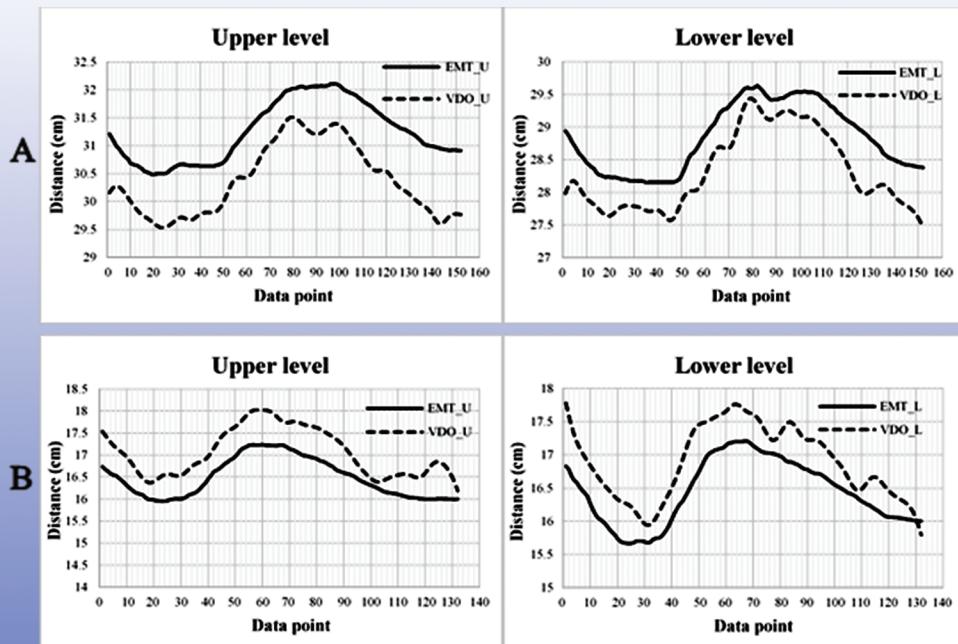


วารสาร เทคนิคการแพทย์ และกายภาพบำบัด


ISSN 0857-6653

VOLUME 32 NUMBER 1 JANUARY - APRIL 2020

<http://www.tci-thaijo.org/index.php/ams>

*** วารสารวิชาการระดับชาติที่ได้รับการรับรองคุณภาพจาก TCI และ สกอ. ***

ปีที่ 32 ฉบับที่ 1
มกราคม - เมษายน 2563

Chest wall expansion graph from electromagnetic tracking system (solid line) and the simple 2D camera system (dashed line) at upper and lower levels in frontal (A) and sagittal (B) planes.

JOURNAL OF MEDICAL TECHNOLOGY AND PHYSICAL THERAPY

สารสาร

เทคนิคการแพทย์และกายภาพบำบัด

JOURNAL OF MEDICAL TECHNOLOGY AND PHYSICAL THERAPY

วัดถุประสงค์

1. เป็นสื่อกลางเผยแพร่วิชาการทางด้านเทคนิคการแพทย์ กายภาพบำบัด วิทยาศาสตร์การแพทย์ และสาขาอื่นที่เกี่ยวข้อง
2. ส่งเสริมความเข้าใจอันดีระหว่างนักเทคนิคการแพทย์ นักกายภาพบำบัด และบุคลากรทางการแพทย์

เจ้าของและสำนักงาน

คณฑ์เทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น 40002

โทรศัพท์/โทรสาร 0-4320-2399, 0-4334-7482

ที่ปรึกษา

รองศาสตราจารย์ ดร. พัชรี เจียรนัยกุรุ

คณบดีคณะเทคโนโลยีการแพทย์ มหาวิทยาลัยขอนแก่น

กองบรรณาธิการ

บรรณาธิการ	รศ.ดร. จุรีัตตน์ ดาดวงศ์
รองบรรณาธิการ	อ.ดร. อัญชลี เดชะเสน
กองบรรณาธิการ	ศ.ดร. วัชระ กสิมฤกษ์
	รศ.ดร. สมชาย สันติวัฒนกุล
	รศ.ดร. ธีรวงษ์ ธนานันต์
	รศ.ดร. อรุณวดี ชนช่วงศร
	ศ.ดร. เต็มดาว ลิ้มไพบูลย์
	รศ.ดร. วชิรินทร์ ลอยลม
	รศ.ดร. อาทิตย์ พวงมะติ
	รศ.ดร. วิมลวรรณ เที่ยงแก้ว
	รศ.ดร. วิษัย อังพินิจพงศ์
	รศ.ดร. สุกี้ลิยา ออมตฉายา
	ผศ.ดร. อุ่นวรรณ ชี้ชวาลย์
	ผศ.ดร. อลังกต เอมะสิกิทช์

คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น
คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น
คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่
คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ
คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์
คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น
คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่
คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น
คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่
คณะกายภาพบำบัด มหาวิทยาลัยมหิดล
คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น
คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น
คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น
คณะแพทยศาสตร์ มหาวิทยาลัยมหิดล

International Editorial Board

Assoc. Prof. Dr. Xingze Wang

Gannan Normal University, China

กองจัดการ

ผู้จัดการ	นางสาวชลธิชา พลทองมาก
กรรมการ	นางสาวสุทธิลักษณ์ พัฒเน็ง
	นายศภาร บรรรค์แก้ว

กำหนดออก ปีละ 3 ฉบับ

ฉบับที่ 1 มกราคม – เมษายน

ฉบับที่ 2 พฤษภาคม – สิงหาคม

ฉบับที่ 3 กันยายน – ธันวาคม

พิมพ์ที่

โรงพยาบาลจุฬาภรณ์ ขอนแก่น
ต.ในเมือง อ.เมือง จ.ขอนแก่น 400002
โทรศัพท์ โทรสาร 0-4320-2100

วารสาร

เทคนิคการแพทย์และกายภาพบำบัด

JOURNAL OF MEDICAL TECHNOLOGY AND PHYSICAL THERAPY

OBJECTIVES

1. To serve as a medium for propagating knowledge, technology and research in medical technology, physical therapy and health sciences.
2. To promote better understanding among medical technologists, physical therapists and other health personnels.

OWNER AND OFFICE

Faculty of Associated Medical Sciences, Khon Kaen University 40002

Tel./Fax. 0-4320-2399, 0-4334-7482

ADVISORY

Assoc. Prof. Dr. Patcharee Jearanaikoon Dean, Faculty of Associated Medical Sciences, Khon Kaen University

EDITORIAL BOARD

Editor	Assoc. Prof. Dr. Jureerut Daduang	Faculty of Associated Medical Sciences, Khon Kaen University
Deputy Editor	Dr. Anchalee Techasen	Faculty of Associated Medical Sciences, Khon Kaen University
Members	Prof. Dr. Wachara Kasinrerk	Faculty of Associated Medical Sciences, Chiang Mai University
	Assoc. Prof. Dr. Somchai Santiwatanakul	Faculty of Medicine, Srinakharinwirot University
	Assoc. Prof. Dr. Theerachai Thanananta	Faculty of Science and Technology, Thammasat University
	Assoc. Prof. Dr. Aroonwadee Chanawong	Faculty of Associated Medical Sciences, Khon Kaen University
	Prof. Dr. Temduang Limpaiboon	Faculty of Associated Medical Sciences, Khon Kaen University
	Assoc. Prof. Dr. Watcharin Loilome	Faculty of Medicine, Khon Kaen University
	Assoc. Prof. Dr. Aatit Paungmali	Faculty of Associated Medical Sciences, Chiang Mai University
	Assoc. Prof. Dr. Vimonwan Hiengkaew	Faculty of Physical Therapy, Mahidol University
	Assoc. Prof. Dr. Wichai Eungpinichpong	Faculty of Associated Medical Sciences, Khon Kaen University
	Assoc. Prof. Dr. Sugalya Amatachaya	Faculty of Associated Medical Sciences, Khon Kaen University
	Assis. Prof. Dr. Uraiwon Chatchawan	Faculty of Associated Medical Sciences, Khon Kaen University
	Assis. Prof. Dr. Alongkot Emasithi	Faculty of Medicine, Ramathibodi Hospital, Mahidol University
International Editorial Board		
Assoc. Prof. Dr. Xingze Wang		Gannan Normal University, China

MANAGEMENT BOARD

Manager	Chontisa Ponthongmak
Members	Sutthilak Phatpheng
	Supakorn Khankaew

Publication 3 issues per year

Issue 1: January – April

Issue 2: May – August

Issue 3: September – December

PRINTED AT

KKU Printing House, Khon Kaen University

Naimuang, Muang, Khon Kaen 40002 Thailand

Tel./Fax 0-4320-2100

สารสาร

เทคนิคการแพทย์และการภาพบำบัด

JOURNAL OF MEDICAL TECHNOLOGY AND PHYSICAL THERAPY

ปีที่ 32 ฉบับที่ 1 มกราคม - เมษายน 2563

สารบัญ

หน้า

นิพนธ์ต้นฉบับ

● ความชุกและปัจจัยเสี่ยงต่อภาวะหลังหัวมุนในคนขับรถโดยสารสองแถว ที่มีอาการปวดหลังส่วนล่าง	1
ราหิพย์ บุญรักษา, รุ้งทิพย์ พันธุ์เมธากุล, วันทนा ศิริธรอิริวัตร และวนิดา ดรปัญหา	
● ผลเฉียบพลันของการบำบัดด้วยโปรแกรม “การออกกำลังกายกล้ามเนื้อตัวแบบแยกส่วน กระดูกเชิงกราน และรยางค์ขา” ในเด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่อง	15
นพรัตน์ ลังขณาทร์ และ วีระศักดิ์ ตีะปัญญา	
● ผลการตรวจวินิจฉัยเชื้อวัณโรคในกลุ่มเด็กด้วยวิธี Gene Xpert MTB/RIF Assay	28
โรงพยาบาลชลบุรี	
วชรี จุณวัชร	
● ผลทันทีของเทคนิครุ้งทิพย์ (Rungthip; RT technique) ต่อความตึงตัวของเส้นประสาท ของขาในผู้ใหญ่ที่มีสุขภาพดี	38
อรษา แสนโน, วีระศักดิ์ ตีะปัญญา, แคนเนียล ศรุตคิริกุลธรา, บริยารณ์ ไทรรัตนานนท์ พโลยบปิติ พันธุ์, ทกนล ธรรมวงศ์ และรุ้งทิพย์ พันธุ์เมธากุล	
● ความสัมพันธ์ระหว่างการขยายตัวของทรวงอกและความแข็งแรงในเด็กทั่วไป	48
ชลิตา ของขันป่อน, ระหวีวรรณ เล็กสกุลไชย และพีร์มงคล วัฒนาวนนท์	
● ค่าจุดตัดของการทดสอบการเดิน 6 นาที เพื่อระบุความเสี่ยงต่อการหล่อล้มของผู้สูงอายุในชุมชน	61
รุ่งนภา อินทรักษ์, จิตติมา แสงสุวรรณ, ลุก้าลยา อาਮตฉايا และทิวพร ทวีวรรณกิจ	
● ความสัมพันธ์ระหว่างความแข็งแรงของกล้ามเนื้อ盆底ปaley เท้า	71
และการทดสอบยืนเขย่งปลายเท้าในผู้สูงอายุในชุมชน	
วีระศักดิ์ ตีะปัญญา, ลินธุพร มหาวัณ และนพรัตน์ ลังขณาทร์	
● ปัจจัยที่สัมพันธ์กับระดับเสี่ยงต่อความผิดปกติทางระบบโครงร่างและกล้ามเนื้อในเกษตรกร ผู้ป่วยทางพารา	82
สนิสา ชาญเกลี้ยง, กวิสิทธิรินทร์ คงชนะพันธ์ และพronภา ศุกรเวทย์ศิริ	

วารสาร

เทคนิคการแพทย์และกายภาพบำบัด

JOURNAL OF MEDICAL TECHNOLOGY AND PHYSICAL THERAPY

ปีที่ 32 ฉบับที่ 1 มกราคม - เมษายน 2563

สารบัญ

หน้า

- ผลของการใช้เทปยึดหยุ่นและการออกแบบกล้ามเนื้อแกนกลางลำตัว ต่อระดับความเจ็บปวด ระดับพร่องความสามารถและความยึดหยุ่นของเอวในผู้ป่วย อาการปวดหลังส่วนล่างชนิดไม่จำเพาะเจาะจง: การศึกษาเชิงทดลองชนิดมีการสุ่ม ชื่นนานโนมานวิน, มหาโยตุษาชิน และยอดชาย บุญประกอบ 95
- Prevalence and risk factors of musculoskeletal symptoms among municipal solid waste workers in Phayao Province, Northern Thailand Sarawut Sangkham and Sakesun Thongtip 110
- ความสัมพันธ์ระหว่างการกลایพันธุ์ของยีน G6PD โพลิมอร์ฟิซึมของยีน HMOX1 และโพลิมอร์ฟิซึมของยีน BLVRA กับความรุนแรงของภาวะตัวเหลือง ในทารกแรกเกิดชาวไทย ในภาคตะวันออกเฉียงเหนือ ชนาพร เกียรติสัยมู, สุทธิพรรัตน กิจเจริญ, นกพรรัตน เกียรติชูสกุล กนกวรรณ แสนไชยสุริยา, เกรียงไกร กิจเจริญ และนพมาศ เชื้อมทองหลาง 131
- ความสัมพันธ์ของโพลิมอร์ฟิซึมของจีนแอลฟ้าไฟบริโนเจน (FGA -58G/A) กับกลุ่มอาการกล้ามเนื้อหัวใจขาดเลือดเฉียบพลันในผู้ป่วยเบาหวานชนิดที่ 2 ชนานิกานต์ มากมูล, นันทรัตน์ โภมานะลิน, บูรพา บุตรรัตน และวิทย์ เหลืองวัฒนานนท์ 142

วารสาร

เทคนิคการแพทย์และกายภาพบำบัด

JOURNAL OF MEDICAL TECHNOLOGY AND PHYSICAL THERAPY

VOLUME 32 NUMBER 1 January - April 2020

CONTENTS

	page
ORIGINAL ARTICLE	
● Prevalence and individual risk factors associated with clinical lumbar instability in minibus drivers with low back pain Development of live-attenuated dengue vaccine	2
<i>Waratip Boonraksa, Rungthip Puntumetakul, Wantana Siritaratiwat and Wanida Donpunha</i>	
● An immediate effects of an intervention program “segmental trunk control intervention with the pelvic and lower limbs exercises” in children with inadequate trunk control	15
<i>Noppharat Sangkarit and Weerasak Tapanya</i>	
● Utilization of Xpert MTB/RIF assay in tertiary care hospital: Diagnostic accuracy of extrapulmonary tuberculosis specimens	29
<i>Wacharee Charoonwach</i>	
● The immediate effect of Rungthip (RT) technique on lower limb neurodynamic in healthy young adults	39
<i>Auras Saenno, Weerasak Tapanya, Daniel Sarutsirikuntara, Preeyaporn Thairattananon, Ploypiti Panthu, Torkamol Hunsawong and Rungthip Puntumetakul</i>	
● Correlation between chest wall expansion and strength in typically developing children	49
<i>Chalida Chongkunpon, Rawewan Lekskulchai and Peemongkon Wattananon</i>	
● Cut-off score of the 6-minute walk test for determining risk of fall in community-dwelling elderly	62
<i>Roongnapa Intaruk, Jittima Saengsuwan, Sugalya Amatachaya and Thiwabhorn Thaweevannakij</i>	

วารสาร

เทคนิคการแพทย์และกายภาพบำบัด

JOURNAL OF MEDICAL TECHNOLOGY AND PHYSICAL THERAPY

VOLUME 32 NUMBER 1 January - April 2020

CONTENTS

	page
● Relationship between Plantar Flexor Muscle Strength and Standing Heel Rise Test in Community-dwelling Elderly <i>Weerasak Tapanya, Sinthuporn Maharan and Noppharat Sangkarit</i>	72
● Factors correlated with risk levels of musculoskeletal disorders among rubber planters <i>Sunisa Chaiklieng, Kawittharin Khanaphan and Pornnapa Suggaravetsiri</i>	83
● The effects of elastic taping and core stability exercises on pain intensity, disability level and lumbar flexibility in sub-acute non-specific low back pain : a randomized controlled trial <i>Khin Nan Ohnmar Win, Myo Thuzar Khin and Yodchai Boonprakob</i>	96
● Prevalence and risk factors of musculoskeletal symptoms among municipal solid waste workers in Phayao Province, Northern Thailand <i>Sarawut Sangkham and Sakesun Thongtip</i>	110
● Association between G6PD, HMOX1 and BLVRA variants and severity of hyperbilirubinemia in northeastern Thai neonates <i>Chanaporn Kiatsayompo, Suttiphan Kitcharoen, Pakaphan Kiatchoosakun, Kanokwan Sanchaisuriya, Kriengkrai Kitcharoen and Noppmats Khemtonglang</i>	132
● Association of alpha fibrinogen -58G/A genetic polymorphism with acute coronary syndrome in type 2 diabetes mellitus <i>Chananikan Makmool, Nantarat Komanasin, Burabha Pussadhamma and Wit Lueangwattananon</i>	143

ความชุกและปัจจัยเสี่ยงต่อภาวะหลังหลวงในคนขับรถโดยสารสองแถว ที่มีอาการปวดหลังส่วนล่าง

ราษฎร์ บุญรักษา, รุจิพิพิพัฒน์ พันธุ์เมธากุล^{1,2*}, วัฒนา ศิริธรรมิวัตร^{1,2} และ วนิดา ดรปัญหา^{1,2}

Received: September 1, 2019

Revised: March 4, 2020

Accepted: March 6, 2020

บทคัดย่อ

อาการปวดหลังส่วนล่างถือเป็นความผิดปกติทางระบบกล้ามเนื้อและกระดูกที่พบได้มากที่สุดในคนขับรถโดยสาร นักวิจัยนี้ยังพบว่า ภาวะความไม่มั่นคงของลำกระดูกสันหลังถือเป็นอีกหนึ่งสาเหตุของการปวดหลังส่วนล่างด้วยเช่นกัน งานวิจัยนี้จึงมีวัตถุประสงค์ในการศึกษา คือ เพื่อตรวจประเมินหาค่าความชุกและปัจจัยเสี่ยงที่อาจมีผลต่อภาวะความไม่มั่นคงของลำกระดูกสันหลังในคนขับรถโดยสารสองแถวที่มีอาการปวดหลังส่วนล่าง โดยทำการสำรวจในคนขับรถโดยสารสองแถวภายในจังหวัดสกลนคร 236 คน ในรูปแบบการศึกษาแบบภาคตัดขวาง (cross-sectional survey) โดยใช้การตรวจประเมินทางกายภาพบำบัดทั้งหมด 14 การทดสอบ คือ sit to stand test, aberrant movement pattern test, Beighton's hypermobility scale, lumbar flexion test, total trunk extension, interspinous gap change test, posterior shear test, prone instability test, painful catch sign test, passive accessory intervertebral motions test, passive physiological intervertebral motions in trunk flexion test, passive physiological intervertebral motions in trunk extension test, passive lumbar extension test และ average SLR test และใช้แบบสอบถามในการหาปัจจัยเสี่ยงส่วนบุคคล จากผลการศึกษา พบความชุกของภาวะความไม่มั่นคงของลำกระดูกสันหลังในคนขับรถสองแถวคือ 75.42% (อายุเฉลี่ย 54 ± 11 ปี) และพบว่าในอาสาสมัครที่มีการออกกำลังกายมากกว่า 3 ครั้ง ต่อสัปดาห์ มีแนวโน้มของการเกิดภาวะความไม่มั่นคงของลำกระดูกสันหลังน้อยกว่าคนที่ไม่ออกกำลังกายที่ $p=0.34$ (OR 0.43, 95% CI 0.197-0.936, p -value<0.05)

คำสำคัญ: คนขับรถโดยสารสองแถว, ความชุก, ภาวะความไม่มั่นคงของลำกระดูกสันหลัง, การตรวจร่างกาย, อาการปวดหลังส่วนล่าง

¹ สาขาวิชาการกายภาพบำบัด คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น ขอนแก่น 40002

² ศูนย์วิจัยปวดหลัง ปวดคอ ปวดข้อ อันดับ 1 และสมรรถนะของมนุษย์ มหาวิทยาลัยขอนแก่น ขอนแก่น 40002

³ แผนกกายภาพบำบัด โรงพยาบาลศูนย์สกลนคร สกลนคร

*ผู้รับผิดชอบบทความ

Prevalence and individual risk factors associated with clinical lumbar instability in minibus drivers with low back pain Development of live-attenuated dengue vaccine

Waratip Boonraksa^{1,2,3}, Rungthip Puntumetakul^{1,2*}, Wantana Siritaratiwat^{1,2} and Wanida Donpunha^{1,2}

Abstract

Low back pain (LBP) is the most common musculoskeletal disorder in bus drivers. Lumbar instability is one of the causes of LBP. Therefore, the current study aimed to investigate the prevalence and risk factors associated with CLI in minibus drivers with LBP. This study design was a cross-sectional survey on 236 minibus drivers, conducted in Sakon Nakhon province, Thailand. The 14 physical examinations for lumbar instability containing sit to stand test, aberrant movement pattern test, Beighton's hypermobility scale, lumbar flexion test, total trunk extension, interspinous gap change test, posterior shear test, prone instability test, painful catch sign test, passive accessory intervertebral motions test, passive physiological intervertebral motions in trunk flexion test, passive physiological intervertebral motions in trunk extension test, passive lumbar extension test, and average SLR test, were performed. The method has used a questionnaire to answer of the risk factors associated. The prevalence of CLI in minibus drivers found in this study was 75.42% (age 54±11 years). The result of this study shows a significance of the drivers who had an exercise ($p=0.034$, p -value < 0.05).

Keywords: Minibus drivers, Prevalence, Lumbar instability, Physical examination, Low back pain

¹ School of Physical Therapy, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, Thailand 40002

² Research Center in Back, Neck, Other Joint Pain and Human Performance (BNOJPH), Khon Kaen University, Khon Kaen, Thailand 40002

³ Physical therapy department Sakon Nakhon hospital, Sakon Nakhon, Thailand

*Corresponding author: (e-mail: rungthipt@gmail.com)

Introduction

Prolonged driving can be one of various causing factors of low back pain. The University Kuala Lumpur Institute of Medical Science reported a high prevalence of LBP at 74% in bus drivers⁽¹⁾. Prevalence of low back pain was also found to be the most common symptoms (62.19%) in van drivers in Hadyai, Songkhla province⁽²⁾. A minibus driver is one type of vehicle drivers for public transportation in rural areas of Thailand. The minibus is defined as a car which allows approximately 20 passengers sitting in 2 rows at the back of the car and usually driven for within 40 kilometers distance from the center area⁽³⁾. The minibus drivers usually spend more than 4 hours driving per day as their either full or part time job. The drivers are thus involved in the routine muscular effort while driving, being in awkward sitting postures, and exposing to whole-body vibration⁽³⁻⁴⁾. The minibus drivers may have associated individual factors for lumbar instability in term of work related activity factors⁽⁴⁻⁶⁾. Therefore, low back pain could be common musculoskeletal symptoms in these drivers.

Lumbar instability can be one of mechanisms happening in drivers with low back pain. Lumbar instability is classified into two subgroups such as clinical lumbar instability (CLI) and non-clinical lumbar instability (NCLI)⁽⁷⁾. Lumbar instability leads to increase lumbar muscle pain, increase disability of motion, and decrease quality of life⁽⁷⁾. Without early detection and a proper treatment for lumbar instability, the problems could turn to lumbar spondylolisthesis or more severe pain in lumbar region. Patients suffering from severe cases of spondylolisthesis need high cost and consuming time for rehabilitation. This could lead to poor quality of life.

Radiographic film of lumbar spine is a gold standard and reliable method for diagnosing lumbar instability. However, radiography contains some limitations in the aspect of accessibility, cost and time consuming⁽⁸⁾. Several clinical objective examinations are therefore applied to assess lumbar instability comparing with flexion-extension radiographic films⁽⁹⁻¹³⁾. Also, the researchers invented the objective examination that can early detect lumbar instability. The objective examinations that researcher explore are about diagnosis accuracy study⁽⁹⁻¹³⁾, and reliability study⁽¹⁴⁻¹⁷⁾. The objective tests including sit to stand⁽⁹⁾, PAIVMs⁽¹¹⁾, PPIVMs in flexion⁽¹⁰⁾, PPIVMs in extension⁽¹⁰⁾, Lumbar flexion⁽¹¹⁾, lumbar extension⁽¹¹⁾, average SLR⁽¹⁴⁾, aberrant motion test⁽¹¹⁾, posterior shear test⁽¹¹⁾, Beighton hypermobility scale > 2 points⁽¹¹⁾, prone instability test⁽¹¹⁾, passive lumbar extension test⁽¹²⁾, instability catch sign⁽¹²⁾, painful catch sign⁽¹²⁾, apprehension sign tests⁽¹²⁾, and interspinous gap change during flexion-extension⁽¹³⁾ were compared with flexion and extension radiograph in order to gain the accuracy of the diagnosis. The current study recruited 14 validity clinical tests to perform in the research methodology. The instability catch sign and apprehension are excluded because the instability catch sign is one component of the aberrant movement test and the apprehension sign test is relative with the subjective examination of the screening tool.

However, there was limited data on prevalence of lumbar instability in minibus drivers who have low back pain. Early detection of lumbar instability would help to reduce severity of low back pain and promote specific early treatment as much as possible for the drivers with low back pain. Therefore, the current study aimed

to investigate the prevalence and individual risk factors associated with clinical lumbar instability in minibus drivers with low back pain.

Material and Methods

1. Study design

This cross-sectional study was conducted in Sakon Nakhon Province from April to July 2019. The study was approved by the Ethics Committee for Human Research at Khon Kaen University (HE612373) based on the Declaration of Helsinki.

2. Participants

Minibus drivers living in Muang district, Sakon Nakhon province were recruited as participants and were asked to give informed consent before participating in the study. Each participant who voluntarily responded to the announcements was interviewed and screened to determine whether they meet the following inclusion criteria: age from 20 to 80 years old, driving at least 4 hours per day, having complaints of sub-acute (from 6 to 12 weeks) to chronic low back pain (at least 12 weeks), and level of back pain ranges between 3-7 assessed by the visual analog scale (VAS). They were excluded if they had lumbar fracture, tumor, or infection, previous lumbar fusion surgery, limitation or incapability to actively move the spine in flexion and extension directions by pain or muscle spasm, and serious neurological diseases.

The sample size was calculated using the low back pain proportion ($p = 62.19\%$) of the bus drivers from the previous study. Therefore, 0.62 was used to calculate the sample size in the current study. The significant level was 0.05 ($p\text{-value} = 0.05$) ($Z\alpha/2 = 1.96$) and precision of estimation

(e) was assigned as 10% of the proportion ($e = 0.1 \times 0.62$). Accordingly, the sample size was taken as 236 minibus drivers in the current study.

3. Diagnosis of CLI

The criteria for the diagnosis of the CLI was used that at least five out of fourteen objective examinations must be positive as a previous pilot study in patients with clinical LBP comparing between 14 examinations and radiography. The characteristic of participants in the previous studies were the participants aged between 20 – 60 years with prolonged sitting (Thiwaphon J et al., in press; Alisa L et al., in press). The 14 objective examinations used in the current study consist of the sit to stand test⁹, aberrant movement pattern test¹¹, Beighton's hypermobility scale¹¹, lumbar flexion test¹¹, total trunk extension test¹¹, interspinous gap change test¹³, posterior shear test¹¹, prone instability test¹¹, painful catch sign test¹², passive accessory intervertebral motions (PAIVMs) test¹¹, passive physiological intervertebral motions (PPIVMs) in trunk flexion test¹⁰, passive physiological intervertebral motions (PPIVMs) in trunk extension test¹⁰, passive lumbar extension test¹², and average SLR test¹².

The examiner in this study was a physical therapist with 6 years clinical experiences that practiced and performed the inter-rater reliability of these tests with an expert who had over 20 years of clinical experience in musculoskeletal disorders in 10 participants aged range 20 – 35 years. The order of the tests and participants were randomized within the same environment during 30 minutes testing time. The percent agreement of inter-raters and intra-rater were an 80-100 percent and 90-100 percent respectively.

4. Statistical analysis

The prevalence of lumbar instability was determined by frequency distributions. The variable including body weight, body stature, frequency, duration and distance of driving several days driving in a week and the number of hours or distance to driving in a day was analyzed and

presented with mean and standard (SD). Multivariate logistic regression analyses were used to determine the associations between individual factors or work-related physical factors and LI condition. A significant level was less than 0.05. All analyses were carried out with the SPSS.

Table 1 The demographic characteristic of the 236 minibus drivers

Characteristic		n (%)	Mean \pm SD	Min-Max
BMI (kg/m^2)	- <18.5 (thin)	6 (2.54%)		
	- 18.5 - 22 (normal)	59 (25.0%)		
	- 22.1-23 (overweight)	51 (21.61%)		
	- >23 (obesity)	120 (50.85%)		
Exercise	- Never	127 (53.81%)		
	- 1/week	24 (10.17%)		
	- 2-3/week	32 (13.56%)		
	- >3/week	53 (22.46%)		
Smoking	- No	167 (70.76%)		
	- Yes	69 (29.24%)		
Driving experience			22.10 \pm 15.30	1-61
Driving hour	- 1-2 hours	54 (22.88%)		
	- 2-4 hours	107 (45.34%)		
	- > 4 hours	75 (31.78%)		
Other jobs	- No	90 (38.14%)		
	- Yes	146 (61.86%)		

Table 2 The independent variables of the minibus drivers who had CLI; chi-square analysis (association between the prevalence of CLI with individual and occupational factors)

Variables	Normal		CLI		χ^2	p-value
	n	%	n	%		
Age (mean±SD)	55.91±12.10		53.69±11.13		-	-
Sex						
- female	0	0	15	100	5.219	0.02*
- male	58	26.2	163	73.76		
BMI (kg/m^2)						
- <18.5 (thin)	1	27.1	5	83.3	1.190	0.77
- 18.5 - 22 (normal)	16	16.7	43	72.9		
- 22.1-23 (overweight)	10	19.6	41	80.4		
- >23 (obesity)	31	25.8	89	74.2		
Exercise						
- Never	27	21.3	100	78.7	4.694	0.19*
- 1/week	5	20.8	19	79.2		
- 2-3/week	7	21.9	25	78.1		
- >3/week	19	35.8	34	64.2		
Smoking						
- No	41	24.6	126	75.4	0.000	0.99
- Yes	17	24.6	52	75.4		
Working experience (mean±SD)	22.10±15.30		18.75±12.64		-	-
Working hour						
- 1-2 hours	13	24.1	41	75.9	1.471	0.49
- 2-4 hours	23	21.5	84	78.5		
- > 4 hours	22	29.3	53	70.7		
Other job						
- No	24	26.7	66	73.3	0.343	0.59
- Yes	34	23.3	112	76.7		

Table 3 Prevalence and adjusted odds ratio (ORadj) with 95% confidence intervals (95%CI) of minibus drivers with CLI

Variables	OR _{adj}	95% CI		p-value
		Lower	Upper	
Age	1.005	0.968	1.043	0.790
Sex				
- Female	1.000			
- Male	0.000	0.000	-	0.990
BMI				
- 18.5 - 22 (normal)	1.000			
- <18.5 (thin)	1.922	0.172	21.533	0.596
- 22.1-23 (overweight)	1.726	0.666	4.477	0.262
- >23 (obesity)	1.032	0.490	2.172	0.934
Exercise				
Frequency (time/week)				
- Never	1.000			
- 1	0.965	0.320	2.91	0.950
- 2-3	0.984	0.362	2.677	0.975
- >3	0.43	0.197	0.936	0.034**
Smoking				
- No	1.000			
- Yes	1.117	0.542	2.299	0.765
Driving experience	0.990	0.962	1.019	0.479
Driving hour				
- 1-2	1.000			
- 2-4	1.047	0.458	2.393	0.913
- > 4	0.599	0.250	1.439	0.252
Other jobs				
- No	1.000			
- Yes	1.022	0.529	1.973	0.949

Note: p-value <0.05

Results

1. The demographic characteristics of the participants

Table 1 presents the demographic characteristic of all participants including the individual and the work-related factors. Two hundred and thirty-six minibus drivers with the age range of 20 to 78 years and the mean age of all participants was 54.2 ± 11.4 . Most of the participants were male drivers (93.6%). Mean driving experiences was 22.1 ± 15.3 years. According to the criteria of the current study, clinical lumbar instability was found in 178 (75.42%) in minibus drivers with low back pain. **Table 2** shows details between associated factors of minibus drivers and clinical lumbar instability in this study. More than half of the total participants were overweight. Most of the participants were a smoker (70.76 %) and never exercise (53.81 %). More than half of the total participants who had another job with driving. The results of multivariate logistic regression revealed that only individual factor as exercise habit (exercise more than 3 times per week) (OR 0.34, 95% CI 0.197-0.936) was a preventive associated factors with the occurrence of CLI in minibus drivers with low back pain as shown in **Table 3**.

DISCUSSION

This study investigated the prevalence, individual risk factors and work-related risk factors associated with clinical lumbar instability in minibus drivers with low back pain. This study found that prevalence of CLI was 75.42 percent. The demographic characteristic of participants in the current study such as BMI, frequency of driving, exercise, and smoking of participants of the current study were similar to the drivers who had

low back pain in the previous studies^{1, 2, 6}. Previous studies in rice farmers with low back pains with lumbar instability¹⁸ showed that most participants were female (13.11%) with the mean age of 44.20 ± 9.51 years and the experience of farming was 24.29 ± 12.38 years. Fifteen point forty eight percent of participants with clinical lumbar instability are overweight. The study of health problems was a high BMI of subjects. This, the effect of high BMI can be an injury of spinal loading while during lifting exertions¹⁹.

Lumbar instability is one of the causes of LBP which can be classified as mechanic low back pain. Previous studies demonstrated that the prevalence of lumbar instability was 12% to 62% in patients with low back pain^{9, 10, 12, 13, 14, 18}. However, the prevalence of CLI was had not presented specifically in minibus drivers or on a specific occupation. Although Sae-jern et al², 2014 showed that the prevalence of low back pain in van drivers was 62.19%, this study has not reported the prevalence of lumbar instability in drivers. The current study is the very first study reporting a prevalence of CLI in minibus drivers who may have a different mechanism of injury from other occupations. Previous study of Puntumetakul¹⁸ and co-workers reported of lumbar instability in rice farmers at 13.11%, they however used only three physical examinations to assess and used at least two positive out of three tests as criteria of the lumbar instability. The advantage of current study used 14 tests to assess in participants with clinical lumbar instability in minibus drivers. The current study found clinical lumbar instability in minibus drivers more than rice farmers may be all physical examination to assess and detect in passive and active subsystems.

Fifteen point sixty nine percent of participants with clinical lumbar instability are smokers. The previous studies showed that smoking was associated with LBP due to a reduction of oxygen supply to discs^{20, 21, 22} and the prevalence of low back pain found that with smokers was 53.5%². Thus the demographic data of participants in the current study were similar to the participants of participants who have lumbar instability and the participants in drivers in the previous study in terms of sex, age, BMI, and associated with working. This study showed the prevalence of clinical lumbar instability was 163 males (73.76%), and 15 females (100%). The prevalence of clinical lumbar instability in females higher than males may be due to males being stronger than females when they are working on the same task²⁹. Also, the males have a muscle fiber size of the elector spinae muscles is larger than in females³⁰. Some previous studies demonstrated that females are at greater risk of chronic LBP than males due to their anatomical structure and hormonal effects^{31, 32}.

The high prevalence of CLI leads to the high risk of the complication of injury in the spine and sitting a long time driving could reduce the passive stabilizing subsystem in lumbar instability¹³. The previous study showed the drivers were constrained to a very limited space behind the wheel, where drivers had to assume driving postures without too much backward inclination to give more room for passengers. The additional exposure to such biomechanical strains during prolonged driving may explain and they found in both crude and adjusted analyses a consistently significant association between LBP and bending/ twisting activities while driving²⁰. Total working

hours have been found related to the occurrence of LBP due to the understanding of the effect of prolonged sitting. It is believed that when the drivers are passively sitting, the lumbar spine is poorly supported and may expose to any sudden injury¹. It was also reported that postural stress is an important risk factor in getting low back pain²⁴. Among the bus drivers, they usually maintain awkward body posture for a long period during their working hours include slumped sitting, leaning on one side, bending and twisting²⁵. In theory, the erector spinae muscles remained inactive and the muscle becomes stiff limiting the trunk muscle movement and it may generate the pain²⁶. The positive responses of three objective tests illustrate an impairment of the active stabilizing subsystem, the passive stabilizing subsystem, and the neural control subsystem. First, the active stabilizing subsystem was provided stabilizing the spinal column mechanical, a major dynamic and static stabilization to generate properly forces to support the lumbar motion segments²⁷. Second, the passive stabilizing includes the intervertebral discs, ligaments (anterior longitudinal ligament, posterior longitudinal ligament, ligamentum flavum, intertransverse ligament, interspinous ligament, and supraspinous ligament), facets of the spinal column and vertebrae^{7, 14}. Lastly, the neural control subsystem is a component of nerves and the central nervous system⁷. Although, the passive stabilizing subsystem can support less than an active stabilizing subsystem which plays a role in large-load carrying capacity and supporting body weight and additional loads, especially during trunk movements^{10, 28}. Therefore, the minibus in this study may be a loss of the passive stabilizing subsystem to work of three

subsystems. Therefore, the minibus drivers were forward trunk-bending triggers an anterior tilting of the pelvis while driving, causing accumulative stress on the passive stabilizing subsystem surrounding the lumbar spine. This may lead to the imbalance of the passive stabilizing subsystem.

