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ARTICLE INFO ABSTRACT

Background: Sit-to-stand (STS) test is widely used as a functional test for the
assessment of lower extremity function in the elderly. Performing the STS movement
with one-leg was introduced as an assessment of lower extremity muscle strength
in young adults; however, the biomechanical differences between the traditional
two-leg STS movement and one-leg STS movement have not been reported. The
purposes of this study were to characterize and compare the kinematic and kinetic
differences between the one-leg and two-leg STS movements.
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kinematics, joint kinetics Materials and methods: Fifteen young adults (8 men and 7 women) with mean age

26.18+3.88 years participated in this study. The kinematic and kinetic data during
one-leg and two-leg STS testing conditions were collected and analyzed using force
plates and a three-dimensional motion analysis system.

Results: Performance time was significantly longer in the one-leg STS condition
than the two-leg STS condition (p<0.001). The peak joint angular positions of the hip,
knee, and ankle were not different between the two STS testing conditions. All
kinetic variables of the one-leg STS condition were significantly higher than those
of the two-leg STS condition (p<0.05), except peak knee joint power in the concentric
phase.

Conclusion: The more demanding task of the one-leg STS condition led to several
changes in the joint moment and joint power of the lower extremity. The hip extensor
and ankle dorsiflexor muscles demonstrated significant roles in addition to the knee
extensor muscles during the one-leg STS task.

Introduction to older adults®, several tests that require greater demand

Sit-to-stand (STS) test is often used as a functional
test of lower extremity (LE) muscle strength.** The traditional
form of STS test uses both legs to perform the STS task.
Performance time of STS tests was reported to have a
significant correlation with strength of major lower limb
muscles in healthy older community-living adults.? Due
to relatively high LE muscle strength of young adults compared
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of the LE muscles have been proposed as a functional test for
assessment of LE strength in young adults. A one-leg-rising
test was formerly used to assess leg extensor muscle function
in patients with hip and knee arthritis® and later was modified
as a LE functional performance test in young soccer players.”

Recently, an alternate form of STS test was introduced
to assess LE muscle strength in young adults called “one-leg
STS test”.® A one-leg STS test is defined as a test to measure
the ability to perform repeated sitting to standing movement
using one leg. Concurrent validity of a one-leg STS test was
reported with significant moderate relationships between
the strength of LE muscles and performance time of a
five-repetition one-leg-STS test. The advantages of a one-leg
STS test include ease of administration and suitability in
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clinical settings. Performance of STS results in mechanical
changes from a stable position to a less stable position
with a higher body’s center of mass position and a smaller
base of support. Therefore, it is a challenging movement
with great biomechanical demands, requiring joint torque
as well as precise control of the body’s center of mass
within the base of support to complete the task.>*

Biomechanical analyses of traditional two-leg STS
movement have been extensively reported.’*** On the
other hand, there is a paucity of research examining the
biomechanical measures of a one-leg STS task. With greater
demand placed on the LE muscles, individuals may exhibit
different motion strategy and distributions of the hip, knee,
and ankle joint moments when performing the sit-to-stand
task with only one leg. Comparison of the mechanical
differences between performance of the one-leg STS and
the traditional two-leg STS tests is needed in order to provide
basic information of this alternate form of STS test. Findings
of the present study may aid the therapists for appropriate
selection of the type of STS test for their clients in different
age groups. Therefore, this present study aimed to investigate
the kinematic and kinetic variables of a one-leg STS movement
in healthy young adults and compare with those of the
two-leg STS movement

Materials and methods

Fifteen young, healthy adults (8 men and 7 women;
mean age 26.18+3.88 years; mean mass 55.05+11.09 kg;
mean height 1.65+0.97 m.) participated in the study. The
sample size was calculated by the G*Power 3.1.7 program
for t-tests: Mean difference between two dependent
means (matched pairs). To achieve 80% statistical power,
effect size of 0.7 (based on a previous study comparing
trunk kinematics between the one-leg and two-leg STS
movements™*) with an alpha level of 0.05, fifteen participants
were required. Participants were included in the study if
they were between the age of 20 and 40 years and excluded
if they had neurological or musculoskeletal disorders
that would affect the ability to perform STS movements. The
study protocol was approved by the institutional review board
of Mahidol University (MUICRB, COA no. 2016/180.2810).
All participants gave written informed consent before the
data collection process.

