

Development and Psychometric Evaluation of a Short-Form Barthel Index for Older Patients Undergoing Abdominal Surgery

Rinlada Pongratanakul,¹ Poungkaew Thitisakulchai,¹ Varalak Srinonprasert,^{2,3}

Arunotai Siriussawakul,^{3,4} Patumporn Suraarunsumrit² and Piyapat Dajpratham¹

¹Department of Rehabilitation Medicine, ²Division of Geriatric Medicine, Department of Medicine,

³Integrated Perioperative Geriatric Excellent Research Center, ⁴Department of Anesthesiology,

Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

ABSTRACT

Objectives: To develop and evaluate psychometric properties of a short-form of the Barthel Index.

Study design: Retrospective study.

Setting: A university hospital in Thailand.

Subjects: Patients aged 60 or over who had abdominal surgery and were enrolled in the Siriraj Integrated Perioperative Geriatric Excellent Research Center studies between January 2017 and August 2021.

Methods: Electronic medical records of patients were retrospectively reviewed and 96 patients were recruited. Items from the Barthel index were chosen for the short-form based on importance as determined from the index of overall superiority which was obtained from each item's total correlation score and the effect size of the item. The psychometric properties of the short-form were analyzed.

Results: The mean Barthel index score dropped from 92.8 at the time of surgery to 87.6 four weeks post-surgery. The five items with the highest ranking in the index of overall superiority were toilet use, stair climbing, bathing, mobility, and dressing. The psychometric properties of the 3-item and the 5-item versions included internal consistency (Cronbach's alpha coefficients 0.72 and 0.84), intraclass correlation coefficient (0.72 (95%CI 0.60-0.80) and 0.74 (95%CI 0.61-0.83)), and responsiveness to change (effect size 0.69 and 0.52), respectively. The 5-item version showed higher internal consistency, while the 3-item version had superior responsiveness to change.

Conclusions: We recommend the use of the 3-item version as a screening tool for detecting functional changes in older adults undergoing abdominal surgery because of its superior responsiveness to change. Additionally, it requires less assessment time and is more practical for use in clinical practice.

Keywords: geriatrics, Barthel index, abdominal surgery, short-form Barthel Index

ASEAN J Rehabil Med. 2023; 33(3): 135-143.

Introduction

As Thailand transitions toward an aging society, the proportion of patients undergoing surgery consists increasingly of older adults. Older patients are more vulnerable to functional decline and are slower to recover after surgery. Following abdominal surgery, some older patients lose their independence, can no longer engage in self-care activities¹ and require rehabilitation training or post-acute care to regain their previous level of function.^{2,3}

Various tools are used to assess patients' abilities in performing self-care tasks. The Barthel index, which assesses ten areas of performance in activities of daily living (ADL), is one of the best known and most widely used tools, including used by older patients.⁴⁻⁶ In theory, different illnesses can negatively affect patients differently. For example, a study of intensive care unit patients found that the abilities that underwent the most significant decline after an operation were stair climbing, walking, and toilet use.⁷ The most degraded abilities in patients following surgery for bone and muscle tumors included stair climbing, walking, and bathing.⁸ Numerous studies have investigated the functional decline of older adults undergoing surgery^{1,9-16} but most have reported functional decline as a total score without specifying which aspects of ADL were most affected.^{9,11-13,15,16} The present study investigated in which of the ten areas in the Barthel index older patients saw a decline or loss after abdominal surgery.

After identifying the most affected items, the short-form versions of the Barthel index were developed. The short-form versions are more practical for use in clinical practice, are less time-consuming, and enhance patient cooperation in answering questions. Previous short-form versions of the Barthel index developed for use with patients with neurological diseases have reported good consistency¹⁷ and responsiveness to change,¹⁸ results similar to the original 10-item Barthel index.

Correspondence to: Piyapat Dajpratham, Department of Rehabilitation Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10150, Thailand, Email: piyapat.daj@mahidol.ac.th

Received: April 10, 2023

Revised: May 17, 2023

Accepted: May 19, 2023

The present study aimed to identify the items of the Barthel index that showed a decline or loss after undergoing abdominal surgery, to develop short-form versions of the Barthel index and to examine the psychometric properties of those versions.

Materials and methods

Study design

This study was a retrospective chart review. The protocol for this study was approved by the Siriraj Institutional Review Board (SIRB) (COA no. SI 654/2021) and conforms to the ethical principles in the Helsinki Declaration of 1964 and subsequent amendments.

Participants

All patient data were obtained from electronic medical records in the database of the Siriraj Integrated Perioperative Geriatric Excellent Research Center (SiPG), a multidisciplinary research group at Siriraj Hospital, Mahidol University. Records of older patients (age ≥ 60) enrolled in SiPG studies from January 2017 through August 2021 were reviewed. To be eligible for inclusion in this study, participants had to be aged 60 or over (male or female), have undergone elective abdominal surgery (except gastrostomy or jejunostomy), and had to have Barthel index assessments both prior to and at four weeks after surgery. Patients with severe dementia (Thai mental state examination (TMSE) ≤ 10 ¹⁹); severe depression (Thai version PHQ-9 assessment²⁰ ≥ 19 ²¹); a pre-operative Barthel index score of less than 10, incomplete data in the Barthel index pre- or post-surgery; orthopedic or neurologic conditions interfering with activities of daily living (such as paralysis or amputation); and those not having recovered from a coma and/or who were unable to communicate were excluded due to possible negative impact on ADL performance.