The examination for lumbar stability of response positive of the highest in 236 minibus drivers was PPIVM with flexion. Similarly, the previous pilot study reporting of examination of lumbar instability with non-radiological that PPIVM test was the highest positive test among all 14 tests (Alisa L et al., in press). Meanwhile, another previous study of clinical lumbar instability reporting the all of the physical examinations in lumbar instability compared with the radiological films that the highest was interspinous gap change with during flexion and extension test (Thiwaphon J et al., in press). The current study was in line with Thiwaphons' study that the interspinous gap change during flexion and extension test was the highest positive test. The current study included participants both who had clinical lumbar instability with non-radiological and those with radiological films.

The high prevalence of lumbar instability was also related to Ornwipa et al. Study of WBV exposure in bus drivers³⁴. The previous study showed WBV is the one cause of low back pain in bus drivers and maybe turn to lumbar instability in the future if it does not protect³⁴. The drivers are involved in the routine muscular effort while driving, awkward sitting postures, and espousing to whole-body vibration (WBV). Likewise, Okunribido et al. showed the result of the combination of WBV and poor sitting posture is the risk factor lead to pain on lumbar LBP in

drivers³⁵. Also, the drivers have a high risk of injury with them-selves. The lumbar instability could turn to other injuries such as lumbar spondylolisthesis and injury of spinal cord or back muscles.

This study found that the prevalence of who had little experience in minibus drivers had higher CLI more than the drivers had a high experience. This relates to the previous study that showed younger drivers with LBP were significantly at $p=0.4739$. Moreover, the current study was presented of associated risk factors with clinical lumbar instability in minibus drivers with low back pain including sex, BMI, exercise, smoking, working experience, work hours per day and who had another job with CLI in minibus drivers. The result of this study shows a significant of the drivers who had an exercise ($p=0.034$, p -value < 0.05). Furthermore, the current study found the participants who had exercised more than three times per week could lower clinical lumbar instability than those who did not regularly do exercise. Similarly, in 2005, Koumantakis et al. show the benefit of exercises as to improve the stabilization of spinal muscles³³. When multivariable logistic regression was tested, the results revealed that only individual factors as exercise habit (exercise more than 3 times per week) (OR 0.43, 95% CI 0.197-0.936) were a factor associated with the occurrence of CLI in minibus drivers with low back pain. Many studies suggest the frequency and duration of the interventions exercise were 2-5 times per week are clouding increase improve muscle strength, muscle power, and prevention of re-injury in a patient with low back pain³⁶. The previous studies have shown that lumbar stabilization exercises performed by chronic low-back pain patients are

effective at reducing low-back pain intensity and low back pain-related disability indexes, and this study also found significant decreases in low-back pain intensity and disability indexes ($p<0.01$) in each of the four subgroups, confirming that lumbar stabilization exercises are helpful for the treatment of low-back pain. The lumbar instability experimental group, that had higher levels of limitation of the hip range of motion, showed larger decreases than the lumbar stability group ($p<0.01$). Also, many previous studies suggest the result shows the therapeutic effects of exercise (stretching and core stabilization) on pain intensity of the instability catch sign, functional disability, and trunk muscle activation patterns of patients with clinical lumbar instability were wellness. The exercise may enhance the ability of segmental muscle in the lower back, reducing the pain intensity of instability catch sign and improved functional disability of patients with lumbar instability. Which, the instability catch sign is one of the major problems of clinical lumbar instability^{11, 37, 38}. It has been proposed that instability catch sign is sudden sharp pain in mid-range of motion during the return from the affixed trunk position¹¹. Thus, the previous study in exercise with core stabilization exercise provides a significantly better reduction of pain intensity³⁹. Similarly, the previous study show exercise could improve muscle strength and performance in who had exercised. Also, who had not to exercise cloud be making dysfunction of an active and passive subsystem of lumbar instability. Also, general exercises could improvement of excessive lumbar vertebrae translation and rotation and a general exercise program could reduce disability in patients with recurrent low back pain⁴⁰.

Conclusion

According to the result, the current study demonstrated that minibus drivers with low back pain had a prevalence of clinical lumbar instability up to 75.42 percent. This means CLI is an important problem in low back pain. The current study also showed that an exercise habit (exercise more than 3 times per week) was a significantly associated factor with lumbar instability. The diagnosis of CLI in minibus drivers seems to very important to the physiotherapist in order to be able to detect CLI in an early stage. Furthermore, regular exercise in minibus driver would be one of a choice to prevent them from clinical lumbar instability condition.

Research limitation

The current study did not use radiography to diagnose clinical lumbar instability; further study should request the participants to undertake radiography to confirm a diagnosis of clinical lumbar instability. The participants in the current study were widely age range, therefore future studies should recruits minibus drivers in each age group to confirm whether age has an associated factor in clinical lumbar instability.

Acknowledgements

The authors thank the participants of this study. This study was supported by grants from the Research Center in Back, Neck, Other Joint Pain and Human Performance (BNOJPH), Khon Kaen University, Thailand.

References

1. Fadhli MZK, Humairah NHR, Khairul NMI, Kaswandi MA, Junaidah Z (2016) Ergonomic Risk Factors and Prevalence of Low Back Pain among Bus Drivers. *Austin J Musculoskelet Disord* 3: 1028-1030.
2. Sea-jern N, Pochana, Sungkapong A (2014) The prevalence and personal factors related to musculoskeletal disorders in occupational van drivers: a case of study of public transport center in Hatyai, Songkhla. *KKU Res J* 19: 107-118.
3. Pope MH, Magnusson M, Wilder DG (1998) Low back pain and whole body vibration. *Clin Orthop Relat Res* 354: 241-248.
4. Krause N, Ragland DR, Fisher JM, Syme SL (1998) Psychosocial job factors, physical workload, and incidence of work-related spinal injury: a 5-year prospective study of urban transit operators. *Spine* 23: 2507-2516.
5. Cohen SP, Argoff CE, Carragee EJ, Chairman V (2008) Management of low back pain. *BMJ* 2 337.
6. Last AR and Hulbert K (2009) Chronic Low Back Pain: Evaluation and Management. *Am Fam Physician* 79: 1067-1074.
7. Panjab MM (1992) The Stabilizing System of the Spine. Part II. neutral zone and instability hypothesis. *J Spinal Disord* 5: 390-396.
8. Ozcete E, Boydak B, Ersel M, Kiyan S, Uz I, Cevrim O. Comparison of Conventional Radiography and Digital Computerized Radiography in Patients Presenting to Emergency Department. *Turk J Emerg Med* 2016; 15: 8-12.
9. Maigne JY, Vautravers P. Mechanism of action of spinal manipulative therapy. *Joint Bone Spine* 2003; 70: 336-341.
10. Abbott JH, McCane B, Herbison P, Moginie G, Chapple C, Hogarty T. Lumbar segmental instability: a criterion-related validity study of manual therapy assessment. *BMC Musculoskelet Disord* 2005; 7: 1-10.
11. Fritz JM, Whitman JM, Childs JD. Lumbar Spine Segmental Mobility Assessment: An Examination of Validity for Determining Intervention Strategies in Patients with Low Back Pain. *Arch Phys Med Rehabil* 2005; 86: 1745-1752.
12. Kasai Y, Morishita K, Kawakita E, Kondo T, Uchida A. A new evaluation method for lumbar spinal instability: passive lumbar extension test. *Phys Ther* 2006 ;86: 1661-1667.
13. Ahn K, Jhun HJ. New physical examination tests for lumbar spondylolisthesis and instability: low midline sill sign and interspinous gap change during lumbar flexion-extension motion. *BMC Musculoskelet Disord* 2015; 16: 1-6.
14. Hicks GE, Fritz JM, Delitto, Mishock J. Interrater Reliability of Clinical Examination Measures for Identification of Lumbar Segmental Instability. *Arch Phys Med Rehabil* 2003; 84: 1858-1864.
15. Schmidt CO, Raspe H, Pfingsten M, Hasenbring M, Basler HD, Eich W et al. Back pain in the German adult population: prevalence, severity, and sociodemographic correlates in a multiregional survey. *Spine* 2007; 32: 2005-2011.
16. Reeves NP, Narendra KS, Cholewicki J. Spine stability: the six blind men and the elephant. *Clin Biomech (Bristol, Avon)* 2007; 22: 266-274.

17. Alyazedi FM, Lohman EB, Wesley Swen R, Bahjri K. The inter-rater reliability of clinical tests that best predict the subclassification of lumbar segmental instability: structural, functional and combined instability. *J Man Manip Ther* 2015; 23:197-204.
18. Puntumetakul R, Yodchaisarn W, Emasithi A, Keawduangdee P, Chatchawan U, Yamauchi J (2015) Prevalence and individual risk factors associated with clinical lumbar instability in rice farmers with low back pain. *Patient Prefer Adherence* 9: 1-7.
19. Granata KP, Marras WS. Cost-benefit of muscle cocontraction in protecting against spinal instability. *Spine (Phila Pa 1976)* 2000; 25:1398-1404.
20. Chen JC, Chang WR, Chang W, Christiani D. Occupational factors associated with low back pain in urban taxi drivers. *Occup Med (Lond)*. 2005; 55: 535-540.
21. Shiri R, Karppinen J, Leino-Arjas P, Solovieva S, Viikari-Juntura E. The Association between Smoking and Low Back Pain: A Meta-analysis. *Am J Med* 2010; 123:87.e7-87.e35.
22. Zvolensky MJ, McMillan KA, Gonzalez A, Asmundson GJ. Chronic musculoskeletal pain and cigarette smoking among a representative sample of Canadian adolescents and adults. *Addict Behav* 2010; 35: 1008-1012.
23. Magnusson ML, Pope MH, Wilder DG, Areskoug B (1996) Are occupational drivers at an increased risk for developing musculoskeletal disorders? *Spine* 21: 710-717.
24. Bovenzi M. Low back pain disorders and exposure to whole-body vibration in the workplace. *Semin Perinatol*. 1996; 20: 38-53.
25. AN Deborah, Santo Yav, Masharawi Y, KL Michal, Ushaev D, Kalichman L. Low Back Pain among Professional Bus Drivers: Ergonomic and Occupational-Psychosocial Risk Factors. *IMAJ*. 2010; 20: 26-31.
26. Shirado, T Ito, K Kaneda, TE Strax. Flexion-relaxation phenomenon in the back muscles. A comparative study between healthy subjects and patients with chronic low back pain, *J Physical Medical Rehabilitation*. 1995; 74: 139- 144.
27. Barr KP, Griggs M, Cadby T. Lumbar stabilization: Core concepts and current literature, part 1. *Am J Phys Med Rehabil* 2005; 84: 473-480.
28. McGill SML, Grenier S, Kavcic N, Cholewick J. Coordination of muscle activity to assure stability of the lumbar spine. *J Electromyogr Kinesiol* 2003; 13: 353-359.
29. De Ruiter, A Goudsmit, A Johannes, Tricht V, De Haan. The Isometric Torque at Which Knee-Extensor Muscle Reoxygenation Stops. *Med. Sci. Sports Exerc.* 2007; 39: 443-452.
30. Mannion A.F, Dumas G.A, Cooper R.G, Espinosa F.J. Muscle fibre size and type distribution in thoracic and lumbar regions of erector spinae in healthy subjects without low back pain: normal values and sex differences. *J.Anat.* 1997; 190:505-513.
31. Fillingim RB, Maixner W. Gender differences in the responses to noxious stimuli. *Pain Forum*. 1995; 4: 209-221.
32. Malmqvist S, Kjaermann I, Andersen K, Okland I, Bronnick K, Larsen JP. Prevalence of Low Back and Pelvic Pain During Pregnancy in a Norwegian Population. *J Manipulative Physiol Ther*. 2012; 35: 272-278.

33. Koumantakis GA, Watson PJ, Oldham JA. Trunk muscle stabilization training plus general exerciseversus general exercise only: Randomized controlled trail of patients with recurrent low back pain. *Phys Ther.* 2005; 85:209-225.
34. Ornwipa Thamsuwan, Ryan P. Blood, Randal P (2013) Ching, Linda Boyle, Peter W. Johnson. *International Journal of Industrial Ergonomics* 43: 9-17.
35. Okunribido OO, Magnusson M, Pope MH(2008) The role of whole body vibration, posture and manual materials handling as risk factors for low back pain in occupational drivers. *Ergonomics* 51: 308-329.
36. Hilde G, Bo K. Effect of exercise in the treatment of chronic low back pain: a systematic review, emphasising type and dose of exercise. *Physical Therapy Reviews.*1998; 3: 107-117.
37. Paris SV. Physical signs of instability. *Spine.* 1985; 10: 277-279.
38. Richardson CA, Jull GA. Muscle control-pain control. What exercise would you prescribe? *Man Ther.* 1995; 1:2.
39. Areeudomwong P, Puntumetakul R, Jirarat-tanaphochai K, Wanpen S, Kanpittaya J, Chatchwan U, Yamauchi J. Core stabilization exercise improves pain intensity functional disability and trunk muscle activity of patients with clinical lumbar instability: a pilot randomized controlled study. *J. Phys. Ther. Sci.* 2012; 24: 1007-1012
40. Boshuizen HC, Bongers PM, and Hulshof CTJ (1992) Self-reported back pain in fork-lift truck and freight-container tractor drivers exposed to whole-body vibration. *Spine* 17: 59-65.
41. Koumantakis GA, Watson PJ, Oldham JA. Trunk muscle stabilization training plus general exerciseversus general exercise only: Randomized controlled trail of patients with recurrent low back pain. *Phys Ther.* 2005; 85: 209-225.

ผลเฉียบพลันของการบำบัดด้วยโปรแกรม “การออกกำลังกายกล้ามเนื้อตัวแบบแยกส่วน กระดูกเชิงกราน และรยางค์ขา” ในเด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่อง

นพรัตน์ สังขฤทธิ์^{1*} และ วีระศักดิ์ ตั้งปัญญา¹

Received: September 13, 2019

Revised: February 28, 2020

Accepted: March 3, 2020

บทคัดย่อ

หลักการ การออกกำลังกายกล้ามเนื้อตัวแบบแยกส่วน กระดูกเชิงกราน และรยางค์ขา คือโปรแกรมการบำบัดรักษาภาวะควบคุมกล้ามเนื้อลำตัวบกพร่อง ที่มีความสำคัญต่อเด็กที่พัฒนาการล่าช้า อาทิ เด็กสมองพิการ, ดาวน์ซินโดรม และออทิสติก วัตถุประสงค์ เพื่อศึกษาประสิทธิผลของการรักษาภาวะควบคุมกล้ามเนื้อลำตัวบกพร่องด้วยโปรแกรมการออกกำลังกายกล้ามเนื้อตัวแบบแยกส่วน กระดูกเชิงกราน และรยางค์ขา ต่อการควบคุมลำตัวแบบเป็นลำดับแยกส่วน และการทรงตัว ในเด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่อง วิธีการศึกษา อาสาสมัครเด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่องจำนวน 21 ราย (ชาย 15 ราย หญิง 6 ราย) อายุ 5-14 ปี โดยอาสาสมัครทุกรายได้รับการประเมินและการบำบัดรักษาด้วยวิธีเดียวกัน คือ การออกกำลังกายกล้ามเนื้อตัวแบบแยกส่วน กระดูกเชิงกราน และรยางค์ขา และทำการวัดการควบคุมลำตัวแบบเป็นลำดับแยกส่วนโดยแบบประเมิน Segmental Assessment of Trunk Control (SATCo) และทำการวัดการทรงตัว โดยแบบประเมิน Pediatric Balance Scale (PBS) ผลการศึกษา พบร้าที่เพิ่มขึ้นอย่างมีนัยสำคัญของการควบคุมลำตัวแบบเป็นลำดับแยกส่วนและการทรงตัว หลังการบำบัดรักษาด้วยวิธี Segmental trunk control intervention with pelvic and lower limbs exercises โดย SATCo ในสภาวะ active control และสภาวะ reactive control และ PBS หัวข้อ Total PBS Score, sitting to standing, standing to sitting, standing with one foot in front มีความสามารถที่ดีขึ้นอย่างมีนัยสำคัญทางสถิติ ภายหลังจากอาสาสมัครได้รับโปรแกรมบำบัดฯ เป็นระยะเวลา 30 นาที ($p<0.05$) **สรุปผล** การศึกษานี้แสดงถึงผลเฉียบพลันของการบำบัดรักษาภาวะควบคุมกล้ามเนื้อลำตัวบกพร่องด้วยโปรแกรม “การออกกำลังกายกล้ามเนื้อตัวแบบแยกส่วน กระดูกเชิงกราน และรยางค์ขา” มีผลต่อการเพิ่มขึ้นของการควบคุมลำตัวแบบเป็นลำดับแยกส่วน และกิจกรรมการทรงตัวในเด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่อง

คำสำคัญ: การควบคุมลำตัวแบบเป็นลำดับแยกส่วน, กิจกรรมการทรงตัว, เด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่อง

¹ สาขาวิชากายภาพบำบัด คณะสหเวชศาสตร์ มหาวิทยาลัยพะเยา

* ผู้รับผิดชอบบทความ

An immediate effects of an intervention program “segmental trunk control intervention with the pelvic and lower limbs exercises” in children with inadequate trunk control

Noppharat Sangkarit^{1*} and Weerasak Tapanya¹

Abstract

Background: Segmental trunk control intervention with the pelvic and lower limbs exercises is the effectiveness of physical therapy options for whom inadequate trunk control. Especially in children who has delayed development such as cerebral palsy (CP), Down syndrome and Autism. **Objective:** The aim of this study was to research the effect of an intervention program “segmental trunk control intervention with the pelvic and lower limbs exercises” on segmental trunk control and functional balance skills with inadequate trunk control. **Method:** 21 children aged 5-14 years (15 boys, 6 girls) were received the same tested and intervention program. The Segmental Assessment of trunk control (SATCo) was used to evaluate trunk control. The Pediatric Balance Scale (PBS) was used to evaluate functional balance skills. **Results:** The result showed that both the SATCo and the PBS scores were statistically significant improvement after received intervention program. The SATCo showed statistically significant improvement of the total SATCo score, active control and reactive control scores after a single intervention ($p < 0.05$). In the PBS showed statistically significant improvement of the total PBS Score, sitting to standing, $p < 0.05$ standing to sitting, standing with one foot in front ($p < 0.05$). **Conclusions:** An immediate effects of an intervention program “segmental trunk control intervention with the pelvic and lower limbsexercises” had a beneficial effect on trunk control and functional balance skills in children with inadequate trunk control.

Keywords: Segmental trunk control, Functional balance skills, Children with inadequate trunk control

¹ Department of Physical Therapy, Faculty of Allied Health Sciences, University of Phayao

*Corresponding author: (e-mail address: noppharat.sang@gmail.com)

บทนำ

เด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่องจะไม่สามารถควบคุมการทรงท่า�ั่งและยืนได้มีประสิทธิภาพเนื่องจากลำตัวคือจุดศูนย์กลางของร่างกาย ซึ่งมีบทบาทสำคัญในการรักษาสมดุลของร่างกายและประสานงานระหว่างการเคลื่อนไหวและปฏิกริยาสมดุลการทรงตัว⁽¹⁾ การควบคุมลำตัวของจากจะมีหน้าที่หลักในการควบคุมร่างกายให้อยู่ในแนวตั้งตรง อยู่ภายใต้ฐานรองรับ (base of support) แล้ว ยังทำหน้าที่รักษาสมดุลการทรงท่าขณะที่ทำการเคลื่อนไหวร่างกายและขาขณะที่ทำท่าทางการอ้อมและการเดิน⁽²⁻⁴⁾ ดังนั้น ภาวะควบคุมกล้ามเนื้อลำตัวบกพร่องจะส่งผลกระทบอย่างยิ่งต่อการเคลื่อนไหวและการดำเนินชีวิตประจำวัน คือ ความซับซ้อนของการเคลื่อนไหวลดลง⁽⁵⁾ แสดงการเคลื่อนไหวลดลง⁽⁶⁻⁷⁾ ศักยภาพของการทำงานร่างกายส่วนปลาย, ขาดความแม่นยำ⁽⁸⁾ จำกัดการรับรู้ประสบการณ์การเคลื่อนไหว⁽⁵⁾ และพลาดโอกาสการสำรวจสิ่งแวดล้อมรอบตัว⁽⁹⁾ เป็นต้น การศึกษาจำนวนหนึ่งที่แนะนำว่าหากที่บกพร่องการควบคุมลำตัวและการทรงท่าคือสาเหตุหลักของพัฒนาการทางการเคลื่อนไหวของกล้ามเนื้อมัดใหญ่และมัดเล็กล่าช้า^(5, 7-8)

การควบคุมกล้ามเนื้อลำตัวบกพร่องเป็นสาเหตุหลักที่นำมาซึ่งข้อจำกัดในการเคลื่อนไหวของเด็กสมองพิการ ดาวน์ซิնโดรม และออทิสติก ตามกรอบแนวคิด the International Classification of Functioning, Disability and Health (ICF) ที่องค์กร WHO's international classification ได้บัญญัติขึ้น Heyman และคณะ⁽¹⁰⁾ พบร่วมกับเด็กสมองพิการชนิดแข็งเกร็ง ที่มีอายุระหว่าง 8 ปี ถึง 15 ปี มีการควบคุมลำตัวบกพร่องมากกว่าร้อยละ 60 มีความบกพร่องของการรักษาสมดุลเมื่อยืนในท่า�ั่งนิ่งอยู่กับที่มากกว่าร้อยละ 50 ส่วนเด็กดาวน์ซิնโดรมคือ เด็กที่พบร่วมกับเด็กสมองพิการที่ผ่านมาพบว่ามักจะมีปัญหาที่สำคัญ คือ กล้ามเนื้อที่ทำหน้าที่ควบคุมลำตัวอ่อนแรง ความทนทานต่ำ บกพร่องในการรักษาสมดุลการทรงท่า และลำดับขั้นของพัฒนาการเคลื่อนไหวล่าช้า⁽¹¹⁻¹²⁾ และเด็กออทิสติก มักจะมีพัฒนาการล่าช้าทั้งด้านการทรงท่าและการควบคุมการเคลื่อนไหวภายใต้อำนาจจิตใจ

เมื่อเทียบกับเด็กที่มีพัฒนาการปกติ Funahashi และคณะ⁽¹³⁾ ศึกษาการควบคุมลำตัวขณะนั่งทำงานบนโต๊ะด้วยมือทั้งสองข้างระหว่างเด็กปกติ จำนวน 16 คน เทียบกับเด็กออทิสติก จำนวน 16 คน พบร่วมกับเด็กออทิสติกมีการอุ้ยของลำตัวทั้งในแนว หน้า-หลัง จำนวน 3 ใน 8 ครั้งของ การประเมิน และในแนวต้านข้าม ทั้งซ้ายและขวาจำนวน 4 ใน 8 ครั้งของการประเมิน ในขณะที่เด็กปกติไม่พบการอุ้ยของลำตัว

การประเมิน SATCo เป็นการสังเกต การควบคุมลำตัวในท่า�ั่งแบบเป็นลำดับแยกส่วน 7 ระดับ ประเมินโดยการประคองลำตัวแยกแต่ละระดับ เริ่มจากการควบคุมศีรษะและลดระดับการพยุงลงมานะที่ถึงการควบคุมสะโพกและกระดูกเชิงกรานและนี่ได้อย่างอิสระ โดยการประเมิน SATCo ประกอบด้วย 3 รูปแบบ คือ 1) การควบคุมลำตัวขณะทรงท่า�ั่งแบบอยู่นิ่ง (static control) 2) การควบคุมลำตัวขณะเคลื่อนไหวของร่างกาย (active control) และ 3) การควบคุมลำตัวขณะร่างกายถูกรบกวนสมดุล (reactive control) เครื่องมือ SATCo มีประโยชน์ในการระบุความสามารถการควบคุมลำตัวแบบละเอียดจำเพาะเจาะจง มีเกณฑ์การประเมินชัดเจน สามารถทดสอบในทารกและเด็กได้ในหลากหลายช่วงอายุ ใช้เวลาในประมาณ 15 นาที มีวิธีการประเมินที่ไม่รุกกล้า อุปกรณ์ที่ใช้ในกระบวนการทดสอบราคากลูก เหมาะสมในการใช้เพื่อการวิเคราะห์และติดตามผลการเปลี่ยนแปลงพัฒนาการทรงท่า�ั่งหลังจากได้รับการรักษา^(7,19)

PBS เป็นเครื่องมือที่ถูกดัดแปลงมาจาก Berg Balance Scale (BBS)⁽²⁰⁾ มีวัตถุประสงค์เพื่อประเมินความสามารถในการทรงท่าในเด็กวัยเรียน ที่มีความสามารถบกพร่องทางการเคลื่อนไหวน้อยถึงปานกลาง และเด็กที่มีภาวะสมองพิการ โดยเป็นแบบประเมินมาตรฐานแบบอิงเกณฑ์ มุ่งเน้นการประเมินการทรงท่า�ั่งและท่ายืน PBS เป็นเครื่องมือที่มีคุณสมบัติสำหรับการวัดผลของการรักษาที่ดี สามารถวัดผลการเปลี่ยนแปลงของความสามารถในการทรงท่าหลังได้รับการรักษาได้ดี⁽²¹⁾ นอกจากนี้ PBS ยังมีหัวข้อประเมินที่ชัดเจน เข้าใจง่าย ใช้เวลาในการประเมินน้อย มีค่าความสอดคล้องภายใต้เกณฑ์ที่⁽²²⁾

ในวัยรุ่นเป็นช่วงเปลี่ยนผ่านพัฒนาการเคลื่อนไหวที่มีความสำคัญอย่างยิ่งโดยเฉพาะในเด็กมีการควบคุมลำตัวบกพร่อง แม้ว่าการศึกษาที่ผ่านมาจำนวนหนึ่งเลี้ยวเห็นความสำคัญและออกแบบรูปแบบการรักษาที่มุ่งเน้นการบำบัดการควบคุมลำตัวในเด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่องให้มีความมั่นคงเพิ่มขึ้น แต่ยังคงมีข้อจำกัดหลายประการ อาทิ การรักษาด้วยอุปกรณ์ที่มีความจำเพาะมักจะเป็นอุปกรณ์ที่มีราคาสูง ไม่สอดคล้องต่อการเคลื่อนย้ายทำให้ยากต่อการประยุกต์ใช้ในภาคปฏิบัติ⁽¹⁴⁻¹⁶⁾ Karabay และคณะ⁽¹⁴⁾ ทำการศึกษาผลของการบำบัดการควบคุมลำตัวด้วยการใช้ไฟฟ้ากระตุ้นสัณประสาท ที่มาสั่นการทำงานกล้ามเนื้อหลังและหน้าท้อง ร่วมกับโปรแกรมกายภาพบำบัดในเด็กสมองพิการชนิดหัวใจที่มีอาการที่ข้ามกันกว่า 55 คน พบว่าค่าคะแนนความสามารถของ การเคลื่อนไหวในท่านั่งสูงขึ้นและองศาการอ牢ตัวลดลงอย่างมีนัยสำคัญทางสถิติเมื่อเทียบกับกลุ่มที่ได้รับโปรแกรมกายภาพบำบัดเพียงอย่างเดียว แต่มีข้อจำกัด คือ เครื่องมือกระตุ้นไฟฟ้ามีราคาสูงและมีความยากลำบากในการเคลื่อนย้าย ส่วนการบำบัดที่ได้รับการออกแบบมาเพื่อเพิ่มความสามารถของการควบคุมลำตัวและการทรงตัวที่สามารถประยุกต์ใช้ในภาคปฏิบัติโดยส่วนมากได้รับการออกแบบมาเพื่อรักษาการควบคุมลำตัวแบบโดยรวม ทำให้ไม่สามารถรักษาความบกพร่องของลำตัวได้อย่างตรงจุด หรือความเข้มข้นของการรักษาที่ตรงกับระดับที่มีความบกพร่องน้อยเกินไป⁽¹²⁾

การศึกษาของ Temcharoensuk และคณะ⁽¹⁸⁾ ในปี 2015 ได้ทำการศึกษาถึงผลของการบำบัดเบรียบเทียบกับอานม้าจำลองต่อความสามารถของการนั่งในเด็กที่มีภาวะสมองพิการจำนวน 30 คน อายุเฉลี่ย 10 ปี แบ่งเป็น 3 กลุ่ม กลุ่มละ 10 คน คือ กลุ่มที่ได้รับการบำบัด กลุ่มที่ได้รับการนั่งแบบนั่งบนอานม้าจำลอง และกลุ่มที่ได้รับการนั่งแบบเคลื่อนไหวบนอานม้าจำลอง เป็นระยะเวลา 30 นาทีเท่าๆ กัน และอาสาสมัครทุกคนได้รับการประเมินความสามารถของการนั่งก่อนและหลังการได้รับการฝึกที่แตกต่างกัน เบรียบเทียบกัน 3 กลุ่ม วัดโดย SATCo และ Gross Motor Function Measure-66 (GMFM-66) พบว่าอาสาสมัครที่ได้รับการบำบัดมีความสามารถ

ของการนั่งที่เพิ่มสูงที่สุดอย่างมีนัยสำคัญทางสถิติ และกลุ่มที่ได้รับการนั่งแบบเคลื่อนไหวบนอานม้าจำลองค่าความสามารถของการนั่งที่เพิ่มสูงเป็นอันดับที่ 2 เมื่อเทียบกับการนั่งแบบนั่งบนอานม้าจำลองที่เพิ่มความสามารถของการนั่งได้น้อยที่สุด แต่อย่างไรก็ตามการศึกษานี้สนใจเฉพาะความสามารถของการนั่ง ดังนั้น ผู้เขียนจึงเลือกเห็นว่า หากเด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่องได้รับการกระตุ้นการควบคุมลำตัวร่วมกับการฝึกประสานงานระหว่างของการเคลื่อนไหวอาจจะช่วยส่งเสริมพัฒนาการทางการควบคุมกล้ามเนื้อลำตัว เพิ่มศักยภาพการทำงานของร่างกายส่วนปลายและการเคลื่อนไหวที่ซับซ้อนที่ต้องอาศัยการทรงตัวยืนร่วมด้วย

แม้ว่าการบำบัดการควบคุมกล้ามเนื้อลำตัวมีข้อจำกัด แต่การศึกษาข้างต้น เป็นหลักฐานเชิงประจักษ์ที่สามารถยืนยันได้ว่า โปรแกรมการบำบัดการควบคุมกล้ามเนื้อลำตัวมีประสิทธิผลเพียงพอและเหมาะสมกับการควบคุมกล้ามเนื้อลำตัวและการบำบัดการทรงตัว ดังนั้น ผู้วิจัยและคณะจึงพัฒนาโปรแกรมบำบัดฯ ที่สามารถกระตุ้นการควบคุมกล้ามเนื้อลำตัวแบบแยกส่วนแบบจำเพาะเจาะจงต่อความสามารถของการควบคุมลำตัวในเด็กที่มีระดับความรุนแรงของการบกพร่องที่แตกต่างกันโดยหลักการของโปรแกรมการบำบัดแบบ “การออกกำลังกายกล้ามเนื้อตัวแบบแยกส่วน กระดูกเชิงกราน และรยางค์ชา” (Segmental trunk control intervention with the pelvic and lower limbs exercises) เป็น conceptual treatment ที่ถูกออกแบบโดยตั้งอยู่บนพื้นฐานของกลไก feedback-feedforward⁽¹⁷⁾ ดังนั้นผู้วิจัยจึงสนใจศึกษาถึงผลของโปรแกรมการบำบัดต่อความสามารถของการควบคุมลำตัวแบบแยกส่วนต่อความสามารถของการควบคุมลำตัวในเด็กที่มีความรุนแรงของการบกพร่องแตกต่างกัน

วัสดุและวิธีการ

1. รูปแบบการศึกษาและอาสาสมัคร

รูปแบบการศึกษาคือ Quasi experimental research โดยผู้ประเมินถูกปกปิดจากการรับรู้ระดับของโปรแกรมการบำบัด (blinded assessor) อาสาสมัครคือเด็กที่มีการควบคุมลำตัวบกพร่องจำนวน 21 ราย

(ชาย 15 ราย หญิง 6 ราย) อายุ 5-14 ปี ในศูนย์การศึกษาพิเศษประจำจังหวัดพะเยาและลำปาง ซึ่งขนาดของกลุ่มตัวอย่างคำนวณได้จากค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของค่าคะแนนอาสาบับด์ ของ post – pre intervention score จากการศึกษาของ Temcharoensuk และคณะ⁽¹⁸⁾ ด้วยค่า effect size ที่ 0.50 โดยใช้โปรแกรมสำเร็จรูป G*Power version 3.1.5 กำหนดค่า Power เท่ากับ 80% และค่า Alpha level เท่ากับ 0.05 เมื่อคำนวณจำนวนอาสาสมัครตามตัวแปรข้างต้นแล้วนั้น การศึกษานี้ จะต้องมีจำนวนอาสาสมัครอย่างน้อย 16 คน ข้อมูลพื้นฐานของอาสาสมัคร แสดงดังใน ตารางที่ 1 เกณฑ์คัดเข้าคืออาสาสมัครที่มีค่าคะแนน SATCo ต่ำกว่า 20 คะแนน กรณีอาสาสมัครเป็นเด็กสมองพิการ มีระดับความสามารถด้านการเคลื่อนไหวอยู่ในระดับ 1 ถึง 3 เมื่อประเมินจาก Gross Motor Function Classification System (GMFCS) สามารถเดินได้เอง และสามารถเคลื่อนไหวตอบสนองต่อคำสั่งง่ายๆ ได้ เกณฑ์การคัดออกคือ มีปัญหาเกี่ยวกับการสื่อสาร การมองเห็น และการได้ยิน รายงานแขนหรือขาไม่เจริญเติบโต ไม่สามารถควบคุมอาการชักได้ระหว่างดำเนินการศึกษาหากอาสาสมัครมีความเจ็บป่วยหรือได้รับอุบัติเหตุ หรือมีเหตุให้อาสาสมัครไม่สามารถทำการทดสอบจนสิ้นสุดได้นั้น การทดสอบในอาสาสมัครคนดังกล่าวจะยุติลง โดยการศึกษานี้ได้ผ่านการพิจารณาจury กรรมการวิจัยในมนุษย์จากมหาวิทยาลัยพะเยา (เลขที่ 2/030/59)

2. ขั้นตอนก่อนการเก็บรวบรวมข้อมูล

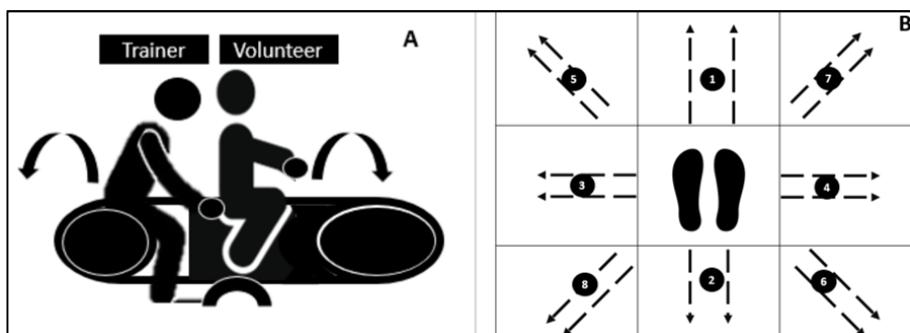
ขั้นตอนการเตรียมการดำเนินการประเมินการศึกษานี้มีผู้ประเมินทั้ง 2 คน โดยคนที่ 1 ดำเนินการประเมินลำตัวแบบเป็นลำดับแยกส่วน (trunk postural control) โดยใช้ Segmental Assessment of Trunk Control (SATCo) และผู้ประเมินคนที่ 2 ดำเนินการประเมินความสามารถในการทรงตัว โดยใช้ Pediatric Balance Scale (PBS) โดยผู้ประเมินทั้ง 2 คน ได้รับการ

ฝึกการใช้แบบประเมินคุณค่าและเชี่ยวชาญกับผู้เชี่ยวชาญและมีประสบการทางการใช้แบบประเมินมากกว่า 3 ปี จากนั้นผู้ประเมินได้รับการทดสอบค่าความน่าเชื่อถือระหว่างบุคคลและภายในบุคคล (inter - intra rater reliability) ในแต่ละการประเมินผ่านภาพเคลื่อนไหวในประชากรอาสาสมัครกลุ่มเดียวกัน อายุเฉลี่ย 7-11 ปี จำนวน 12 คน ต่อการประเมิน

ผู้ประเมินคนที่ 1 ดำเนินการประเมิน SATCo มีค่าความน่าเชื่อถือระหว่างผู้ประเมิน (inter-rater reliability) model (2,1) มีค่าเท่ากับ 1 ที่ $p < 0.001$ ที่ค่าความเชื่อมั่น 95% CI และค่าความน่าเชื่อถือภายในตัวผู้ประเมิน (Intra-tester reliability) model (3,1) มีค่าเท่ากับ 1 ที่ $p < 0.001$ ที่ค่าความเชื่อมั่น 95% บ่งชี้ว่าผู้ประเมินมีความน่าเชื่อถือระหว่างผู้ประเมินและภายในตัวผู้ประเมินมีระดับดีเยี่ยม ผู้ประเมินคนที่ 2 ดำเนินการประเมิน PBS มีค่า inter-rater reliability model (2,1) มีค่าเท่ากับ 0.75 ที่ $p-value < 0.01$ ค่าความเชื่อมั่น 95% CI และค่าความน่าเชื่อถือภายในตัวผู้ประเมิน (Intra-tester reliability) model (3,1) มีค่าเท่ากับ 0.78 บ่งชี้ว่าผู้ประเมินมีความน่าเชื่อถือระหว่างผู้ประเมินและภายในตัวผู้ประเมินมีระดับดี