Kinematic and kinetic data were collected using the
Vicon™ Motion Analysis System (Vicon™ Motion Systems
Ltd, Oxford, UK), consisting of ten cameras with a sampling
frequency of 100 Hz, integrated with two force platforms
(AMTI OR6-7 Series 4000, Advanced Mechanical Technologies
Inc., Boston, USA) with a sampling frequency of 1000 Hz.
Thirty-four reflective markers were placed on the participant’s
body according to the Plug-In Gait-Full Body standards available
within the Vicon Motion system. The 3-D motion and force
data from the selected trials were processed using Vicon
Nexus software (version 3.5.1) and were filtered with a 4"-order
Butterworth zero-lag filter, with a cut-off frequency of
8 and 20 Hz, respectively. The kinematic and kinetic variables
were calculated using the Vicon Plug-in Gait Model.*®

Each participant performed both one-leg and two-leg

STS testing conditions (Figure 1). A sit-to-stand test with five
repetitions was used in order to compare to a common form
of standard two-leg STS test? (a five-repetition chair stand test).
Half of the participants performed the one-leg STS testing
condition first while the other half performed the two-leg
STS testing condition first. An armless, height-adjustable
chair was used in the testing. All trials were performed
with bare feet. Participants began each trial in a seated
position with their arms folded across their chests and
their feet shoulder-width apart and placed slightly behind
the knee joint. The seat height was adjusted to the knee
joint level such that the knee of the tested leg was set at
100 degree flexion. The verbal instructions were “Please
stand up and sit down five times as quickly and safely as
possible. Stand up until your legs are fully straightened
and your buttocks are against the seat when you sit down,
Ready and Start.” Timing began on the command of the
examiner and stopped when the participant’s buttocks touched
the seat after the fifth stand. Before beginning actual data
collection, participants performed two practice trials to
familiarize themselves with the test while the examiners
made sure the motion capture and force plates functioned
properly. Each participant performed two trials in each
condition and the fastest of the two trials was used for
data analysis. A three-minute rest was allowed between
trials to avoid fatigue. Testing procedures of the one-leg
STS testing condition were similar to the two-leg STS testing
condition except using only the dominant leg to perform
the STS task. The non-test leg (non-dominant side) was lifted
just above the floor throughout the test and not allowed to
assist the STS movement. The dominant leg was determined
by leg dominant test.'® Twelve participants out of 15 had
right-leg dominance. Trials were discarded if the participant’s
non-tested foot touched the floor during the trial.

Figure 1 lllustration of the sit-to-stand testing conditions a) one-leg sit-to-stand
condition b) two-leg sit-to-stand condition.
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Kinematic variables included the peak joint angular
position of the hip, knee, and ankle. The kinetic variables
included the peak vertical ground reaction force (VGRF),
peak joint moment and joint power of the hip, knee and
ankle. Since the nature of the STS movement mainly
occurs in the sagittal plane, only a sagittal plane evaluation
of the variables was of interest in this study. VGRF data
and the hip angular position were used to identify the
event and phase of the STS test. Each of the sit-to-stand
task comprised of five repetitions (Figure 2). The data from
the second to fourth repetitions were used for data analysis.
Each repetition was divided into the sit-to-stand part
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(concentric phase) and stand-to-sit part (eccentric phase).
Vertical lines in Figure 2 were added to demonstrate the
separation of the two parts. The joint angular positions
and kinetic variables of each repetition were time-normalized
to create ensemble-averaged across participants to assist
visual inspection. The mean difference of the kinematic
and kinetic variables between STS test conditions was
calculated by subtracting the value of the two-leg STS test
from that of the one-leg STS test. The percent mean difference
is the proportion of the mean difference divided by the
average of the two values.
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Figure 2. Typical VGRF and hip joint angle profiles of a sit-to-stand test.

Statistical analysis

Statistical analysis was performed using IBM SPSS
Statistics (version 23) for Windows. The Kolmogorov-Smirnov
test was used to assess the normal distribution of the data.
Paired t-test was used to compare the differences in the
joint angular displacement and kinetic variables between
the one-leg and two-leg STS tests. Statistical significance
level was set as p<0.05 for all analyses.