Measures used in the study

1. The Thai version of the Barthel index (score range: 0-100)

The Barthel index is an assessment tool used to evaluate patients' ability to help themselves in everyday activities. It is divided into ten basic tasks, each rated according to the level of help required.²² The Barthel index assessment is widely used with older adults,^{4-6,23} and has demonstrated acceptable reliability and good responsiveness.²³ A study of the Thai version of the Barthel index among older patients with hip fractures was found to have good accuracy and reliability.²⁴ In the present study, Barthel index scores were obtained via a face-to-face interviews pre-operatively and by phone interviews conducted by research coordinators four weeks post-surgery. The telephone interviews had excellent agreement with the face-to-face interviews (report weighted $k = 0.9$).²⁵

2. The Thai mental state examination (TMSE)²⁶

The TMSE is the Thai version of the Mini-Mental Status Examination (MMSE). The TMSE has been used extensively in the Thai population to screen for cognitive impairment and dementia. However, as dementia can negatively affect an older person's ability to help themselves and because the Barthel index may not accurately represent the abilities of patients with severe dementia,^{28,29} the present study excluded older adults with severe dementia (TMSE ≤ 10).²⁷

3. The Thai version of the Patient Health Questionnaire (PHQ-9)²⁰

The PHQ-9 is used to screen for and classify the severity of depression. When used with older adults, the PHQ-9 can detect depression with results that are close to the 15-item Geriatric depression scale.³⁰ PHQ-9 scores range from 0 to 27. According to criteria set by the Department of Mental Health, Thailand, classifies depression as severe when the PHQ-9 score is ≥ 19 .²¹ The influence of depression on ADL ability in older adults has been found to be harmful when the depression was severe,³¹ while the impact was less apparent when the degree of depression was unclassified.³² Accordingly, older adults with a severe degree of depression were excluded from the study.

4. The Thai version of the EuroQOL-5D-5L Questionnaire

The EuroQOL-5D-5L Questionnaire, used to assess quality of life, is divided into two parts. The first part, the EQ-5D descriptive system, assesses perceived problems in five domains: mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. The score of this section is reported as the EQ-5D-5L utility score (EQ-US). Scoring of this section was derived from an evaluation study of a set of the Thai population.³³ The second part, the EQ visual analog scale (EQ VAS), assesses a patient's overall health, and has a score range of 0-100.

Barthel index scores were recorded for 10 items pre-surgery and again four-weeks post-surgery. PHQ-9, TMSE and EuroQOL scores were recorded only before surgery. Other information collected included general baseline characteristics, type of surgery, and length of hospital stay.

Development of short-form versions of the Barthel index

The method used to develop the short-form version followed the procedure for developing an index for stroke patients used in a study by Hobart and Thompson.¹⁷ The process of identifying items to be included in the short-form was as follows:

1. Find corrected item-total correlations

Corrected item-total correlations are the correlations between the item of interest and other items in the scale. For example, the corrected item-total correlation of "feeding" is the correlation between a "feeding" score and the sum of scores of nine other items. The items of interest, e.g., feeding, were excluded to ensure the correlations were unbiased. The cor-

relations were computed using inter-item correlation reliability analysis. A high correlation indicates that the item correlates well with the construct measured by the Barthel index.

2. Find the effect sizes of each item

An effect size is a standardized change score which can be calculated from a mean change score per standard deviation (SD) of scores before and after surgery. A paired t-test was used to calculate the mean change score. A large effect size indicates good sensitivity to the responsiveness to change.³⁵

$$\text{Effect size} = \frac{\text{mean change score}}{\text{SD of a score before surgery}}$$

3. Find the index of overall item superiority

To develop an index of overall item superiority, values of corrected item-total correlations and effect sizes were arranged in descending order, with items with the highest value ranked first (a high corrected item-total correlation indicates a good correlation, and a high effect size represents good responsiveness). Then, cross-products of rank numbers of corrected item-total correlations and effect sizes of each item were calculated to create an index of overall item superiority. The cross-product with lower numbers indicates better items, so the lowest items were selected to be included in the short-form Barthel index.

Statistical methods

Data analysis was performed using the PASW Statistics version 18 for Windows (SPSS, Inc., Chicago, IL, USA).³⁴ Demographic and clinical data are presented as descriptive statistics. Categorical data are shown as numbers and percentages. Continuous data that were normally distributed are given as mean \pm standard deviation, and those that were non-normally distributed are given as median and range. A paired t-test was used to calculate mean differences between pre-and post-surgery; results are presented with 95%CI. Categorical data were analyzed with a chi-square test. As changes in the Barthel index score can differ among the three types of surgery, the number of patients with negative score changes in each of the three surgery types was compared using the Fisher's Exact Test.

Because the total score of the original versions and the developed short-form versions differed, each form's total score needed to be equalized to enable direct comparisons among the tests. For that reason, the scores from all versions were re-calculated to have a maximum score of 20 using the formula:

$$\text{Transformed score} = \frac{\text{actual score} \times 20}{\text{maximum possible score}}$$

To evaluate the psychometric properties of the newly developed short-form, internal consistency, representing reliability, was analyzed using Cronbach's alpha coefficients. An analysis of agreement between the short-form and the original version was conducted using the intraclass correlation

coefficient (ICC). EQ-5D utility and VAS scores were chosen as a reference to find convergent validities. Pearson's correlation coefficient or Spearman's correlation coefficient were used to finding convergent validities, depending on the normality of data distribution. The ability of each form to respond to changes over time was determined by calculating mean differences between pre-and post-surgery using a paired t-test. Effect sizes and standardized response means were also calculated. Effect size is the mean difference divided by the standard deviation of Barthel index scores pre-surgery.³⁵ The standardized response mean is mean differences divided by the standard deviation of change scores. Results were considered statistically significant if the $p < 0.05$.

Results

The database of Siriraj Integrated Perioperative Geriatric Excellent Research Center (SiPG) registry during the study period included 1,523 older patients. Of those patients, 563 were scheduled for elective abdominal surgery, and 96 of those met the criteria and were included in the study.