ผู้วิจัยทำการติดประกาศเชิญชวนเข้าร่วมการศึกษา ณ ศูนย์การศึกษาพิเศษประจำจังหวัดพะเยาและลำปาง โดยเมื่อผู้ปกครองมีความสนใจ ผู้ปกครองจะได้รับทราบข้อมูลเกี่ยวกับการบำบัดการควบคุมลำตัวฯ เมื่อสมัครใจยินยอมให้เด็กในการปักครองเข้าร่วมการศึกษาแล้วนั้น จึงเขียนลงชื่อยินยอมให้เด็กในการปักครองเข้าร่วมการศึกษา จากนั้นผู้วิจัยดำเนินการสัมภาษณ์ผู้ปกครอง ครุยการศึกษาพิเศษ และตรวจร่างกายเด็กตามเกณฑ์ พบว่า มีเด็กจำนวน 23 คนที่ผ่านเกณฑ์คัดเข้า โดยระหว่างการศึกษามีผู้ปกครองของอาสาสมัครขอถอนตัว จำนวน 2 คน จึงมีอาสาสมัครที่ได้รับการทดสอบจนสิ้นสุดการศึกษาทั้งหมด 21 คน

3. ขั้นตอนการเก็บรวมข้อมูล


ขั้นตอนการเก็บรวมข้อมูลดำเนินการระหว่างเดือนมกราคม – ธันวาคม 2559 เมื่อเด็กที่ผ่านเกณฑ์การคัดเข้า 21 คน ได้รับการนัดหมายเพื่อทำการประเมินและเข้ารับโปรแกรมบำบัดฯ ทั้งหมด 1 ครั้ง โดยอาสาสมัครได้รับการตรวจประเมินความสามารถในการควบคุมการทำงานของกล้ามเนื้อลำตัวแบบแยกส่วน โดย SATCo และการทรงท่า โดย PBS ขั้นพื้นฐาน (baseline) จากนั้นจะได้รับการประเมินซ้ำภายใน 10 นาที หลังการรับโปรแกรมบำบัดฯ เป็นระยะเวลา 30 นาที

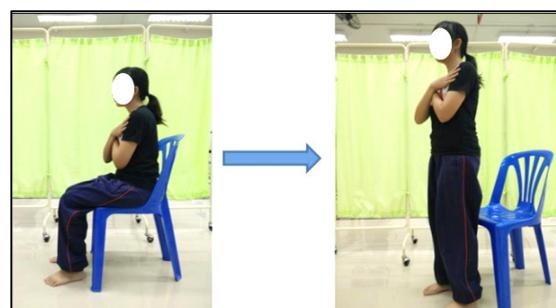
4. โปรแกรมบำบัด

โปรแกรมบำบัดแบบ Segmental trunk control intervention with the pelvic and lower limbs exercises ประกอบด้วย 1) Trunk and pelvic exercise 2) Lower limbs exercise ดังแสดงใน ตารางที่ 1 และ รูปที่ 1 โดยโปรแกรมการบำบัดฯ ได้ถูกพัฒนาให้มีการจัดทำคู่มือที่ระบุรายละเอียดของโปรแกรมบำบัดฯ และระบุความถี่ของการทำซ้ำ เพื่อให้เหมาะสมต่อการนำไปใช้ได้ทันที และเหมาะสมกับระดับความบกพร่องของการควบคุมลำตัวในเด็กแบบจำเพาะรายบุคคล

ตารางที่ 1 แสดงองค์ประกอบของโปรแกรม “การออกกำลังกายกล้ามเนื้อตัวแบบแยกส่วน กระดูกเชิงกราน และรยางค์ขา”

ชนิดการฝึก	รายละเอียดของโปรแกรมการฝึก
Trunk and pelvic exercise	ฝึกการควบคุมกล้ามเนื้อลำตัวขณะเคลื่อนไหวโดยการเคลื่อนไหวร่างกายเด็กในท่านั่งการขา ความกว้างเท่ากับความกว้างของหัวให้เล็กทั้งสองข้าง คู่มือที่นั่งที่สามารถปรับระดับการอ่อนในมุม 45 องศา ใน ด้านหลัง และด้านข้าง ทั้งซ้ายและขวา โดย-ทิศทาง คือ ด้านหน้า 4 นาที มีความถี่ของการเลื่อนไหว 32 ทิศทาง รวม 1 นาที ต่อ 8 ระยะเวลาเคลื่อนไหว คือ ทุกทิศทางที่เท่ากัน คือ ครั้ง ต่อนาที ตามจังหวะเสียงจากเครื่องเคาะจังหวะ 84 (metronome beats) มีหลักการปรับระดับการประคองลำตัวของเด็กให้เหมาะสมกับ ความสามารถของเด็กคนนั้น ๆ โดยมีผู้ฝึกทั้งสองข้างวางในระดับล่างต่อระดับการควบคุม ลำตัวเมื่อประเมินโดย Segmental Assessment of Trunk Control (SATCo) ระดับ 1
Lower limbs exercise	การฝึกก้าวเท้าออกนอกรถในการรองรับ ใน 8 ทิศทาง คือ ด้านหน้า-ด้านหลัง และด้านข้าง ทั้งซ้ายและขวา และแนวแทhying (ตามลำดับเลขแสดงรูปที่ 1) เป็นระยะเวลา 30 นาที ความเร็วของการก้าวเท้า คือ 84 ครั้ง ต่อนาที ตามจังหวะเสียงจากเครื่องเคาะจังหวะ (metronome beats)

รูปที่ 1 แสดงโปรแกรม “การออกกำลังกายกล้ามเนื้อตัวแบบแยกส่วน (A) กระดูกเชิงกราน และรยางค์ขา (B)


รูปที่ 2 แสดงการประเมินการควบคุมการทำงานของกล้ามเนื้อลำตัวแบบเป็นลำดับแยกส่วนโดย SATCo ในสภาวะ static control (A), active control (B) และ reactive control (C)

5. การประเมินก่อนและหลังได้รับโปรแกรมบำบัด

5.1 ขั้นตอนการประเมิน SATCo ผู้วิจัยจะขอให้อาสาสมัครมานั่งบนเก้าอี้ สำหรับการตรวจสอบประเมินจากนั้นจะได้รับการทดสอบการควบคุมลำตัวในท่านั่งซึ่งประกอบด้วยการทดสอบ 7 ระดับ โดยรัดเข็มขัดบริเวณเอวเพื่อพยุงลำตัว และผู้ประเมินจะใช้มือประคองลำตัวอาสาสมัครตั้งแต่ระดับที่ 1 และลดลงระดับการประคองลงทีละระดับ จนถึงระดับที่ 7 คือ ปล่อยอิสระแบบไม่ประคองหรือระดับที่เด็กไม่สามารถทรงตัวได้ (คือ 1) cervical 2) upper thoracic 3) mid thoracic 4) lower thoracic 5) upper lumbar 6) lower lumbar 7) full trunk ซึ่งการประเมินแต่ละระดับจะประกอบด้วย 3 ลักษณะ ดังนี้ static ผู้วิจัยสังเกตการทรงตัวของอาสาสมัครขณะนั่ง การแขวนทั้งสองข้าง 5 วินาที active ผู้วิจัยสังเกตการทรงตัวของอาสาสมัครขณะนั่งหันศีรษะไปทางซ้ายและขวา และ reactive ผู้วิจัยสังเกตการทรงตัวของอาสาสมัครขณะนั่งและได้รับแรงผลักเบาๆ ทีละทิศทาง ที่บริเวณกระดูก manubrium กระดูกคอขึ้นที่ 7 และ acromion process ทั้งสองข้าง ดังแสดงใน รูปที่ 2 ค่าคะแนนเต็มของ SATCo คือ 20 คะแนน หมายถึง มีความสมบูรณ์ของการควบคุมกล้ามเนื้อลำตัว

5.2 ขั้นตอนการประเมิน PBS ทั้งหมด 14 หัวข้อ มีระดับการให้คะแนนตั้งแต่ 0 ถึง 4 คะแนน ตามระดับความสามารถของเด็ก ค่าคะแนนรวม PBS คือ 56 คะแนน ดังแสดงใน รูปที่ 3 การทดสอบประกอบด้วย 1. sitting to standing 2. standing to sitting 3. transfers 4. standing unsupported 5. sitting unsupported 6. standing with eye closed 7. standing with feet together

8. standing with one foot in front 9. standing on one leg 10. turning 360 degrees 11. turning to look behind left & right shoulders while standing still 12. retrieving object from floor from a standing position 13. placing alternate foot on stool 14. reaching forward with outstretched arm หลังจากอาสาสมัครทุกคนได้รับโปรแกรมการบำบัดเป็นที่เรียบร้อยแล้วนั้น เด็กทุกคนจะถูกประเมินซ้ำภายใน 10 นาที ขั้นตอนการประเมินนี้ ผู้ประเมินถูกปกปิดจากการรับรู้ระดับของโปรแกรมการบำบัด (blinded assessor) อาสาสมัคร

รูปที่ 3 แสดงการประเมินความสามารถในการทรงตัวโดย PBS โดยแสดงตัวอย่างการทดสอบ 1 หัวข้อ จากทั้งหมด 14 หัวข้อ คือ ข้อที่ 1 sitting to standing

ผลการควบคุมลำตัวแบบแยกส่วนและความสามารถในการทรงตัว ก่อน - หลัง ได้รับโปรแกรมบำบัดฯ

เมื่อเปรียบเทียบผลของการได้รับโปรแกรมบำบัดฯ ก่อนและหลัง พบร่วมกับการเข้ารับโปรแกรมบำบัดฯ มีค่าคะแนนของการตอบสนองของการควบคุมลำตัวแบบ

แยกส่วน ดังแสดงใน ตารางที่ 3 และความสามารถในการทรงท่า ดังแสดงใน ตารางที่ 4 ดีขึ้นอย่างมีนัยสำคัญทางสถิติ

ผลการควบคุมลำตัวแบบแยกส่วนโดย SATCo ก่อน-หลัง ได้รับโปรแกรมบำบัดฯ พบร่วมกับ total SATCo score, active score และ reactive score มีความแตกต่างอย่างมีนัยสำคัญทางสถิติที่ระดับ p -value < 0.001 , p -value = 0.041 และ p -value < 0.001

ตามลำดับ ดังแสดงใน ตารางที่ 3 ส่วนความสามารถในการทรงท่าโดย PBS ก่อน-หลัง ได้รับโปรแกรมบำบัดฯ พบร่วมกับ total PBS score, sitting to standing, standing to sitting, standing with one foot in front มีความแตกต่างอย่างมีนัยสำคัญทางสถิติที่ระดับ p -value = 0.036, p -value = 0.035, p -value = 0.007 และ p -value = 0.045 ตามลำดับ ดังแสดงใน ตารางที่ 4

ตารางที่ 2 คุณลักษณะทั่วไปของอาสาสมัคร (n=21)

Characteristic	n	Minimum	Maximum
Chronological age (Mean \pm SD) ปี	8.9 \pm 3.1	5.0	14.0
Gender			
-Male	15		
-Female	6		
Weight (Mean \pm SD) kg.	37.0 \pm 13.0	15.00	57.0
Height (Mean \pm SD) cm.	132.9 \pm 16.9	104.0	163.0
BMI (kg/m ²)	20.4 \pm 3.9	13.8	27.2
Type of disability			
-Down Syndrome	8		
-Autistic	9		
-CP			
● Spastic Diplegia (GMFCS level I)	1		
● Spastic Hemiplegia (GMFCS level II)	2		
-MR	1		

ตารางที่ 3 แสดงผลการควบคุมลำตัวแบบแยกส่วนโดย SATCo ก่อน-หลังได้รับโปรแกรมการบำบัดฯ

ตัวแปรที่ศึกษา					
SATCo	ก่อนการรักษา ค่ามัธยฐาน	ก่อนการรักษา ค่าพิสัยระหว่าง ค่าว่าไถ่	หลังการรักษา ค่ามัธยฐาน	หลังการรักษา ค่าพิสัยระหว่าง ค่าว่าไถ่	p -value
Total SATCo Score	14.0	(9.5-18.5)	20.0	(18.5-20.0)	0.000*
Static	7.0	(7.0-7.0)	7.0	(7.0-7.0)	0.180
Active	7.0	(2.5-7.0)	7.0	(7.0-7.0)	0.041*
Reactive	1.0	(0.0-4.0)	6.0	(5.0-6.0)	0.000*

ข้อมูลแสดงค่ามัธยฐาน และค่าพิสัยระหว่างค่าว่าไถ่ โดย สัญลักษณ์ * หมายถึง มีความแตกต่างอย่างมีนัยสำคัญทางสถิติที่ระดับ p -value < 0.05

ตารางที่ 4 แสดงผลความสามารถในการทรงตัวโดย PBS ก่อน-หลังได้รับโปรแกรมการบำบัดฯ

ตัวแปรที่ศึกษา

PBS	ก่อนการรักษา	ก่อนการรักษา	หลังการรักษา	หลังการรักษา	p-value
	ค่ามัธยฐาน	ค่าพิสัยระหว่างค่าอย่างสูง	ค่ามัธยฐาน	ค่าพิสัยระหว่างค่าอย่างสูง	
Total PBS Score	43.0	(39-48.5)	48.0	(39.0-52.0)	0.036*
1.Sitting to standing	4.0	(3.0-4.0)	4.0	(4.0-4.0)	0.035*
2.Standing to sitting	4.0	(3.0-4.0)	4.0	(4.0-4.0)	0.007*
3.Transfers	3.0	(3.0-3.5)	4.0	(3.0-4.0)	0.097
4.Standing unsupported	4.0	(3.0-4.0)	4.0	(4.0-4.0)	0.666
5.Sitting unsupported	4.0	(4.0-4.0)	4.0	(4.0-4.0)	0.671
6.Standing with eyes closed	4.0	(3.0-4.0)	4.0	(3.0-4.0)	0.683
7.Standing with feet together	4.0	(2.0-4.0)	4.0	(2.0-4.0)	0.668
8.Standing with one foot in front	1.0	(0.0-1.5)	1.0	(1.0-3.0)	0.045*
9.Standing on one foot	1.0	(0.5-2.5)	2.0	(0.5-3.0)	0.490
10.Turning 360 degrees	4.0	(1.0-4.0)	4.0	(1.0-4.0)	0.598
11.Turning to look behind	4.0	(2.0-4.0)	4.0	(3.0-4.0)	0.453
12.Retrieving object from floor	4.0	(3.0-4.0)	4.0	(3.0-4.0)	0.414
13.Placing alternate foot on stool	4.0	(2.0-4.0)	4.0	(2.0-4.0)	0.160
14.Reaching forward with outstretched arm	3.0	(3.0-4.0)	3.0	(3.0-4.0)	0.130

ข้อมูลแสดงค่ามัธยฐาน และค่าพิสัยระหว่างค่าอย่างสูง โดย สัญลักษณ์ * หมายถึง มีความแตกต่างอย่างมีนัยสำคัญทางสถิติที่ระดับ p-value < 0.05

อภิปรายผลการศึกษา

ค่าคะแนนการควบคุมลำตัวแบบแยกส่วนโดย SATCo หัวข้อ total SATCo score, active control score และ reactive control score และค่าคะแนนความสามารถในการทรงตัว โดย PBS หัวข้อ total PBS score, standing with one foot in front score ดีขึ้นอย่างมีนัยสำคัญทางสถิติ ภายหลังจากอาสาสมัครได้รับโปรแกรมบำบัดฯ เป็นระยะเวลา 30 นาที การศึกษานี้นอกจากจะออกแบบท่าทางการทรงตัวแล้ว ยังออกแบบท่าทางการเคลื่อนไหวของลำตัวและกระดูกเชิงกรานให้มีลักษณะที่จำเพาะกับระดับการควบคุมลำตัวของอาสาสมัครที่มีความบกพร่องแตกต่างกันแล้ว ยังได้กำหนดให้ระดับความถี่ของการเคลื่อนไหวทุกทิศทางที่เท่ากัน คือ 84 ครั้ง ต่อนาที มีมาตรฐานจังหวะ ทิศทาง ความเร็วของการเคลื่อนไหวสม่ำเสมอความเมื่อยเทียบกับการศึกษาอื่น ๆ น่าจะเป็นผลที่ทำให้การควบคุมกล้ามเนื้อลำตัวแบบแยกส่วนและความสามารถในการทรงตัวดีขึ้นภายในระยะเวลาสั้น เป็นที่น่าสนใจอย่างยิ่งว่าหลังจากเด็ก

รับโปรแกรมการบำบัดฯ ค่าคะแนนของ reactive SATCo เพิ่มในระดับที่สูงมาก Pin และคงในปี 2018⁽⁷⁾ รายงานผลว่าค่าคะแนนของ reactive SATCo ที่สูงขึ้นอย่างยิ่งคาด สะท้อนว่าเด็กมีความสามารถในการเคลื่อนไหวในท่านั่งได้ดีเยี่ยม แสดงออกจากการความสามารถทรงตัวกลับมาในแนวตั้งตรงได้และในขณะเดียวกันก็มีการเคลื่อนไหวของลำตัวหรือร่างกายที่หลากหลายทิศทาง และมีความซับซ้อนมากขึ้น นอกจากนี้ยังรายงานว่าในเด็กที่มีพัฒนาการปกติจะพัฒนาการควบคุมลำตัวในแนวตั้งตรงที่มีทิศทางการพัฒนาแบบ cephalo-caudal โดย reactive SATCo จะเป็นพัฒนาการในลำดับขั้นสุดท้ายของเด็กทำให้ reactive SATCo สูงขึ้นอย่างมีนัยสำคัญ เมื่อเทียบกับ static และ active SATCo อย่างไรก็ตาม static SATCo และ PBS หัวข้อ transfers, standing unsupported, standing on one foot, turning 360 degrees, turning to look behind, retrieving object from floor, placing alternate foot on stool และ

reaching forward with outstretched arm ไม่พบรความแตกต่างอย่างทางสถิติ

โปรแกรมบำบัดในการศึกษานี้ มีผลต่อการเพิ่มความสามารถในการควบคุมลำตัวโดย กระตุนให้กระดูกเชิงกรานเคลื่อนไหวตลอดเวลา ฝึกการควบคุม การเปลี่ยนแปลงของจุดศูนย์ถ่วงและจุดศูนย์กลางมวล ให้อยู่ในพื้นที่ฐานรองรับ และมีการควบคุมการหดตัวของกล้ามเนื้อในลักษณะสั้นเข้า และยาวออก ของกล้ามเนื้อลำตัวของหลังส่วนล่าง กระดูกเชิงกราน ต้นขาด้านหน้า (Quadriceps) และต้นขาด้านหลัง (Hamstring) กระตุน การฝึกลงน้ำหนักที่สะโพกและขาทั้งสองให้สมมาตร เพิ่มช่วงพิสัยการเคลื่อนไหวของข้อต่อ ส่งผลให้รับโปรแกรมบำบัดฯ สามารถควบคุมร่างกาย ส่วน ศีรษะ ลำตัวให้คงอยู่ได้ในลักษณะตรงและมีความสามารถของการทรงท่าที่ดีขึ้น การเคลื่อนไหวของร่างกายตอบสนองต่อการปรับเปลี่ยนทิศทางได้รวดเร็วและแม่นยำ ทำกิจกรรมต่าง ๆ ได้มีประสิทธิภาพ สอดคล้องกับการศึกษาของ รักษาและคณะ ในปี 2014⁽²⁴⁾ ที่ศึกษาความสามารถของการเคลื่อนไหวกล้ามเนื้อมัดใหญ่ในเด็กที่มีภาวะอัมพาตสมอง ใหญ่หลังได้รับอาชาบำบัดและอานม้าจำลอง พบร่วมเด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่องได้รับการกระตุน การทำงานของกลุ่มกล้ามเนื้อส่วนควบคุมลำตัวที่ถูกต้อง มีความเร็ว และทิศทางของการเคลื่อนไหวที่หลากหลาย จะเพิ่มภาวะสมดุลและการเดินได้ดีกว่ากลุ่มที่นั่งอานม้านิ่งฯ สอดคล้องกับการศึกษาของ Bordoloi and Sharma ในปี 2012⁽²⁵⁾ อธิบายว่าเด็กที่ได้รับการส่งเสริมการเคลื่อนไหวและการทรงท่าผ่านการฝึกการเคลื่อนไหวในแนวแกนกลางลำตัวจะส่งเสริมศักยภาพของการเคลื่อนไหวกล้ามเนื้อมัดใหญ่ในท่านั่งได้ดีขึ้นอย่างมีนัยสำคัญ หลังได้รับโปรแกรมบำบัดฯ ของ transfers, standing unsupported, sitting unsupported, standing with eyes closed, standing with feet together, standing on one foot, turning 360 degrees, turning to look behind, retrieving object from floor, placing alternate foot on stool และ reaching forward with outstretched arm แสดงให้เห็นว่าโปรแกรมบำบัดฯ อาจไม่เข้มข้น และยานานพอที่จะเพิ่มระดับการเคลื่อนไหวที่อาชัยการทรงท่าขั้นสูง อาจเนื่องมาจากการจำกัดการเคลื่อนไหวในการทำกิจกรรมที่อาชัยการทรงท่า อาทิ standing with eyes closed และ standing with feet together ต้องใช้ความสามารถทางด้านการควบคุมร่างกายแบบอยู่นิ่งและแบบเคลื่อนไหว ควบคู่กับประสิทธิภาพของการรับรู้ข้อต่ออย่างคงที่ ส่วนปลายในขณะที่การศึกษาของ Bordoloi and Sharma ในปี 2012⁽²⁵⁾ ศึกษาถึงผลต่อการฝึกการรับรู้ข้อต่อเพื่อกระตุนความสามารถการทรงท่าในเด็กที่มีภาวะสมองพิการ ที่ใช้เวลาในการฝึกการรับรู้ข้อต่อ 30 นาที ฝึก 5 วัน ต่อสัปดาห์ เวลา 12 สัปดาห์ จึงพบว่ามีประสิทธิภาพของการรับรู้ข้อต่อที่ดีขึ้น วัดโดย Timed-Up and Go (TUG) และ PBS ดังนั้น ในอนาคตควรมีการศึกษาเปรียบเทียบ

อยู่ในระดับที่ดีอยู่ก่อนแล้ว เมื่อได้รับโปรแกรมบำบัดฯ ส่งผลให้ไม่มีการเปลี่ยนแปลงความสามารถของการควบคุม ลำตัวแบบเป็นลำดับแยกส่วน static SATCo ต่อไปหรือที่เรียกว่า ผลจำกัดค่าสูงสุด (ceiling effect) ซึ่งสอดคล้องกับการศึกษาของ Pin และคณะ ในปี 2019⁽²⁶⁾ ที่เปรียบเทียบการควบคุมลำตัวแบบเป็นลำดับแยกส่วนโดยศึกษาระยะยาว ระหว่างทารกคลอดครรภ์กำหนดและทารกคลอดก่อนกำหนด พบร่วม active SATCo และ reactive SATCo ของทารกทั้งสองกลุ่มจะมีการเปลี่ยนแปลงมากกว่าแบบ static SATCo เมื่อเวลาเปลี่ยนไป ดังนั้นระยะยาว การเปลี่ยนแปลง static SATCo นี้อาจจะเพิ่มขึ้นได้หากมีการกระตุนการควบคุมกล้ามเนื้อลำตัวฯ ในระยะยาว และประเมินในอาสาสมัครที่มีระดับค่าคง静态 static SATCo อยู่ในระดับต่ำ

ในขณะที่ไม่พบรความแตกต่างอย่างมีนัยสำคัญ หลังได้รับโปรแกรมบำบัดฯ ของ transfers, standing unsupported, sitting unsupported, standing with eyes closed, standing with feet together, standing on one foot, turning 360 degrees, turning to look behind, retrieving object from floor, placing alternate foot on stool และ reaching forward with outstretched arm แสดงให้เห็นว่าโปรแกรมบำบัดฯ อาจไม่เข้มข้น และยานานพอที่จะเพิ่มระดับการเคลื่อนไหวที่อาชัยการทรงท่าขั้นสูง อาจเนื่องมาจากการจำกัดการเคลื่อนไหวในการทำกิจกรรมที่อาชัยการทรงท่า อาทิ standing with eyes closed และ standing with feet together ต้องใช้ความสามารถทางด้านการควบคุมร่างกายแบบอยู่นิ่งและแบบเคลื่อนไหว ควบคู่กับประสิทธิภาพของการรับรู้ข้อต่ออย่างคงที่ ส่วนปลายในขณะที่การศึกษาของ Bordoloi and Sharma ในปี 2012⁽²⁵⁾ ศึกษาถึงผลต่อการฝึกการรับรู้ข้อต่อเพื่อกระตุนความสามารถการทรงท่าในเด็กที่มีภาวะสมองพิการ ที่ใช้เวลาในการฝึกการรับรู้ข้อต่อ 30 นาที ฝึก 5 วัน ต่อสัปดาห์ เวลา 12 สัปดาห์ จึงพบว่ามีประสิทธิภาพของการรับรู้ข้อต่อที่ดีขึ้น วัดโดย Timed-Up and Go (TUG) และ PBS ดังนั้น ในอนาคตควรมีการศึกษาเปรียบเทียบ

ถึงผลของโปรแกรมบำบัดฯ ระยะยาว เพื่อศึกษาถึงการเปลี่ยนแปลงการควบคุมลำตัวและการทรงท่าในเด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่องอย่างมาก ผลการศึกษาครั้งนี้สามารถนำไปใช้ประโยชน์ทางคลินิกเพื่อเป็นแนวทางการบำบัดควบคุมลำตัวและฝึกการทรงท่าให้เหมาะสมกับระดับความบกพร่องของการควบคุมกล้ามเนื้อลำตัวในเด็กที่มีความรุนแรงแตกต่างกันทำให้วางแผนเพื่อกระตุ้นได้อย่างแม่นยำ

ข้อจำกัดของการศึกษาคือ การขาดกลุ่มควบคุม นอกจากนี้สัดส่วนของเพศและพยาธิสภาพของอาสาสมัครควบคุมจำนวนและสัดส่วนที่ใกล้เคียงกัน และอาสาสมัครเป็นกลุ่มเด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่องในระดับเล็กน้อยถึงปานกลาง จึงไม่สามารถเป็นตัวแทนของอาสาสมัครเด็กที่มีภาวะควบคุมกล้ามเนื้อลำตัวบกพร่องได้ทั้งหมด การศึกษานี้เป็นการศึกษาผลทันทีของโปรแกรมบำบัดแบบ Segmental trunk control intervention with the pelvic and lower limbs exercises ดังนั้นในอนาคตควรจะมีกลุ่มควบคุม และอาจจะสามารถใช้โปรแกรมนี้ได้ในระยะยาวได้ หรือศึกษาในเด็กที่มีภาวะสมองพิการกลุ่มที่มีปัญหาอ่อนแรงเฉพาะกล้ามเนื้อรยางค์ล่าง จึงแนะนำให้ทำการศึกษาแบบติดตามระยะยาว การปรับเปลี่ยนนี้จะช่วยสามารถอธิบายผลของโปรแกรมบำบัดแบบ Segmental trunk control intervention with the pelvic and lower limbs exercises ฉบับปรับปรุง ให้นำไปใช้ได้อย่างมีประสิทธิผลมากยิ่งขึ้น

สรุปผลการศึกษา

การศึกษาครั้งนี้พบว่าโปรแกรมบำบัดแบบ Segmental trunk control intervention with the pelvic and lower limbs exercises ให้ผลดีต่อการควบคุมลำตัวแบบเป็นลำดับแยกส่วนและการทรงท่าอย่างมีนัยสำคัญ และมีความจำเพาะต่อความบกพร่องของการควบคุมกล้ามเนื้อลำตัวในเด็กที่มีพยาธิสภาพที่แตกต่างกัน แต่อย่างไรก็ตาม หากมีการนำโปรแกรมบำบัดฯ ไปใช้จริงควรพิจารณาอาการเกร็งที่ส่งผลต่อความสามารถของการควบคุมลำตัวและการทรงท่าขณะ

เคลื่อนไหว ซึ่งถ้าหากอาการเกร็งรยางค์ล่างอาสาสมัครมีระดับที่สูง ร่วมกับความถี่ของการฝึกที่มากและเคลื่อนไหวที่รวดเร็วเกินไป อาจจะทำให้มีความเสี่ยงต่อความสามารถในการเคลื่อนไหวที่แย่ลง

กิตติกรรมประกาศ

ผู้วิจัยขอขอบพระคุณคณะกรรมการวิจัยและประกันคุณภาพการศึกษามหาวิทยาลัยพะเยา ที่มอบทุนสนับสนุนการวิจัย และขอขอบพระคุณศูนย์การศึกษาพิเศษประจำจังหวัดพะเยาและจังหวัดลำปางที่ทำการประสานงานและอี้อี้เพื่อสถานที่ในการทำวิจัยครั้งนี้

เอกสารอ้างอิง

1. Van Der Heide JC, Begeer C, Fock JM, Otten B, Stremmelaar E, Van Eykern LA, Hadders-Algra M. Postural control during reaching in preterm children with cerebral palsy. *Developmental Medicine & Child Neurology*. 2004 Apr; 46(4): 253-66.
2. Mayston MJ. People with cerebral palsy: effects of and perspectives for therapy. *Neural Plasticity*. 2001; 8(1-2): 51-69.
3. Prosser LA, Lee SC, VanSant AF, Barbe MF, Lauer RT. Trunk and hip muscle activation patterns are different during walking in young children with and without cerebral palsy. *Phys Ther*. 2010 Jul 1; 90(7): 986-97.
4. Saavedra S, Joshi A, Woollacott M, van Donkelaar P. Eye hand coordination in children with cerebral palsy. *Experimental Brain Research*. 2009 Jan 1; 192(2): 155-65.
5. Sato NT, Tudella E. Influence of Sitting Positions and Level of Trunk Control During Reaching Movements in Late Preterm and Full-Term Infants. *Frontiers in Pediatrics*. 2018 Jun 25; 6: 185.

6. de Groot L, Hopkins B, Touwen B. Muscle power, sitting unsupported and trunk rotation in pre-term infants. *Early Human Development*. 1995 Aug 30; 43(1): 37-46.
7. Pin TW, Butler PB, Cheung HM, Shum SL. Segmental Assessment of Trunk Control in infants from 4 to 9 months of age-a psychometric study. *BMC Pediatrics*. 2018 Dec; 18(1): 182.
8. Moreira da Silva ES, Lopes dos Santos G, Righetto Greco AL, Tudella E. Influence of different sitting positions on healthy infants' reaching movements. *Journal of Motor Behavior*. 2017 Nov 2; 49(6): 603-10.
9. Karasik LB, Tamis-LeMonda CS, Adolph KE, Bornstein MH. Places and postures: A cross-cultural comparison of sitting in 5-month-olds. *Journal of Cross-Cultural Psychology*. 2015 Sep; 46(8): 1023-38.
10. Heyman L, Desloovere K, Molenaers G, Verheyden G, Klingels K, Monbaliu E, Feys H. Clinical characteristics of impaired trunk control in children with spastic cerebral palsy. *Research in Developmental Disabilities*. 2013 Jan 1; 34(1): 327-34.
11. Aly SM, Abonour AA. Effect of core stability exercise on postural stability in children with Down syndrome. *International Journal of Medical Research and Health Sciences*. 2016 Jan 1; 5: 213-22.
12. Alsakhawi RS, Elshafey MA. Effect of core stability exercises and treadmill training on balance in children with Down Syndrome: randomized controlled trial. *Advances in Therapy*. 2019 Sep; 1-0.
13. Funahashi Y, Karashima C, Hoshiyama M. Compensatory postural sway while seated posture during tasks in children with autism spectrum disorder. *Occupational Therapy International*. 2014 Dec; 21(4): 166-75.
14. Karabay İ, Dogan A, Arslan MD, Dost G, Ozgirgin N. Effects of functional electrical stimulation on trunk control in children with diplegic cerebral palsy. *Disability and Rehabilitation*. 2012 Jun 1; 34(11): 965-70.
15. Kang H, Jung J, Yu J. Effects of hippotherapy on the sitting balance of children with cerebral palsy: a randomized control trial. *Journal of Physical Therapy Science*. 2012; 24(9): 833-6.
16. Unger M, Jelsma J, Stark C. Effect of a trunk-targeted intervention using vibration on posture and gait in children with spastic type cerebral palsy: a randomized control trial. *Developmental Neurorehabilitation*. 2013 Apr 1; 16(2): 79-88.
17. Hay L, Redon C. Feedforward versus feedback control in children and adults subjected to a postural disturbance. *Experimental Brain Research*. 1999 Mar 1; 125(2): 153-62.
18. Temcharoensuk P, Lekskulchai R, Akamanon C, Ritruechai P, Sutcharitpongsa S. Effect of horseback riding versus a dynamic and static horse riding simulator on sitting ability of children with cerebral palsy: a randomized controlled trial. *Journal of Physical Therapy Science*. 2015; 27(1): 273-7.
19. Butler P, Saavedra MS, Sofranac MM, Jarvis MS, Woollacott M. Refinement, reliability and validity of the segmental assessment of trunk control (SATCo). *Pediatric physical therapy: the official publication of the Section on Pediatrics of the American Physical Therapy Association*. 2010; 22(3): 246.

20. Franjoine MR, Gunther JS, Taylor MJ. Pediatric balance scale: a modified version of the berg balance scale for the school-age child with mild to moderate motor impairment. *Pediatric Physical Therapy*. 2003 Jul 1; 15(2): 114-28.
21. Chen CL, Shen IH, Chen CY, Wu CY, Liu WY, Chung CY. Validity, responsiveness, minimal detectable change, and minimal clinically important change of Pediatric Balance Scale in children with cerebral palsy. *Research in Developmental Disabilities*. 2013 Mar 1; 34(3): 916-22.
22. Darr N, Franjoine MR, Campbell SK, Smith E. Psychometric properties of the pediatric balance scale using rasch analysis. *Pediatric Physical Therapy*. 2015; 27(4): 337-48.
23. Ries LG, Michaelsen SM, Soares PS, Monteiro VC, Allegretti KM. Cross-cultural adaptation and reliability analysis of the Brazilian version of Pediatric Balance Scale (PBS). *Brazilian Journal of Physical Therapy*. 2012 Jun; 16 (3): 205-15.
24. Rakkha S, Lekskuchai R, Akamanon C. Effect of hippotherapy and dynamic saddle seat training on gross motor ability in children with bilateral spastic cerebral palsy. *Thai J Phys Ther*. 2014; 2: 51-9.
25. Bordoloi K, Sharma N. Effectiveness of proprioceptive training over strength training in improving the balance of cerebral palsy children with impaired balance. *Scientific Research Journal of India*. 2012; 1(1): 23-36.
26. Pin TW, Butler PB, Cheung HM, Shum SL. Longitudinal Development of Segmental Trunk Control in Full Term and Preterm Infants-a Pilot Study: Part II. Developmental Neurorehabilitation. 2019 Jun 20: 1-8.

วารสาร

เทคโนโลยีการแพทย์และกายภาพบำบัด

JOURNAL OF MEDICAL TECHNOLOGY AND PHYSICAL THERAPY

นิพนธ์ต้นฉบับ

ORIGINAL ARTICLE

ผลการตรวจวินิจฉัยเชื้อวัณโรค nokปอดด้วยวิธี Gene Xpert MTB/RIF Assay โรงพยาบาลชลบุรี

วัชรี จุณวัชร*

Received: February 4, 2019

Revised & Accepted: March 15, 2020

บทคัดย่อ

การศึกษาประสิทธิภาพของการตรวจหาเชื้อวัณโรค nokปอดด้วยวิธี Xpert MTB/RIF G4, Xpert MTB/RIF Ultra และวิธีย้อมสีเมเนียร์สไลด์ จากตัวอย่างสิ่งส่งตรวจจากน้ำไขสันหลัง ของเหลวจากส่วนต่างๆ ของร่างกาย ของเหลวจากกระเพาะอาหาร หนอง และขี้เนื้อจากต่อมน้ำเหลือง 95 ตัวอย่าง extrapulmonary ได้รับการทดสอบหาเชื้อวัณโรคด้วยวิธีการย้อมสีดูดลักษณะของเชื้อภายในตัวกล้องจุลทรรศน์และการตรวจด้วยวิธี Xpert MTB/RIF G4 และ 31 ตัวอย่าง สำหรับการวินิจฉัยด้วยกล้องจุลทรรศน์และการตรวจด้วยวิธี Xpert MTB/RIF Ultra เมื่อเปรียบเทียบโดยใช้การเพาะเชื้อวัณโรคเป็นวิธีมาตรฐานพบว่ามีความไวและความจำเพาะร้อยละ 66.67, 98.80 และร้อยละ 75.00, 96.30 ตามลำดับ จากผลการศึกษาในครั้งนี้ การตรวจด้วยวิธี Xpert MTB/RIF Ultra ที่พัฒนาขึ้นมา มีความไวมากกว่าวิธี Xpert MTB/RIF G4 และจากการดูตัวเชื้อภายในตัวกล้องจุลทรรศน์จากตัวอย่างสิ่งส่งตรวจ nokปอด

คำสำคัญ: วัณโรค, Xpert Ultra, Xpert G4

งานจุลชีววิทยาคลินิก กลุ่มงานเทคโนโลยีการแพทย์ โรงพยาบาลชลบุรี

*ผู้รับผิดชอบบทความ

วารสาร

มหคณิคการแพทย์และกายภาพบำบัด

JOURNAL OF MEDICAL TECHNOLOGY AND PHYSICAL THERAPY

นิพนธ์ต้นฉบับ

ORIGINAL ARTICLE

Utilization of Xpert MTB/RIF assay in tertiary care hospital: Diagnostic accuracy of extrapulmonary tuberculosis specimens

Wacharee Charoonwach*

Abstract

The performance of the Xpert MTB/RIF G4, the Xpert MTB/RIF Ultra and the AFB smear microscopy in detecting TB in extrapulmonary specimens from cerebrospinal fluid (CSF), body fluid, gastric content pus and lymphnode tissue and were submitted to laboratory for Mycobacteria diagnosis evaluated. Each sample from 95 of extrapulmonary specimens was divided for diagnosis using microscopy and Xpert MTB/RIF G4 assays, and each sample from 31 of extrapulmonary specimens was divided for diagnosis using microscopy and Xpert MTB/RIF Ultra assays; these were all comparatively evaluated, using the TB culture as a gold standard. For extrapulmonary specimen, the sensitivity and specificity were respectively: 66.67%, 98.80%, and 75.00, 96.30%. This result show that the new and improved Xpert MTB/RIF Ultra assay was more sensitive than GeneXpert G4 and AFB smear in extrapulmonary specimens.

