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Mitochondrion: an intriguing organelle

Nicha Charoensri, Pipat Sribenjalux

Abstract

Mitochondrion is an intriguing organelle of eukaryotes because it is the only organelle, besides the
nucleus, carrying its own genetic materials. Significant numbers of phylogenetic studies on nucleotide
and protein sequences have revealed that mitochondria share the same ancestor with Rickettsia, intracellular
parasitic bacteria classified in the group of alpha-proteobacteria. More interestingly, most eukaryotes
inherit their mitochondria from their mother. It has been suggested that mitochondria from father are
selectively eliminated after fertilization. Elimination of paternal mitochondria is mediated by 2 specific
degradation mechanisms, ubiquitin-proteasome pathway and nuclease pathway. The knowledge on

mitochondria contributes crucial elements on various fields of biology such as genetic diseases, in vitro

fertilization and evolution.

Key words: mitochondria. genetics. alpha-proteobacteria. maternal inheritance
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