The mean age of the participants was 70, and nearly two-thirds were male. Hypertension, musculoskeletal pain, dyslipidemia, and diabetes were the most prevalent co-morbidities. Most participants who screened positive for depre-

Table 1. Demographic and health characteristics of participants (N=96)

Characteristics	
Age (years), mean \pm SD	70.2 \pm 6.7
Female gender, n (%)	34 (35)
Co-morbidities*, n (%)	
Hypertension	63 (66)
Musculoskeletal pain (either at the hip or knee)	36 (38)
Dyslipidemia	34 (35)
Diabetes	29 (30)
Cardiac diseases	13 (14)
Previous stroke	7 (7)
CKD stage 4 or 5	3 (3)
Deep vein thrombosis	1 (1)
Other underlying diseases	39 (41)
No underlying diseases	2 (2)
ASA classification, n (%)	
2	60 (62)
3	36 (38)
Type of operation, n (%)	
Upper abdominal surgery	33 (34)
Lower abdominal surgery	28 (29)
Urological surgery	35 (37)
Length of stay (days), median (IQR")	7 (5-11)
Pre-admission PHQ9 score, mean \pm SD	3.59 \pm 3.56
Score < 7, n (%)	81 (84)
Score 7-12, n (%)	12 (13)
Score 13-18, n (%)	3 (3)
EQ-5Dutility, mean \pm SD	0.87 \pm 0.15
EQ-5DVAS, mean \pm SD	71.27 \pm 16.17

CKD, Chronic kidney disease; ASA, The American Society of Anesthesiologists (ASA) physical status classification; SD, standard deviation

*No patients had pre-existing illnesses of dementia, asthma, or COPD

"IQR, interquartile range

sion were in the mild severity category. The health characteristics of participants are presented in Table 1.

Elective abdominal operations were classified into three main categories: upper abdominal surgery, lower abdominal surgery, and urological surgery; 34%, 29%, and 37% of patients, respectively, underwent each type of surgery which was not statistically significantly different. Of the upper abdominal surgeries, 82% (27/33) were hepatobiliary surgery. Other upper abdominal surgeries included pancreatic (3%, 3/33), small intestine (2%, 2/33), and gastric surgery (1%, 1/33). All patients who underwent lower abdominal surgery had colorectal surgery. Urological surgery operations included bladder (40%, 14/35), prostate (31%, 11/35), renal (26%, 9/35), and adrenal surgery (3%, 1/35).

The mean Barthel index score before surgery was 92.8, but it declined to 87.6 by four weeks post-surgery. The mean negative score change was -5.2 (95% CI -7.4 to -3.0, $p < 0.001$). Categorizing scores according to the degree of dependency³⁶ found the percentage of independent older patients (BI = 100) fell from 54.2% to 33.2%. Of the ten dependency items, those with statistically significant negative mean changes, in descending order, were stair climbing, bladder, toilet use, mobility, and bathing (Table 2).

As the type of surgery can influence changes in Barthel index scores, a comparison of the three types of surgeries was performed. When considering the total Barthel index score, the number of patients with negative score changes was pre-

dominant in urological operations (statistical significance $p = 0.006$). Each of the ten items was analyzed separately. The number of patients with negative score changes was similar or minimally different, but not statistically significant ($p > 0.05$) for all items except the bladder which statistically significantly worsened following urological operations ($p = 0.001$). Details of the urological surgeries were then explored. Among the 15 cases with bladder problems, six had undergone ileal conduit surgery, seven had received prostatectomy, and one had received a radical cystoprostatectomy with ileoneobladder, all of which can disrupt bladder function. After removing bladder operations from total Barthel index scores, there was little difference among the three categories of surgery ($p = 0.89$). Thus, the impact of surgery on the functional decline of each item could be considered equivalent.

The next step was to identify items to be included in the short-form. Corrected item-total correlations and effect sizes of each item were calculated and ranked as described in the method section. Then the cross-products were used to develop an index of overall item superiority (Table 3). Items with the lowest values in the index of overall item superiority were incorporated into the 3-item and the 5-item versions of the Barthel index. Both the 3-item and 5-item versions included toilet use, stair climbing, and bathing, while the 5-item version included two additional items: mobility and dressing. The scores of the fourth and fifth items were nearly identical, so the 4-item version was not studied.

Table 2. Barthel index scores at pre-surgery and four weeks post-surgery

Items in the BI (score range)	Pre-surgery mean \pm SD	Four weeks post-surgery mean \pm SD	Mean difference (95%CI)	p-value
Total BI score (0-100)	92.8 \pm 11.1	87.6 \pm 16.4	-5.2 (-7.4, -3.0)	< 0.001*
Toilet use (0-10)	9.8 \pm 0.9	9.2 \pm 2.4	-0.6 (-1.0, -0.2)	0.002*
Stair climbing (0-10)	9.3 \pm 2.5	7.6 \pm 4.2	-1.7 (-2.5, -0.9)	< 0.001*
Bathing (0-5)	4.7 \pm 1.1	4.3 \pm 1.7	-0.4 (-0.7, -0.1)	0.01*
Mobility (0-15)	14.3 \pm 2.4	13.8 \pm 3.5	-0.5 (-1.0, 0.0)	0.049*
Dressing (0-10)	9.8 \pm 1.0	9.6 \pm 1.3	-0.2 (-0.3, 0.0)	0.08
Bladder (0-10)	7.3 \pm 4.0	6.3 \pm 4.6	-1.1 (-2.0, -0.2)	0.02*
Feeding (0-10)	9.9 \pm 0.7	9.7 \pm 1.3	-0.2 (-0.4, 0.1)	0.26
Transfer (0-15)	14.6 \pm 1.9	14.5 \pm 2.1	-0.1 (-0.4, 0.2)	0.48
Grooming (0-5)	5.0 \pm 0.5	4.9 \pm 0.7	-0.1 (-0.2, 0.1)	0.32
Bowels (0-10)	8.0 \pm 3.7	7.6 \pm 4.0	-0.4 (-1.0, 0.2)	0.24