Keywords: Tuberculosis, Xpert Ultra, Xpert G4

Clinical Microbiology laboratory, Chonburi Hospital

*Corresponding author: (e-mail: kaknaja@yahoo.com)

บทนำ

วัณโรค (Tuberculosis: TB) เป็นปัญหาทางสุขภาพที่สำคัญ องค์การอนามัยโลก (World Health Organization: WHO) รายงานผู้ป่วยวัณโรคประมาณ 10 ล้านคนต่อปี และโรคนี้ยังเป็น 1 ใน 10 ของสาเหตุหลักของการเสียชีวิตของประชากรในโลกมากกว่าการเสียชีวิตจากโรคเอดส์ ประเทศไทยเป็น 1 ใน 14 ประเทศที่ถูกจัดอยู่ในกลุ่มประเทศที่มีภาวะวัณโรคสูง (High Burden Country: HBC) ทั้ง 3 กลุ่ม คือ กลุ่มวัณโรค (TB) วัณโรคที่ติดเชื้อเอชไอวี (TB/HIV) และวัณโรคต้อยาหอยลายนาน (MDR-TB)⁽¹⁾ โดยปี พ.ศ. 2559 องค์การอนามัยโลกได้กำหนดยุทธศาสตร์ยุติวัณโรค (The End TB Strategy) มีเป้าหมายลดอุบัติการณ์วัณโรคให้ต่ำกว่า 10 ต่อแสนประชากรโลกภายในปี พ.ศ. 2578 (ค.ศ. 2035) ประเทศไทย มีแผนยุทธศาสตร์วัณโรคระดับชาติ พ.ศ. 2560-2564 เพื่อเป็นกรอบการดำเนินงาน โดยมีมาตรการหลักในการจะบรรลุเป้าหมายการลดอุบัติการณ์วัณโรคให้เหลือ 88 ต่อประชากรแสนคน เมื่อสิ้นปี 2564⁽²⁾ โดยมุ่งเน้น “ค้นให้พบ จบด้วยหาย พัฒนาระบบและเครือข่าย นโยบายมุ่งมั่น สร้างสรรค์นวัตกรรม” ซึ่งหนึ่งในนั้นคือการนำเทคโนโลยีด้านการตรวจวินิจฉัย เพื่อค้นหาและวินิจฉัยผู้ป่วยวัณโรคให้รวดเร็วขึ้นตั้งแต่ระยะเริ่มแรกที่ผู้ป่วยยังไม่มีอาการ และตรวจทดสอบความไวต่อยาเพื่อวินิจฉัยวัณโรคต้อยาให้ครอบคลุมมากขึ้น เพื่อให้การรักษาที่รวดเร็ว ลดอัตราการเสียชีวิตและลดการแพร่การกระจายเชื้อวัณโรค นำไปสู่การลดความชุกและอุบัติการณ์วัณโรคให้เป็นไปตามเป้าหมายการควบคุมวัณโรคของประเทศไทยและของโลก

วัณโรคปอดและวัณโรคที่พบในบริเวณ endobronchial tree ในประเทศไทย พบรูปแบบร้อยละ 80 ของวัณโรคทั้งหมด สำหรับวัณโรคนอกปอด (extra-pulmonary tuberculosis: EPTB) พบรูปแบบร้อยละ 20 แต่ในผู้ป่วยที่ติดเชื้อเอชไอวีร่วมด้วยสัดส่วนของวัณโรคนอกปอดมากจะพบมากขึ้น อุบัติการณ์ที่พบบ่อยได้แก่ ต่อมน้ำเหลือง กระดูก (มักพบที่กระดูกสันหลัง) เยื่อหุ้มปอด ระบบทางเดินปัสสาวะ ลำไส้ เยื่อหุ้มสมอง เยื่อหุ้มหัวใจ ผิวนหนัง⁽³⁾ องค์การอนามัยโลก แนะนำให้ประเทศไทยที่มีภาวะวัณโรคสูง ตรวจวินิจฉัยวัณโรคและวัณโรค

ด้วยในกลุ่มเสี่ยงด้วยวิธี XpertMTB/RIF® assay (GeneXpert MTB/RIF) ซึ่งเป็นการตรวจแบบรวดเร็ว (rapid diagnosis test)⁽⁴⁾ ทดสอบการย้อมสีสมีร์สไลด์ร่วมกับการเพาะเชื้อโดยวิธี Solid culture หรือ Liquid culture ควบคู่กับการทดสอบยาต้านวัณโรค (Drug Susceptibility Test) ในรายติดตามการรักษา เนื่องจากมีค่าความไวและความจำเพาะในการตรวจหาเชื้อวัณโรคอยู่ที่ร้อยละ 88 และ 99 เมื่อทำการตรวจหาวัณโรคต้อยาจะมีความไวร้อยละ 95 และความจำเพาะร้อยละ 98 และเมื่อตรวจจากสิ่งส่งตรวจนอกปอด (Extrapulmonary specimen) จะมีความไวประมาณร้อยละ 17-84 ความจำเพาะร้อยละ 92-98⁽⁵⁾

โรงพยาบาลชลบุรี ได้รับการสนับสนุนเครื่อง Xpert/RIF จากกองทุนโลกเข่นเดียวกับหลายโรงพยาบาลในประเทศไทย เพื่อนำมาใช้ตรวจหาเชื้อวัณโรคและวัณโรคต้อยา ด้วยวิธี Xpert MTB/RIF G4 ตั้งแต่ พ.ศ. 2556 เป็นต้นมาและเมื่อปี พ.ศ. 2562 ได้เปลี่ยนมาใช้วิธี Xpert MTB/RIF Ultra ซึ่งองค์การอนามัยโลกแนะนำว่า มีความไวสูงกว่า GeneXpert MTB/RIF G4 ในการตรวจหาวัณโรคนอกปอด ดังนั้นผู้วิจัยจึงสนใจศึกษา เพื่อประเมินความไว (sensitivity) และความจำเพาะ (specificity) ของวิธี GeneXpert MTB/RIF G4 วิธี GeneXpert MTB/RIF และการย้อมสีสมีร์สไลด์ เปรียบเทียบกับวิธีเพาะเลี้ยงเชื้อ ซึ่งเป็นวิธีมาตรฐาน ตรวจหาเชื้อวัณโรค เพื่อเป็นข้อมูลสำคัญประกอบการทดสอบทางห้องปฏิบัติการ เพื่อผลการวิเคราะห์ที่ถูกต้องแม่นยำ ประโยชน์ในการวินิจฉัยป้องกันและการรักษาให้มีประสิทธิภาพมากยิ่งขึ้น

วัสดุและวิธีการ

1. กลุ่มตัวอย่าง

สิ่งตัวอย่างส่งตรวจของผู้ป่วยสงสัยติดเชื้อวัณโรคนอกปอดที่ถูกส่งมายังห้องปฏิบัติการจุลชีววิทยาเพื่อตรวจหาเชื้อวัณโรค จำนวนทั้งหมด 893 ตัวอย่าง โดยมีเกณฑ์คัดเข้าได้แก่สิ่งตัวอย่างส่งตรวจที่มีการตรวจทั้ง 3 วิธี คือ ย้อมสีสมีร์สไลด์ วิธีXpert/MTB/RIF และวิธีเพาะเชื้อ และมีเกณฑ์คัดออกได้แก่สิ่งตัวอย่างส่งตรวจที่ตรวจเพียง 1 หรือ 2 วิธี ได้ขนาดตัวอย่าง 126 ตัวอย่าง ในจำนวนนี้

95 ตัวอย่าง ตรวจด้วยวิธีย้อมสีและวิธี Xpert/MTB/RIF G4 จำนวน 31ตรวจคือ ย้อมสีสเมียร์สไลด์ และวิธี Xpert/MTB/RIF Ultra

2. วิธีย้อมสีสเมียร์สไลด์

ป้ายสิ่งตัวอย่างส่งตรวจบนแผ่นสไลด์ fix ให้แห้ง หยดสี 0.1% Auramine O ให้ท่วมแผ่นสไลด์ทึบไว้ 15-20 นาที ล้างด้วยน้ำสะอาด พอกสีด้วย 0.5% Acid alcohol ทึบไว้ 2 นาที ล้างด้วยน้ำสะอาด ย้อมทับด้วย 0.5% KMnO4 ล้างด้วยน้ำสะอาด เมื่อสไลด์แห้งนำไปตรวจหาเชื้อด้วยกล้องจุลทรรศน์ Fluorescence

3. วิธี Xpert MTB/RIF G4 และ วิธี Xpert MTB/RIF Ultra

สิ่งตัวอย่างส่งตรวจที่มีการปนเปื้อน จะทำการลดปริมาณเชื้อปนเปื้อนด้วยการเติมน้ำยา NALC-NaOH (N-acetyl-l-cysteine-sodium hydroxide) ผสมให้เข้ากัน ตั้งทึบไว้ 15 นาที ปั่นที่ 30000 ງ นาน 15 นาที เทส่วนใส ทึบ เหลือตะกอน แล้วเติมด้วย PBS buffer 1-2 มิลลิลิตร ผสมให้เข้ากัน ดูดมา 1 มิลลิลิตร ใส่หลอดทดลอง จากนั้นเข้าขั้นตอนทดสอบด้วย GeneXpert ด้วยการเติมน้ำยา sample reagent 2 มิลลิลิตร ผสมให้เข้ากันด้วย vortex mixer ตั้งทึบไว้ที่อุณหภูมิห้อง 10 นาที เขย่าผสมอีกครั้ง ตั้งทึบไว้อีก 5 นาที จากนั้นดูดส่วนใสด้านบน 2 มิลลิลิตร ใส่ใน cartridge นำเข้าเครื่องตรวจวิเคราะห์ GeneXpert เครื่องจะทำการตรวจวิเคราะห์สารพันธุกรรมแบบอัตโนมัติ ซึ่งจะใช้เวลาตรวจวิเคราะห์ประมาณ 2 ชั่วโมง แสดงผลผ่านโปรแกรม GeneXpert Dx รายงานผลสองส่วน คือ ตรวจพบหรือไม่พบเชื้อวัณโรค และผลต่อหรือไม่ต่อต่ออย่างแฟมิชินของเชื้อวัณโรคที่ตรวจพบ

4. วิธีเพาะเชื้อวัณโรคด้วยอาหารเหลว

วิธีนี้เป็นวิธีวินิจฉัยมาตรฐาน (gold standard method) โดยเพาะเชื้อวัณโรค ด้วยวิธี liquid culture เป็นการเพาะเชื้อระบบอัตโนมัติด้วยหลักการ non-radiometric สิ่งส่งตรวจจะถูกเพาะในหลอด growth

indicator ซึ่งมีอาหารเหลว middlebrook 7H9 ดูดตัวอย่างที่ได้ทำการลดการปนเปื้อนแล้ว 0.5 มิลลิลิตร ใส่ใน หลอดน้ำยา MGIT growth indicator และเข้าเครื่องบ่มอัตโนมัติ เมื่อให้ผลบวก ทำการทดสอบบวินิจฉัยเชื้อ และทดสอบความไวต่อยาต้านวัณโรค ตามวิธีการของ BACTEC MGIT960 (Becton Dickinson, USA)⁽⁴⁾

5. การวิเคราะห์ผลทางสถิติ

การศึกษาเปรียบเทียบประสิทธิภาพการตรวจหาเชื้อวัณโรค วิเคราะห์ผลโดยคำนวณค่าความไว ค่าความจำเพาะ ที่ระดับความเชื่อมั่นร้อยละ 95 (95% CI)

ผลการศึกษา

ในช่วงเดือนมกราคม 2561 ถึง เมษายน 2562 จำนวนตัวอย่างที่ส่งมายังห้องปฏิบัติการจุฬาภิวิทยา โรงพยาบาลจุฬาภรณ์ เพื่อวินิจฉัยเชื้อวัณโรค共 95 ตัวอย่าง แบ่งเป็น สิ่งส่งตรวจจากน้ำไขสันหลัง (CSF) 35 ตัวอย่าง ของเหลวจากส่วนต่างๆ ของร่างกาย (Body Fluid) 26 ตัวอย่าง ของเหลวจากกระเพาะอาหาร (Gastric content) 15 ตัวอย่าง หนอง (Pus) 13 ตัวอย่าง และชิ้นเนื้อจากต่อมน้ำเหลือง (LN tissue) 6 ตัวอย่าง ที่ส่งวินิจฉัยเชื้อทั้ง 3 วิธีพร้อมกัน คือ การตรวจหาเชื้อด้วยการย้อมสีสเมียร์สไลด์ ดูด้วยกล้องจุลทรรศน์ (AFB smear microscopy) การตรวจเพาะเชื้อวัณโรคจากสิ่งส่งตรวจ (TB culture) และการตรวจทางชีวโมเลกุลซึ่งเป็นส่วนประกอบของเชื้อด้วยวิธี Xpert G4

จำนวนตัวอย่างทั้งหมด 95 ตัวอย่าง พบร่วมกัน ผลตรวจด้วยวิธีย้อมสี ให้ผลเป็นบวก 3 ตัวอย่าง (ร้อยละ 3.16) ผลลบจำนวน 92 ตัวอย่าง (ร้อยละ 96.84) วิธีเพาะเชื้อ ให้ผลบวก 9 ตัวอย่าง (ร้อยละ 9.47) และผลลบจำนวน 86 ตัวอย่าง (ร้อยละ 90.53) และวิธี Xpert G4 ผลบวก 12 ตัวอย่าง (ร้อยละ 12.63) และผลลบจำนวน 83 ตัวอย่าง (ร้อยละ 87.37) (ตารางที่ 1)

ตารางที่ 1 General characteristic of sample in smear, culture, Xpert G4

Smear result	CSF	fluid	gastric content	pus	tissue	Total
positive	0	0	0	2	1	3
negative	35	26	15	11	5	92
total	35	26	15	13	6	95
Culture result						
positive	2	2	0	4	1	9
negative	33	24	15	9	5	86
total	35	26	15	13	6	95
Xpert G4 result						
Positive (TB detected)	2	3	0	6	1	12
Negative (TB not detect)	33	23	15	7	5	83
total	35	26	15	13	6	95

เมื่อนำผลวิธีย้อมสไลด์และวิธี Xpert G4 เปรียบเทียบกับวิธีเพาะเลี้ยงเชื้อ ซึ่งเป็นวิธีมาตรฐาน แยกตามชนิดของสิ่งส่งตรวจ ให้ผลค่าความไว (Sensitivity) ค่าความจำเพาะ (Specificity) ค่าทำนายผลบวก (PPV) และค่าทำนายผลลบ (NPV) ดังตารางที่ 2 จำนวนตัวอย่างทั้งหมด 95 ตัวอย่าง พบว่า ตรวจพบเชื้อวัณโรคโดยทั้ง 2 วิธีตรงกัน 4 ตัวอย่าง ตรวจไม่พบเชื้อวัณโรคตรงกัน 12 ตัวอย่าง ตรวจพบเชื้อวัณโรคโดยวิธี Xpert G4 แต่ตรวจไม่พบโดยวิธีย้อมสไลด์ 12 ตัวอย่าง และตรวจไม่พบเชื้อวัณโรคโดยวิธี Xpert G4 แต่ตรวจพบโดยวิธีย้อมสไลด์ 0 ตัวอย่าง วิเคราะห์ค่าความไว ค่าความจำเพาะ ค่าทำนายผลบวก และค่าทำนายผลลบ (ตารางที่ 2)

ในระหว่างเดือนเมษายน พ.ศ. 2562 ถึงมกราคม พ.ศ. 2563 จำนวนสิ่งตัวอย่างส่งตรวจที่ส่งมายังห้องปฏิบัติการจุลชีววิทยา โรงพยาบาลชลบุรี เพื่อวินิจฉัย

เชื้อวัณโรค共ปอด 31 ตัวอย่าง แบ่งเป็น สิ่งส่งตรวจจากน้ำไขสันหลัง 13 ตัวอย่าง ของเหลวจากส่วนต่างๆ ของร่างกาย 8 ตัวอย่าง ของเหลวจากกระเพาะอาหาร 4 ตัวอย่าง หนอง 3 ตัวอย่าง และขี้เนื้อจากต่อมน้ำเหลือง 3 ตัวอย่าง โดยส่งวินิจฉัยเชื้อพร้อมกันทั้ง 3 วิธี คือ การตรวจหาเชื้อทอนกรดในสิ่งส่งตรวจด้วยกล้องจุลทรรศน์ การตรวจเพาะเชื้อวัณโรคจากสิ่งส่งตรวจ และการตรวจหาโมเลกุลซึ่งเป็นส่วนประกอบของเชื้อด้วยวิธี Xpert Ultra จากจำนวนตัวอย่างทั้งหมด 31 ตัวอย่าง พบว่า ผลตรวจด้วยวิธีย้อมสไลด์ ให้ผลเป็นบวก 0 ตัวอย่าง (ร้อยละ 0.00) ผลลบจำนวน 31 ตัวอย่าง (ร้อยละ 100.00) วิธีเพาะเลี้ยงเชื้อ ให้ผลบวก 4 ตัวอย่าง (ร้อยละ 12.90) และผลลบจำนวน 27 ตัวอย่าง (ร้อยละ 87.10) และวิธี Xpert Ultra ผลบวก 4 ตัวอย่าง (ร้อยละ 12.90) และผลลบจำนวน 27 ตัวอย่าง (ร้อยละ 87.10) (ตารางที่ 3)

ตารางที่ 2 The performance of smear, Xpert G4 compare to culture

Sample	CSF		Fluid	
Parameter	Smear	Xpert G4	Smear	Xpert G4
True Positive	0	1	0	2
True Negative	33	32	24	23
False Positive	2	1	2	0
False Negative	0	1	0	1
Total	35	35	26	26
Sensitivity (CI),%	0	50.00(1.26-98.74)	0	66.67(9.43-99.16)
Specificity (CI),%	94.29(80.84-99.30)	96.97(84.24-99.92)	92.31(74.87-99.05)	100.00(85.18-100.00)
PPV (CI),%	0	50.00(8.50-91.50)	0	100.00
NPV (CI),%	100.00	96.97(88.88-99.23)	100.00	95.83(82.28-99.13)
Sample	Gastric content		Pus	
Parameter	Smear	Xpert G4	Smear	Xpert G4
True Positive	0	0	1	4
True Negative	15	15	8	8
False Positive	0	0	3	0
False Negative	0	0	1	1
Total	15	15	13	13
Sensitivity (CI),%	0	0	50.00(1.26-98.74)	50.00(1.26-98.74)
Specificity (CI),%	100(78.20-100.00)	100.00(78.20-100.00)	72.73(39.03-93.98)	72.73(39.03-93.98)
PPV (CI),%	0	0	25.00(5.80-64.34)	25.00(5.80-64.34)
NPV (CI),%	100.00	100.00	88.89(65.63-97.10)	88.89(65.63-97.10)
Sample	Tissue		Total sample	
Parameter	Smear	Xpert G4	Smear	Xpert G4
True Positive	1	1	2	8
True Negative	5	5	85	82
False Positive	0	0	7	1
False Negative	0	0	1	4
Total	6	6	95	95
Sensitivity (CI),%	100.00(2.50-100.00)	100.00(2.50-100.00)	66.67(9.43-99.16)	66.67(34.89-90.08)
Specificity (CI),%	100.00(47.82-100.00)	100.00(47.82-100.00)	92.39(84.95-96.89)	98.80(93.47-99.97)
PPV (CI),%	100.00	100.00	22.22(8.92-45.47)	88.89(52.26-98.32)
NPV (CI),%	100.00	100.00	98.84(94.49-99.76)	95.35(90.20-97.86)

PPV: positive predictive value; NPV: negative predictive value; *: 95% confidence interval

ตารางที่ 3 General characteristic of sample in smear, culture, Xpert Ultra

Smear result	CSF	fluid	gastric content	pus	tissue	Total sample
positive	0	0	0	0	0	0
negative	13	8	4	3	3	31
total	13	8	4	3	3	31
Culture result						
positive	0	2	0	0	2	4
negative	13	6	4	3	1	27
total	13	8	4	3	3	31
Xpert Ultra result						
positive (TB detected)	0	1	0	1	2	4
negative (TB not detect)	13	7	4	2	1	27
total	13	8	4	3	3	31

เมื่อนำผลวิธีย้อมสไลด์และวิธี Xpert Ultra เปรียบเทียบกับวิธีเพาะเลี้ยงเชื้อ ซึ่งเป็นวิธีมาตรฐานแยกตามชนิดของสิ่งส่งตรวจ ให้ผลค่าความไว (Sensitivity) ค่าความจำเพาะ (Specificity) ค่าทำนายผลบวก (PPV) และค่าทำนายผลลบ (NPV) ดังตารางที่ 4 จำนวนตัวอย่างทั้งหมด 31 ตัวอย่าง พบว่า ตรวจพบเชื้อวัณโรคโดยวิธีย้อมสไลด์เปรียบเทียบกับวิธีเพาะเลี้ยงเชื้อ ให้ผลทั้ง 2 วิธีตรงกัน 0 ตัวอย่าง ตรวจไม่พบเชื้อวัณโรคตรงกัน 4 ตัวอย่าง ตรวจพบเชื้อวัณโรคโดยวิธีเพาะเลี้ยงเชื้อ แต่ตรวจไม่พบโดยวิธี AFB smear 4 ตัวอย่าง และตรวจไม่พบเชื้อวัณโรคโดยวิธีเพาะเลี้ยงเชื้อ แต่ตรวจพบโดยวิธี AFB smear 0 ตัวอย่าง วิเคราะห์ค่าความไว ค่าความจำเพาะ ค่าทำนายผลบวก และค่าทำนายผลลบ (ตารางที่ 4)

สรุปและวิจารณ์ผลการศึกษา

การเปรียบเทียบวิธีการตรวจพบเชื้อวัณโรคด้วยวิธีย้อมสไลด์ วิธีเพาะเลี้ยงเชื้อและวิธี Xpert G4 จากตัวอย่างสิ่งส่งตรวจวัณโรคออกปอด 95 ตัวอย่าง พบว่าวิธีย้อมสไลด์ สามารถตรวจพบผลบวกเพียง 3 ตัวอย่าง (ร้อยละ 3.16) วิธี Xpert G4 สามารถตรวจพบผลบวกถึง

12 ตัวอย่าง (ร้อยละ 12.63) วิธีเพาะเลี้ยงเชื้อ ซึ่งเป็นวิธีมาตรฐานตรวจพบผลบวก 9 ตัวอย่าง (ร้อยละ 3.16) ดังนั้น วิธี Xpert G4 ตรวจพบได้มากกว่าวิธีย้อมสไลด์ 9 ตัวอย่าง (ร้อยละ 9.47) และตรวจพบได้มากกว่าวิธีเพาะเลี้ยงเชื้อ 3 ตัวอย่าง (ร้อยละ 3.16) และเมื่อเปรียบเทียบ วิธีการตรวจพบเชื้อวัณโรคด้วยวิธีย้อมสไลด์ วิธีเพาะเลี้ยงเชื้อ และวิธี Xpert Ultra จากตัวอย่างสิ่งส่งตรวจวัณโรค นอกปอด 31 ตัวอย่าง พบว่า วิธีย้อมสไลด์ ตรวจไม่พบเชื้อวัณโรค แต่วิธี Xpert Ultra และวิธีเพาะเลี้ยงเชื้อ ตรวจพบผลบวกตรงกันถึง 4 ตัวอย่าง (ร้อยละ 100) และค่าทำนายผลลบ (NPV) จะพบว่าวิธีย้อมสไลด์ และวิธี Xpert G4 เมื่อเปรียบเทียบกับวิธีเพาะเลี้ยงเชื้อ ให้ค่าความไว (ร้อยละ 66.67) เท่ากัน แต่วิธี Xpert G4 ให้ค่าความจำเพาะ (ร้อยละ 98.80) และค่าทำนายผลบวก (ร้อยละ 88.89) ซึ่งมากกว่าวิธีย้อมสไลด์ ในขณะที่วิธีย้อมสไลด์ และวิธี Xpert Ultra เมื่อเปรียบเทียบกับวิธีเพาะเลี้ยงเชื้อ ให้ค่าความไว (ร้อยละ 75.00) ความจำเพาะ (ร้อยละ 96.30) และค่าทำนายผลบวก (ร้อยละ 75.00) มากกว่าวิธีย้อมสไลด์ และค่าทำนายผลลบของทั้งวิธี Xpert G4 และวิธี Xpert Ultra ให้ค่าน้อยกว่าวิธีย้อมสไลด์ คิดเป็นร้อยละ 95.35 และร้อยละ 96.30 ตามลำดับ ซึ่งสอดคล้องกับการ

ศึกษาในประเทศไทยได้ ผลการตรวจเชื้อวัณโรคด้วยวิธี Xpert Ultra เปรียบเทียบกับ Xpert G4 วิธี Line probe assays (LPA) และ auramine smear microscopy พบว่าวิธี Xpert Ultra มีความไวมากกว่าวิธี GeneXpert G4 และ LPA จากตัวอย่างที่ส่งสัยวัณโรคปอดและนอกปอด⁽⁶⁾ ซึ่งวิธี Xpert[®] MTB/RIF assay (Cepheid, Sunnyvale, USA) เป็นการพัฒนาการตรวจวินิจฉัยวัณโรคและการดื้อยาไวรัฟเพมพิชินอย่างกว้างขวาง⁽⁷⁾ แต่ต้องย่างไวริย์มีความไวในการทดสอบน้อย โดยเฉพาะในรายที่ให้ผลลบกับการตรวจด้วยวิธีย้อมสไลด์ อีกทั้งในผู้ป่วยวัณโรคที่ติดเชื้อเอชไอวี⁽⁸⁾ อีกทั้งยังมีข้อจำกัดในการทำการดื้อยาไวรัฟเพมพิชิน⁽⁹⁾ ดังนั้นจึงได้มีการพัฒนาวิธี Xpert[®] MTB/RIF Ultra assay (Cepheid, Sunnyvale, USA) ขึ้น⁽¹⁰⁾ เพื่อเพิ่มความไวในการตรวจหาเชื้อ ซึ่งสอดคล้องกับการศึกษาในปี ค.ศ. 2018 ผลการตรวจเชื้อวัณโรคด้วยวิธี Xpert Ultra เปรียบ

เทียบกับ Xpert G4 ให้ความไวร้อยละ 63 และร้อยละ 46 ตามลำดับ จากตัวอย่างเสมอผู้ป่วย 137 คนที่ให้ผลย้อมสไลด์เป็นลบแต่ผลบวกต่อวิธีการเพาะเชื้อ และให้ความไวร้อยละ 90 และร้อยละ 77 จากตัวอย่างเสมอผู้ป่วยเอชไอวี 115 ที่ให้ผลบวกต่อวิธีการเพาะเชื้อ⁽¹¹⁾ ซึ่งในประเทศไทย สำนักวัณโรคได้นำวิธี Xpert Ultra มาทดลองการใช้ Xpert G4 ในห้องปฏิบัติการที่ตรวจวิเคราะห์เชื้อวัณโรคด้วยเทคนิคดังกล่าวในทุกพื้นที่ ดังนั้น ผลการศึกษานี้พบว่าเทคนิคการตรวจด้วยวิธี Xpert Ultra มีประสิทธิภาพในการตรวจเชื้อวัณโรคได้ถูกต้องและแม่นยำขึ้น ลดการเพิ่มผู้ป่วยวัณโรครายใหม่ ทั้งนี้ควรมีการศึกษาเพิ่มเติมในช่วงเวลาต่างๆ มากขึ้น เพื่อให้ได้ข้อมูลที่ครอบคลุม เพิ่มจำนวนตัวอย่าง รวมถึงข้อมูลในการทดสอบความไวต่อยา ซึ่งเชื้อวัณโรคต้องยาังที่เป็นปัจุหาสำคัญทั่วโลก

ตารางที่ 4 The performance of smear, Xpert Ultra compare to culture

Sample	CSF		Fluid	
Parameter	Smear	Xpert Ultra	Smear	Xpert Ultra
True Positive	0	0	0	1
True Negative	13	13	6	6
False Positive	0	0	2	1
False Negative	0	0	0	0
Total	13	13	8	8
Sensitivity (CI),%	0	0	0	100.00(2.5-100.00)
Specificity (CI),%	100.00(75.29-100.00)	100.00(75.29-100.00)	75.00(34.91-96.81)	85.71(42.13-99.64)
PPV (CI),%	0	0	0	50.00(14.01-85.99)
NPV (CI),%	100.00	100.00	100	100.00
Sample	Gastric content		Pus	
Parameter	Smear	Xpert Ultra	Smear	Xpert Ultra
True Positive	0	0	0	0
True Negative	4	4	3	2
False Positive	0	0	0	0
False Negative	0	0	0	1
Total	4	4	3	3
Sensitivity (CI),%	0	0	0	0.00(0.00-97.50)
Specificity (CI),%	100.00(39.76-100.00)	100.00(39.76-100.00)	100.00(29.24-100.00)	100.00(15.81-100.00)
PPV (CI),%	0	0	0	0
NPV (CI),%	100.00	100.00	100.00	66.67(66.67-66.67)

ตารางที่ 4 The performance of smear, Xpert Ultra compare to culture (cont.)

Sample	Tissue		Total sample	
Parameter	Smear	Xpert Ultra	Smear	Xpert Ultra
True Positive	0	2	0	3
True Negative	1	1	27	26
False Positive	2	0	4	1
False Negative	0	0	0	1
Total	3	3	31	31
Sensitivity (CI),%	0	100.00(15.81-100.00)	0	75.00(19.14-99.37)
Specificity (CI),%	33.33(0.84-90.57)	100.00(2.50-100.00)	87.10(70.17-96.37)	96.30(81.03-99.91)
PPV (CI),%	0	100.00	0	75.00(28.78-95.70)
NPV (CI),%	100.00	100.00	100.00	96.30(82.62-99.30)

เอกสารอ้างอิง

1. World Health Organization. Global tuberculosis report 2019. Geneva; 2019.
2. Department of Disease Control; Ministry of Public Health. Monitoring and Evaluation of Thailand Operational Plan to End TB 2017-2021. 1st ed. Bangkok: Printing Aksorn Graphic and Design Publishing House; 2018
3. Bureau of Tuberculosis: Department of Disease Control; Ministry of Public Health. National Tuberculosis control Programme Guidelines, Thailand, 2018.1st ed. Bangkok: Printing Aksorn Graphic and Design Publishing House;2018
4. Heinrich N, Rachow A, Hoelscher M. Rapid molecular detection of tuberculosis. *N Engl J Med.* 2011; 364(2): 184-5.
5. World Health Organization. Policy statement: automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system. Geneva; 2011.
6. Osei Sekyere J, Maphalala N, Malinga LA, Mbelle NM, Maningi NE. A Comparative Evaluation of the New Genexpert MTB/RIF Ultra and other Rapid Diagnostic Assays for Detecting Tuberculosis in Pulmonary and Extra Pulmonary Specimens. *Sci Rep.* 2019; 9(1): 16587.
7. Denkinger CM, Schumacher SG, Boehme CC, Dendukuri N. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. *Eur Respir J.* 2014; 44(2): 435-46.
8. Bahr NC, Nuwagira E, Evans EE, Cresswell FV, et al. Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in HIV-infected adults: a prospective cohort study. *Lancet Infect Dis.* 2018; 18(1): 68-75.
9. Dorman SE, Schumacher SG, Alland D, Nabeta P, Armstrong DT, King B, et al. Xpert MTB/RIF Ultra for detection of *Mycobacterium tuberculosis* and rifampicin resistance: a prospective multicentre diagnostic accuracy study. *Lancet Infect Dis.* 2018; 18(1): 76-84.

10. World Health Organization. WHO Meeting Report of a Technical Expert Consultation: Non-inferiority analysis of Xpert MTB/RIF Ultra compared to Xpert MTB/RIF. Geneva; 2017.
11. Chakravorty S, Simmons AM, Rowneki M, Parmar H. et al. The New Xpert MTB/RIF Ultra: Improving Detection of *Mycobacterium tuberculosis* and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing. *mBio*. 2017; 8(4).

ผลทันทีของเทคนิครุ้งทิพย์ (Rungthip; RT technique) ต่อความตึงตัวของเส้นประสาทของขาในผู้ไข้ใหญ่ที่มีสุขภาพดี

อรรษา แสนโน¹, วีระศักดิ์ ตั้งปัญญา^{1,2}, แคนเนียล ศรุตศิริกุลธรร³, ปริยาภรณ์ ไทรรัตนานนท์³,
พโลอยปิติ พันธุ³, ทกมล บรรหารวงศ์^{1,3} และ รุ่งทิพย์ พันธุเมรากรุล^{1,3*}

Received: April 22, 2019

Revised: August 16, 2019

Accepted: February 25, 2020

บทคัดย่อ

การศึกษาในครั้งนี้มีวัตถุประสงค์เพื่อศึกษาผลทันทีของเทคนิครุ้งทิพย์ (Rungthip; RT technique) ต่อความตึงตัวของเส้นประสาทของขาและการเปลี่ยนแปลงของอาการเคลื่อนไหวของมุมองข้อสะโพกขณะเข่าเหยียดตรงในท่านอนหงาย จากการวัดด้วยวิธี Straight Leg Raise (SLR) อาสาสมัครสุขภาพดีจำนวน 66 คนถูกแบ่งออกเป็น 2 กลุ่ม ๆ ละ 33 คน คือกลุ่มทดลองที่ได้รับการนวดด้วยเทคนิค RT เป็นเวลา 5 นาที และกลุ่มควบคุม ที่ได้นอนพักเป็นเวลา 5 นาที แล้วทำการวัดความตึงตัวของเส้นประสาทด้วยการวัดมุม SLR ก่อนและหลังนวดในอาสาสมัครทั้งสองกลุ่ม ผลการศึกษาพบว่าองศาการเคลื่อนไหวภายหลังการได้รับการรักษาด้วยเทคนิค RT ในกลุ่มทดลองมีจุดที่เริ่มตึง (P_1) เท่ากับ 52.85 ± 17.79 องศา และ จุดที่ตึงที่สุด (P_2) เท่ากับ 70.98 ± 18.90 องศา ซึ่งมีค่าเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ ($p < 0.05$, effect size of $P_1 = 1.27$ และ $P_2 = 1.11$) เมื่อเปรียบเทียบกับก่อนได้รับการรักษา โดยมี P_1 เท่ากับ 44.72 ± 17.03 องศา และ P_2 เท่ากับ 64.12 ± 18.51 องศา และเมื่อเปรียบเทียบระหว่างกลุ่มพบว่าองศาการเคลื่อนไหวของกลุ่มทดลองมีค่ามากกว่ากลุ่มควบคุมแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p < 0.05$, effect size of $P_1 = 0.52$ และ $P_2 = 0.67$) สรุปการศึกษาได้ว่าการรักษาด้วยเทคนิค RT สามารถลดความตึงตัวของเส้นประสาทของขาในผู้ไข้ใหญ่ที่มีสุขภาพดีได้

คำสำคัญ: การนวด, เทคนิค RT ความตึงตัวของเส้นประสาท

¹ ศูนย์วิจัยปอดหลัง ปอดคอ ปอดข้อต่างๆ และสมรรถนะของมนุษย์ มหาวิทยาลัยขอนแก่น

² สาขาวิชาการกายภาพบำบัด คณะสหเวชศาสตร์ มหาวิทยาลัยพะเยา

³ สาขาวิชาการกายภาพบำบัด คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น

*ผู้รับผิดชอบบทความ

The immediate effect of Rungthip (RT) technique on lower limb neurodynamic in healthy young adults

Auras Saenno¹, Weerasak Tapanya^{1,2}, Daniel Sarutsirikuntara³, Preeyaporn Thairattananon³,
Ploypiti Panthu³, Torkamol Hunsawong^{1,3} and Rungthip Puntumetakul^{1,3*}

Abstract

This study aimed to determine the immediate effects of Rungthip (RT) technique on lower limb neurodynamic and changing of the hip flexion angle while the knee was straight in supine position that using the Straight Leg Raise (SLR) method. Sixty-six healthy participants were randomly allocated into two groups: RT technique group ($n = 33$) that received RT technique massage for 5 minutes and control group ($n = 33$) that received resting in supine for 5 minutes. The nerve tension was measured by the degree of SLR angle before and after procedure in both groups. The results found that RT technique group had starting tightness angle (P_1) as 52.85 ± 17.79 degrees and maximum tightness angle (P_2) as 70.98 ± 18.90 degrees which was significant increased ($p < 0.05$, effect size of $P_1 = 1.27$ and $P_2 = 1.11$) when compared with pre-treated that had P_1 as 44.72 ± 17.03 degrees and P_2 as 64.12 ± 18.51 degree. When compared between groups, it found that the RT technique group had higher degree of SLR than control group significantly ($p < 0.05$, effect size of $P_1 = 0.52$ and $P_2 = 0.67$). In conclusion, the RT technique could decrease lower limb nerve tension in healthy adults.