Results

Mean performance time of the one-leg STS condition
was significantly longer than that of the two-leg STS condition
(p<0.001). The mean joint angular positions of the hip, knee,
and ankle were not different between the two STS testing
conditions. The means and SDs of the performance time
and peak joint angular positions of both STS conditions are
summarized in Table 1.
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Table 1 Comparison of the performance time and joint angular position between the one-leg and two-leg STS testing
conditions
Variables One-leg STS Two-leg STS di f':; ::ce dﬁf::::::e p value
Performance time (s) 11.63+2.96 8.27+1.42 3.36 33.77 <0.001**
Peak joint angular position (deg)
Max hip angle 81.99+8.43 83.6216.85 -1.63 -1.97 0.514
Min hip angle 8.2249.14 6.67+8.65 1.55 20.82 0.142
Max knee angle 86.35+5.67 87.12+4.79 -0.77 -0.88 0.445
Min knee angle 7.1449.12 6.4246.12 0.72 10.62 0.216
Max ankle angle 21.91+5.79 20.33+3.42 1.58 7.48 0.416
Min ankle angle 3.19+4.16 2.90+3.75 0.29 9.52 0.614

Note: ** significantly different at p<0.01

VGRF, joint moment and joint power of the one-leg
and two-leg STS tests were generally similar in profile pattern
but different in magnitude. lllustrations of the ensemble
-averaged data of the VGRF, joint moments, and joint
powers are shown in Figures 3, 4 and 5, respectively. VGRF
profile contains two separated peaks. The first peak occurs in
the sit-to-stand portion (concentric phase) and the second
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peak occurs in the stand-to-sit portion (eccentric phase).
The values of the peak VGRF, peak joint moment and peak
joint power are shown in Table 2. All kinetic variables of
the one-leg STS condition were significantly higher than
those of the two-leg STS condition (p<0.05), except peak
knee joint power in the concentric phase.
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Figure 3. Ensemble-averaged data of the vertical ground reaction force (VGRF).
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Table 2 Comparison of the kinetic variables between the one-leg and two-leg STS testing conditions.

Kinetic variables One-leg STS | Two-leg STS dif“f/; :::ce d?;f:rlcee::e p value
Peak VGRF (N/kg)
Concentric phase 11.61+1.07 7.3810.92 4.23 44.55 <0.001%**
Eccentric phase 11.32+1.05 6.70+0.94 4.62 51.28 <0.001**
Peak joint moment (Nm/kg)
Hip - concentric phase 2.03+0.26 1.02+0.33 1.01 66.23 <0.001**
Hip - eccentric phase 1.92+0.40 1.00+0.39 0.92 63.01 <0.001**
Knee - concentric phase 1.35+0.30 1.13+0.24 0.22 17.74 <0.001%**
Knee - eccentric phase 1.27+0.28 0.92+0.21 0.35 31.96 <0.001**
Ankle - concentric phase 0.73+0.21 0.15+0.07 0.58 131.82 <0.001%**
Ankle - eccentric phase 0.71%0.16 0.22+0.10 0.49 105.38 <0.001**
Peak joint power (Watt/kg)
Hip - concentric phase 3.22+0.72 2.25+0.99 0.97 35.47 0.003**
Hip - eccentric phase 3.00+0.78 2.1740.83 0.83 32.11 <0.001**
Knee - concentric phase 3.01+0.91 2.90+1.10 0.11 3.72 0.625
Knee - eccentric phase 2.42+0.70 2.124+0.72 0.30 13.22 0.024*
Ankle - concentric phase 0.57+0.14 0.24+0.15 0.33 81.48 <0.001**
Ankle - eccentric phase 0.58+0.44 0.21+0.11 0.37 93.67 0.002%**

Note: * significantly different at p < 0.05, ** significantly different at p<0.01

Discussion

The results revealed that several biomechanical
differences exist between the two STS testing conditions.
Participant’s body weight is considered an external load
that the leg muscles have to overcome during standing up
and sitting down. For a usual STS task using two legs, the
external load is opposed by muscles of both legs, whereas
in the one-leg condition, this same external load is placed
solely on one leg which induced a strategy change in STS
performance. It took 3.36 seconds longer for the participants
to complete the one-leg STS condition compared with the
two-leg STS condition. The results are in accordance with
Savelberg el al”” who examined the effect of load added to
the body while performing a traditional two-leg sit-to-stand
task. Increased extra load from 30% to 45% of body weight
resulted in increased movement time, increased maximum
joint moments at hip, knee and ankle joints and changes
in muscle activation patterns of major leg muscles. In this
study, the kinematic variables (joint angular positions) were
not different between the two testing conditions. The LE
joint position of the tested leg at the starting position was
the same for both STS testing conditions. For each repetition of
the STS tests, the participants returned to sit at the same
seat height and stood up to full upright position. Therefore,
the ranges of motion of the hip, knee, and ankle joints were
not different between STS conditions.