*Paired t-test, * $p < 0.05$

BI, Barthel index

Table 3. Analysis of the Barthel index score in the development of the short-form

BI items	Item-total correlations ^a		Effect size ^b		Overall item superiority	
	Value	Ranking	Value	Ranking	Value	Ranking
Toilet use	0.62	2	0.71	1	2	1.5
Stair climbing	0.63	1	0.66	2	2	1.5
Bathing	0.49	5	0.37	3	15	3
Mobility	0.51	4	0.22	5	20	4
Dressing	0.58	3	0.16	7	21	5
Bladder	0.24	10	0.27	4	40	6
Feeding	0.34	7	0.22	6	42	7
Transfer	0.43	6	0.06	10	60	8
Grooming	0.26	8	0.10	8	64	9
Bowels	0.25	9	0.10	9	81	10

The pattern of this table is from "The five-item Barthel index" in a study of Hobart and Thompson⁹

^aInter-item correlation reliability analysis, ^bmean difference divided by a standard deviation of Barthel index scores pre-surgery
BI, Barthel index

Table 4. Psychometric properties of the short-forms and the original Barthel index

	Pre-BI	Post-BI	Mean difference ^a (95%CI)	p-value	α ^b	ICC ^c (95%CI)	Convergent validity ^d		Effect sizes ^e	SRM ^f
							EQ-5D _{utility} , p	EQ-5D _{VAS} , p		
10-item BI (0-20)	18.6±2.2	17.5±3.3	-1.0 (-1.5, -0.6)	<0.001	0.67	-	0.25 (P=.01)	0.24 (P=.02)	-0.45	-0.48
5-item BI (0-20)	19.2±2.7	17.8±4.5	-1.4 (-2.0, -0.7)	<0.001	0.84	0.74 (0.61, 0.83)	0.26 (P=.01)	0.26 (P=.01)	-0.52	-0.41
3-item BI (0-20)	19.1±3.2	16.9±5.8	-2.2 (-3.1, -1.2)	<0.001	0.72	0.72 (0.60, 0.80)	0.19 (P=.06)	0.22 (P=.03)	-0.69	-0.46

^aPaired t-test, ^bCronbach's Alpha coefficients, ^cIntraclass correlation coefficient, ^dSpearman's rank correlation, ^emean difference divided by a standard deviation of Barthel index scores pre-surgery, ^fmean differences divided by the standard deviation of change scores

BI, Barthel index; SRM, standardized response means

Psychometric properties of the short-form versions of the Barthel index

1. Internal consistency

The 10-item, 5-item, and 3-item Barthel indexes had Cronbach's alpha coefficients of 0.67, 0.84, and 0.72, respectively. Internal consistency of both short forms was superior to the original version, and both exceeded 0.70, which is considered acceptable.³⁷ This finding indicates that items in the short form version appear to be interrelated and hence, can measure the same constructs.

2. Intraclass correlation coefficient (ICC)

Agreement between the short-form and the original 10-item Barthel index version was analyzed using intraclass correlation coefficients. The ICCs of the 5-item version and the 3-item version are 0.74 (95%CI 0.61-0.83) and 0.72 (95%CI 0.60-0.80), respectively, which is a moderate degree of agreement (0.5-0.75).³⁸

3. Convergent validity

Convergent validities of the Barthel index were determined by calculating correlations between EQ-5D-5L utility scores and VAS scores using Spearman's correlation coefficient as the data was distributed non-normally. The degree of correlation was interpreted as: < 0.3 = weak, 0.3-0.5 = fair, 0.6-0.8 = moderately strong, and ≥ 0.8 = strong.³⁹ All

obtained correlation scores were within the range of 0.2-0.3, which is considered to indicate weak or negligible correlation.^{40,41}

4. Responsiveness to change³⁵

The degree of responsiveness to change was determined by calculating mean differences between pre-and post-surgery, effect sizes, and standardized response means (SRM). Effect sizes are mean differences divided by standard deviations of baseline scores, while SRMs are mean differences divided by standard deviations of change scores. Larger values reflect superior responsiveness. Both effect sizes and SRM were interpreted following Cohen: ≤ 0.2 = small, 0.5 = moderate, and ≥ 0.8 = large.^{35,42} Effect sizes of both the short-forms were in the moderate range (effect size > 0.50).³⁵ The 3-item version had the largest effect size among the three versions (Table 4).

Discussion

We found that older adults showed a statistically significant decline in ADL four weeks after surgery compared to baseline. The most substantial drops were in stair climbing, bladder control, toilet use, mobility, and bathing. After statistically analysing the data, items with the best ranking in an index of overall superiority were identified and included in

the short-form, including toilet use, stair climbing, bathing, mobility, and dressing. In terms of psychometric properties, both short-form versions demonstrated acceptable internal consistency, moderate agreement with the original version, and moderate responsiveness to change. However, both versions had weak convergent validities towards the quality-of-life score, similar to the original version.

Older people are at greater risk of physical deterioration and loss of functional independence after major surgery. The results of this study are in line with a study by Lawrence et al. which reported the largest drop in ADL summary scores occurring in the first week and continuing to decline approximately six weeks after surgery.¹ Older patients undergoing different surgeries/with different illnesses may lose the ability to perform different ADLs. The items with significant drops identified in this study were also commonly found in other conditions as well. Of the five items included in the short form, patients admitted to the intensive care unit were found to lose all five abilities.⁷ In patients with acute medical illnesses, with the exception of stair climbing which was not included in the ADL assessment, the other four items were negatively affected.⁴³ In addition, after musculoskeletal tumor surgery patients showed a loss of ability to help themselves in mobility, bathing, and stair climbing.⁸

Internal consistency of both the short-forms exceeded the acceptable value and were superior to the original version. Items included in the short-form, particularly the first three items (toilet use, stair climbing, and bathing), require physical movement, may be proscribed after major abdominal surgery or profound deconditioning. This could help explain the higher degree of internal consistency of the short-form versions.