Keywords: Massage, RT technique, Neurodynamic

¹ Research Center in Back, Neck, Other Joint Pain and Human Performance (BNOJPH), Khon Kaen University

² Department of Physical Therapy, Faculty of Allied Health Sciences, University of Phayao

³ School of Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University

*Corresponding author: (e-mail: rungthiprt@gmail.com)

บทนำ

ปัจจุบันผู้ที่อยู่ในช่วงวัยผู้ใหญ่ต่อนั้นมักจะมีกิจกรรมที่ต้องทำให้อยู่ในท่านั่งเป็นเวลานาน เช่นการนั่งทำงานหน้าจอคอมพิวเตอร์ติดต่อกันหลายชั่วโมง และมักจะอยู่ในท่านั่งหลังค่อมร่วมกับยืนคงอกรจากแนวกลางลำตัว ส่งผลให้แนวปมประสาทซึมพาเทติกและเนื้อเยื่อประสาทมีแรงตึงตัวเพิ่มขึ้น และมีความไวต่อการบาดเจ็บได้ง่ายขึ้น โดยเฉพาะบริเวณกระดูกสันหลังระดับ C6, T6 และ L4 ที่มีการเคลื่อนไหวที่ค่อนข้างน้อยหรือบางครั้งไม่เคลื่อนที่เลย⁽¹⁾ ส่งผลให้เกิดอาการปวดกล้ามเนื้อตามมาโดยเฉพาะบริเวณหลัง โดยพบว่าความชุกของการปวดกล้ามเนื้อและกระดูกบริเวณหลังส่วนบนและส่วนล่างในนักศึกษามหาวิทยาลัยขอนแก่นมีมากถึงร้อยละ 25.49 และ 24.15 ตามลำดับ⁽²⁾ นอกจากนั้นยังพบว่าความชุกของการปวดหลังส่วนล่างในนักศึกษาชายภาพบำบัดประเทคโนโลยีเรียบมากถึงร้อยละ 45.5⁽³⁾ อาการปวดหลังถือเป็นปัญหาสุขภาพที่มีแนวโน้มที่จะเพิ่มมากขึ้นหากไม่ได้รับการรักษาอย่างถูกต้อง⁽⁴⁾ นำมาซึ่งอาการปวดที่รุนแรงมากขึ้นหรือส่งผลต่อกลไกการทำงานของระบบประสาทส่วนปลายจนอาจส่งผลกระทบต่อการดำเนินชีวิตประจำวันหรือการทำงานได้

การรักษาอาการปวดหลังในปัจจุบันมีหลายวิธีอาทิเช่น การรักษาทางกายภาพบำบัด การนวด การฝังเข็ม การรักษาโดยการรับประทานยา หรือการรักษาด้วยการผ่าตัด เป็นต้น⁽⁵⁾ ผู้ที่มีอาการปวดมักจะมีวิธีการรักษาตนเองเบื้องต้นด้วยวิธีการรับประทานยาคลายกล้ามเนื้อ และการนวดเพื่อบรรเทาอาการปวด แต่เนื่องจากการนวดเป็นเทคโนโลยีที่ค่อนข้างหนักและรุนแรง จึงอาจทำให้ผู้ป่วยที่มีอาการปวดมากเกิดการระบบตามมาได้ง่าย และการรักษาทางกายภาพบำบัดนั้นยังมีข้อจำกัดอยู่บ้างประการเนื่องจากเป็นการรักษาบริเวณที่มีอาการปวดโดยตรงซึ่งการรักษาดังกล่าวจะมีข้อจำกัดในกรณีที่ผู้ป่วยมีอาการปวดมาก และอาจทำให้เกิดภาวะแทรกซ้อนได้ เช่นเกิดความรู้สึกไม่สบาย การระคาย หรืออาการวิงเวียนศีรษะ⁽⁵⁾ เป็นต้น

เนื่องมาจากการจำกัดของวิธีการรักษาดังกล่าว จึงมีผู้ใช้เทคนิคการคลายความตึงตัวของเนื้อเยื่อเกี่ยวกับ (tension point) ที่บริเวณกระดูกสันหลังระดับ T6-T7 ทำการรักษาผู้ที่มีอาการปวดคอ ผลการศึกษาพบว่าเทคนิคดังกล่าวสามารถลดอาการปวดคอและเพิ่มองศาการเคลื่อนไหวของคอได้⁽⁶⁾ พันธุ์เมราคุล และคณะ จึงได้นำเทคนิคดังกล่าวมาประยุกต์ใช้ในทางคลินิกร่วมกับวิธีการนวดไทยแบบหน่วง เน้น นิ่ง⁽⁷⁾ และเรียกชื่อว่าเทคนิคการนวดแบบพิเศษ (เทคนิครุ้งทิพย์; เทคนิค RT) เพื่อใช้ในการรักษาผู้ป่วยที่มีอาการปวดคอ วิธีการรักษาของเทคนิคนี้คือการกดนวดแต่ละจุดค้างไว้ประมาณ 5 วินาที โดยแรงที่กดนั้นเป็นแรงที่เบากว่าการนวดไทย และกดตามแนวเส้นที่ประยุกต์จากเส้นประรานสิบของการนวดไทยชื่อ อิท้า และปิงคลา⁽⁷⁾ ซึ่งตรงกับตำแหน่งของ facet joint ที่บริเวณกระดูกสันหลังระดับ T4 ถึง L3 หรือบริเวณปลายสะบักด้านล่างถึงขอบกระดูกซี่โครงซี่สุดท้าย พบว่าเทคนิคดังกล่าวสามารถลดอาการปวดคอและเพิ่มองศาการเคลื่อนไหวของคอได้ สอดคล้องกับการศึกษาของพันธุ์เมราคุล และคณะที่ศึกษาผลทันทีของการนวดด้วยเทคนิค RT ในผู้ป่วยที่มีอาการปวดคออายุระหว่าง 18 ถึง 25 ปี ผลการศึกษาพบว่ากลุ่มที่ได้รับการนวดด้วยเทคนิค RT มีอาการปวดคอลดลงและมีองศาการเคลื่อนไหวของคอเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ⁽⁸⁾ อย่างไรก็ตามการนวดด้วยเทคนิค RT เป็นวิธีการที่ไม่ได้กระทำการกดนวดลงไปยังบริเวณที่ปวดแต่ให้ผลในการลดปวดบริเวณที่เหนือจากจุดที่ทำการรักษาได้ดังที่ปรากฏใน การศึกษาในอดีตที่ผ่านมา แต่การศึกษาประสิทธิภาพของเทคนิคนี้ต่อการเปลี่ยนแปลงการทำงานของระบบประสาทส่วนที่อยู่ล่างต่อบริเวณที่ทำการกดนวดด้วยเทคนิค RT ยังมีจำกัด คณะผู้วิจัยจึงมีความสนใจที่จะทำการศึกษาผลของการนวดด้วยเทคนิค RT ต่อการเปลี่ยนแปลงความตึงตัวของเส้นประสาทส่วนล่าง โดยการตรวจความตึงตัวของเส้นประสาท สามารถทำได้หลายวิธี เช่น passive neck flexion, prone knee bend, slump test และ straight leg raise (SLR) เป็นต้น และจากการศึกษาในอดีตพบว่าการทดสอบด้วยวิธี SLR เป็นวิธีการหนึ่งที่นิยมใช้ในการวัดการเปลี่ยนแปลงความตึงตัวของรยางค์ล่างเนื่องจากเป็นวิธีการที่มีค่าความเที่ยงสูงในการวัดการ

เคลื่อนไหวของรยางค์ส่วนล่าง หรือการเปลี่ยนแปลงของความตึงตัวของเส้นประสาทส่วนล่าง⁽⁹⁻¹¹⁾

ดังนั้นการศึกษานี้มีวัตถุประสงค์เพื่อศึกษาผลทันทีของเทคนิค RT ต่อความตึงตัวของเส้นประสาทของขา และการเปลี่ยนแปลงของศักยภาพเคลื่อนไหวของมุมของข้อสะโพกขณะเข้าเหยียดตรงในท่านอนหงาย โดยการวัดด้วยวิธี SLR เพื่อนำผลที่ได้จากการศึกษาวิจัยไปประยุกต์ใช้ในทางคลินิก และเป็นประโยชน์ให้นักกายภาพบำบัด หรือบุคลากรทางแพทย์อื่นๆ สามารถประยุกต์ใช้เทคนิคดังกล่าวในการรักษาผู้ป่วยที่มีปัญหาปวดหลังต่อไป

วัสดุและวิธีการศึกษา

1. อาสาสมัคร

การศึกษารั้งนี้เป็นการวิจัยแบบทดลองทางคลินิก (randomized controlled trial) ในอาสาสมัครสุขภาพดีชายหญิงที่มีอายุระหว่าง 18 -25 ปี จำนวน 66 คน จำนวนได้จากการศึกษานำร่องของอาสาสมัครจำนวน 10 คน โดยใช้โปรแกรม G*Power analysis แบบ ANCOVA: Fixed effects, main effects and interactions กำหนดค่า effect size ระดับปานกลางที่ 0.53, alpha = 0.05, power = 0.8 ซึ่งก็ได้จำนวนกลุ่มตัวอย่างประมาณ 30 รายต่อกลุ่ม เมื่อคำนวณถึงโอกาสที่อาสาสมัครถอนตัวออกจากศึกษา (drop out) ร้อยละ 10 ทำให้ต้องใช้กลุ่มตัวอย่าง 33 รายต่อกลุ่ม เกณฑ์การคัดเข้าคือ อาสาสมัครที่มีดัชนีมวลกายอยู่ในเกณฑ์ปกติ (18.50 ถึง 25.00 กก./ม²) สามารถทำการเคลื่อนไหวของขาในทิศทางของข้อสะโพกร่วมกับเข่าได้มากกว่าหรือเท่ากับ 90 องศา เหยียดเข้าได้เต็มของศักยภาพเคลื่อนไหวกระดกข้อเท้าได้มากกว่าหรือเท่ากับ 0 องศา และเหยียดข้อเท้าได้มากกว่าหรือเท่ากับ 30 องศา ไม่มีโรคประจำตัวที่เป็นข้อห้ามของการนวด สามารถทำตามคำสั่งและสื่อสารได้ดี เกณฑ์การคัดออกได้แก่ ผู้ที่มีอาการปวดหลัง/ขา หรือขาล้าวลงขาที่จำเป็นต้องได้รับการรักษาด้วยวิธีต่างๆ มีประวัติการบาดเจ็บหรือได้รับการผ่าตัดของกระดูกสันหลังหรือรยางค์ล่าง มีประวัติกระดูกหักหรือข้อต่อเคลื่อนที่ยังไม่ติดดีบริเวณกระดูกสันหลังหรือรยางค์ล่าง มีการติดเชื้อที่บริเวณระบบประสาทส่วนกลางหรือบริเวณ

กระดูกสันหลัง มีความผิดปกติของกระดูกสันหลัง เช่น เสื่อมของกระดูกสันหลัง มีปัญหาทางระบบประสาท เช่น สูญเสียความรู้สึก ชา กล้ามเนื้ออ่อนแรง มีบาดแผลเปิดหรือแผลเริ่มจะปิดบริเวณหลัง มีเนื้องอกมะเร็งหรือได้รับการรักษาแบบเคมีบำบัด อยู่ในขณะตั้งครรภ์ มีปัญหาทางด้านสุขภาพจิต ไม่สามารถสื่อสารได้รู้เรื่อง หรือไม่สามารถทำตามคำสั่งได้

2. อุปกรณ์ที่ใช้ในการวิจัย

ในการศึกษารั้งนี้ทำการวัดความมีดหยุ่นของเส้นประสาทส่วนล่างโดยวัดจากองค์การเคลื่อนไหวด้วยวิธี SLR ในท่านอนหงายโดยใช้อุปกรณ์วัดองค์การเคลื่อนไหว inclinometer

3. ขั้นตอนการวิจัย

การศึกษารั้งนี้ทำการเปรียบเทียบสองกลุ่ม ได้แก่กลุ่มที่ได้รับการรักษาด้วยเทคนิค RT และกลุ่มควบคุม โดยมีจำนวนอาสาสมัครกลุ่มละ 33 คน เมื่ออาสาสมัครผ่านเกณฑ์การคัดเข้าจากการตอบแบบสอบถามเพื่อคัดกรองเบื้องต้นและการตรวจร่างกายเพื่อคัดแยกภาวะที่ไม่เหมาะสมต่อการนวดโดยวิธี active และ passive movement และ special tests ของกระดูกสันหลังจากนักกายภาพบำบัดผู้เชี่ยวชาญ จำนวนได้ให้อาสาสมัครลงชื่อในใบยินยอมเข้าร่วมการศึกษา ทำการแบ่งอาสาสมัครออกเป็น 2 กลุ่ม โดยใช้วิธี block randomization (6 blocks) โดยผู้วิจัยคนที่ 1 คือกลุ่มควบคุมและกลุ่มทดลองที่ได้รับการรักษาด้วยเทคนิค RT โดยให้การรักษาทั้งหมด 1 ครั้ง ตัวแปรที่ต้องการศึกษาคือองค์การเคลื่อนไหวของข้อสะโพก เมื่อวัดด้วยวิธี SLR ก่อนและหลังการรักษาทันทีโดยผู้วิจัยคนที่ 2 โครงการวิจัยนี้ได้ผ่านการพิจารณาจดแจ้งรับรองจากคณะกรรมการจริยธรรมจากคณะนักศึกษาจุฬาลงกรณ์มหาวิทยาลัย ขอนแก่น ตามหนังสือรับรองเลขที่ HE 612126

การวัดองค์การเคลื่อนไหวของข้อสะโพกด้วยวิธี SLR

ผู้วิจัยให้อาสาสมัครสวมเสื้อที่มีกระดุมทางด้านหลัง เมื่ออาสาสมัครเปลี่ยนเสื้อผ้าตามที่ผู้วิจัยเตรียมไว้ให้แล้วอาสาสมัครจะได้รับการวัดองค์การเคลื่อนไหวด้วยวิธี SLR ในท่างอข้อสะโพกร่วมกับเหยียดเข่า (hip flexion with knee extension) โดยผู้วิจัยคนที่ 2 วิธีการ

วัดได้แก่ ให้อาสาสมัครนอนหงายขาขวาเหยียดตรง ขาซ้ายจะเป็นขาที่ทำการวัด SLR โดยขาซ้ายจะจัดท่าให้อุ้ยในท่าเข่าเหยียดตรง ข้อเท้าอุ้ยในท่าเหยียดเล็กน้อย (ankle in plantar grade position) โดยใส่ถุงอุปกรณ์บริเวณข้อเท้า (ankle foot orthosis) เพื่อช่วยในการคงรูปของเท้า⁽¹²⁾ เมื่อเตรียมความพร้อมของอาสาสมัครแล้วผู้วิจัยคนที่ 2 ทำการวัดองศาการเคลื่อนไหวของข้อสะโพกด้วยวิธี SLR โดยทำการยกขาของอาสาสมัครขึ้นในแนวตรงโดยรักษาการเหยียดเข้าไว้ตั้งถึงจุดที่อาสาสมัครเริ่มตึง (P₁) ค้างไว้ 5 วินาที จากนั้นผู้วิจัยคนที่ 2 ยกขาอาสาสมัครขึ้นไปต่อจากนั้นถึงจุดที่อาสาสมัครรู้สึกตึงจนทนไม่ไหว (P₂) ผู้วิจัยคนที่ 3 อ่านค่าแล้วว่างขาอาสาสมัครกลับสู่ท่าตั้งต้น⁽¹²⁾ วัดซ้ำ 3 ครั้ง และหาค่าเฉลี่ย

กลุ่มควบคุม: อาสาสมัครอุ้ยในท่าอนตะแคงมีหมอนรองที่ศีรษะอยู่ในระดับเดียวกับแนวกระดูกสันหลังของเข่าของสะโพกทั้งสองข้าง 90 องศา นอนพักเป็นเวลา 5 นาที

รูปที่ 1 รูปแสดงแนวเส้นซึ่งตรงกับตำแหน่งของ facet joint ที่บริเวณกระดูกสันหลังระดับ T4 ถึง L3

กลุ่มทดลอง: อาสาสมัครได้รับเทคนิคการกดนวดลงตามแนวเส้นซึ่งตรงกับตำแหน่งของ facet joint ที่บริเวณกระดูกสันหลังระดับ T4 ถึง L3 หรือบริเวณปลายสะบักด้านล่างถึงขอบกระดูกซี่โครงระดับสุดท้าย (รูปที่ 1) โดยการนวดจะเป็นการกดนวดแต่ละจุดโดยใช้นิ้วหัวแม่มือข้างขวาของผู้วิจัยคนที่ 1 กดลงไปตามแนวเส้นข้างกระดูก

สันหลังด้านซ้ายของอาสาสมัครค้างไว้ประมาณ 5 วินาที แล้วปล่อยเมื่อจากนั้นก็ทำการกดจุดต่อไปที่อยู่บนเส้นข้างกระดูกสันหลังเหมือนกันในตำแหน่งล่างลงมาค้างไป 5 วินาทีแล้วปล่อย ทำซ้ำไปเรื่อยๆ จนถึงระดับกระดูกสันหลังระดับที่ 3 เป็นการสิ้นสุดการทำเทคนิค RT ครั้งที่ 1 ทำซ้ำให้ครบ 3 รอบ จากนั้นผู้วิจัยทำการนวดด้วยเทคนิคเดิมตามแนวเส้นข้างกระดูกสันหลังด้านขวา โดยการนวดด้วยเทคนิค RT นี้จะใช้เวลาประมาณ 5 นาที

4. การวิเคราะห์ข้อมูล

การศึกษานี้ใช้สถิติเชิงพรรณนาเพื่ออธิบายลักษณะของอาสาสมัครจากนั้นทำการทดสอบการแจกแจงแบบปกติของข้อมูลด้วยสถิติ Shapiro-Wilk Test พบร่วมกับข้อมูลมีการแจกแจงปกติ จึงใช้สถิติ paired t-test ในการเปรียบเทียบความแตกต่างของข้อมูลก่อนและหลังการทดลองภายในกลุ่มและใช้สถิติ Analysis of covariance (ANOVA) เพื่อเปรียบเทียบผลของการรักษาระหว่างกลุ่มโดยใช้ค่าตัวแปรก่อนการรักษา และน้ำหนักตัวเป็นตัวแปรร่วม (covariates) โดยกำหนดระดับนัยสำคัญทางสถิติที่ 0.05 ซึ่งวิเคราะห์ข้อมูลด้วยโปรแกรม SPSS version 23.0

ผลการศึกษา

อาสาสมัครที่เข้าร่วมในการศึกษาระดับนี้มีจำนวน 66 คน ลักษณะข้อมูลพื้นฐานดังแสดงในตารางที่ 1 ผลการศึกษาพบว่าในกลุ่มที่ได้รับการรักษาด้วยเทคนิค RT มีค่าเฉลี่ยองศาการเคลื่อนไหวของข้อสะโพกเมื่อวัดด้วยวิธี SLR ในจุดที่อาสาสมัครเริ่มรู้สึกตึง (P₁) และจุดที่ตึงที่สุด (P₂) หลังการรักษาเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ เมื่อเปรียบเทียบกับก่อนการรักษา ($p < 0.05$) ในกลุ่มควบคุมพบว่ามีการเปลี่ยนแปลงอย่างมีนัยสำคัญทางสถิติในจุด P₁ ($p < 0.05$) แต่มีการเปลี่ยนแปลงอย่างไม่มีนัยสำคัญทางสถิติในจุด P₂ นอกจากนั้นเมื่อเปรียบเทียบค่าความแตกต่างระหว่างกลุ่มพบว่าองศาการเคลื่อนไหวของกลุ่มทดลองมีค่าเพิ่มขึ้นมากกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ ($p < 0.001$) ทั้งในจุด P₁ และ P₂ ดังแสดงในตารางที่ 2

ตารางที่ 1 ข้อมูลพื้นฐานของอาสาสมัครจำนวน 66 คน

ข้อมูลพื้นฐาน	กลุ่มควบคุม (n = 33)	กลุ่มทดลอง (N = 33)	Mean different (95% CI)	p-value
อายุ (ปี)	20.73 ± 1.35	20.70 ± 1.40	0.03 (-0.65 ถึง 0.71)	0.93
เพศ (ชาย/หญิง)	12/21	9/24	-	-
น้ำหนัก (กิโลกรัม)	56.56 ± 7.48	53.48±5.54	3.08 (-0.16 ถึง 6.31)	0.06
ส่วนสูง (เซนติเมตร)	165.15 ± 7.91	160.36 ± 6.96	4.79 (1.18 ถึง 8.39)	0.01*
ตัวน้ำมันละเมาท์ (กิโลกรัม/เมตร ²)	20.67 ± 1.45	20.80 ± 1.86	0.13 (-0.95 ถึง 0.69)	0.75
Base line P ₁	49.67 ± 20.84	44.72 ± 17.03	4.95 (- 4.41 ถึง 14.31)	0.30
Base line P ₂	69.19 ± 22.89	64.12 ± 18.51	3.07 (- 7.17 ถึง 13.31)	0.55

* แตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p < 0.05$)

ตารางที่ 2 แสดงการเปรียบเทียบค่าความแตกต่างขององค์การเคลื่อนไหวของข้อสะโพกระหว่างก่อนและหลังการรักษาของอาสาสมัครรายในกลุ่มเมื่อวัดด้วยวิธี SLR โดยใช้สถิติ pair t-test และความแตกต่างระหว่างกลุ่มโดยใช้สถิติ ANOVA

ตัวแปร	กลุ่มควบคุม (n = 33)			กลุ่มทดลอง (n = 33)			Adjusted group differences in mean change		
	ก่อนทำ การรักษา	หลังทำ รักษา	mean difference	ก่อนทำ การรักษา	หลังทำ การรักษา	Mean difference	Mean	95% CI	p-value
SLR (P ₁)	49.67 ± 20.84	52.26 ± 22.03 ^{††}	2.60 ± 4.30	44.72 ± 17.03	52.85 ± 17.79 ^{††}	8.13 ± 6.39	5.69	2.81 to 8.57	<0.001**
SLR (P ₂)	67.19 ± 22.89	67.00 ± 25.00	0.19 ± 4.61	64.12 ± 18.51	79.98 ± 18.90 ^{††}	6.86 ± 6.17	7.17	4.32 to 10.01	<0.001**

†† p -value < 0.01 ความแตกต่างระหว่างก่อนและหลังการทดสอบ

** p -value < 0.01 ความแตกต่างระหว่างกลุ่ม

วิจารณ์ผลการศึกษา

การศึกษานี้ได้ทำการศึกษาผลทันทีของเทคนิค RT ซึ่งเป็นเทคนิคการนวดลงตามแนวเส้นซึ่งตรงกับตำแหน่งของ facet joint ที่บริเวณกระดูกสันหลังระดับ T4 ถึง L3 ต่อความตึงตัวของเส้นประสาทส่วนล่างและการเปลี่ยนแปลงของศาสากการเคลื่อนไหวของมุ่งของข้อสะโพกขณะเข้าเหยียดตรงในท่านอนหนาย จากการวัดด้วยวิธี SLR ในอาสาสมัครสุขภาพดีจำนวน 66 คน พบว่าอาสาสมัครในกลุ่มทดลอง มีค่าของศาสากการเคลื่อนไหวของข้อสะโพกเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ

เนื่องจากการนวดด้วยเทคนิค RT เป็นวิธีการที่ไม่ได้กระทำการกดนวดลงไปยังบริเวณที่ปวดโดยตรง แต่ให้ผลในการลดปวดบริเวณที่เหนือจากจุดที่ทำการรักษาได้ แต่การศึกษาประสิทธิภาพของเทคนิคนี้ต่อการเปลี่ยนแปลงการทำงานของระบบประสาทส่วนที่อยู่ล่าง ต่อบริเวณที่ทำการกดนวดด้วยเทคนิค RT ยังมีจำกัด ผู้วิจัย จึงมีความสนใจที่จะศึกษาผลของเทคนิค RT ต่อการเปลี่ยนแปลงความตึงตัวของเส้นประสาทของขา ผลการศึกษาดังกล่าวสอดคล้องกับการศึกษาของพันธุ์เมธากุล และคณะ ที่ศึกษาผลทันทีของการนวดด้วยเทคนิค RT ในผู้ป่วยที่มีอาการปวดคออยุรระหว่าง 18 ถึง 25 ปี จำนวน 40 คน แบ่งอาสาสมัครออกเป็น 2 กลุ่ม คือกลุ่มทดลอง และกลุ่มควบคุมแล้ววัดของศาสากการเคลื่อนไหวของคอเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ ($p < 0.05$)⁽⁸⁾ นอกจากนี้ยังสอดคล้องกับการศึกษาของพิทักษ์ และคณะที่ทำการศึกษาผลของการนวดด้วยเทคนิค RT ร่วมกับการทำ thoracic manipulation เปรียบเทียบกับการทำ thoracic manipulation เพียงอย่างเดียว ในผู้ที่มีอาการปวดคออยุรระหว่าง 18 ถึง 29 ปี จำนวน 30 คน ผลการศึกษาพบว่าอาสาสมัครกลุ่มที่ได้รับการรักษาด้วยเทคนิค RT ร่วมกับการทำ thoracic manipulation มีอาการปวดลดลง และมีองศาสากการเคลื่อนไหวของมุ่งเหยียดข้อศอกมากขึ้นจากการวัดด้วย Upper Limb Neurodynamic Test 1 (ULNT1)⁽¹³⁾ ของศาสากการเคลื่อนไหวที่เพิ่มขึ้นสามารถอธิบายได้จากผลของแรงกดผ่าน facet joint ไปยัง dural ligament ซึ่งเป็นอันที่เกาะจากบริเวณ dural sac ไปยัง

บริเวณ posterior longitudinal ligament และหมอนรองกระดูกสันหลัง ซึ่งสามารถตอบได้ตั้งแต่ฐานกระดูกศีรษะไปจนถึงกระดูกสันหลังระดับ S1 หลายการศึกษาซึ่งให้เห็นว่าหากอันนี้เกิดความตึงตัวหรือแรงคีบที่บริเวณได้ บริเวณหนึ่งจะสามารถส่งผลให้เกิดการเคลื่อนของเนื้อเยื่อระบบประสาทส่วนอื่นอย่าง เกิดอาการปวดและนำมาระบกัดการเคลื่อนไหวร่วมด้วย⁽¹⁴⁾ ดังนั้นการใช้เทคนิค RT ซึ่งเป็นการส่งแรงกดลงไปถึง dural ligament จะสามารถช่วยลดความตึงตัวต่ออันนี้และลดแรงตึงตัวของเนื้อเยื่อระบบประสาท (neural tension) ในภาพรวมได้⁽¹⁾ ทำให้เนื้อเยื่อประสาทเคลื่อนตัวได้มากขึ้น และเพิ่มองศาสากการเคลื่อนไหวได้⁽¹⁴⁾ นอกจากนั้นการนวดด้วยเทคนิค RT นี้ได้ช่วยเพิ่ม local relaxation และ general relaxation โดยการเพิ่มการไหลเวียนของเลือดและเพิ่มออกซิเจนเข้าสู่เนื้อเยื่อ อีกทั้งยังเกิดผลทางด้านจิตใจ (psychological effect)⁽¹⁵⁻¹⁶⁾

ในการศึกษานี้พบว่าองศาสากการเคลื่อนไหวของข้อสะโพกทั้งในจุดที่อาสาสมัครเริ่มรู้สึกตึง (P_1) และจุดที่ตึงที่สุด (P_2) ของกลุ่มทดลองเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ ($p < 0.01$) หลังจากได้รับการนวดด้วยเทคนิค RT เมื่อเปรียบเทียบกับก่อนได้รับการรักษา สอดคล้องกับการศึกษาในอดีตของ Ganer และคณะที่ทำการศึกษาผลของการทำ thoracic manipulation ต่อความตึงตัวของเส้นประสาทส่วนล่างในผู้ใหญ่ที่มีสุขภาพดี อายุระหว่าง 18-30 ปี โดยมีอาสาสมัครทั้งหมด 22 คน ผลการศึกษาพบว่าภายหลังได้รับการรักษากลุ่มอาสาสมัครที่ได้รับการรักษาด้วย thoracic manipulation มีองศาสากการเคลื่อนไหวที่เพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ⁽¹²⁾ โดยองศาสากการเคลื่อนไหวที่เพิ่มขึ้นนั้นสามารถอธิบายได้จากผลของการนวด RT ที่ทำให้เกิดการเปลี่ยนแปลงเชิงกลต่อการเคลื่อนไหวของไขกระดูก ไม่ผลทำให้เนื้อเยื่อที่อยู่ติดกันมีความตึงตัวน้อยลงเนื่องจากถูกยืด ทำให้กล้ามเนื้อมีความยืดหยุ่นเพิ่มมากขึ้นทำให้สามารถทำการเคลื่อนไหวได้มากขึ้น นอกจากนั้นผลของเทคนิค RT ยังสามารถลดแรงตึงตัวของ dural ligament และยังลดแรงตึงตัวของเนื้อเยื่อประสาท (neural tension)⁽¹⁾ ด้วยตามที่ได้อธิบายไปแล้วข้างต้น

ในกลุ่มควบคุมมีการเปลี่ยนแปลงขององค์การเคลื่อนไหวของข้อสะโพกเมื่อวัดด้วยวิธี SLR ในจุดที่อาสาสมัครเริ่มรู้สึกตึง (P_1) อย่างมีนัยสำคัญทางสถิติ ($p < 0.01$) แต่ไม่พบการเปลี่ยนแปลงที่จุดที่ตึงที่สุด (P_2) สอดคล้องกับการศึกษาของ Ganesh และคณะที่ทำการศึกษาผลทันทีและภายใน 24 ชั่วโมง หลังการรักษาด้วยวิธี Unilateral lumbar mobilization โดยการวัด SLR ในอาสาสมัครสุขภาพดี ทั้งหมด 30 คน มีอายุระหว่าง 20-24 ปี ผลการศึกษาพบว่าองค์การเคลื่อนไหวเมื่อทำการวัด SLR ภายในกลุ่มควบคุม มีค่าเพิ่มขึ้นเล็กน้อย⁽¹⁷⁾ ซึ่งการเปลี่ยนแปลงที่เกิดขึ้นที่จุด P_1 เกิดเนื่องจากการวัด SLR ในระยะแรก เส้นประสาทจะยังคงมีความหย่อนตัวและมีความตึงตัวน้อย เมื่อทำการเคลื่อนไหวโดยการวัด SLR เส้นประสาทจะหย่อนตัวน้อยลงและมีความตึงตัวมากขึ้น⁽¹⁸⁻¹⁹⁾ ซึ่งกลไกการเคลื่อนไหวของเส้นประสาทนี้จะเริ่มเคลื่อนผ่านจากข้อต่อหนึ่งไปยังอีกข้อต่อหนึ่งที่อยู่ต่ำกว่า เมื่อถึงช่วงกลางของการเคลื่อนไหวความตึงตัวของเส้นประสาทจะเพิ่มสูงขึ้นจากช่วงแรกและสูงมากที่สุดในช่วงท้ายของการเคลื่อนไหว⁽²⁰⁾ ดังนั้นเมื่อวัด SLR ในจุด P_1 ซึ่งอยู่ในช่วงแรก จนถึงช่วงกลางของการเคลื่อนไหว เส้นประสาทจะยังคงมีความหย่อนตัวและมีความยืดหยุ่นจึงสามารถเคลื่อนไปอีกได้ค่า SLR จึงเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ แต่เมื่อวัด SLR ในจุดที่อาสาสมัครรู้สึกตึงมากที่สุด (P_2) ซึ่งอยู่ในช่วงท้ายของการเคลื่อนไหวแล้ว เส้นประสาทจะสูญเสียความหย่อนตัวและมีความตึงตัวมากที่สุด จึงไม่สามารถเคลื่อนไหวต่อไปได้ ค่า SLR จึงไม่มีการเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ

การศึกษาในครั้งนี้พบว่าการรักษาด้วยเทคนิค RT ซึ่งเป็นเทคนิคการนวดลงตามแนวเส้นที่ตรงกับตำแหน่งของ facet joint บริเวณกระดูกสันหลังระดับ T4 ถึง L3 หรือบริเวณปลายสะบักด้านล่างถึงขอบกระดูกซี่โครงระดับสุดท้ายเป็นเวลา 5 นาที สามารถเพิ่มองค์การเคลื่อนไหวของมุ่งอข้อสะโพกขณะเข้าเหยียดตรงในท่านอนหงายจากการวัดด้วยวิธี SLR ได้ อย่างไรก็ตามการศึกษานี้ยังมีข้อจำกัดคือเป็นการรักษาเพียงครั้งเดียว ไม่มีการติดตามผลในระยะยาวอีกทั้งยังเป็นเทคนิคใหม่ที่ยังไม่เคยทำการศึกษาผลต่อร่างกายล่างมาก่อน และในการศึกษานี้ทำการศึกษาผลต่อร่างกายล่างมาก่อน และในการศึกษานี้

เป็นการศึกษาในผู้ที่มีสุขภาพดี ยังไม่ได้นำไปใช้ในกลุ่มผู้ที่มีปัญหาการปวดหลัง นอกจากนี้อายุเฉลี่ยของผู้เข้าร่วมการศึกษาค่อนข้างน้อยซึ่งอาจมีผลต่อการนำผลการศึกษาไปใช้ในกลุ่มช่วงอายุอื่นๆ เช่น กลุ่มวัยทำงานและกลุ่มผู้สูงอายุ เป็นต้น

สรุปผลการศึกษา

การศึกษาวิจัยในครั้งนี้พบว่าการรักษาด้วยเทคนิค RT ตั้งแต่บริเวณปลายสะบักด้านล่างถึงขอบกระดูกซี่โครงในผู้ที่มีสุขภาพดี สามารถทำให้เกิดการเปลี่ยนแปลงทันที ต่อความตึงตัวของเส้นประสาทส่วนล่าง โดยทำให่องค์การเคลื่อนไหวของมุ่งอข้อสะโพกขณะเข้าเหยียดตรงในท่านอนหงาย จากการวัดด้วยวิธี SLR เพิ่มขึ้นได้

กิตติกรรมประกาศ

งานวิจัยในครั้งนี้ได้รับการสนับสนุนจากศูนย์วิจัย ปวดหลัง ปวดคอ ปวดข้ออื่นๆ และสมรรถนะของมนุษย์ (BNOJPH) มหาวิทยาลัยขอนแก่น ทุนวิจัยจากกองทุนวิจัย คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น

เอกสารอ้างอิง

1. Butler D. In: Butler D, ed. Mobilization of the nervous system. Singapore: Churchill Livingstone, 1991
2. Khaonhon N, Suponok N, Donlakprn I. Prevalence of musculoskeletal pain in Khon Kaen University students.[Bachelor of Science Thesis in Physical Therapy] Khon Kaen: Khon Kaen university, 2009
3. Grace O, Ejiofor N, Fatima G, Mamman M, Mohammad A, Ali M, et al. Prevalence of Low Back Pain among Undergraduate Physiotherapy Students in Nigeria. Pain Res Treat 2016.
4. Mackawan S, Eungpinichpong W, Pantumethakul R, Chatchawan U, Hunsawong T, Arayawichanon P. Effects of traditional Thai massage versus joint mobilization on

substance P and pain perception in patients with non-specific low back pain. *Spine* 2007; 11: 9-16.

