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ABSTRACT

Background: Ferrous sulfate solution is the most widely used as an aqueous chemical 
dosimeter. In this preliminary present study, we applied ferrous sulfate solution in 
diagnostic radiology. 

Objectives: The aim of preliminary present study was to measure absorbance spectrum 
of ferrous sulfate solution after exposure to diagnostic medical X-rays in the range of 
50 keV up to 100 keV of energy. 

Materials and methods: Diagnostic medical X-rays were generated by a medical 
X-ray machine. Radiation exposure was measured by mean of ionization chamber. 
Ferrous sulfate sulfate solution with saturated O2 gas was irradiated, resulting in 
ferric ion production in solution. The optical density of irradiated ferrous sulfate 
solution was determined by spectrophotometer.

Results: A positive correlation was shown in diagnostic medical X-ray energy with  
radiation exposure. The optical density at a wavelength of 304 nm was increased as a 
function of X-ray energy. 

Conclusion: This preliminary finding suggested that ferrous sulfate solution with 
saturated O2 gas showed feasibility to measure radiation dose of diagnostic medical 
X-rays at 50-100 keV of energy.

	 There are various methods used to measure radiation 
dosages including air-filled detectors such as Geiger counters 
and ionization chambers. Solid detectors make use of thermal 
luminescence detection (TLD) and optically stimulated 
luminescence (OSL). Such methods are commonly used in 
radiation measurement due to ease of use compared with 
chemical or biological systems. However, those methods 
can be difficult to apply in determining absorbed dose in 
soft tissue. Consequently, chemical dosimeters are used 
when absorbed dosages in soft tissue must be determined. 
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If a chemical dosimeter is constituted of an aqueous solution, it 
can be predicted that radiation will have a major interaction 
with water.1,2 Moreover, aqueous solutions can be made to 
fill every variability in the shape of the volume.3  
	 Ferrous sulfate solution is the most widely used as an 
aqueous chemical dosimeter. Ferrous ion (Fe2+) is oxidized to  
ferric ion (Fe3+) by a free radical. This free radical is generated 
when ionizing radiation deposits energy to solution.4 There 
were several reports mentioned the use of ferrous sulfate 
solution in measuring radiation dosages.5-10 However, these 
radiation dosages were high radiation energy type or used 
monochromatic energy. In this preliminary present study, 
we applied ferrous sulfate solution in diagnostic radiology. 
The aim of preliminary present study was to measure 
optical density of ferrous sulfate solution with saturated 
O2 gas after exposure to diagnostic medical X-rays in the 
range of 50 keV up to 100 keV of energy.
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	 Diagnostic medical X-ray spectra of X-ray energy 
at 50 keV up to 100 keV (100 mAs) is showed in Figure 1. 
These X-rays shows continuous spectra that related to 
previously our report.11

	 An optical density of ferric ion produced after X-ray  
irradiation against diagnostic medical X-ray energy is showed 
in Figure 2. The optical density at a wavelength of 304 nm 
was increased as a function of X-ray energy. A quantity of 
ferric ion produced depends on the radiation energy absorbed 
by ferrous sulfate solution.12 It seems reasonable that if 
quantity of ferric ion produced was increased when radiation 
energy increased, then absorbed dosage would also have 
increased when radiation energy increased, as well.  

	 Radiation exposure against diagnostic medical X-ray 
energy is showed in Figure 3. Radiation exposure was  
increased when X-ray energy increased (Pearson’s r=0.992, 
R2=0.980). High radiation energy can produce ionization in 
medium, resulting in radiation exposures that are high.13 
	 However, a ferrous sulfate solution was used to measure 
low energy X-ray dose.14 In addition, the ferrous sulfate 
solution could enhance response by added a radiosensitizer 
under X-ray irradiation.15 In conclusion, this preliminary 
finding suggested that the ferrous sulfate solution showed 
feasibility for use in diagnostic radiology. However, further 
development and study of it are needed to fully determine 
feasibility.

Materials and methods

	 Diagnostic medical X-ray generator used is a diagnostic 
medical X-ray machine (Quantum Medical Imaging, High  
frequency seriesTM X-ray Generator 125 kVp, 400 mA) at  
Department of Radiologic Technology, Faculty of Associated  
Medical Sciences, Chiang Mai University. This X-ray machine 
needed to be able to generate several energies of X-rays 
by adjusting the kilovoltage peak (kVp) setting (Figure 1). 
Other equipment included a multichannel analyzer (Detector 
XR-100T-CdTe, Amptek), an ionization chamber (Capintec), 
barometer, and thermometer. Hydrochloric acid (HCl), 
sulfuric acid (H2SO4), and ferrous ammonium sulfate were 
the materials used in this study.

Determination of X-ray spectrum 
	 A multichannel analyzer (MCA) was placed perpendicular 
to the central axis of radiation beam at a distance of 100 cm 
from X-ray tube. X-ray spectrum was recorded on 50 keV 
up to 100 keV (100 mAs) of X-ray energy.

Ferrous sulfate solution with saturated O2 gas
	 A ferrous sulfate solution contained 1 mM ferrous 
ammonium sulfate in 0.4 M H2SO4, 0.01 M HCl and was 
saturated with O2 gas. Solution was prepared using water 
redistilled in a flask from 1x10-4 M potassium permanganate 
solution. All glasses were heated at 100 oC for 6 hours before 
being used. Ferrous sulfate solution was placed perpendicular 
to the central axis of radiation beam at distance of 100 cm 
from the X-ray tube. The irradiated ferrous sulfate solution 
produced ferric ion in solution. The optical density of 
irradiated ferrous sulfate solution was determined by 
spectrophotometer (Agilent 8453).

Measurement of radiation exposure by ionization chamber
	 Ionization chamber was placed perpendicular to the  
central axis of radiation beam at a distance of 100 cm from 
X-ray tube. Radiation exposure was recorded in nanocoulomb 
(nC). Pressure and temperature at experimental room also was  
recorded for correcting radiation exposure values. 

Statistical analysis
	 An origin lab program was used for data analysis. Linear 
correlation analysis was carried out using Pearson correlation. 
Simple regression analysis was also used for analyzing data. 

Results and Discussions

Figure 1. ��Diagnostic medical X-ray spectra of X-ray energy at 50 - 100 keV 
(100 mAs).

Figure 2. ��An spectra of ferric ion produced after X-ray irradiation against 
diagnostic medical X-ray energy.
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Figure 3. Radiation exposures against diagnostic medical X-ray energy.
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