Agreement between the short-forms (5-item and 3-item) and the original version as measured by ICCs was moderate. The lower degree of agreement in this study could be due to the mean scores of the 10-item Barthel index being significantly lower than the 5-item and 3-item Barthel index ($p < 0.001$ and $p < 0.001$). In addition, the bowel and bladder function scores were relatively low, neither of which were included in the short-form versions, resulting in a significant mean difference between the original and the short-form and a lower ICC.

Convergent validities between the Barthel index and EQ-5D-5L scores were low or negligible ($p 0.25$, $p = 0.01$ for 10-item BI; $p 0.26$, $p = 0.01$ for 5-item BI; $p 0.19$, $p = 0.06$ for 3-item BI). Correlations between the Barthel index scores and EQ-VAS scores in older patients with hip fractures (r -value 0.28, $p < 0.001$)⁴⁴ and stroke patients ($p 0.24$, $p < 0.001$)⁴⁵ were also weak. The low correlation could result from the fact that the two tests do not measure the same aspects. While the Barthel index evaluates only physical functions, the EQ-5D-5L measures multiple domains, including physical functions (mobility, self-care, usual activities), anxiety/depression, and pain/discomfort. Anxiety/depression and

pain/discomfort in the EQ-5D-5L were found to have a lower correlation to the Barthel index than domains related to physical function in reports of studies of stroke and older adult patients.^{46,47} Eighty-six percent (83/98) of the study's participants were pre-operatively diagnosed with malignancy which may have affected patients' anxiety/depression and pain/discomfort scores, items not assessed in the Barthel index, resulting in lower convergent validities.

Responsiveness to change is defined as the ability of a test to detect changes over time. Effect sizes and standardized response means are both commonly used to statistically report the level of responsiveness to change. The responsiveness of the Barthel index has been investigated in various disease populations such as multiple sclerosis (effect size = 0.37),⁴⁸ stroke (effect size = 0.95),⁴⁸ and older patients with hip fractures (effect size = 2.13).⁴⁴ The responsiveness of that instrument might vary depending on the diseases being investigated. Effect sizes of the Barthel index were found to be more prominent in stroke patients than in multiple sclerosis patients.⁴⁸ However, the present study is the first to report the effect sizes of the Barthel index in older adults after abdominal surgery. Of the three versions, the 3-item version has the largest effect size, which is considered moderate (effect size = 0.69), and has an SRM value comparable to the original version, indicating that the 3-item version is the most responsive.

Assessing the ability to perform ADLs of older patients before and after surgery allows healthcare personnel to detect lost functions, provide treatment, and restore patients to a self-supporting state. In assessing patients, a concise assessment tool should be used in practice.

Assessing older patients' ability to perform ADLs before and after surgery assists healthcare personnel to detect lost functions, to provide appropriate treatment, and help restore patients to a self-supporting state. This study found that both the 5-item and the 3-item version can help in that regard. This study found that the 5-item version has higher internal consistency, while the 3-item version has superior responsiveness to change. Both versions have a comparable agreement with the original version.

In the effort to develop a shorter and more practicable assessment tool that could be used in older patients undergoing elective abdominal surgery, the new short form has some limitations. First, the short-form might only be applicable to older adults with near or total independence in self-care activities pre-operation as our mean Barthel index score was high. Second, the convergent validity of the Barthel index should be investigated using other measurements in addition to the EQ-5D-5L as it assesses multiple domains rather than just physical functions. Additionally, a prospective study investigating the practicability of the 3-item Barthel index and evaluating its psychometric properties in actual practice is needed.

Conclusion

We recommend the use of the 3-item Barthel index as a screening tool for detecting functional changes in older adults undergoing abdominal surgery because of its superior responsiveness to change. In addition, the short version requires less assessment time and is less of a burden on patients, making it more suitable for clinical use.

Disclosure

The authors declared no conflict of interest. This research project was supported by the Siriraj research development fund, Faculty of Medicine Siriraj Hospital, Mahidol University (grant number (IO) R016532030) and the Integrated Perioperative Geriatric Excellent Research Center.

Acknowledgments

The authors would like to thank Ms. Manita Kerdmonkol and Mr. Monai Saejui for their valuable assistance in managing data. The authors would also like to thank Ms. Sunit Jarungjitaree for collecting the data. The authors are grateful to Dr. Chulaluk Komoltri and Miss Julaporn Pooliam of the Faculty of Medicine, Siriraj Hospital, Mahidol University, for her help with the statistical analyses. The authors also appreciate the help of Aditya Rana with English language editing.