5. Gross AR, Kay T, Hondras M, Goldsmith C, Haines T, Peloso P, et al. Manual therapy for mechanical neck disorders: a systematic review. *Man Ther* 2002; 7: 131-49.
6. Puntumetakul R. Tension point and nerve mobilization in cervical spondylosis patient with nerve root compression (1 case report). *Thai J of Phys Ther* 2000;22:89-101
7. Puntumetakul R, Eungpinichpong W, Puengsuwan P, Rithmark P. Combining knowledge of local wisdom together with modern medicine (specific exercise) for back pain care in fishnet worker: Case studies in fishnet factories, Khon Kaen. Proceeding in National Research Council of Thailand conference. Bangkok: National Research Council of Thailand; 2554: 219-24.
8. Puntumetakul R, Pithak R, Eungpinichpong W, Lohamongkol P, Usupharach W, Boonseana S., et al. Immediate effects of special massage technique from inferior angle of scapula to the lowest rib in neck pain patients. *J Med Tech Phy Ther* 2016; 28(2): 135-43.
9. Marsico P, Tal-Akabi A, Van Hedel HJ. Reliability and practicability of the straight leg raise test in children with cerebral palsy. *Dev Med Child Neurol* 2016; 58: 173-9.
10. Neto T, Jacobsohn L, Carita AI, Oliveira R. Reliability of the Active-Knee-Extension and Straight-Leg-Raise Tests in Subjects With Flexibility Deficits. *J Sport Rehabil* 2015.
11. Ros C, Roger A, Rob H. Straight leg raise test high reliability is not a motor memory artefact. *Aust J Physiother* 1994; 40: 107-11.
12. Ganer N. Effect of Thoracic Spinal Manipulation on Lower Limb Neurodynamics in Healthy Young Adults: Neural Link to Regional Interdependence. *Int J Health Sci* 2015; 5: 157-65.
13. Pithak R, Namwongsa S, Puntumetakul R, et al. The effect of massage technique plus thoracic manipulation versus thoracic manipulation on pain and neural tension in mechanical neck pain: a randomized controlled trial. [Master of Science Thesis in Physical Therapy] Khon Kaen: The graduate school, Khon Kaen university., 2017
14. Leon LW, Allen SF, James A, Paul D, Fernando AR. Relationship of the dura Hofmann's ligaments, Batson's plexus, and a fibrovascular membrane lying on the posterior surface of the vertebral bodies and attaching to the deep layer of the posterior longitudinal ligament: an anatomical, radiologic, and clinical study. *Spine* 1993; 18: 1030-43.
15. Hollis M. *Massage of therapy*. Oxford, England: Blackwell; 1987.
16. Jan LS, Donna KB. *Therapeutic massage and bodywork*. United States: The McGraw-Hill; 2008; 113-28.
17. Ganesh S, Mohanty P and Pattnaik SS. The immediate and 24-hour follow-up effect of unilateral lumbar Z-joint mobilisation on posterior chain neurodynamics. *Journal of Bodywork and Movement therapies* 2015; 19: 226-31
18. Sunderland S and Bradley K. Stress strain phenomena in human peripheral nerve trunks. *Brain* 1961; 84: 102-119

19. Breig A. Biomechanics of the Central Nervous System. Almqvist and Wiksell, Stockholm. 1960
20. Charnley J. Orthopaedic signs in the diagnosis of disc protrusion with special reference to the straight-leg-raising test. Lancet 1951; 1: 186-192

ความสัมพันธ์ระหว่างการขยายตัวของทรวงอกและความแข็งแรงในเด็กทั่วไป

ชลิตา ชองขันปอน¹, ระวีวรรณ เล็กสกุลไชย^{2*} และ พีร์มงคล วัฒนาณนท³

Received: August 29, 2019

Revised: November 22, 2019

Accepted: February 12, 2020

บทคัดย่อ

ปัญหาของระบบหายใจในเด็กสามารถส่งผลต่อความสามารถในการเคลื่อนไหว การตรวจพบความผิดปกติ ตั้งแต่เริ่มแรกจึงมีความสำคัญ กล้องวิดีโอบนที่ศูนย์สามารถใช้วัดการขยายตัวของทรวงอกที่เป็นตัวบ่งบอกการทำงานของระบบหายใจ อย่างไรก็ตามการวัดด้วยวิดีโอบนที่ศูนย์นี้จะต้องมีการทดสอบความแม่นยำก่อนนำไปใช้เก็บข้อมูล นอกจากนี้ ยังไม่มีหลักฐานสนับสนุนเรื่องความสัมพันธ์ของการทำงานในระบบหายใจในส่วนของการขยายตัวของทรวงอกและความแข็งแรง ของกล้ามเนื้อในเด็ก ดังนั้นงานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาความแม่นยำของกล้องวิดีโอบนที่ศูนย์โดยใช้วัดแบบคลื่นแม่เหล็กไฟฟ้า เป็นเกณฑ์มาตรฐานในการวัดการขยายตัวของทรวงอก และเพื่อตรวจสอบความสัมพันธ์ระหว่าง การขยายตัวของทรวงอกและความแข็งแรงในเด็กทั่วไป เด็กจำนวน 47 คน (อายุเฉลี่ย 10.9 ปี, ค่าเบี่ยงเบนมาตรฐาน 1.11 ปี) ระดับชั้นประถมศึกษาได้เข้าร่วมการทดสอบ กล้องวิดีโอบนที่ศูนย์และคลื่นแม่เหล็กไฟฟ้าถูกใช้เพื่อวัดการขยายตัวของทรวงอกในเวลาเดียวกัน โดยข้อมูลนี้จะใช้เพื่อศึกษาความแม่นยำของกล้องวิดีโอบนที่ศูนย์ นอกจากนี้ความแข็งแรงของ ระยะค่าส่วนบุนเดลจากแรงบีบมือโดยใช้เครื่องวัดแรงบีบมือ ในขณะที่ความแข็งแรงของร่างกายวัดด้วยแบบประเมินความแข็งแรงของ the Bruininks-Oseretsky Test of Motor Proficiency second edition (BOT-2) ค่าการขยายตัวของทรวงอก จำกกล้องวิดีโอบนที่ศูนย์และคะแนนความแข็งแรงจากการทดสอบทั้งสองแบบถูกใช้ในการหาความสัมพันธ์ ผลการวิจัยพบ ความสอดคล้องกันระหว่างเครื่องมือทั้งสองชนิดในระดับดีถึงดีมาก ($ICC_{2,3} = 0.80-0.94$) แสดงว่ากล้องวิดีโอบนที่ศูนย์มีความแม่นยำในการวัดการขยายตัวของทรวงอก นอกจากนี้ยังพบความสัมพันธ์เชิงบวกระหว่างการขยายตัวของทรวงอก และความแข็งแรง จากผลการทดสอบความแม่นยำแสดงว่า กล้องวิดีโอบนที่ศูนย์สามารถใช้วัดการขยายตัวของทรวงอกได้ และ ความสัมพันธ์ระหว่างการขยายตัวของทรวงอกและความแข็งแรงบ่งชี้ว่า สามารถใช้การขยายตัวของทรวงอกประเมิน ความแข็งแรงเบื้องต้นในเด็กทั่วไปได้ ในทางกลับกันการประเมินความแข็งแรงสามารถใช้ปัจจัยเด็กที่อาจจะมีปัญหา ด้านระบบหายใจได้

คำสำคัญ: เด็กทั่วไป, ความสัมพันธ์, ความเที่ยงตรงตามสภาพ, การขยายตัวของทรวงอก, แรงบีบมือ

¹ ฝ่ายวิจัยนวัตกรรมและวิเทศสัมพันธ์ ราชวิทยาลัยพยาบาล

² คณะกายภาพบำบัด มหาวิทยาลัยมหิดล

³ คณะกายภาพบำบัด มหาวิทยาลัยมหิดล

*ผู้รับผิดชอบบทความ

Correlation between chest wall expansion and strength in typically developing children

Chalida Chongkunpon¹, Raweewan Lekskulchai^{2*} and Peemongkon Wattananon³

Abstract

Respiratory problems in children could hinder motor competency. Early detection of respiratory problems is important. The simple 2D camera system (2DCS) can be used to measure chest wall expansion representing respiratory function. However, this system needs to be validated prior to data collection. Evidences also suggest chest wall expansion could be potentially used to represent muscle strength. However, the correlation between chest wall expansion and muscle strength has not been well established. Therefore, this study aimed to determine the concurrent validity of the 2DCS using the electromagnetic tracking system (EMT) as a reference standard for measuring chest wall expansion, and to investigate the correlation between chest wall expansion and strength in typically developing children. Forty-seven children (age 10.9 ± 1.11 years) attending primary schools were recruited. The 2DCS and the EMT were used to simultaneously measure chest wall expansion. These data were used to determine concurrent validity of the 2DCS. A hand-held dynamometer was used to measure grip strength that represents upper limb strength, while strength subtest of Bruininks-Oseretsky Test of Motor Proficiency second edition (BOT-2) was used to evaluate overall strength. These strength data were further used to determine the correlation between chest wall expansion and strength. Results demonstrated good to excellent agreements between two instruments ($ICC_{2,3} = 0.80-0.94$) indicating concurrent validity of the 2DCS. Additionally, significant positive correlations ($p < 0.05$) were found between chest wall expansion and strength. Validity result suggests that the 2DCS can be used to measure chest wall expansion. Correlation between chest wall expansion and strength indicates that we can use chest wall expansion to partially estimate the strength in typically developing children. On the other hands, strength screening could be used to identify children who might have a respiratory problem.

Keywords: Typically developing children, Correlation, Concurrent validity, Chest wall expansion, Grip strength

¹ Division of Research, Innovation and International Relations, Chulabhorn Royal Academy, Bangkok, Thailand

² Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand

³ Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand

*Corresponding author: (email: raweewan.lek@mahidol.ac.th)

Introduction

In children, respiratory problems are the common illnesses that could result in hospitalization and mortality⁽¹⁾. The prevalence of respiratory diseases in children is considerably increasing each year, which can impact on their quality of life⁽²⁾. Respiratory problems can also impact on their gross and fine motor functions leading to impairments in motor competence⁽³⁾. Poor motor competence can cause inactive lifestyle, and could further cause other health problems in childhood⁽⁴⁾.

Muscle strength is an important component in physical fitness that helps children to achieve gross motor functions and relates to gross motor skills in adolescents⁽⁵⁾. Muscle strength could involve in other body system, such as respiratory system. One study has demonstrated the association between muscle strength and pulmonary function in typically developing children⁽⁶⁾. However, pulmonary function measurement in this previous study required children's understanding about procedure of spirometry and maximal breathing without coughing⁽⁷⁾, which could be too difficult to implement in the primary school children.

Clinically, pulmonary function in healthy individuals can be indirectly measured by measuring chest wall expansion. The definition of chest wall expansion is the range of motion of the thorax which comprised of the thoracic vertebrae, sternum and ribs that involved in the respiration⁽⁸⁾. Greater chest wall expansion could represent better pulmonary function⁽⁸⁻⁹⁾. Based upon the relationship between muscle strength and pulmonary function, the relationship between muscle strength and chest wall expansion should

be present as well. Measurement of chest wall expansion can be used to detect the baseline status of respiratory function and follow up the effect of intervention to enhance respiratory function⁽¹⁰⁾.

Several noninvasive instruments can be used to evaluate chest wall and abdominal wall motions for estimating lung volumes⁽¹¹⁻¹²⁾. The electromagnetic tracking device (EMT) is one of the non-invasive instruments used to precisely measure the difference of chest wall area between inspiration and expiration⁽¹²⁾. Nevertheless, the instrument is expensive and require highly experienced examiners to operate the instrument. Thus, it may not be suitable for using in clinical practice⁽¹³⁾. Although a simple tape measurement is commonly used to evaluate chest wall expansion in clinical practice, the appropriateness has been questioned in various studies⁽¹⁴⁻¹⁷⁾. Accordingly, the development of a simple instrument with acceptable validity and reliability is necessary.

A simple 2D camera system (2DCS) is widely used to investigate human movement in clinical research because it is portable, easy to use, inexpensive, and able to provide visual feedback and re-assessment. One study demonstrated that this system can be used to measure chest wall expansion in adults⁽¹⁸⁾. Therefore, the 2DCS could be alternately used to measure chest wall expansion in typically developing children. However, this system should be validated prior to investigate the relationship between muscle strength and chest wall expansion. Therefore, the present study aimed to 1) determine a concurrent validity of the 2DCS using the EMT as a reference standard, and 2) investigate correlation between chest wall

expansion and strength by using the 2DCS. Researcher hypothesized that the concurrent validity of the 2DCS would be acceptable, and there would be an association between chest wall expansion and muscle strength.

Materials and Methods

1. Participants

Forty-seven typically developing children (25 boys, 22 girls), whose parents were willing to let their children participating in the present study, were recruited from primary schools. Based on sample size calculation, ten children were required to obtain the correlation coefficient of 0.7⁽²⁰⁾ at confidence level of 0.05 and 80% power to determine a concurrent validity, while a total sample of 47 children was needed to detect correlation coefficient of 0.4^(6,19) between chest wall expansion and strength at confidence level of 0.05 and 80% power. Therefore, the total number of required sample size for this study was 47 in which a subset of 10 children was used to determine the concurrent validity. The inclusion criteria included age between 9 and 12 years, studying in age-appropriate class in typical schools, ability to understand and follow verbal instructions and participation in regular classroom activities. The exclusion criteria included metal implantation, serious medical health conditions, physical anomalies, joint contracture, severe congenital disorder, a recent surgery or fracture (within the last 12 months), hearing or visual problems that could not be fixed with external devices, a history of spinal cord or brain injury, a history of structural deformities of the spine or ribcage, and chest wall abnormalities. The children and their parents were asked to sign an informed

consent form prior to data collection process. The study protocol was approved by the Ethic Committee of Mahidol University Institutional Review Board (MU-CIRB 2016/078.2405).

2. Instruments and measures

This study used the 2DCS (JVC video camera model: Everio GZ-MG645) with a custom Matlab program (MATLAB R2010a) to measure chest wall expansion. The frame rate was set at 25 frames/second and the resolution was 1080x1920 pixels. Two cameras were set at 0.85 meters height and 1.4 meters away from children in anterior and right-lateral directions. To determine concurrent validity of this system, the EMT (3D Guidance trakSTAR, Ascension Technology Corp.) with MotionMonitor software, (Innsport, Inc.) was used to simultaneously record chest wall expansion at 100 Hz. The EMT was used in this study because it is valid and reliable^(12,21). Furthermore, EMT was used to measure chest wall movement in previous study⁽¹²⁾.

For strength assessments, upper limb strength was evaluated by using grip strength dynamometer (TKK Model 5401; Takei, Japan) in kilograms. Grip strength could be used to measure hand and forearm muscular force which indicates upper limb strength. Moreover, the functional integrity of upper extremity could be presented by grip strength measurement⁽²²⁾. Strength subtest of the Bruininks-Oseretsky test of motor proficiency, second edition (BOT-2) was used to evaluate trunk, upper and lower body strength in children 4-21 years old. Previous studies used strength subtest of BOT-2 to measure muscle strength in children⁽²³⁾. The intra-and inter-rater reliability of this subtest were 0.99 and 0.95, respectively.

Strength subtest consists of 5 items including 1) standing long jump, recording the distance in inches, 2) knee push-ups, 3) sit-ups counting correctly number in 30 seconds, 4) wall sit, and 5) V-up recording the highest time in 60 seconds. Scores from each item are summed up to obtain total point score. The maximum total point score is 42. Total point scores are converted to scale score for interpretation by comparing with the norm score of child at the same age. Scale score was interpreted in 5 groups 1) well-above average (25 scores or greater), 2) above average (20-24 scores), 3) average (11-19 scores), 4) below average (6-10 scores), and 5) well-below average (5 scores or less)⁽²⁴⁾.

3. Procedure

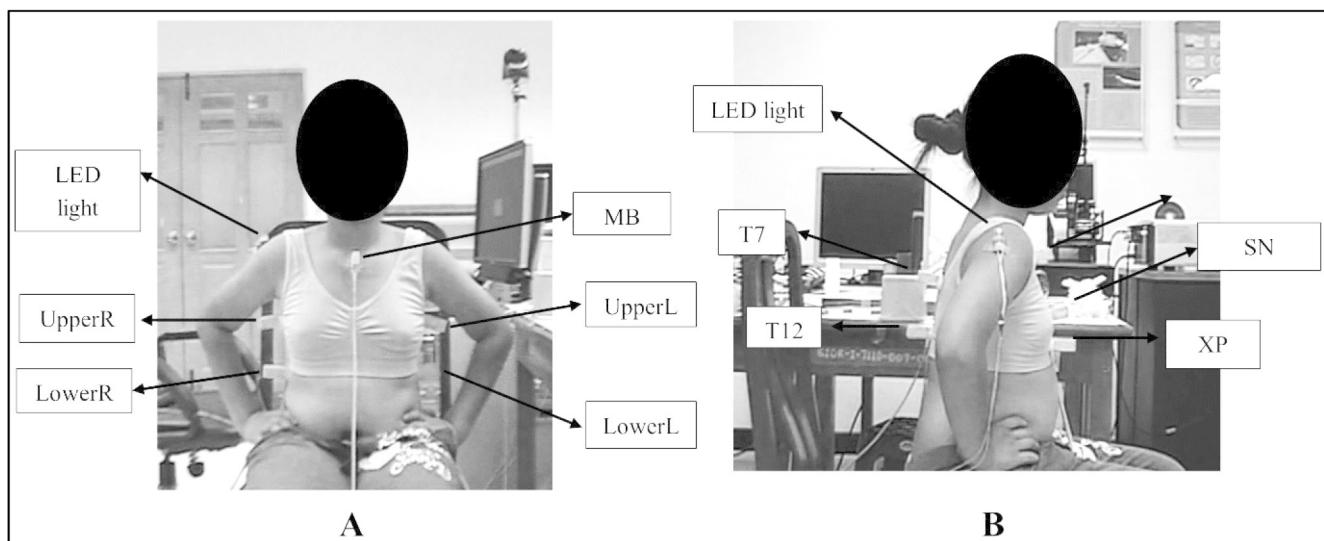
Children were taken to the laboratory room with private environment. Boys were asked to unclothe from the waist up, while girls were asked to wear a sport bra. Children were required to sit in a chair for body landmark identification. Body landmarks identification in each point had been assessed by an expert in pediatric physical therapy, yielding ranged from 80% to 100% accuracy. Sensors of the EMT and the 2DCS were attached on the same body landmarks in frontal and sagittal planes illustrated in Figure 1A and 1B, respectively for the first 10 children to determine concurrent validity of the 2DCS. The data from remaining children were obtained by the 2DCS alone.

Prior to data collection, a LED light was attached on the right shoulder to provide event trigger for the 2DCS. After setting up the event trigger, the researcher instructed and demonstrated the breathing method to familiarize children with testing procedure. This process aimed to minimize

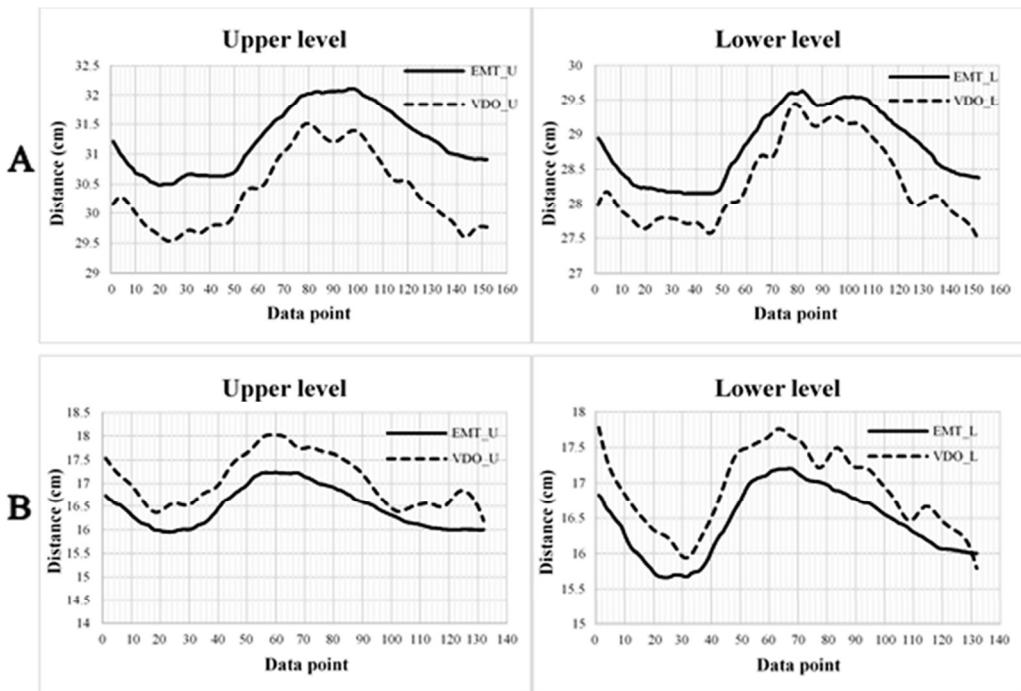
intra-subject variability. Children were asked to sit with their back straight on the chair, place both hands on their hips and look straight ahead for practice trials. They were given a verbal instruction to breathe in and breathe out for 2 cycles, and then after starting the third cycle, the researcher gave another verbal instruction to “breathe out maximally and breathe in maximally”. Children were required to practice the breathing method until they performed it correctly.

During data collection, children were asked to perform this maximal breathing for 3 consecutive cycles. The event trigger was pressed before full expiration and released after full inspiration in each cycle in frontal and sagittal planes. Children were allowed to rest for one minute between breathing cycles. Chest wall expansion from those 3 consecutive breathing cycles were concurrently recorded using the 2DCS and the EMT. Time points from maximum expiration to maximum inspiration were identified. The difference between these two time points represents chest wall expansion. Average scores across 3 breathing cycles were used for data analysis to determine concurrent validity of the 2DCS.

After chest wall expansion measurement, grip strength dynamometer was used to evaluate both right and left hand-grip strength. Children were asked to stand up straight with arms at the side of their body and hold the dynamometer. They were given a verbal instruction to squeeze maximally and then release. Before the data collection process, children were given practice trials until they could perform it correctly. One minute for the resting period between right and left assessments was provided. Three trials from right and left hands were performed and the highest score was recorded.


Strength subtest of the BOT-2 was used to evaluate strength after completing grip strength assessment. Five items of strength subtest of BOT-2 were explained and demonstrated. Children were instructed to practice until they could perform it correctly. Children performed all five items of strength subtest with one minute rest between tests. Both grip strength and strength subtest of the BOT-2 data were further used to determine the correlation between chest wall expansion and muscle strength.

4. Data analysis


Data from the first 10 children with both the 2DCS and the EMT simultaneously recorded were used to determine concurrent validity. For data processing, coordinates x (movement in sagittal plane) and y (movement in frontal plane) from the EMT were calculated to obtain the distances between 2 sensors in centimeters (cm.). In frontal plane, UpperR and UpperL sensors presented chest wall expansion at upper level.

LowerR and LowerL sensors presented chest wall expansion at lower level. Similarly in sagittal plane, Sternum and T7 sensors indicated upper level. Xiphoid process and T12 sensors indicated lower level. Linear interpolation technique was used to re-sampling. Video file (.avi) in each breathing cycle from the 2DCS was imported to a custom Matlab program for identifying sensors and calculating distance between sensors (cm.) using “Pythagorean theorem”. Distance data were filtered using a 10th order, FIR low pass filer with cutoff frequency at 1 Hz. This distance was used to represent chest wall expansion.

Chest wall expansion graphs from two instruments were created to detect the minimum distance and maximum distance (cm.) (**Figure 2A, 2B**). These minimum and maximum distances were obtained from full expiration and full inspiration, respectively. Averaged distance across three breathing cycles was used for further statistical analysis.

Figure 1 Body landmarks in frontal plane (A) and sagittal plane (B) as follows; the manubrium (MB), the right mid-axillary line at 4th rib (UpperR), the left mid-axillary line at 4th rib (UpperL), the right mid-axillary line at 9th rib (LowerR), the left mid-axillary line at 9th rib (LowerL), the inferior end of the sternum (SN), the spinous process of thoracic vertebrae (T7), the xiphoid process (XP), and the spinous process of thoracic vertebrae (T12).

Figure 2. Chest wall expansion graph from electromagnetic tracking system (solid line) and the simple 2D camera system (dashed line) at upper and lower levels in frontal (A) and sagittal (B) planes.

To determine the concurrent validity of the 2DCS, chest wall expansion was separately analyzed in planes (frontal and sagittal planes) and levels (upper and lower levels) in centimeters. To examine correlation between chest wall expansion and strength, chest wall expansion was calculated in square centimeters (cm^2) by identifying and calculating area between sensors in the custom Matlab program to appropriately represent chest wall. UpperR, UpperL, LowerR and LowerL sensors presented chest wall expansion area in frontal plane. Sternum, T7, Xiphoid process and T12 sensors indicated the area in sagittal plane. Chest wall expansion areas was presented as combination of two planes, frontal and sagittal planes by calculating the difference between maximum and minimum areas. Correlation between chest wall expansion and grip strength

score from right and left hands was examined. Previous study reported that body surface area could vary depending on body weight⁽²⁵⁾. Therefore, researcher also standardized chest wall expansion represented by body surface area with the weight prior to examine correlation between chest wall expansion and strength subtest of BOT-2 in statistical analysis.

5. Statistical analysis

Statistical analysis was performed using SPSS version 19 (IBM Corporation, New York, USA). Statistical p -value less than 0.05 would represent statistical significance. Kolmogorov-Simonov goodness of fit test was used to verify the normality of parameters of interest. Intraclass correlation coefficients ($\text{ICC}_{2,3}$) were used to determine concurrent validity of the 2DCS. Standard error of

measurement (SEM) was also established. To examine correlation between chest wall expansion and strength, Pearson's correlation was used when the data were normally distributed. Otherwise, Spearman's rank correlation was used.

Results

Descriptive statistical analysis demonstrated that mean age was 10.9 ± 1.1 years old, BMI was $20.6 \pm 6.1 \text{ kg/m}^2$, 53.2% were boys and 93.61% were right hand dominance. A concurrent validity study was conducted by using the first 10 participants of the 47 participants in the correlational study. Characteristics of participants are presented in

Table 1. Concurrent validity of the 2DCS using the EMT as a reference standard for measuring chest wall expansion was presented in **Table 2**. The $ICC_{2,3}$ of the 2DCS were ranged from 0.80 to 0.94 ($p < 0.001$).

Spearman's rank correlation coefficient revealed a significant positive correlation between chest wall expansion and hand grip strength. There was a significant positive correlation between chest wall expansion score of strength subtest of BOT-2. Correlation results are shown in **Table 3 and 4**.

Table 1 Characteristics of research participants (N=47)

Demographic data	Correlation study (N=47)	Validity study (N=10)
	Mean \pm SD	Mean \pm SD
Age (years)	10.9 ± 1.1	11 ± 1.3
Body weight (kg)	43.6 ± 15.9	40.2 ± 15
Height (cm)	144.5 ± 10.0	144.1 ± 11.9
Body mass index (kg/m^2)	20.6 ± 6.1	19.1 ± 6.1
Gender (n (%))		
Boy	25(53.2%)	6(60%)
Girl	22(46.8%)	4(40%)
Dominant hand (n (%))		
Right	44(93.61%)	10(100%)
Left	3(6.39%)	-

Table 2 Concurrent validity of the simple 2D camera system using the electromagnetic tracking system as a reference standard (N=10)

Chest wall		EMT		The simple 2D camera system		ICC _{2,3}	p-value
expansion (cm)		SEM	95%CI	SEM	95%CI		
Frontal	Upper	0.46	0.45,1.06	0.68	0.83,1.42	0.80	<0.001
	Lower	0.49	0.77,1.41	0.60	0.92,1.67	0.93	<0.001
Sagittal	Upper	0.29	0.85,1.52	0.38	1.16,1.79	0.84	<0.001
	Lower	0.29	0.86,1.34	0.33	0.97,1.47	0.94	<0.001

EMT, the electromagnetic motion tracking system; SEM, standard error of measurement; 95%CI, 95% confidence interval.

Table 3 Spearman's rank correlation coefficient between chest wall expansion and hand grip strength in typically developing children aged 9-12 years (N=47)

Hand grip strength scores	Chest wall expansion (cm ²)		
	Combination of two planes	Frontal plane	Sagittal plane
Rt. Hand grip strength	0.57**	0.45**	0.57**
Lt. Hand grip strength	0.45 ^a **	0.34 ^a *	0.53 ^a **

^a Pearson correlation coefficient

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Table 4 Spearman's rank correlation coefficient between chest wall expansion and scale score of strength subtest of BOT-2 in typically developing children aged 9-12 years (N=47)

Strength subtest of BOT-2	Chest wall expansion (cm ²) as normalized by body weight		
	Combination of two planes	Frontal plane	Sagittal plane
Scale score	0.32*	0.31*	0.34*

*. Correlation is significant at the 0.05 level (2-tailed).

Discussions

Forty-seven typically developing children (25 boys and 22 girls) were included in present study. The age range result represents children attending primary schools. Result also demonstrates the distribution of children's BMI which were ranged from underweight to obesity.

Concurrent validity of the 2DCS using the EMT as a reference standard for measuring chest wall expansion in frontal and sagittal planes demonstrates good to excellent agreements as research hypothesized. The results suggest that the 2DCS with a custom Matlab program can appropriately replace the EMT to measure chest wall expansion in children with typical development. It is more practical to administer comparing with the lab-based equipment, such as the EMT. Chest wall expansion as measured by the 2DCS is an indirect method which could represent to lung volume. Although Kinect camera can also be used to measure estimated lung volume⁽²⁶⁾, its clinical utility was still limited. One study has attempted to validate Kinect camera to estimate lung volume with the spirometer⁽²⁶⁾. Although they have found excellent agreement (ICC=0.96) between the Kinect camera and the spirometer, the Kinect seems to have limitation to estimate volume when participants wear too tight or loose shirt⁽²⁶⁾. In this case, estimated volume from the Kinect camera may not appropriately represent lung volume. However, present study directly attached sensors on the skin. Therefore, the data from 2DCS is more accurate to represent chest wall expansion.

Correlation between chest wall expansion and hand grip strength were ranged from fair to moderate. This result supports research

hypothesis. Research evidences suggest that chest wall expansion can represent pulmonary function, and this pulmonary function (forced vital capacity (FVC) and forced expiratory volume in one second (FEV1)) is associated with hand grip strength^(6,8-9). Previous study reported high correlation between hand grip strength, pulmonary function and respiratory muscle strength⁽²⁷⁾. Thus, positive correlation between chest wall expansion and hand grip strength was confirmed. Moreover, stability of shoulder joint related with chest wall movement during respiration and respiratory accessory muscle activation⁽²⁸⁾. Thus, shoulder joint stability could affect to chest wall expansion. A study reported correlation between shoulder joint stability and grip strength that improvement of shoulder joint stability by shoulder girdle exercise leaded to increase hand grip strength⁽²⁹⁾, which represented to upper limb strength. Based on result of present study it could imply that children with typical development can enhance pulmonary function, measured by chest wall expansion, through upper limb strengthening exercise.

The fair correlation between chest wall expansion and scale score in strength subtest of BOT-2 also supports hypothesis of study. Strength instruments which used in present study (grip strength and strength subtest of BOT-2) could be appropriately used to measure strength because they are portable, easy to use and less time-consuming. Since decreasing of skeletal muscle strength of both upper and lower extremities could represent respiratory problems in children⁽³⁰⁾. From these correlations might imply that strength assessments could be used to estimate respiratory problem. Moreover, this

correlational study suggested that upper limb strengthening exercise and body strengthening exercise could be used to enhance respiratory function in typically developing children.

There are three limitations in present study. First, measuring in two planes of movement by using the 2DCS to derive the chest wall area may not fully present lung volume. However, present study demonstrates that video camera is sufficient to investigate the correlation and more practical for using in clinical practice in terms of cost, simplicity and portability. Second, attaching sensors on sport bra for girls to measure chest wall expansion may not be practical for female adults in clinical practice. Third, correlation from present study could not generalize in the children with pathological conditions because only healthy children were examined. Nevertheless, the results from current study can be used as the basic information for further investigation. Using the 2DCS to measure and analyze chest wall expansion in children with developmental problems, and examine the correlation between chest wall expansion and strength in children at different of age groups and body mass index groups are suggested for future study.

Conclusions

Present study demonstrates that the 2DCS is valid for measuring chest wall expansion in clinical practice. Thus, physical therapists can confidently use this simple, inexpensive and accurate instrument to measure chest wall expansion. The correlational results between chest wall expansion and strength can be used as a foundation to design cause and effect study in

the future to identify efficient treatment or exercise for improving respiratory function and reducing respiratory problems in children.

Acknowledgement

The researcher would like to thank all of my participants, their families, the director and staff at Anubalbanphaeo school for their warm welcome and excellent participants with the research.

References

1. Byington CL, Wilkes J, Korgenski K, Sheng X. Respiratory syncytial virus-associated mortality in hospitalized infants and young children. *Pediatrics* 2015; 135: e24-31.
2. Zar HJ, Ferkol TW. The global burden of respiratory disease-impact on child health. *Pediatr Pulmonol* 2014; 49: 430-4.
3. Allen J, Zwerdling R, Ehrenkranz R, Gaultier C, Geggel R, Greenough A, et al. Statement on the care of the child with chronic lung disease of infancy and childhood. *Am J Respir Crit Care Med* 2003; 168: 356-96.
4. Holm I, Fredriksen PM, Fosdahl MA, Olstad M, Vollestad N. Impaired motor competence in school-aged children with complex congenital heart disease. *Arch Pediatr Adolesc Med*. 2007; 161: 945-50.
5. Votroubek WL, Townsend JL. *Pediatric home care*. 2nd ed. Mayland: Aspen Publishers; 1997.
6. Bae JY, Jang KS, Kang S, Han DH, Yang W, Shin KO. Correlation between basic physical fitness and pulmonary function in Korean children and adolescents: a cross-sectional survey. *J Phys Ther Sci* 2015; 27: 2687-92.

7. Ayuk AC, Uwaezuoke SN, Ndukuw CI, Ndu IK, Illoh KK, Okoli CV. Spirometry in asthma care: a review of the trends and challenges in pediatric practice. *Clin Med Insights Pediatr* 2017; 11: 1-6.
8. Custers JW, Arets HG, Engelbert RH, Kooijmans FT, van der Ent CK, Helders PJ. Thoracic excursion measurement in children with cystic fibrosis. *J Cyst Fibros* 2005; 4: 129-33.
9. Fisher LR, Cawley MI, Holgate ST. Relation between chest expansion, pulmonary function, and exercise tolerance in patients with ankylosing spondylitis. *Ann Rheum Dis* 1990; 49: 921-5.
10. Laibsirinon S, Jarusurin N, Kokoi C, Manakiatichai T. Pulmonary function and chest expansion in Thai boys with down syndrome. *Thammasat Medical Journal* 2012; 12: 269-75.
11. Kaneko H, Horie J. Breathing movements of the chest and abdominal wall in healthy subjects. *Respir Care* 2012; 57: 1442-51.
12. Lee LJ, Chang AT, Coppieters MW, Hodges PW. Changes in sitting posture induce multiplanar changes in chest wall shape and motion with breathing. *Respir Physiol Neurobiol* 2010; 170: 236-45.
13. Malaguti C, Rondelli RR, de Souza LM, Domingues M, Dal Corso S. Reliability of chest wall mobility and its correlation with pulmonary function in patients with chronic obstructive pulmonary disease. *Respir Care* 2009; 54: 1703-11.
14. Bockenhauer SE, Chen H, Julliard KN, Weedon J. Measuring thoracic excursion: reliability of the cloth tape measure technique. *J Am Osteopath Assoc* 2007; 107: 191-6.
15. Kaneko H. Estimating breathing movements of the chest and abdominal wall using a simple, newly developed breathing movement-measuring device. *Respir Care* 2014; 59: 1133-9.
16. Lanza Fde C, de Camargo AA, Archija LR, Selman JP, Malaguti C, Dal Corso S. Chest wall mobility is related to respiratory muscle strength and lung volumes in healthy subjects. *Respir Care* 2013; 58: 2107-12.
17. Adedoyin RA, Adeleke OE, Fehintola AO, Erhabor GE, Bisiriyu LA. Reference Values for Chest Expansion among Adult Residents in Ile-Ife. *J Yoga Phys Ther* 2012; 2: 1-4.
18. Yeampattanaporn O. Effect of breathing pattern re-learning on neck pain [dissertation]. Nakhon Pathom: Mahidol University; 2013
19. Ro HJ, Kim DK, Lee SY, Seo KM, Kang SH, Suh HC. Relationship Between Respiratory Muscle Strength and Conventional Sarcopenic Indices in Young Adults: A Preliminary Study. *Ann Rehabil Med*. 2015; 39(6): 880-7.
20. Nishigaki Y, Mizuguchi H, Takeda E, Koike T, Ando T, Kawamura K, et al. Development of new measurement system of thoracic excursion with biofeedback: reliability and validity. *J Neuroeng Rehabil*. 2013; 10: 45.
21. Nussbaumer S, Leunig M, Glatthorn JF, Stauffacher S, Gerber H, Maffiuletti NA. Validity and test-retest reliability of manual goniometers for measuring passive hip range of motion in femoroacetabular impingement patients. *BMC Musculoskelet Disord* 2010; 11: 1-11.
22. Sathya P, Kadiravan V, Ramakrishnan KS, Vedak TM. Correlation between hand grip strength and shoulder power in cricket players. *Int J Sci Res (Raipur)* 2016; 5: 348-52.

23. Lifshitz N, Raz-Silbiger S, Weintraub N, Steinhart S, Cermak SA, Katz N. Physical fitness and overweight in Israeli children with and without developmental coordination disorder: gender differences. *Res Dev Disabil* 2014; 35: 2773-80.
24. Bruininks RH, Bruininks BD. Bruininks-Oseretsky Test of Motor Proficiency second edition. USA; NSC Pearson; 2005.
25. Livingston EH, Lee S. Body surface area prediction in normal-weight and obese patients. *Am J Physiol Endocrinol Metab* 2001; 281: E586-91.
26. Yu MC, Liou JL, Kuo SW, Lee MS, Hung YP. In Lovell N, editors. Noncontact respiratory measurement of volume change using depth camera. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2012 Aug 28-Sept 1; San Diego, USA: The Institute of Electrical and Electronics Engineers; 2012. 2371-2374.
27. Shin SO, Kim NS. Correlation between muscle strength, pulmonary function and respiratory muscle in children with cerebral palsy. *J Korean Soc Phys Med*, 2016b, 11: 123–130.
28. Shin SO, Kim NS. Upper extremity resistance exercise with elastic bands for respiratory function in children with cerebral palsy. *J Phys Ther Sci*. 2017; 29(12): 2077-80
29. Kobesova A, Dzvonik J, Kolar P, Sardina A, Andel R. Effects of shoulder girdle dynamic stabilization exercise on hand muscle strength. *Isokinetics Exerc Sci*. 2015; 23: 21-32.
30. de Meer K, Gulmans VA, van Der Laag J. Peripheral muscle weakness and exercise capacity in children with cystic fibrosis. *Am J Respir Crit Care Med*. 1999; 159(3): 748-54.

