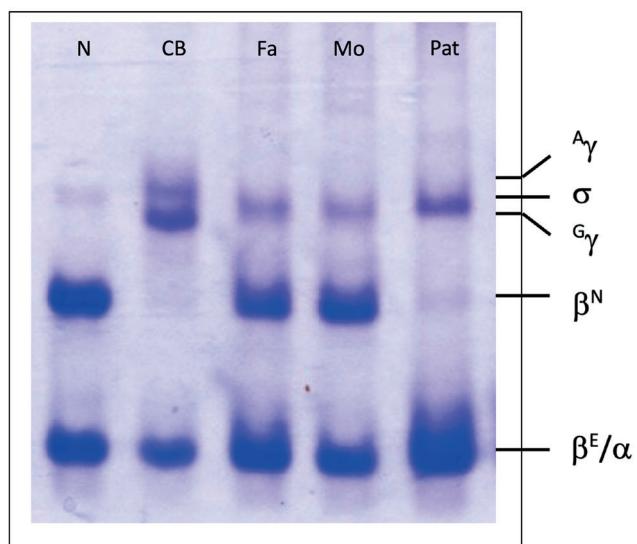

[36] Sripichai O, Munkongdee T, Kumkhaek C, et al. Coinheritance of the different copy numbers of α -globin gene modifies severity of β -thalassemia/Hb E disease. *Ann Hematol*. 2008; 87(5): 375-9. doi: 10.1007/s00277-007-0407-2.

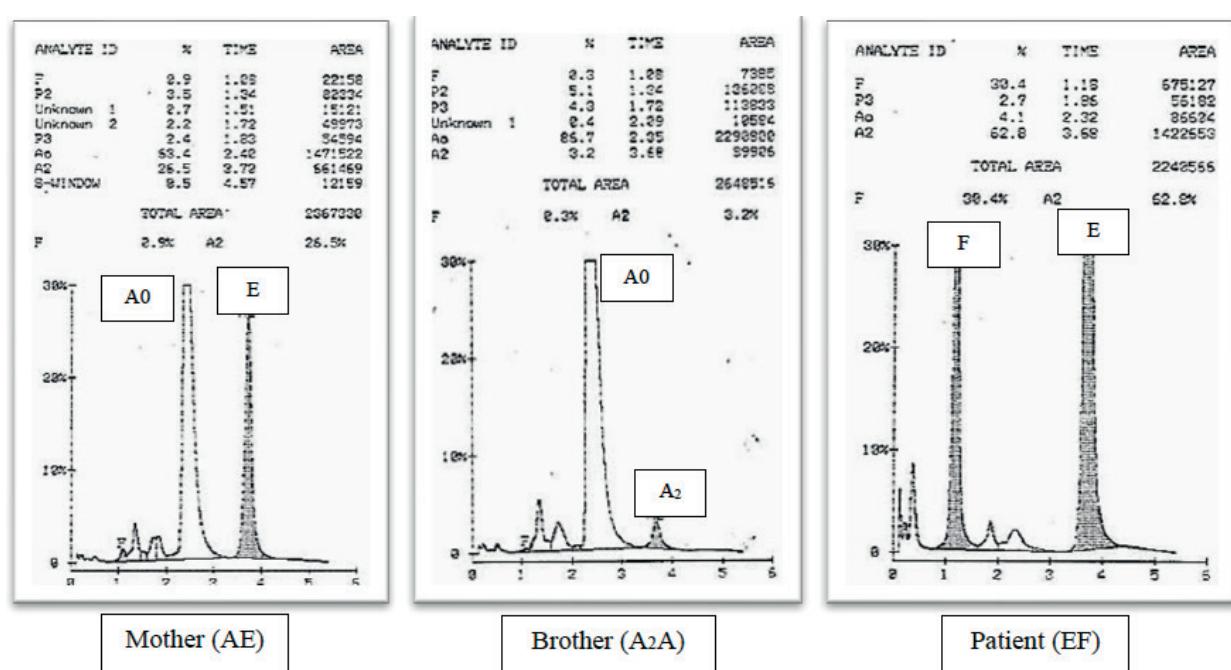
[37] Sharma V, Kumar B, Kumar G, et al. Alpha globin gene numbers: an important modifier of HbE/ β thalassemia. *Hematology*. 2009; 14(5): 297-300. doi: 10.1179/102453309X446126.


Supplementary Figures


Supplementary Figure 1. Pedigree of 4 families analyzed in this family study.


Supplementary Figure 2. HPLC chromatogram (Primus Variant System 99) of hemoglobins of Family 1. The father was β -thalassemia heterozygote with HbsA₂A. Mother and brother were HbE heterozygote with Hbs EA. The patient was HbE/ β^0 -thalassemia with Hbs EF. The major HbA is HbA_c. The number above each peak is the retention time.


Supplementary Figure 3. HPLC chromatogram (Primus Variant System 99) of hemoglobin in Family 2. The father was HbE heterozygote with Hbs EA. Mother was β -thalassemia heterozygote with Hbs A₂A. Brother was normal with Hbs A₂A. Patient was HbE/ β^0 -thalassemia with Hbs EF. The major HbA is HbA₀. The number above each peak is the retention time.


Supplementary Figure 4. HPLC chromatogram (Primus Variant System 99) of hemoglobin in Family 3. The father was HbE heterozygote with Hbs EA. Mother was β -thalassemia heterozygote with Hbs A₂A. Patient was HbE/ β^0 -thalassemia with atypical Hb pattern of EE. The major HbA is HbA₀. Number above each peak is the retention time.

Supplementary Figure 5. Nucleotide sequencing of β -globin gene in patient of Family 3. Overlapped peaks are seen at codon 26 and IVS1-nucleotide 1, indicating heterozygous state of these base substitutions.

Supplementary Figure 6. AUT-PAGE for globin chain separation in Family 3. Note: No γ globin bands are seen in the patient. (N: normal, CB: cord blood, Fa: father, Mo: mother, Pat: patient)

Supplementary Figure 7. HPLC chromatogram (BioRad VARIANT II Hemoglobin Testing System) of hemoglobin in Family 4. The mother was HbE heterozygote with Hbs EA. Brother was normal with Hbs A₂A. The patient was HbE/ β^0 -thalassemia with Hbs EF. The major HbA is HbA₀.