References

1. Lawrence VA, Hazuda HP, Cornell JE, Pederson T, Bradshaw PT, Mulrow CD, et al. Functional independence after major abdominal surgery in the elderly. *J Am Coll Surg* [Internet]. 2004 [cited 2023 May 17];199(5):762-72. Available from: <https://pubmed.ncbi.nlm.nih.gov/15501119/> doi:10.1016/j.jamcollsurg.2004.05.280
2. Li LT, Barden GM, Balentine CJ, Orcutt ST, Naik AD, Artinyan A, et al. Postoperative transitional care needs in the elderly: an outcome of recovery associated with worse long-term survival. *Ann Surg* [Internet]. 2015 [cited 2023 May 17]; 261(4):695-701. Available from: <https://pubmed.ncbi.nlm.nih.gov/24743615/> doi: 10.1097/SLA.0000000000000673
3. Balentine CJ, Naik AD, Berger DH, Chen H, Anaya DA, Kennedy GD. Postacute Care After Major Abdominal Surgery in Elderly Patients: Intersection of Age, Functional Status, and Postoperative Complications. *JAMA Surg* [Internet]. 2016 [cited 2023 May 17]; 151(8):759-66. Available from: <https://pubmed.ncbi.nlm.nih.gov/27144881/> doi: 10.1001/jamasurg.2016.0717
4. Dickinson EJ. Standard assessment scales for elderly people. Recommendations of the Royal College of Physicians of London and the British Geriatrics Society. *J Epidemiol Community Health* [Internet]. 1992 [cited 2023 May 17]; 46(6):628-9. Available from: <https://pubmed.ncbi.nlm.nih.gov/1494081/> doi: 10.1136/jech.46.6.628
5. Quinn TJ, McArthur K, Ellis G, Stott DJ. Functional assessment in older people. *BMJ* [Internet]. 2011 [cited 2023 May 17];343:d4681. Available from: <https://pubmed.ncbi.nlm.nih.gov/21859792/> doi: 10.1136/bmj.d4681
6. Hartigan I. A comparative review of the Katz ADL and the Barthel Index in assessing the activities of daily living of older people. *Int J Older People Nurs* [Internet]. 2007 [cited 2023 May 17]; 2(3):204-12. Available from: <https://pubmed.ncbi.nlm.nih.gov/20925877/> doi: 10.1111/j.1748-3743.2007.00074.x
7. Silveira L, Silva JMD, Soler JMP, Sun CYL, Tanaka C, Fu C. Assessing functional status after intensive care unit stay: the Barthel Index and the Katz Index. *Int J Qual Health Care* [Internet]. 2018 [cited 2023 May 17];30(4):265-70. Available from: <https://pubmed.ncbi.nlm.nih.gov/29385454/> doi: 10.1093/intqhc/mzx203
8. Okamoto M, Kito M, Yoshimura Y, Aoki K, Suzuki S, Tanaka A, et al. Using the Barthel Index to Assess Activities of Daily Living after Musculoskeletal Tumour Surgery: A Single-centre Observational Study. *Prog Rehabil Med* [Internet]. 2019 [cited 2023 May 17];4. Available from: <https://pubmed.ncbi.nlm.nih.gov/32789257/> doi: 10.2490/prm.20190010. eCollection 2019
9. Souwer ETD, Oerlemans S, van de Poll-Franse LV, van Erning FN, van den Bos F, Schuijtemaker JS, et al. The impact of colorectal surgery on health-related quality of life in older functionally dependent patients with cancer - A longitudinal follow-up study. *J Geriatr Oncol* [Internet]. 2019 [cited 2023 May 17];10(5):724-32. Available from: <https://pubmed.ncbi.nlm.nih.gov/31076314/> doi: 10.1016/j.jgo.2019.04.013. Epub 2019 May 8
10. Suwanabol PA, Li Y, Abrahamse P, De Roo AC, Vu JV, Silveira MJ, et al. Functional and Cognitive Decline Among Older Adults After High-risk Surgery. *Ann Surg* [Internet]. 2022 [cited 2023 May 17];275(1):e132-e9. Available from: <https://pubmed.ncbi.nlm.nih.gov/32404660/> doi: 10.1097/SLA.0000000000003950
11. Stabenau HF, Becher RD, Gahbauer EA, Leo-Summers L, Allore HG, Gill TM. Functional Trajectories Before and After Major Surgery in Older Adults. *Ann Surg* [Internet]. 2018 [cited 2023 May 17];268(6):911-7. Available from: <https://pubmed.ncbi.nlm.nih.gov/29356710/> doi: 10.1097/SLA.000000000000265
12. Sikder T, Sourial N, Maimon G, Tahiri M, Teasdale D, Bergman H, et al. Postoperative Recovery in Frail, Pre-frail, and Non-frail Elderly Patients Following Abdominal Surgery. *World J Surg* [Internet]. 2019 [cited 2023 May 17];43(2):415-24. Available from: <https://pubmed.ncbi.nlm.nih.gov/30229382/> doi: 10.1007/s00268-018-4801-9
13. Tan HL, Chia STX, Nadkarni NV, Ang SY, Seow DCC, Wong TH. Frailty and functional decline after emergency abdominal surgery in the elderly: a prospective cohort study. *World J Emerg Surg* [Internet]. 2019 [cited 2023 May 17];14:62. Available from: <https://pubmed.ncbi.nlm.nih.gov/31892937/> doi: 10.1186/s13017-019-0280-z. eCollection 2019
14. Bruynen CP, de Groot LGR, Vondeling AM, de Bree R, van den Bos F, Witteveen PO, et al. Functional decline after surgery in older patients with head and neck cancer. *Oral Oncol* [Internet]. 2021 [cited 2023 May 17];123:105584. Available from: <https://pubmed.ncbi.nlm.nih.gov/34742007/> doi: 10.1016/j.oraloncology.2021.105584. Epub 2021 Oct 30
15. Oliphant SS, Lowder JL, Lee M, Ghetti C. Most older women recover baseline functional status following pelvic organ prolapse surgery. *Int Urogynecol J* [Internet]. 2014 [cited 2023 May 17];25(10):1425-32. Available from: <https://pubmed.ncbi.nlm.nih.gov/24781347/> doi: 10.1007/s00192-014-2394-x. Epub 2014 Apr 30
16. Rønning B, Wyller TB, Jordhøy MS, Nesbakken A, Bakka A, Seljeflot I, et al. Frailty indicators and functional status in older patients after colorectal cancer surgery. *J Geriatr Oncol* [Internet]. 2014 [cited 2023 May 17];5(1):26-32. Available from: <https://pubmed.ncbi.nlm.nih.gov/24484715/> doi: 10.1016/j.jgo.2013.08.001
17. Hobart JC, Thompson AJ. The five item Barthel index. *J Neurol Neurosurg Psychiatry* [Internet]. 2001 [cited 2023 May 17];71(2):225-30. Available from: <https://pubmed.ncbi.nlm.nih.gov/11250000/>