Almost all kinetic variables were found to be different
between the two STS testing conditions. Increased VGRF
indicated larger net muscle force is generated by the acting

leg muscles during the one-leg STS condition.'® VGRF of the
one-leg STS condition increased by 4.23 N/kg (44.55%) and
4.62 N/kg (51.28%) in the concentric and eccentric phases,
respectively. Our results are supported by previous studies
investigating the effect of increasing load on ground reaction
force during squatting which is a similar movement to STS
mainly using the LE muscles. Kellis el al*® examined the effect
of increasing load on the ground reaction force during barbell
squat and found that GRF increased significantly as external
load increased. Dali et al?® found that deep squatting
generated the highest VGRF compared to semi and half
squatting.

It is clear that major leg muscles were more activated to
control the whole body up and down repeatedly throughout
the one-leg STS condition. Previous studies reported that
the knee and hip extensors play a major role in the sit-to-stand
movement.?22 In this study, although all the hip, knee, and
ankle extensor moments and joint power significantly
increased during the one-leg STS condition, it is interesting
that the largest increase in joint moment and power occurred
at the ankle joint. The mean increases of the ankle joint
moment were over 131 and 105 percent in the concentric
and eccentric phases, respectively, indicating the crucial
role of the ankle muscles in stabilizing the foot and lower leg
in order to achieve sufficient balance during this demanding
task?.

For the two-leg STS condition, the largest joint moment
was originated from the knee joint. However, the higher
moment about the knee during the two-leg STS condition
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is shifted to proportionally higher moments about the hip
and ankle during the one-leg STS condition. This could be due
to the more demanding task of the one-leg STS condition
which causes this change in the net moment. The hip extensor
muscles which have larger muscle size were recruited more
to produce sufficiently net joint moment to perform the
task. The peak hip extensor moment increased over 60 percent
revealing the synergistic role of the hip extensor muscles
during the one-leg STS condition. Savelberg et al'’ explained
that the primary adaptation in response to added load is
decreasing in movement time and increasing in knee
extension moment. If the maximum capacity of the knee
extensor strength is sufficient, individuals can perform the task
without inducing a strategy change. Secondly, if a strategy
change has been induced, the hip extension torque is more
required. The latter explanation is in line with our results which
found that the hip extensor muscles moment increased
with the one-leg STS condition indicating that the hip strategy
is preferred as the one-leg STS task required greater control
of dynamic balance.

The results of the study indicated that compared
to the traditional two-leg STS test, the one-leg STS test is
a challenging task which is suitable for assessment of LE
muscle function in young adults as it demands greater
amount of force production from the LE extremity muscles
to complete the STS task. However, this present study had
some limitations. First, we investigated only the one-leg
STS movement performed by the dominant leg. It might
be possible that person may perform differently on their
non-diminant side. However, Steingrebe el at? reported
no significant differences in knee joint loading between the
dominant and the non-dominant side during a unilateral
sit-to-stand movement. Second, direct measurement of
the LE muscle strength was not done in this study. Therefore,
we cannot directly explained how much of the maximum
strength capacity of the LE muscles would be required for
the one-leg STS movement compared to the typical two-leg
STS movement. All the limitation issues should be further
investigated in future study.

Conclusion

Compared to a typical two-leg sit-to-stand movement,
there was an increase in performance time of a one-leg
sit-to-stand test. The patterns of angular displacements of the
hip, knee and ankle joints of the two STS sit-to-stand
movements were generally similar. In addition, the more
demanding task of the one-leg STS condition led to several
changes in the joint moment and joint power of the lower
extremity. The hip extensor and ankle dorsiflexor muscles
demonstrated significant roles in addition to the knee
extensor muscles during the one-leg STS task.
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