ค่าจุดตัดของการทดสอบการเดิน 6 นาที เพื่อระบุความเสี่ยงต่อการหลบล้มของผู้สูงอายุในชุมชน

รุ่งนภา อินทรักษ์^{1,2}, จิตติมา แสงสุวรรณ³, สุกัลยา งามตฉายา^{1,2} และทิวาพร ทวีวรรณกิจ^{1,2*}

Received: October 5, 2019

Revised: January 20, 2020

Accepted: January 20, 2020

บทคัดย่อ

การมีอายุที่เพิ่มมากขึ้นมักสัมพันธ์กับความบกพร่องด้านความทันทนาของร่างกายและส่งผลให้เกิดความเสี่ยงต่อการหลบล้มในผู้สูงอายุ ดังนั้น การตรวจประเมินความสามารถทางกายตั้งแต่แรกเริ่มในผู้สูงอายุที่มีความเสี่ยงต่อการหลบล้ม จึงมีความสำคัญอย่างยิ่ง การทดสอบการเดิน 6 นาที เป็นการทดสอบที่นิยมใช้ประเมินความทันทนาของร่างกาย อย่างไรก็ตาม ไม่มีการรายงานค่าจุดตัดที่จำเพาะในการระบุความเสี่ยงต่อการหลบล้ม การศึกษานี้จึงมีวัตถุประสงค์เพื่อระบุค่าจุดตัดของการทดสอบการเดิน 6 นาที เพื่อระบุความเสี่ยงต่อการหลบล้มในผู้สูงอายุ โดยศึกษาในอาสาสมัครที่มีอายุตั้งแต่ 65 ปีขึ้นไป ซึ่งแบ่งออกเป็นกลุ่มที่มีอายุระหว่าง 65-74 ปี และกลุ่มที่มีอายุ 75 ปีขึ้นไป อาสาสมัครได้รับการสัมภาษณ์ ข้อมูลพื้นฐาน และคัดกรองความเสี่ยงต่อการหลบล้ม โดยใช้การทดสอบการยืนต่อสันเท้า (น้อยกว่า 10 วินาที) และประวัติการหลบล้มในระยะเวลา 6 เดือน อย่างน้อย 2 ครั้ง รวมถึงประเมินความสามารถด้านความทันทนา โดยใช้การทดสอบการเดิน 6 นาที การศึกษานี้มีอาสาสมัครที่ตรงตามเกณฑ์คัดเข้า จำนวน 255 ราย แบ่งออกเป็นกลุ่มที่มีอายุระหว่าง 65-74 ปี จำนวน 187 ราย และกลุ่มที่มีอายุ 75 ปีขึ้นไป จำนวน 68 ราย ผลการศึกษาพบว่า ค่าจุดตัดในการระบุความเสี่ยงต่อการหลบล้มในผู้สูงอายุคือระยะทางน้อยกว่า 320 เมตร (กลุ่มที่มีอายุระหว่าง 65-74 ปี ค่าความไวร้อยละ 73.12 และความจำเพาะร้อยละ 52.13) และ 295 เมตร (กลุ่มที่มีอายุ 75 ปีขึ้นไป ค่าความไวร้อยละ 70.83 และความจำเพาะร้อยละ 65.91) โดยมีพื้นที่ต่อสัมผัสด้วยอุปกรณ์ในเกณฑ์ที่ยอมรับได้ (0.71 และ 0.74 ตามลำดับ) การศึกษานี้เสนอแนะว่าการทราบค่าจุดตัดที่จำเพาะ สามารถช่วยบุคลากรทางการแพทย์ในการระบุความเสี่ยงต่อการหลบล้มในผู้สูงอายุอย่างทันท่วงที เพื่อวางแผนการป้องกันและส่งเสริมภาวะสุขภาพในผู้สูงอายุได้

คำสำคัญ: การทดสอบการเดิน 6 นาที, ความเสี่ยงต่อการหลบล้ม, ผู้สูงอายุ

¹ สาขาวิชากายภาพบำบัด คณะเทคโนโลยีการแพทย์ มหาวิทยาลัยขอนแก่น

² กลุ่มวิจัยการพัฒนาความสามารถทางกายและคุณภาพชีวิต มหาวิทยาลัยขอนแก่น

³ ภาควิชาเวชศาสตร์พัฒนา คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น

* ผู้รับผิดชอบบทความ

Cut-off score of the 6-minute walk test for determining risk of fall in community-dwelling elderly

Roongnapa Intaruk^{1,2}, Jittima Saengsuwan³, Sugalya Amatachaya^{1,2} and Thiwabhorn Thaweeewannakij^{1,2*}

Abstract

Advancing age usually relates to poor functional endurance which lead to risk of fall in elderly. Therefore, an early detect functional ability in those with risk of fall should be concerned. The 6-minute walk test (6MWT) is commonly used to assess functional endurance. However, none of the studies reported on a specific cut-off score of the 6MWT for determining risk of fall. This study aimed to identify the cut-off score of the 6MWT for determining risk of fall in elderly. The participants who aged at least 65 years were classified into the age of 65-74 years and 75 years and older. They were interviewed their demographic characteristics and screened risk of fall using the tandem stand test (less than 10 seconds) and history of two or more falls within the past 6-months and investigated their functional endurance using the 6MWT. There were 255 eligible participants. Of the 187 participants were elderly aged between 65-74 years and 68 participants were aged 75 years and older. The findings reported the cut-off scores of less than 320 m (aged 65-74 years: 73.12% sensitivity and 52.13% specificity) and 295 m (aged 75 years and older: 70.83% sensitivity and 65.91% specificity) to represent risk of fall in elderly, with the acceptable area under the curve (0.71 and 0.74, respectively). The findings suggested that the specific cut-off score could assist health practitioners to early detect the elderly with risk of fall, in order to plan an appropriate prevention and promote health status in these individuals.

Keywords: 6-minute walk test, Risk of fall, Elderly

¹ School of Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University.

² The Improvement of Physical Performance and Quality of Life Research Group, Khon Kaen University.

³ Department of Rehabilitation Medicine, Faculty of Medicine, Khon Kaen University.

* Corresponding author: (e-mail: thiwth@kku.ac.th)

Introduction

An advancing age usually relates to functional decline that affects capability to conduct daily activities independently and may increase the number of dependent elderly^(1, 2). These obvious phenomena may affect especially in slow gait speed and poor physical endurance^(3, 4); unfortunately, it leads to frailty and risk of fall in these individuals⁽⁵⁾.

Evidences supported that elderly who aged at least 65 years were reported with high incidence of fall, in which it manifestly increased in those aged 75 years and older⁽⁶⁻⁸⁾. Falls are a serious health problem in elderly which their occurrence lead to negative impacts on physical, psychological, and socioeconomic consequences⁽⁹⁻¹²⁾. All these consequences of falls place heavy demands on healthcare systems⁽¹³⁾. Therefore, an early detect functional ability in those with risk of fall should be concerned in order to plan an appropriate prevention and promote health status^(1, 14).

Evidence supports that the ability to walk for longest distance is a feasible physical performance measure⁽¹⁵⁾, which can be qualified using the 6-minute walk test (6MWT)⁽¹⁶⁾. The 6MWT is commonly used to assess exercise tolerance and aerobic endurance in patients with cardiorespiratory disease⁽¹⁶⁾; furthermore, it has been also used as a measure of functional endurance in elderly⁽¹⁾. Bean and colleagues (2002) found that the 6MWT is the best characterized as a performance-based measure of ambulatory capability. This test is used to predict the impairment of leg muscle strength which related to ability to perform walking task. As a result of decreased aerobic endurance in elderly, who were able to walk with a shorter distance, may cause a

decrease in functional capacity and increase susceptibility to falls^(16, 17). Previously, the 6MWT was reported with an acceptable reliability and validity when were conducted in elderly (ICC = 0.87-0.95, r = 0.52-0.73, respectively)^(5, 18). There was reported different reference value of the ability to perform the 6MWT in Thai elderly among aged groups⁽¹⁹⁾. However, none of the studies reported on a specific cut-off score of the 6MWT for determining risk of fall in community-dwelling elderly among aged groups (65-74 years and 75 years and older), in which the findings may assist health practitioners to identify risk of fall and plan an appropriate intervention for these individuals.

Material and Methods

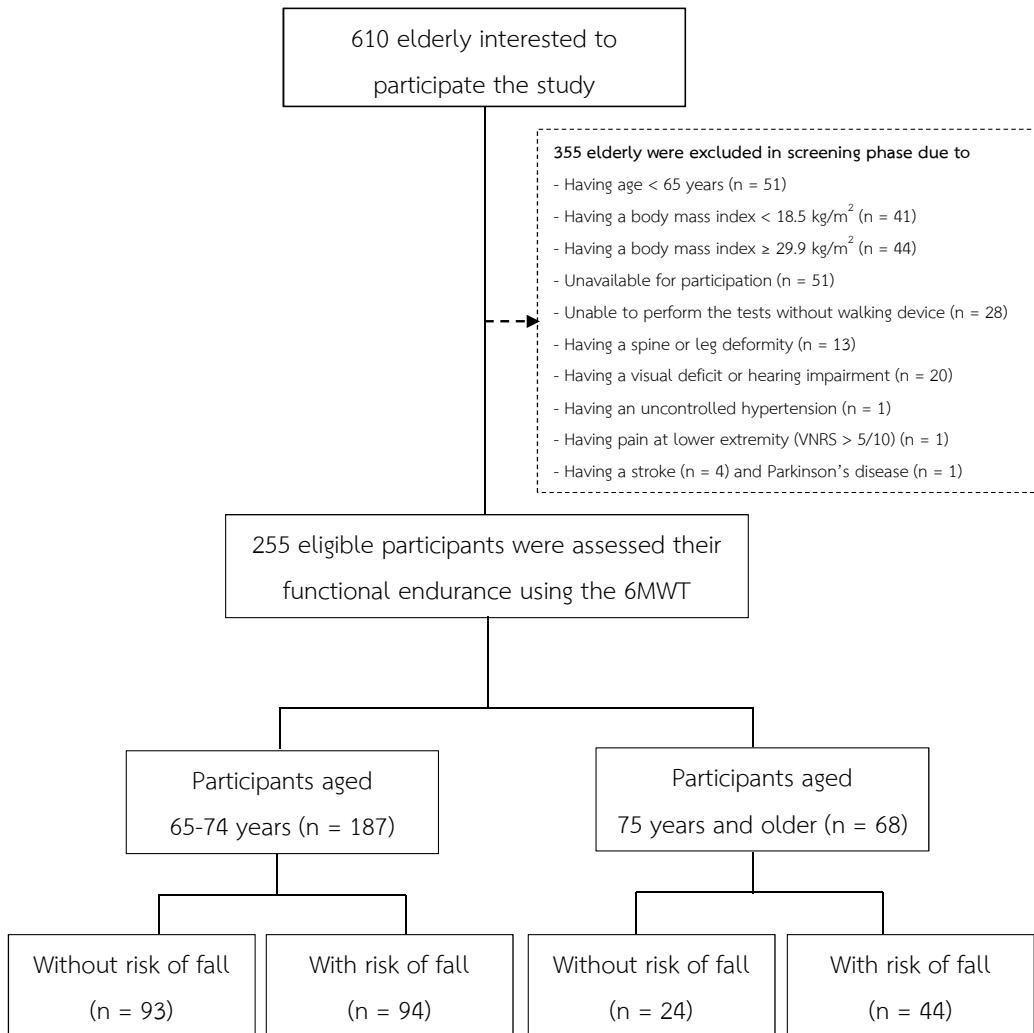
Study design and population

The study was cross-sectionally conducted in elderly who lived in rural and semi-rural communities in northeastern of Thailand. Participants were the elderly who aged at least 65 years, both male and female with a body mass index (BMI) between 18.5 and 29.9 kg/m². They were screened their demographic characteristics and risk of fall. The risk of fall in this study was defined as the elderly who had balance impairment (unable to take full tandem stand test for 10 seconds) and/or having history of two or more falls within the past 6 months^(14, 21). Additionally, the participants also needed to understand simple commands of the test in order to complete the protocol of the study. However, they were excluded if they had any signs or symptoms that might affect the study; for examples, the inflammation of lower extremity joints and muscles with pain more than 5 out of

10 scores on a verbal numerical rating scale (VNRS), sequelae of neurological disease (e.g., stroke and Parkinson's disease), dizziness, visual and auditory deficits that cannot correct using glasses or hearing aids, acute illness or injury, unstable heart disease (e.g., angina), and uncontrolled hypertension. The study protocols and consent procedures were approved by the Khon Kaen University Ethics Committee for Human Research (HE602302).

Study protocols

The eligible participants were investigated their functional endurance using the 6MWT. They were instructed to walk as far as possible in 6 minutes around 6×4 meters rectangular walkway with their selected speed⁽¹⁹⁾. The tester walked alongside them for safety. During the test, the participants were able to rest as need without stop timing. In addition, they were given standardized encouragement at 1, 3, and 5 minutes during the test which "You are doing a good job" (minute 1), "You are halfway done" (minute 3), and "You have 1 minute to go" (minute 5)⁽²⁰⁾. Then, the distance to complete the test in 6 minutes was recorded in meters.


During administration of the test, a tester was always beside a participant without interruption to ensure participant's safety and accuracy of the tests. Furthermore, the participants had to wear appropriate shoes which were prepared by the researchers and they were assessed blood pressure and heart rate for safety and ensuring enough rest.

Statistical analysis

The data were analyzed by the SPSS for Windows (SPSS Statistic version 17.0, IBM Corporation, 1 New Orchard Road Armonk, New York 10504-1722, USA, serial number: 5068054). The descriptive statistics (mean, standard deviation, 95% confidence intervals, and the percentage) was applied to explain characteristics of participants and the findings. The independent sample t-test (for continuous variable) and the Chi-square test (for categorical variable) were used to compare the differences of demographic characteristics between elderly with and without risk of fall. Finally, the receiver operating curve (ROC) was used to utilize the cut-off score, sensitivity, specificity, and area under curve (AUC). A level of significant difference was set at less than 0.05.

Results

Six hundred and ten participants interested to participate the study; however, 355 of them were excluded in a screening phase due to they were missing the inclusion criteria and unavailable to participate the study. Finally, there were 255 eligible participants which were divided into the age of 65-74 years (187 participants) and the age of 75 years and older (68 participants) (Figure 1).

Figure 1 Participants flow chart

Table 1 Demographic characteristics of elderly with and without risk of fall

Variable	65-74 years		p-value	75 years and older		p-value
	Without risk of fall (n = 93)	With risk of fall (n = 94)		Without risk of fall (n = 24)	With risk of fall (n = 44)	
Gender [female : male] ^a	63 (67.74) : 30 (32.26)	73 (77.89) : 21 (22.11)	0.905	13 (54.17) : 11 (45.83)	35 (79.55) : 9 (20.45)	0.439
Age (year) ^b	69.09 ± 2.73 (68.52 – 69.66)	69.89 ± 3.14 (69.24 – 70.54)	0.055	77.83 ± 2.53 (76.73 – 78.92)	78.97 ± 3.77 (77.83 – 80.12)	0.104
Weight (kg) ^b	55.51 ± 7.63 (53.93 – 57.10)	58.28 ± 7.88 (56.65 – 59.91)	0.017*	57.48 ± 8.29 (53.90 – 61.06)	53.98 ± 7.90 (51.57 – 56.38)	0.56
Height (cm) ^b	154.59 ± 6.68 (153.20 – 155.98)	154.38 ± 6.43 (153.05 – 155.71)	0.826	156.43 ± 7.41 (153.22 – 159.64)	151.36 ± 8.04 (148.92 – 153.80)	0.007*
BMI (kg/m ²) ^b	23.26 ± 3.04 (22.63 – 28.90)	24.45 ± 2.94 (23.84 – 25.96)	0.008*	23.51 ± 3.07 (22.18 – 24.84)	23.55 ± 2.94 (22.66 – 24.45)	0.952
6MWT (m) ^b	357.02 ± 57.95 (345.14 – 368.90)	305.98 ± 71.33 (291.21 – 320.75)	< 0.001*	321.96 ± 54.57 (298.37 – 345.46)	260.17 ± 81.96 (235.25 – 285.09)	< 0.001*

Note: * Indicates statistically significant difference, ^a The data were demonstrated using number of participants (%) and compared using the Chi-square, ^b The data were represented using mean ± standard deviation (95% confidence interval) and compared using the independent sample t-test.

Abbreviations: BMI = body mass index, 6MWT = 6-minute walk test.

Table 2 Cut-off scores of the 6MWT for determining risk of fall

Age range	Cut-off score (m)	Sensitivity (%)	Specificity (%)	AUC
65-74 years	< 320	73.12	52.13	0.71
75 years and older	< 295	70.83	65.91	0.74

Abbreviation: AUC = area under the curve.

The participants who aged 65-74 years with risk of fall were reported shorter time to complete the tandem stand than those without risk of fall (7.33 ± 13.07 sec and 45.59 ± 19.91 sec, $p < 0.001$, respectively). Similar to the participants who aged 75 years and older with risk of fall were also demonstrated shorter time than the other group (6.09 ± 12.09 sec and 41.79 ± 20.39 sec, $p < 0.001$, respectively). However, there were no statistically significant difference of the tandem stand test between age groups who with and without risk of fall ($p = 0.597$ and $p = 0.483$, respectively). Regarding to the experience of multiple falls in the last 6 months, there were 26.60% of elderly who aged 65-74 years, and 34.09% of those who aged 75 years and older. More than a half of multiple falls (56 out of 93 times) caused by intrinsic factor, such as loss of balance, postural hypotension during changing position, and leg muscle weakness. The extrinsic factor included slipping, tripping, stumble over uneven paths, and too-long dress. Furthermore, the participants with risk of fall were reported shorter distances to complete the 6MWT than those without risk of fall (p -value < 0.001). Other demographic characteristics were shown in **Table 1**. The cut-off scores of the 6MWT for determining risk of fall in each age range were presented in **Table 2**.

Discussions

This study investigated the optimal cut-off scores of the 6MWT for determining risk of fall in community-dwelling elderly, which were categorized into the age of 65-74 years and 75 years and older. The present study reported the cut-off scores of less than 320 m (aged 65-74 years: 73.12% sensitivity and 52.13% specificity) and 295 m (aged 75 years and older: 70.83% sensitivity and 65.91% specificity) represented risk of fall with the acceptable area under the curve (0.71 and 0.74, respectively).

The 6MWT is the best performance-based measure to identify functional endurance which affects the ability to conduct daily activities^(16, 21). It is commonly used as an instrument to assess progression of functional exercise capacity and determine functional limitation in several patients, particularly in elderly people^(15, 16, 21). Although there were some studies reported normative value of the 6MWT in elderly^(19, 20), present study was the first study to explore the specific cut-off scores for determining risk of fall in these individuals. The findings showed that advancing age (aged 75 years and older) had a shorter distance within 6 minutes than younger (aged 65-74 years). In addition, they also had a higher risk of fall, which was confirmed by less time to complete the tandem stand test and higher number of falls

within the past 6 months. Present findings reported that more than a half of participants with risk of fall were female gender. Similarly, Thiamwong and coworkers (2008) reported that female gender is one of the significant fall risk factors in elderly; therefore, they rated the score of females as fall risk indicators in the Thai falls risk assessment test (Thai-FRAT)⁽²²⁾. Evidence supported that female had a higher risk of fall than male because of the effect of menopause⁽²³⁾. It led to decrease of bone mineral density (BMD) which was reported strong concomitant decline in muscle strength⁽²⁴⁾. These conditions were closely related to reduce activity in daily living, then lead to fall in elderly^(23, 25).

Regarding to elderly who were unable to walk with long distance, it could be represented low aerobic fitness which led to early muscle fatigue during perform the activity of daily life⁽²⁶⁾. The evidence reported that the aerobic fitness can be qualified using O_2 consumption (VO_2 max)⁽²⁶⁾, which occurred in exercised muscles and positive correlated with distance walk⁽²⁶⁾; unfortunately, it was decreased with aging process⁽²⁷⁾. Therefore, muscle fatigue is a clinically important with risk of fall in these individuals⁽²⁸⁾. Furthermore, the evidence supported that walking distance within 6 minutes also correlated to muscle strength in elderly⁽²⁹⁾. Similarly, Pang and colleagues (2008) reported that leg muscle weakness related to ability to walk with short distance, which was an important reason to increase risk of fall in elderly⁽³⁰⁾.

The present findings showed that elderly aged 75 years and older were reported the 6MWT's cut-off score of less than 295 m (**Table 2**). Previous study reported that the cut-off score of the 6MWT of less than 300 m indicated poor walking ability and mortality rate in chronic heart

failure patients⁽³¹⁾. Unfortunately, those with risk of fall might be troubled with walking ability to perform the activity of daily living and increased mortality rate. Additionally, the elderly aged 65-74 years in present study were reported that the distance walk in 6 minutes of less than 320 m indicated risk of fall. Previously, Cote and colleagues (2008) reported that the distance of less than 350 m identified an increase of mortality rate in patients with chronic pulmonary disease (COPD)⁽³²⁾. The elderly with risk of fall, who were able to walk with short distance, might reflect frailty and poor health status. Moreover, the present study found that the BMI might be a factor-related ability to perform the 6MWT in young elderly (aged 65-74 years). Evidence supports that overweight elderly likely to have a poor physical performance⁽³³⁾; however, the further investigation of the effect of BMI on ability to perform physical function may show clearer findings.

However, there were some limitations of the study. Firstly, a smaller number of participants who aged 75 years and older might be a reason of wide range of standard deviation of the 6MWT (**Table 1**). This might occur due to a lack of sample size calculation of the study; however, the power of test was verified and reported of more than 0.80 in each age group. Therefore, further study should state the sample size calculation and recruit a greater number of participants for clearer findings. Secondly, the study design in this study was a cross-sectional design, in which it cannot identify cause and effect relationship of fall. Therefore, further investigation should design as the prospective study for indicating fall risk factors. Finally, the present study did not explore

the correlation between 6MWT and tandem test or frequency of falls, in which the further investigation of this relationship might be useful to confirm the importance of declining in functional endurance to susceptible falls in elderly.

Conclusions

The findings suggested the optimal cut-off score of the 6MWT to determine risk of fall in community-dwelling elderly as the distances of less than 320 m (aged 65-74 years) and less than 295 m (aged 75 years and older). The specific values could assist health practitioners to early detect the elderly with risk of fall using ability of functional endurance, in order to plan an appropriate prevention and promote health status in these individuals.

Acknowledgements

The researchers thank for support and contribution from National Research Council of Thailand, Improvement of Physical Performance and Quality of Life (IPQ) Research Group, and the Faculty of Associated Medical Sciences, Khon Kaen University, Thailand.

References

1. Lusardi MM, Pellecchia GL, Schulman M. Functional Performance in Community Living Older Adults. *J Geriatr Phys Ther* 2003; 26(3): 14-22.
2. van Iersel MB, Munneke M, Esselink RA, Benraad CE, Olde Rikkert MG. Gait velocity and the Timed-Up-and-Go test were sensitive to changes in mobility in frail elderly patients. *J Clin Epidemiol* 2008; 61(2): 186-91.
3. Kwon S, Perera S, Pahor M, Katula JA, King AC, Groessl EJ, et al. What is a meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study). *J Nutr Health Aging* 2009; 13(6): 538-44.
4. Hardy SE, Perera S, Roumani YF, Chandler JM, Studenski SA. Improvement in usual gait speed predicts better survival in older adults. *J Am Geriatr Soc* 2007; 55(11): 1727-34.
5. Kwok BC, Pua YH, Mamun K, Wong WP. The minimal clinically important difference of six-minute walk in Asian older adults. *BMC Geriatr* 2013; 13: 1-5.
6. Thaweevannakij T, Suwannarat P, Mato L, Amatachaya S. Functional ability and health status of community-dwelling late age elderly people with and without a history of falls. *Hong Kong Physiother J* 2016; 34:1-9.
7. Gill TM, Murphy TE, Gahbauer EA, Allore HG. Association of injurious falls with disability outcomes and nursing home admissions in community-living older persons. *Am J Epidemiol* 2013; 178(3): 418-25.
8. Spaniolas K, Cheng JD, Gestring ML, Sangosanya A, Stassen NA, Bankey PE. Ground level falls are associated with significant mortality in elderly patients. *J Trauma* 2010; 69(4): 821-5.
9. Czerwinski E, Bialoszewski D, Borowy P, Kumorek A, Bialoszewski A. Epidemiology, clinical significance, costs and fall prevention in elderly people. *Ortop Traumatol Rehabil* 2008; 10(5): 419-28.
10. Al-Aama T. Falls in the elderly: spectrum and prevention. *Can Fam Physician* 2011; 57(7): 771-6.

11. Rogers ME, Rogers NL, Takeshima N, Islam MM. Methods to assess and improve the physical parameters associated with fall risk in older adults. *Prev Med* 2003; 36(3): 255-64.
12. Terroso M, Rosa N, Torres Marques A, Simoes R. Physical consequences of falls in the elderly: a literature review from 1995 to 2010. *Eur Rev Aging Phys Act* 2014; 11(1): 51-9.
13. Rizzo JA, Baker DI, McAvay G, Tinetti ME. The cost-effectiveness of a multifactorial targeted prevention program for falls among community elderly persons. *Med Care* 1996; 34(9): 954-69.
14. Kim JC, Chon J, Kim HS, Lee JH, Yoo SD, Kim DH, et al. The association between fall history and physical performance tests in the community-dwelling elderly: a cross-sectional analysis. *Ann Rehabil Med* 2017; 41(2): 239-47.
15. Guralnik JM, Branch LG, Cummings SR, Curb JD. Physical performance measures in aging research. *J Gerontol* 1989; 44(5): M141-6.
16. Bautmans I, Lambert M, Mets T. The six-minute walk test in community dwelling elderly: influence of health status. *BMC Geriatr* 2004; 4: 1-9.
17. Bean JF, Kiely DK, Leveille SG, Herman S, Huynh C, Fielding R, et al. The 6-minute walk test in mobility-limited elders: what is being measured? *J Gerontol A Biol Sci Med Sci* 2002; 57(11): M751-6.
18. Enright PL, McBurnie MA, Bittner V, Tracy RP, McNamara R, Arnold A, et al. The 6-min walk test: a quick measure of functional status in elderly adults. *Chest* 2003; 123(2): 387-98.
19. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. *J Am Geriatr Soc* 2006; 54(5): 743-9.
20. Thaweevannakij T, Wilaichit S, Chuchot R, Yuenyong Y, Saengsuwan J, Siriratatiwat W, et al. Reference values of physical performance in Thai elderly people who are functioning well and dwelling in the community. *Phys Ther* 2013; 93(10): 1312-20.
21. Intaruk R, Saengsuwan J, Amatachaya S, Thaweevannakij T. The ability of Thai-FRAT's item to identify risk of fall in elderly with and without history of fall. National Graduate Research Conference 2018; 1: 658-65. [The proceeding in the 19th National Graduate Research Conference; 2018 March 9; Pote Sarasin Building, Graduate school, Khon Kaen University, Thailand].
22. Steffen TM, Hacker TA, Mollinger L. Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. *Phys Ther* 2002; 82(2): 128-37.
23. Thiamwong L, Thamarpirat J, Maneesriwongul W, Jitapunkul S. Thai falls risk assessment test (Thai-FRAT) developed for community-dwelling Thai elderly. *J Med Assoc Thai* 2008; 91(12): 1823-31.
24. Daly RM, Rosengren BE, Alwis G, Ahlborg HG, Sernbo I, Karlsson MK. Gender specific age-related changes in bone density, muscle strength and functional performance in the elderly: a 10 year prospective population-based study. *BMC Geriatr* 2013; 13: 1-9.
25. Zhou Z, Zheng L, Wei D, Ye M, Li X. Muscular strength measurements indicate bone mineral density loss in postmenopausal women. *Clin Interv Aging* 2013; 8: 1451-9.

26. Wei F, Hester AL. Gender difference in falls among adults treated in emergency departments and outpatient clinics. *J Gerontol Geriatr Res* 2014; 3: 1-8.
27. Burr JF, Bredin SS, Faktor MD, Warburton DE. The 6-minute walk test as a predictor of objectively measured aerobic fitness in healthy working-aged adults. *Phys Sportsmed* 2011; 39(2): 133-9.
28. Fleg JL, Lakatta EG. Role of muscle loss in the age-associated reduction in VO₂ max. *J Appl Physiol* 1988; 65(3): 1147-51.
29. Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in older adults: a systematic review and meta-analysis. *J Am Geriatr Soc* 2004; 52(7): 1121-9.
30. Hirsch CH, Fried LP, Harris T, Fitzpatrick A, Enright P, Schulz R. Correlates of performance-based measures of muscle function in the elderly: the Cardiovascular Health Study. *J Gerontol A Biol Sci Med Sci* 1997; 52(4): M192-200.
31. Pang MY, Eng JJ. Fall-related self-efficacy, not balance and mobility performance, is related to accidental falls in chronic stroke survivors with low bone mineral density. *Osteoporos Int* 2008; 19(7): 919-27.
32. Roul G, Germain P, Bareiss P. Does the 6-minute walk test predict the prognosis in patients with NYHA class II or III chronic heart failure? *Am Heart J* 1998; 136(3): 449-57.
33. Cote CG, Casanova C, Marin JM, Lopez MV, Pinto-Plata V, de Oca MM, et al. Validation and comparison of reference equations for the 6-min walk distance test. *Eur Respir J* 2008; 31(3): 571-8.

ความสัมพันธ์ระหว่างความแข็งแรงของกล้ามเนื้อถีบป้ายเท้า และการทดสอบยืนเหยี่่งป้ายเท้าในผู้สูงอายุในชุมชน

วีระศักดิ์ ตีะปัญญา*, สินธุพร มหารัณ และนพรัตน์ สังขฤทธิ์

Received: September 29, 2019

Revised: February 25, 2020

Accepted: February 26, 2020

บทคัดย่อ

หลักการและวัตถุประสงค์: ปัจจัยสำคัญที่เพิ่มความเสี่ยงต่อการล้มในผู้สูงอายุคือ ความแข็งแรงและกำลังของกล้ามเนื้อลดลง นอกจากรากามเนื้อเหยียดเข้าแล้ว กล้ามเนื้อถีบป้ายเท้าก็ถือว่าเป็นกล้ามเนื้อที่สำคัญต่อความสามารถในการทรงตัว ดังนั้นการทดสอบเพื่อประเมินความแข็งแรงและกำลังของกล้ามเนื้อถีบป้ายเท้าจึงมีความสำคัญเป็นอย่างยิ่ง การศึกษานี้จึงมีวัตถุประสงค์เพื่อหาความสัมพันธ์ของการทดสอบยืนเหยี่่งป้ายเท้าและความแข็งแรงของการเนื้อถีบป้ายเท้าด้วยเครื่องมือวัดแรงมาตรฐาน **วิธีการศึกษา:** ทำการศึกษาในผู้สูงอายุสุขภาพดี อายุ 60 ปีขึ้นไป จำนวน 56 ราย (อายุเฉลี่ย 66.09 ± 7.05 ปี) อาสาสมัครทั้งหมดได้รับการทดสอบยืนเหยี่่งป้ายเท้า พร้อมทั้งทดสอบแรงเหตุวัสดุสุดของกล้ามเนื้อถีบป้ายเท้าด้วยเครื่อง push pull dynamometer ผลการทดสอบถูกวิเคราะห์ด้วยสถิติ Pearson product moment correlation coefficient เพื่อหาค่าสัมประสิทธิ์สัมพันธ์ระหว่างแรงเหตุวัสดุสุดของกล้ามเนื้อถีบป้ายเท้าและเวลา จำนวนครั้ง และกำลังใช้ในการทดสอบยืนเหยี่่งป้ายเท้า **ผลการศึกษา:** แรงเหตุวัสดุสุดของกล้ามเนื้อถีบป้ายเท้า มีความสัมพันธ์ระดับปานกลางกับเวลา จำนวนครั้ง และกำลังใช้ในการทดสอบยืนเหยี่่งป้ายเท้า ($r = -0.460, 0.420$ และ 0.563 ตามลำดับ, $p\text{-value} < 0.01$) อย่างมีนัยสำคัญทางสถิติ **สรุป:** การทดสอบยืนเหยี่่งป้ายเท้าเป็นการทดสอบที่สามารถสะท้อนความแข็งแรงของกล้ามเนื้อถีบป้ายเท้าในผู้สูงอายุได้

คำสำคัญ: การทดสอบยืนเหยี่่งป้ายเท้า, ผู้สูงอายุ, ความแข็งแรง, กำลัง, กล้ามเนื้อถีบป้ายเท้า

¹สาขาวิชากายภาพบำบัด คณะสหเวชศาสตร์ มหาวิทยาลัยพะเยา

*ผู้รับผิดชอบบทความ

Relationship between Plantar Flexor Muscle Strength and Standing Heel Rise Test in Community-dwelling Elderly

Weerasak Tapanya*, Sinthuporn Maharan, Noppharat Sangkarit

Abstract

Background and Objective: The important risk factor of fall is reducing of muscle strength and power. Beside knee extensor, the ankle plantar flexor is essential for balancing. Therefore, the assessment of plantar flexor muscle strength and power is very important. This study aim to evaluate the relationship between standing heel raise test and plantar flexor muscle strength measured by standard equipment **Method:** Fifty-six healthy elders who aged more than 60 years (mean age 66.09 ± 7.05 years) were performed standing heel raise test and plantar flexor muscle strength measured by Push-pull dynamometer. Pearson product moment correlation coefficient was used to evaluate the relationship between each variable. **Results:** The results showed that plantar flexor muscle strength had significantly moderate correlation with time, repetition and power of standing heel raise test ($r = -0.460, 0.420$ and 0.563 , respectively, p -value < 0.01). **Conclusion:** The standing heel raise test could be valid assessment for ankle plantar flexor strength in elderly.

Keywords: Standing heel raise test, Elderly, Strength, Power, Plantar flexor muscle

¹Department of Physical Therapy, Faculty of Allied Health Sciences, University of Phayao

*Corresponding author: (e-mail: wee_pt2nu@hotmail.com)

บทนำ

วัยชราถือเป็นกระบวนการของการเปลี่ยนแปลง ณ ตอนของร่างกาย ซึ่งมีความสัมพันธ์กับพฤติกรรมเนื่องนิ่ง (sedentary lifestyle) ทำให้การขับร่างกายและกิจกรรมในชีวิตประจำวันน้อยลง และส่งผลต่อการลดลงของสมรรถนะทางกายตามมาด้วย ไม่ว่าจะเป็นความสามารถในการทรงตัว ความทนทานทางระบบทางเดินหายใจและหัวใจ ปฏิกิริยาตอบสนอง และที่สำคัญคือความแข็งแรง และกำลังของกล้ามเนื้อ⁽¹⁻³⁾ โดยการลดลงของปัจจัยเหล่านี้ มีผลต่อการเพิ่มความเสี่ยงต่อการล้มในผู้สูงอายุได้⁽⁴⁻⁶⁾ การหล่ม (Fall) ในผู้สูงอายุเป็นปัญหาสุขภาพที่พบได้บ่อย และมีความสำคัญ เพราะเมื่อผู้สูงอายุหล่มแล้วมักทำให้เกิดการบาดเจ็บได้ร้ายแรงและรักษายากกว่าประชากรช่วงวัยอื่น ๆ⁽⁷⁾ การบาดเจ็บรุนแรงที่เกิดจากการหล่ม ได้แก่ กระดูกหัก การบาดเจ็บของสมองและรวมไปการเสียชีวิต ได้ในที่สุด⁽⁸⁾ พบว่าการเสียชีวิตจากอุบัติเหตุในผู้สูงอายุเกิดจากการหล่มสูงถึง 40% และพบว่าอัตราการเสียชีวิตจากการล้มคือ 1 คนในทุก ๆ 35 นาที⁽⁷⁾ ดังนั้นการตรวจพบถึงปัจจัยที่เป็นสาเหตุของการล้มได้ตั้งแต่ระยะแรก จึงมีความสำคัญเป็นอย่างมาก ทำให้บุคลากรทางการแพทย์สามารถพัฒนาแนวทางและกลยุทธ์ในการป้องกันการล้มในผู้สูงอายุ และช่วยลดภาระค่าใช้จ่ายในการดูแลและรักษาพยาบาลให้กับรัฐบาลและประเทศได้

ความแข็งแรงและกำลังของกล้ามเนื้อส่งผลโดยตรงต่อความสามารถในการทรงตัว ทั้งในขณะอยู่นิ่ง และขณะเคลื่อนไหว ซึ่งมีส่วนสำคัญเป็นอย่างยิ่งในการป้องกันการล้มในผู้สูงอายุ^(4, 6) โดยเฉพาะความแข็งแรงของกล้ามเนื้อข้อเท้าที่ทำหน้าที่ในการรักษาสมดุลของการทรงตัวและความสามารถในการเคลื่อนไหวเพื่อตอบสนองต่อแรงภายนอกที่มารบกวนสมดุลการทรงตัวของร่างกาย⁽⁹⁻¹¹⁾ เช่น เมื่อมีแรงภายนอกมากระทำให้ร่างกายเสียการทรงตัว (postural adjustment) ก็จะถูกกระตุนให้ร่างกายรักษาสมดุลโดยการกระตุนการทำงานของกล้ามเนื้อกระดกข้อเท้าขึ้นและกล้ามเนื้อถีบปัลย์เท้าลงเป็นลำดับแรกในการรักษาสมดุล (ankle strategy)^(12, 13) จากการศึกษา ก่อนหน้านี้ Goncalves และคณะ⁽¹⁴⁾ ได้พบว่าผู้ป่วยที่มีอาการข้อเข่าเสื่อมในระดับปานกลางมีความแข็งแรงของกล้ามเนื้อ

ถีบปัลย์เท้าลดลงอย่างมีนัยสำคัญเมื่อเทียบกับกลุ่มควบคุมที่ไม่มีการเสื่อมของข้อเข่า เช่นเดียวกับ Cattagni และคณะ⁽¹⁵⁾ ได้ทำการศึกษาเปรียบเทียบความแข็งแรงของกล้ามข้อเท้าระหว่างวัยผู้ใหญ่ต่อนั้น และผู้สูงอายุที่มีและไม่มีประวัติการล้มมาก่อน ผลการศึกษาพบว่าผู้สูงอายุที่มีประวัติการล้มมีการลดตัวของกล้ามเนื้อในการกระดกข้อเท้าขึ้นและถีบปัลย์เท้าลงในขณะยืนมากกว่าผู้สูงอายุที่ไม่เคยมีประวัติการล้มมาก่อนซึ่งสัมพันธ์กับการเปลี่ยนตำแหน่งของจุดศูนย์กลางแรงกดต่อพื้นของน้ำหนักตัว (center of pressure; CoP) ที่มากกว่าในผู้สูงอายุที่มีประวัติการล้ม โดยผู้ใหญ่ต่อนั้นมีการเปลี่ยนตำแหน่งของ CoP เท่ากับ 312.7 ± 77.6 มิลลิเมตร ในขณะที่ผู้สูงอายุที่ไม่มีและมีประวัติการล้มมาก่อนมีการเปลี่ยนตำแหน่งของ CoP เท่ากับ 433.0 ± 149.7 มิลลิเมตร และ 648.9 ± 385.4 มิลลิเมตรตามลำดับ อีกทั้งพบว่าเมื่อวัดแรงสูงสุด (maximum isometric contraction) ของการลดตัวของกล้ามเนื้อข้อเท้าในผู้สูงอายุที่มีประวัติการล้ม ให้แรงน้อยกว่าผู้สูงอายุที่ไม่เคยมีประวัติการล้มมาก่อนอย่างมีนัยสำคัญ โดยการเปลี่ยนตำแหน่งของ CoP มีความสัมพันธ์กับแรงสูงสุดของกล้ามเนื้อถีบปัลย์เท้าในระดับปานกลาง ($r=0.63, p < 0.001$) และงดให้เห็นว่า การทรงตัวที่ลดลงมีความสัมพันธ์อย่างมากกับอายุที่เพิ่มขึ้นและการอ่อนแรงของกล้ามเนื้อข้อเท้าลงเรื่อยๆ⁽¹⁵⁾ จะเห็นได้ว่าการที่ผู้สูงอายุมีความแข็งแรงของกล้ามเนื้อรอบ ๆ ข้อเท้าลดลงจะทำให้มีความเสี่ยงต่อการหล่มเพิ่มมากขึ้น