gov/11459898/ doi: 10.1136/jnnp.71.2.225

18. Hsueh IP, Lin JH, Jeng JS, Hsieh CL. Comparison of the psychometric characteristics of the functional independence measure, 5 item Barthel index, and 10 item Barthel index in patients with stroke. *J Neurol Neurosurg Psychiatry* [Internet]. 2002 [cited 2023 May 17];73(2):188-90. Available from: <https://pubmed.ncbi.nlm.nih.gov/12122181/> doi: 10.1136/jnnp.73.2.188
19. Perneczky R, Wagenpfeil S, Komossa K, Grimmer T, Diehl J, Kurz A. Mapping Scores Onto Stages: Mini-Mental State Examination and Clinical Dementia Rating. *Am J Geriatr Psychiatry* [Internet]. 2006 [cited 2023 May 17];14(2):139-44. Available from: <https://pubmed.ncbi.nlm.nih.gov/16473978/> doi: 10.1097/01.JGP.0000192478.82189.a8
20. Lotrakul M, Sumrithe S, Saipanish R. Reliability and validity of the Thai version of the PHQ-9. *BMC Psychiatry* [Internet]. 2008 [cited 2023 May 17];8:46-. Available from: <https://pubmed.ncbi.nlm.nih.gov/18570645/> doi: 10.1186/1471-244X-8-46
21. Burgess LC, Wainwright TW. What Is the Evidence for Early Mobilisation in Elective Spine Surgery? A Narrative Review. *Healthcare* [Internet]. 2019 [cited 2023 May 17];7(3):92. Available from: <https://pubmed.ncbi.nlm.nih.gov/31323868/> doi: 10.3390/healthcare7030092
22. Mahoney F, Barthel DW. Functional evaluation ; the Barthel index. A simple index of the independence useful in scoring improvement in the rehabilitation of the chronically ill. *Md State Med J* [Internet]. 1965 [cited 2023 May 17];14:61-6. Available from: <https://pubmed.ncbi.nlm.nih.gov/14258950/>
23. Hopman-Rock M, van Hirtum H, de Vreede P, Freiberger E. Activities of daily living in older community-dwelling persons: a systematic review of psychometric properties of instruments. *Aging Clin Exp Res* [Internet]. 2019 [cited 2023 May 17];31(7):917-25. Available from: <https://pubmed.ncbi.nlm.nih.gov/30191453/> doi: 10.1007/s40520-018-1034-6. Epub 2018 Sep 6
24. Laohaprasitiporn P, Jarusriwanna A, Unnanuntana A. Validity and Reliability of the Thai Version of the Barthel Index for Elderly Patients with Femoral Neck Fracture. *J Med Assoc Thai* [Internet]. 2017 [cited 2023 May 17];100:539-48. Available from: <http://jmatonline.com/index.php/jmat/article/view/7104>
25. Pietra GLD, Savio K, Oddone E, Reggiani M, Monaco F, Leone MA. Validity and Reliability of the Barthel Index Administered by Telephone. *Stroke* [Internet]. 2011 [cited 2023 May 17];42(7):2077-9. Available from: <https://pubmed.ncbi.nlm.nih.gov/21527755/> doi: 10.1161/STROKEAHA.111.613521. Epub 2011 Apr 28
26. Train The Brain Forum Committee. Thai Mental State Examination (TMSE). *Siriraj Medical Journal* [Internet]. 1993 [cited 2023 May 17]; 45(6):359-74. Available from: <https://imsear.searo.who.int/handle/123456789/137991>
27. Durant J, Leger GC, Banks SJ, Miller JB. Relationship between the Activities of Daily Living Questionnaire and the Montreal Cognitive Assessment. *Alzheimers Dement (Amst)* [Internet]. 2016 [cited 2023 May 17];4:43-6. Available from: <https://pubmed.ncbi.nlm.nih.gov/27489879/> doi: 10.1016/j.dadm.2016.06.001. eCollection 2016
28. Yi Y, Ding L, Wen H, Wu J, Makimoto K, Liao X. Is Barthel Index Suitable for Assessing Activities of Daily Living in Patients With Dementia? *Front Psychiatry* [Internet]. 2020 [cited 2023 May 17];11(282). Available from: <https://pubmed.ncbi.nlm.nih.gov/32457659/> doi: 10.3389/fpsyg.2020.00282. eCollection 2020
29. Sainsbury A, Seebass G, Bansal A, Young JB. Reliability of the Barthel Index when used with older people. *Age Ageing* [Internet]. 2005 [cited 2023 May 17];34(3):228-32. Available from: <https://pubmed.ncbi.nlm.nih.gov/15863408/> doi: 10.1093/ageing/afi063
30. Phelan E, Williams B, Meeker K, Bonn K, Frederick J, Logerfo J, et al. A study of the diagnostic accuracy of the PHQ-9 in primary care elderly. *BMC Fam Pract* [Internet]. 2010 [cited 2023 May 17];11:63. Available from: <https://pubmed.ncbi.nlm.nih.gov/20807445/> doi: 10.1186/1471-2296-11-63
31. Penninx BW, Leveille S, Ferrucci L, van Eijk JT, Guralnik JM. Exploring the effect of depression on physical disability: longitudinal evidence from the established populations for epidemiologic studies of the elderly. *Am J Public Health* [Internet]. 1999 [cited 2023 May 17];89(9):1346-52. Available from: <https://pubmed.ncbi.nlm.nih.gov/10474551/> doi: 10.2105/ajph.89.9.1346
32. Weng CF, Lin KP, Lu FP, Chen JH, Wen CJ, Peng JH, et al. Effects of depression, dementia and delirium on activities of daily living in elderly patients after discharge. *BMC Geriatr* [Internet]. 2019 [cited 2023 May 17];19(1):261. Available from: <https://pubmed.ncbi.nlm.nih.gov/31604425/> doi: 10.1186/s12877-019-1294-9
33. Pattanaphesaj J, Thavorncharoensap M, Ramos-Goñi JM, Tongsiri S, Ingsrisawang L, Teerawattananon Y. The EQ-5D-5L Valuation study in Thailand. *Expert Rev Pharmacoecon Outcomes Res* [Internet]. 2018 [cited 2023 May 17];18(5):551-8. Available from: <https://pubmed.ncbi.nlm.nih.gov/29958008/> doi: 10.1080/14737167.2018.1494574. Epub 2018 Jul 6
34. SPSS Inc. Released 2009. *PASW Statistics for Windows, Version 18.0*. Chicago: SPSS Inc.
35. Husted JA, Cook R, Farewell V, Gladman D. Methods for assessing responsiveness: A critical review and recommendations. *J Clin Epidemiol* [Internet]. 2000 [cited 2023 May 17];53:459-68. Available from: <https://pubmed.ncbi.nlm.nih.gov/10812317/> doi: 10.1016/s0895-4356(99)00206-1
36. Diyanto R, Moeliono M, Dwipa L. Level of Dependency Based on Barthel and Lawton Score in Older People Living in Panti Werdha, Ciparay. *Althea Medical Journal* [Internet]. 2016 [cited 2023 May 17];3:493-8. Available from: <https://journal.fk.unpad.ac.id/index.php/amj/article/view/929/872> doi: 10.15850/amj.v3n4.929
37. Tavakol M, Dennick R. Making sense of Cronbach's alpha. *Int J Med Educ* [Internet]. 2011 [cited 2023 May 17];2:53-5. Available from: <https://pubmed.ncbi.nlm.nih.gov/28029643/> doi: 10.5116/ijme.4dfb.8df
38. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. *J Chiropr Med* [Internet]. 2016 [cited 2023 May 17];15(2):155-63. Available from: <https://pubmed.ncbi.nlm.nih.gov/27330520/> doi: 10.1016/j.jcm.2016.02.012. Epub 2016 Mar 31
39. Chan YH. Biostatistics 104: correlational analysis. *Singapore Med J* [Internet]. 2003 [cited 2023 May 17];44(12):614-9. Available from: <https://pubmed.ncbi.nlm.nih.gov/14770254/>
40. Hinkle DE, Wiersma W, Jurs SG, editor. *Applied statistics for the behavioral sciences*. Boston: Houghton Mifflin; 2003.
41. Greene ME, Rader KA, Garellick G, Malchau H, Freiberg AA, Rolfson O. The EQ-5D-5L Improves on the EQ-5D-3L for Health-related Quality-of-life Assessment in Patients Undergoing Total Hip Arthroplasty. *Clin Orthop Relat Res* [Internet]. 2015 [cited 2023 May 17];473(11):3383-90. Available from: <https://pubmed.ncbi.nlm.nih.gov/25488404/> doi: 10.1007/s11999-014-4091-y
42. Cohen J. In: Cohen J, editor. *Statistical power analysis for the behavioral sciences*. Ann Arbor: Academic Press; 1977.
43. Sager MA, Franke T, Inouye SK, Landefeld CS, Morgan TM, Rubberg MA, et al. Functional Outcomes of Acute Medical Illness and Hospitalization in Older Persons. *Arch Intern Med* [Internet]. 1996 [cited 2023 May 17];156(6):645-52. Available from: <https://pubmed.ncbi.nlm.nih.gov/15863408/> doi: 10.1093/ageing/afi063

med.ncbi.nlm.nih.gov/8629876/

44. Unnanuntana A, Jarusriwanna A, Nepal S. Validity and responsiveness of Barthel index for measuring functional recovery after hemiarthroplasty for femoral neck fracture. *Arch Orthop Trauma Surg* [Internet]. 2018 [cited 2023 May 17];138(12):1671-7. Available from: <https://pubmed.ncbi.nlm.nih.gov/30094561/> doi: 10.1007/s00402-018-3020-z
45. MacIsaac RL, Ali M, Taylor-Rowan M, Rodgers H, Lees KR, Quinn TJ. Use of a 3-Item Short-Form Version of the Barthel Index for Use in Stroke. *Stroke* [Internet]. 2017 [cited 2023 May 17];48(3):618-23. Available from: <https://pubmed.ncbi.nlm.nih.gov/28154094/> doi: 10.1161/STROKEAHA.116.014789
46. Bhaduri A, Kind P, Salari P, Jungo KT, Boland B, Byrne S, et al. Measurement properties of EQ-5D-3L and EQ-5D-5L in recording self-reported health status in older patients with substantial multimorbidity and polypharmacy. *Health Qual Life Outcomes* [Internet]. 2020 [cited 2023 May 17];18(1):317. Available from: <https://pubmed.ncbi.nlm.nih.gov/32993637/> doi: 10.1186/s12955-020-01564-0
47. Golicki D, Niewada M, Buczek J, Karlińska A, Kobayashi A, Janssen MF, et al. Validity of EQ-5D-5L in stroke. *Qual Life Res* [Internet]. 2015 [cited 2023 May 17];24(4):845-50. Available from: <https://pubmed.ncbi.nlm.nih.gov/25347978/> doi: 10.1007/s11136-014-0834-1
48. van der Putten JJ, Hobart JC, Freeman JA, Thompson AJ. Measuring change in disability after inpatient rehabilitation: comparison of the responsiveness of the Barthel index and the Functional Independence Measure. *J Neurol Neurosurg Psychiatry* [Internet]. 1999 [cited 2023 May 17];66(4):480-4. Available from: <https://pubmed.ncbi.nlm.nih.gov/10201420/> doi: 10.1136/jnnp.66.4.480