การประเมินความแข็งแรงของกล้ามเนื้อถือว่ามีความสำคัญและเป็นเครื่องมือหนึ่งในการตรวจประเมินเพื่อคัดกรองความเสี่ยงต่อการหล่มในผู้สูงอายุได้ในปัจจุบันสามารถทำได้หลายวิธี อาทิเช่น การประเมินความแข็งแรงของกล้ามเนื้อด้วยมือ (Manual muscle test: MMT)⁽¹⁶⁾ ซึ่งเป็นการประเมินที่นิยมใช้ทางคลินิกเนื่องจากสามารถทำได้ง่ายและไม่ต้องใช้อุปกรณ์⁽¹⁷⁾ แต่มีความไว้น้อยในการสะท้อนการเปลี่ยนแปลงความแข็งแรงของผู้ป่วย นอกจากนี้ผลการประเมินยังขึ้นอยู่กับประสบการณ์และความแข็งแรงของผู้ประเมิน ทำให้การเปรียบเทียบกันระหว่างผู้ประเมินไม่มีความน่าเชื่อถือ หรือแม่นยำ^(18, 19) นอกจากนี้ยังมีการประเมินความแข็งแรง

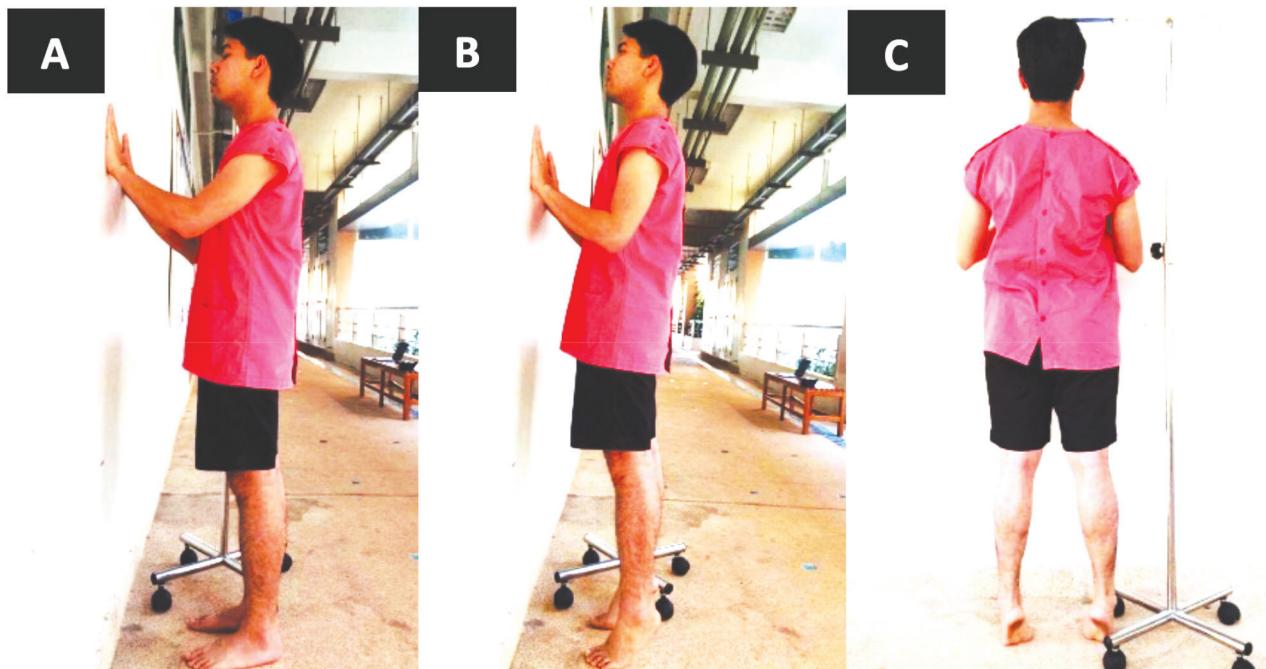
ของกล้ามเนื้อด้วยใช้อุปกรณ์ เช่น Hand held dynamometer (HHD) เป็นอุปกรณ์ที่ใช้ในการประเมินความแข็งแรงของผู้สูงอายุที่อาศัยในชุมชนมีความน่าเชื่อถืออยู่ในระดับสูง ($r=0.97$)⁽²⁰⁾ ซึ่งสามารถพกพาได้จ่าย สะดวก ต่อการใช้งาน แต่อย่างไรก็ตามอุปกรณ์นี้ยังมีราคาค่อนข้างสูง ส่วน Isokinetic dynamometer มีความน่าเชื่อถือและให้ข้อมูลที่ถูกต้องแม่นยำที่สุด แต่มีข้อจำกัดด้วยขนาดเครื่องมือใหญ่ การเคลื่อนย้ายพกพาค่อนข้างยุ่งยาก และมีราคาแพง อย่างไรก็ตาม ยังมีการทดสอบความแข็งแรงของกล้ามเนื้อที่สอดคล้องกับการทดสอบ และไม่ต้องใช้อุปกรณ์มากนัก เป็นการทดสอบตามหน้าที่การทำงาน (Functional test) ซึ่งจะเห็นได้ว่าการทดสอบยืนเขย่งปลายเท้า (Standing heel-rise test) เป็น Functional test รูปแบบหนึ่งที่เหมาะสมสำหรับการทดสอบความแข็งแรงของกล้ามเนื้อถีบปลายเท้า เนื่องจากเป็นการทดสอบที่มีความท้าทายต่อการทำงานของกล้ามเนื้อถีบปลายเท้า ในผู้สูงอายุเป็นอย่างมาก โดย Andre และคณะ พบว่า การทดสอบยืนเขย่งปลายเท้าสามารถบ่งบอกถึงความแข็งแรงของข้อเท้าได้เป็นอย่างดีในผู้สูงอายุและใช้ประเมินประสิทธิภาพการให้โปรแกรมการออกกำลังกายเพื่อป้องกันการเคลื่อนไหวที่ลดลงในผู้สูงอายุได้⁽²¹⁾ โดยการทดสอบนี้มีความสัมพันธ์กับแรงดึงดูดตัวสูงสุดของกล้ามเนื้อถีบปลายเท้าในระดับปานกลาง (0.87) แต่อย่างไรก็ตามการทดสอบยืนเขย่งปลายเท้าในศึกษานี้เป็นการนับจำนวนครั้งในการทดสอบในเวลา 30 วินาทีเพียงอย่างเดียว ถ้าหากมีตัวแปรอื่นๆ เพิ่มเติมจากการทดสอบดังกล่าวได้ แต่ใช้เวลาในการทดสอบลดลง เพื่อลดการบาดเจ็บหรือการลากกล้ามเนื้อที่มักเกิดขึ้นกับผู้สูงอายุได้จ่ายจะส่งผลดีต่อผู้สูงอายุทดสอบดังนั้นการวิจัยครั้งนี้จึงมีวัตถุประสงค์เพื่อศึกษาความสัมพันธ์ระหว่างความแข็งแรงของกล้ามเนื้อถีบปลายเท้า และตัวแปรจากการทดสอบยืนเขย่งปลายเท้า เนื่องจากเป็นการทดสอบที่ไม่ยุ่งยาก เครื่องมือที่ใช้หาได้จ่าย เช่น นาฬิกาจับเวลา ประยุกต์ค่าใช้จ่าย และสามารถนำมาใช้กับผู้สูงอายุที่อาศัยอยู่ในชุมชนได้

วิธีการศึกษา

การศึกษานี้เป็นการวิจัยเชิงวิเคราะห์แบบตัดขวาง (cross-sectional analytical study) ในรูปแบบการศึกษาความสัมพันธ์ (correlational study) อาสาสมัครที่เข้าร่วมงานวิจัยเป็นผู้สูงอายุที่มีอายุ 60 ปีขึ้นไป (อายุเฉลี่ย 66.09 ± 7.05 ปี) ในอำเภอเมือง จังหวัดพะเยา เข้าร่วมการศึกษาจำนวน 56 ราย ขนาดกลุ่มตัวอย่างค่านวน โดยใช้โปรแกรม G*Power analysis แบบ Correlation: Bivariate normal model กำหนดค่า correlation (r) ระดับต่ำ ที่ 0.35, alpha = 0.05, power = 0.8 ซึ่งทำให้ได้ขนาดกลุ่มตัวอย่างอย่างน้อย 20 คนขึ้นไป ข้อมูลพื้นฐานของอาสาสมัครแสดงดังตารางที่ 1 เกณฑ์คัดเข้าคือ เป็นผู้สูงอายุสุขภาพดีทั้งเพศชายและเพศหญิง หรือป่วยเป็นโรคเรื้อรังที่สามารถควบคุมอาการของโรคได้ เช่นโรคเบาหวาน โรคความดันโลหิตสูง และสามารถเดินได้ด้วยตนเองโดยไม่ใช้เครื่องช่วยเดิน ส่วนเกณฑ์คัดออกคือ มีปัญหาเกี่ยวกับระบบกระดูกและกล้ามเนื้อของร่างกายส่วนล่าง เช่น โรคข้อเสื่อมอักเสบ โรคข้อรูมาตอยด์ กระดูกหักหรือเคลื่อนหลุด มีปัญหาเกี่ยวกับระบบประสาทที่ส่งผลต่อการทรงตัวและความแข็งแรงของกล้ามเนื้อ เช่น โรคหลอดเลือดสมองและไขสันหลัง โรคพาร์กินสัน และมีปัญหาเกี่ยวกับการสื่อสาร การมองเห็น และการได้ยิน โดยการศึกษานี้ได้ผ่านการพิจารณาจากคณะกรรมการจริยธรรมการวิจัยในมนุษย์ มหาวิทยาลัยพะเยา (เลขที่ 2/168/60)

ผู้วิจัยแจ้งแก่อาสาสมัครถึงวัตถุประสงค์และขั้นตอนการเก็บข้อมูลการศึกษา พร้อมกับให้อาสาสมัครเขียนใบยินยอมเข้าร่วมการศึกษา ก่อนการทดสอบอาสาสมัคร ต้องงดออกกำลังกายอย่างน้อย 48 ชั่วโมง⁽²²⁾ งดเครื่องดื่มที่มีส่วนผสมของแอลกอฮอล์ กาแฟ ยาต่างๆ ที่ส่งผลต่อการทดสอบอย่างน้อย 24 ชั่วโมง จากนั้นาอาสาสมัครทำการกรอกข้อมูลส่วนตัวและวัดข้อมูลพื้นฐานทางกายภาพได้แก่ เพศ อายุ น้ำหนัก ส่วนสูง ความขาวขา เส้นรอบวงขา การเก็บข้อมูลอาสาสมัครถูกทดสอบยืนเขย่งปลายเท้า และทดสอบแรงดึงดูดตัวสูงสุดของกล้ามเนื้อถีบปลายเท้า (maximum voluntary contraction; MVC of

ankle plantar flexor) โดยมีเวลาพักระหว่างการทดสอบอย่างน้อย 5 นาที


1) การทดสอบยืนเขย่งปลายเท้า (Standing heel-rise test)⁽²¹⁾

อาสาสมัครอยู่ในท่ายืน เท้าทั้งสองข้างวางราบกับพื้นในตำแหน่งเท่ากับความกว้างของไหล่ ใช้มือทั้งสองข้างวางไปบนฝาผนังโดยอข้อศอกเล็กน้อย หลังตั้งตรงและข้อเข่าเหยียดตรง หลังจากนั้นผู้วิจัยออกคำสั่งให้อาสาสมัครเขย่งปลายเท้าทั้งสองข้างพร้อมกันให้ศีรษะต้องแตะแผ่นไม้ที่กำหนดความสูงเท่ากับระดับที่อาสาสมัครเขย่งปลายเท้าได้สูงสุด และวางสันเท้าลงราบกับพื้นก่อนที่จะเริ่มเขย่งปลายเท้าในครั้งถัดไปให้เร็วที่สุดเท่าที่ทำได้ในเวลา 30 วินาที ดังแสดงในรูปที่ 1 โดยการทดสอบยืนเขย่งปลายเท้า เป็นการทดสอบที่มีความน่าเชื่อถือในระดับสูง (ICC = 0.79-0.96)⁽²¹⁾ ผู้วิจัยคนที่ 1 ทำการจับเวลาตั้งเริ่มต้น และหยุดเวลาเมื่ออาสาสมัครเขย่งปลายเท้าครบ 5 ครั้ง และ

ผู้วิจัยคนที่ 2 ทำหน้าที่ในการนับจำนวนครั้งที่อาสาสมัครทำได้ในเวลา 30 วินาที ทำการทดสอบทั้งหมด 2 ครั้ง และพักระหว่างรอบ 3 นาที ผู้วิจัยบันทึกค่าสูงสุดของตัวแปรจำนวนครั้ง (repetitions) และเวลา (time) ที่อาสาสมัครทำได้ พร้อมทั้งคำนวณตัวแปรค่ากำลัง (power) ของการทดสอบยืนเขย่งปลายเท้าบนพื้นฐานของการคำนวณค่ากำลังทางฟิสิกส์ ดังสูตร กำลัง = งานที่ทำได้/เวลาที่ใช้⁽²³⁾ ซึ่งทำให้ได้สูตรกำลังของการทดสอบยืนเขย่งปลายเท้า ดังนี้

$$\text{กำลัง (Nm/s)} = \frac{\text{น้ำหนักตัว} \times 9.81 \times 0.05 \times 5}{\text{เวลาที่ใช้ในการทดสอบเขย่งปลายเท้า 5 ครั้ง}}$$

หมายเหตุ ค่า 0.05 เป็นระยะทางของศีรษะจากจุดเริ่มต้นถึงจุดที่เขย่งปลายเท้าลงสุดมีหน่วยเป็นเมตร และค่า 5 คือจำนวนครั้งของการทดสอบเขย่งปลายเท้า

รูปที่ 1 การทดสอบยืนเขย่งปลายเท้า (Standing heel-rise test) A = ท่าเริ่มต้นจากมุมมองด้านข้าง, B = ขณะเขย่งปลายเท้าได้สูงสุดจากมุมมองด้านข้าง, C = ขณะเขย่งปลายเท้าได้สูงสุดจากมุมมองด้านหลัง

2) การทดสอบแรงเหตุตัวสูงสุดของกล้ามเนื้อถีบปลายเท้า (MVC of ankle plantar flexor)

ผู้วิจัยแนะนำให้อาสาสมัครยืดกล้ามเนื้อถีบปลายเท้าก่อนเริ่มการทดสอบ จากนั้นให้อาสาสมัครนอนคว่ำบนเตียงเท้าเลยขอบเตียง ปรับตำแหน่งอุปกรณ์วางบริเวณ ball of foot ของเท้าข้างที่ต้องการวัด ดังแสดงในรูปที่ 2 ก่อนการทดสอบจริง อาสาสมัครได้รับอนุญาตให้ลองทดสอบก่อนด้วยแรง submaximal contraction 1 รอบ เพื่อให้อาสาสมัครเกิดความคุ้นชินกับการทดสอบผู้วิจัยออกคำสั่งให้อาสาสมัครออกแรงถีบปลายเท้าต้านกับเครื่อง Push-pull dynamometer ด้วยแรงที่มากที่สุดเท่าที่ทำได้ค้างไว้ 4 วินาที (MVC)⁽²⁴⁾ ทดสอบทั้งหมด 3 รอบ โดยมีเวลาพักระหว่างรอบ 2 นาที ผู้วิจัยบันทึกบันทึกค่าตัวแปรแรงเหตุตัวของกล้ามเนื้อ มากที่สุดใน 3 รอบ โดยการทดสอบแรงเหตุตัวสูงสุดของกล้ามเนื้อถีบปลายเท้า เป็นการทดสอบที่มีความน่าเชื่อถือในระดับสูง (ICC = 0.77-0.94)⁽²⁵⁾

รูปที่ 2 แสดงการทดสอบวัดแรงเหตุตัวสูงสุดของกล้ามเนื้อถีบปลายเท้าด้วย Push-pull dynamometer

3) การวิเคราะห์ข้อมูลทางสถิติ

วิเคราะห์ข้อมูลโดยใช้โปรแกรม SPSS version 22 โดยทำการวิเคราะห์การกระจายตัวของข้อมูลโดยใช้สถิติ Shapiro-Wilk test พบว่าตัวแปรมีการกระจายตัวของข้อมูลแบบปกติ ใช้สถิติเชิงพรรณนา (Descriptive) อย่างลักษณะทั่วไปของอาสาสมัคร และใช้สถิติ Pearson product moment correlation coefficient เพื่อหาค่าสัมประสิทธิ์สัมพันธ์ระหว่างแรงเหตุตัวสูงสุดของกล้ามเนื้อ

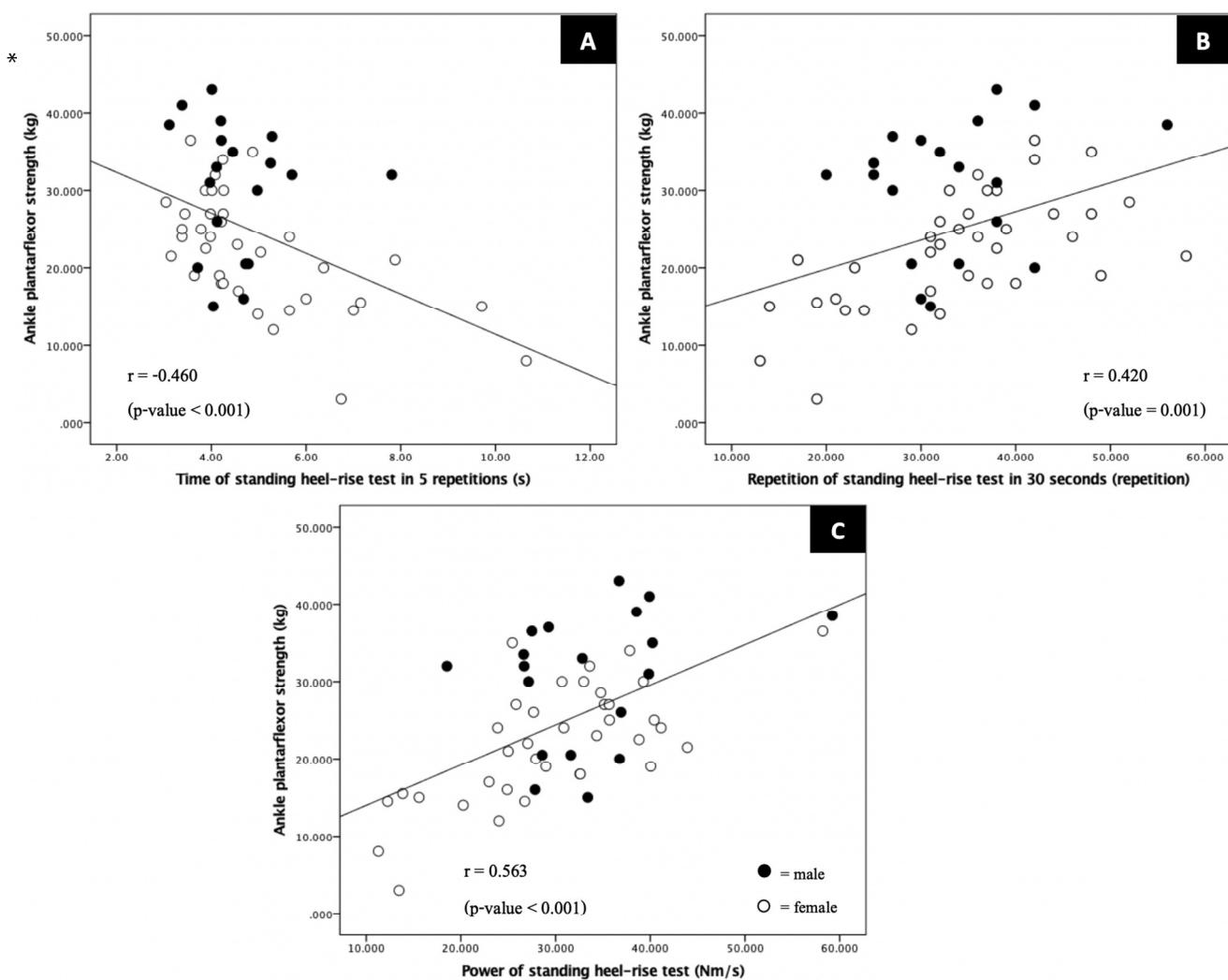
ถีบปลายเท้าและเวลา จำนวนครั้ง และกำลัง (power) ที่ใช้ในการทดสอบยืนเหย่งปลายเท้า โดยกำหนดระดับนัยสำคัญทางสถิติที่ $p\text{-value} < 0.05$

ผลการศึกษา

ผลการทดสอบทดสอบยืนเหย่งปลายเท้า (SHR test) พบร่วมระยะเวลา (time) ใน การทดสอบยืนเหย่งปลายเท้า 5 ครั้ง มีค่าเฉลี่ยเท่ากับ 4.81 ± 1.54 วินาที จำนวนครั้ง (repetition) ใน การทดสอบยืนเหย่งปลายเท้า ในเวลา 30 วินาที มีค่าเฉลี่ยเท่ากับ 33.77 ± 9.89 ครั้ง และกำลัง (power) ใน การทดสอบยืนเหย่งปลายเท้า มีค่าเฉลี่ยเท่ากับ 31.14 ± 9.49 นิวตันเมตร/วินาที ดังแสดงในตารางที่ 1

ตารางที่ 1 ข้อมูลลักษณะทั่วไปของอาสาสมัคร (ค่าเฉลี่ย \pm ส่วนเบี่ยงเบนมาตรฐาน)

Characteristic data	Mean \pm SD
	Total (n=56)
Gender (male/female)	19/37 (male/female)
Age (Years)	66.09 ± 7.05
Weight (Kilograms)	56.64 ± 10.10
Height (Centimeter)	153.36 ± 7.93
BMI (kg/m^2)	24.02 ± 3.60
Ankle plantar flexor muscles strength (kg)	24.96 ± 8.74
Time of standing heel-rise test in 5 repetitions (s)	4.81 ± 1.54
Repetition of standing heel-rise test in 30 seconds (repetition)	33.77 ± 9.89
Power of standing heel-rise test (Nm/s)	31.14 ± 9.49


แรงเหตุตัวสูงสุดของกล้ามเนื้อถีบปลายเท้า (MVC of ankle plantar flexor) มีความสัมพันธ์เชิงลบระดับปานกลางกับเวลา (time) ที่ใช้ในการทดสอบยืนเหย่งปลายเท้า

5 ครั้ง ($r = -0.460$, p -value < 0.01) และมีความสัมพันธ์เชิงบวกระหว่างเวลาที่ใช้ในการกล้ามเนื้อถีบปลายเท้าในการทดสอบยืนเขย่งปลายเท้าในเวลา 30 วินาที ($r = 0.420$,

p -value < 0.01) และกำลัง (power) ที่ใช้ในการทดสอบยืนเขย่งปลายเท้า ($r = 0.563$, p -value < 0.01) อย่างมีนัยสำคัญทางสถิติ ดังแสดงในตารางที่ 2 และรูปที่ 3

ตารางที่ 2 ความสัมพันธ์ระหว่างความแข็งแรงของกล้ามเนื้อถีบปลายเท้ากับการทดสอบยืนเขย่งปลายเท้า ($n=56$)

Variables	Time of standing heel-rise test in 5 repetitions (s)	Repetition of standing heel-rise test in 30 seconds (repetition)	Power of standing heel-rise test (Nm/s)
Ankle plantar flexor muscles strength (kg)	-0.460** (p -value < 0.001)	0.420** (p -value = 0.001)	0.563** (p -value < 0.001)

รูปที่ 3 ความสัมพันธ์ระหว่างความแข็งแรงของกล้ามเนื้อถีบปลายเท้ากับตัวแปรที่ได้จากการทดสอบยืนเขย่งปลายเท้า A = เวลา (time) ที่ใช้ในการทดสอบยืนเขย่งปลายเท้า 5 ครั้ง, B = จำนวนครั้ง (repetition) ในการทดสอบยืนเขย่งปลายเท้าในเวลา 30 วินาที, C = กำลัง (power) ที่ใช้ในการทดสอบยืนเขย่งปลายเท้า

วิจารณ์ผลการศึกษา

จากการศึกษาความสัมพันธ์ระหว่างความแข็งแรงของกล้ามเนื้อถีบปลายเท้า (Ankle plantar flexor) กับการทดสอบยืนเขย่งปลายเท้า (standing heel rise test) พบว่าความแข็งแรงของกล้ามเนื้อถีบปลายเท้ามีความสัมพันธ์เชิงบวกในระดับปานกลางกับจำนวน (repetitions) ที่ทำได้ในการยืนเขย่งปลายเท้า 30 วินาที และกำลัง (power) ในการยืนเขย่งปลายเท้าอย่างมีนัยสำคัญทางสถิติ และมีความสัมพันธ์เชิงลบในระดับปานกลางกับเวลา (time) ที่ใช้ในการยืนเขย่งปลายเท้า 5 ครั้ง (SRT-Time to complete in 5 time) อย่างมีนัยสำคัญทางสถิติ แสดงให้เห็นว่าการทดสอบยืนเขย่งปลายเท้าเป็นการทดสอบที่สามารถสะท้อนความแข็งแรงของกล้ามเนื้อถีบปลายเท้า ได้ในระดับปานกลาง และอาจนำมาเป็นอีกหนึ่งการทดสอบในการประเมินความเสี่ยงต่อการล้มในผู้สูงอายุได้ เนื่องจาก มีบางการศึกษารายงานว่าการเพิ่มความแข็งแรงและกำลังของกล้ามเนื้อรอบๆ ข้อเท้าเป็นปัจจัยสำคัญในการป้องกันการล้มในผู้สูงอายุ โดยกล้ามเนื้อถีบปลายเท้าถือว่าเป็นกล้ามเนื้อหลักที่ถูกกระตุนให้สร้าง

แรงในการทำกิจกรรมที่สำคัญในชีวิตประจำวัน⁽²⁶⁾ ไม่ว่าจะเป็นการเดิน (gait) ที่ต้องอาศัยแรงจากการถีบปลายเท้าเพื่อให้มีวัลร่างทั้งหมดเคลื่อนที่ไปข้างหน้าพร้อมกับช่วงก่อนการก้าวขา (pre-swing phase) ของวงจรการเดิน เช่นเดียวกันกับการขึ้นบันได หรือแม้แต่การลุกขึ้นยืนจากเก้าอี้ ต้องอาศัยแรงหดตัวของกล้ามเนื้อถีบปลายเท้า⁽²⁷⁻²⁹⁾ ผลการศึกษาในครั้งนี้สอดคล้องกับการศึกษาของ Andre และคณะ⁽²¹⁾ ได้ศึกษาพัฒนาวิธีการทดสอบยืนเขย่งปลายเท้าโดยใช้ชื่อการทดสอบว่า Calf-raise senior เพื่อประเมินความแข็งแรงและกำลังของกล้ามเนื้อถีบปลายเท้าในผู้สูงอายุตั้งแต่ 65 ปีขึ้นไป จำนวน 41 คน ซึ่งได้รับการทดสอบยืนเขย่งปลายเท้า และการวัดความแข็งแรงของกล้ามเนื้อถีบปลายเท้าด้วยเครื่อง Isokinetic dynamometer พบรезультатทดสอบยืนเขย่งปลายเท้ามีความสัมพันธ์กันในระดับสูงกับความแข็งแรงของกล้ามเนื้อถีบปลายเท้า โดยผู้วิจัยได้แนะนำว่า การทดสอบยืนเขย่งปลายเท้าสามารถนำมาใช้ประเมินความแข็งแรงของข้อเท้าได้เป็นอย่างดีในผู้สูงอายุและ

ยังใช้ประเมินประสิทธิภาพการให้โปรแกรมการออกกำลังกายเพื่อป้องกันล้มในผู้สูงอายุได้⁽²¹⁾

จากการทบทวนวรรณกรรมที่ผ่านมาพบว่า การทดสอบภาคสนาม (field test) ที่สามารถประเมินความแข็งแรงและกำลังของกล้ามเนื้อถีบปลายเท้าที่สัมพันธ์กับการเคลื่อนไหวที่ลดลงในผู้สูงอายุยังมีน้อย โดยส่วนใหญ่แล้วผู้วิจัยมุ่งเน้นการประเมินความแข็งแรงและกำลังของกล้ามเนื้อขาโดยรวมหรือส่วนอื่นๆ มากกว่าโดยเฉพาะกล้ามเนื้อเหยียดขา เช่น การทดสอบ “time up and go” และ “sit-to-stand”^(30, 31) นอกจากนี้ การทดสอบเหล่านี้ยังไม่ใช้การทดสอบที่สะท้อนถึงความแข็งแรงและกำลังของกล้ามเนื้อโดยตรง เนื่องจากมีปัจจัยอื่นๆ มาเกี่ยวข้อง เช่น ความสามารถในการประสานสัมพันธ์ ปฏิกิริยาตอบสนอง ความเร็ว รวมทั้งความสามารถในการทรงตัว ร่วมด้วย⁽²¹⁾ ดังนั้นการทดสอบยืนเขย่งปลายเท้าจากการผลการศึกษาในครั้งนี้จึงอาจเป็นตัวเลือกที่สำคัญในการนำมาใช้เป็นการทดสอบภาคสนาม สำหรับประเมินความแข็งแรงของกล้ามเนื้อถีบปลายเท้า และอาจพัฒนาเป็นการทดสอบเพื่อคัดกรองความเสี่ยง หรือทำนายการล้มในผู้สูงอายุในการวิจัยต่อไปในอนาคตได้ เนื่องจากเป็นการทดสอบที่ง่ายต่อการทดสอบ ประหยัดค่าใช้จ่าย และสะดวกสบายต่อการทดสอบสำหรับชุมชนที่ทั้งแทนเครื่องมือวัดความแข็งแรงของกล้ามเนื้อที่มีราคาแพง

นอกจากผู้วิจัยยังมีความเห็นว่าปัจจัยในเรื่องของน้ำหนักตัว (Body weight) น่าจะมีผลต่อการทดสอบยืนเขย่งปลายเท้าในครั้งนี้ด้วย เนื่องจากเมื่อพิจารณาลักษณะของการทดสอบยืนเขย่งปลายเท้า กล้ามเนื้อน่องจะต้องรับภาระของน้ำหนักตัวทั้งหมดและอาจน้ำหนักในน่องถ่วงลงทำให้เกิดการเคลื่อนที่ในแนวขึ้น-ลงได้ ดังนั้น หากผู้ที่มีน้ำหนักตัวมาก การทำการทดสอบก็จะยิ่งทำได้ลำบากมากขึ้น จึงได้นำค่ากำลังของการทดสอบ (Power) มาคำนวณด้วยตั้งสูตร กำลัง = แรง \times ระยะทาง/เวลา ซึ่ง Cormie และคณะ⁽³²⁾ กล่าวว่ากำลังเป็นความสามารถของระบบประสาทกล้ามเนื้อในการที่จะก่อให้เกิดแรงมากที่สุดในช่วงเวลาที่สั้นที่สุดหรือเป็นการอาจน้ำหนักตัวได้ด้วยการทดสอบของกล้ามเนื้อยื่นอย่างรวดเร็ว ผลการศึกษา

พบว่าเมื่อคำนวณค่ากำลัง (power) ของการทดสอบยืนเหยี่ยงปลายเท้ามีความสัมพันธ์กับแรงกดตัวสูงสุดของกล้ามเนื้อถีบปลายเท้ามากกว่าระยะเวลา (time) ที่ใช้ในการยืนเหยี่ยงปลายเท้า 5 ครั้งและจำนวน (repetitions) ที่ทำได้ในการยืนเหยี่ยงปลายเท้า 30 วินาที เนื่องมาจากน้ำหนักตัวเป็นปัจจัยที่มีผลโดยตรงต่อความสามารถในการทดสอบยืนเหยี่ยงปลายเท้าที่ทำได้ดังที่ได้กล่าวแล้วข้างต้น การที่บุคคลสามารถทำการทดสอบยืนเหยี่ยงปลายเท้าได้อย่างรวดเร็วนั้นต้องอาศัยแรงกดตัวของกล้ามเนื้อถีบปลายเท้าเป็นหลัก ซึ่งต้องแบกรับภาระของน้ำหนักตัว ยิ่งน้ำหนักตัวเยอะและยังสามารถทำเวลาในการทดสอบได้เร็ว แสดงว่าบุคคลนั้นมีความแข็งแรงของกล้ามเนื้อถีบปลายเท้ามาก ดังนั้นการนำการทดสอบยืนเหยี่ยงปลายเท้าไปใช้เพื่อประเมินความแข็งแรงของกล้ามเนื้อถีบปลายเท้า ผู้วิจัยแนะนำให้ใช้ตัวแปรกำลังของการทดสอบมากกว่า จะทำให้สะท้อนถึงความแข็งแรงของกล้ามเนื้อได้มากที่สุด

ข้อจำกัดของการศึกษาในครั้งนี้คือ กลุ่มตัวอย่างของอาสาสมัครมีเพศชายจำนวนน้อยกว่าเพศหญิง เนื่องจากประชากรผู้สูงอายุในชุมชนที่ทำวิจัยมีประชากรผู้สูงอายุเพศชายน้อยกว่าเพศหญิง ดังนั้นผลการศึกษาที่ได้จึงอาจนำไปใช้ในการอธิบายความสามารถสัมพันธ์ของตัวแปรดังกล่าวในผู้สูงอายุเพศหญิงได้มากกว่า ดังนั้นการศึกษาในอนาคตควรมีการสุ่มตัวอย่างผู้สูงอายุในจำนวนเท่าๆ กัน ทั้งสองเพศ หรืออาจทำการศึกษาแยกเพศ เพื่ออธิบายปัจจัยเพศต่อความแข็งแรงของกล้ามเนื้อถีบปลาย นอกจากนี้ ควรมีการศึกษาเพิ่มเติมเกี่ยวกับค่าตัดแบ่งของการทดสอบเพื่อแยกแยะระหว่างผู้สูงอายุที่มีความสามารถเสี่ยงและไม่มีความสามารถเสี่ยงต่อการล้ม จึงจะเป็นประโยชน์ต่อการนำไปใช้มากขึ้น

สรุปผลการศึกษา

การศึกษานี้พบว่า ความสามารถในการทดสอบยืนเหยี่ยงปลายเท้าในผู้สูงอายุมีความสัมพันธ์กับความแข็งแรงของกล้ามเนื้อถีบปลายเท้า แสดงให้เห็นว่าการทดสอบยืนเหยี่ยงปลายเท้าเป็นการทดสอบที่สามารถสะท้อนความแข็งแรงของกล้ามเนื้อถีบปลายเท้าได้

กิตติกรรมประกาศ

การศึกษานี้ได้รับงบประมาณสนับสนุนทุนวิจัยจากมหาวิทยาลัยพะเยา งบประมาณแผ่นดิน ประจำปีงบประมาณ 2562 (สัญญาเลขที่ RD62068) ผู้วิจัยขอขอบคุณคณะสหเวชศาสตร์ มหาวิทยาลัยพะเยา ที่ให้การสนับสนุนในการเขียนบทความในครั้งนี้

เอกสารอ้างอิง

1. Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. *J Appl Physiol* (1985) 2003; 95: 2229-2234.
2. Reeves ND, Narici MV, Maganaris CN. Musculoskeletal adaptations to resistance training in old age. *Man Ther* 2006; 11: 192-196.
3. Skelton DA, Beyer N. Exercise and injury prevention in older people. *Scand J Med Sci Sports* 2003; 13: 77-85.
4. Guideline for the prevention of falls in older persons. American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention. *J Am Geriatr Soc* 2001; 49: 664-672.
5. Skelton DA. Effects of physical activity on postural stability. *Age Ageing* 2001; 30 Suppl 4: 33-39.
6. Carter ND, Kannus P, Khan KM. Exercise in the prevention of falls in older people: a systematic literature review examining the rationale and the evidence. *Sports Med* 2001; 31: 427-438.
7. Silsupadol P. Guidelines for elderly health care according to the Thai way of life strategy in 2007-2016. Chiang Mai, Thailand 2013.
8. Cho KH, Bok SK, Kim YJ, Hwang SL. Effect of lower limb strength on falls and balance of the elderly. *Ann Rehabil Med* 2012; 36: 386-393.

9. Jan MH, Chai HM, Lin YF, et al. Effects of age and sex on the results of an ankle plantarflexor manual muscle test. *Phys Ther* 2005; 85: 1078-1084.
10. Flanagan SP, Song JE, Wang MY, Greendale GA, Azen SP, Salem GJ. Biomechanics of the heel-raise exercise. *J Aging Phys Act* 2005; 13: 160-171.
11. van Uden CJ, van der Vleuten CJ, Kooloos JG, Haenen JH, Wollersheim H. Gait and calf muscle endurance in patients with chronic venous insufficiency. *Clin Rehabil* 2005; 19: 339-344.
12. Hashish R, Samarawickrama SD, Wang M-Y, Yu SSY, Salem GJ. The association between unilateral heel-rise performance with static and dynamic balance in community dwelling older adults. *Geriatr Nurs* 2015; 36: 30-34.
13. Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. *J Neurophysiol* 1986; 55: 1369-1381.
14. Goncalves GH, Sendin FA, da Silva Serrao PRM, et al. Ankle strength impairments associated with knee osteoarthritis. *Clin Biomech (Bristol, Avon)* 2017; 46: 33-39.
15. Cattagni T, Scaglioni G, Laroche D, Gremiaux V, Martin A. The involvement of ankle muscles in maintaining balance in the upright posture is higher in elderly fallers. *Exp Gerontol* 2016; 77: 38-45.
16. Noreau L, Vachon J. Comparison of three methods to assess muscular strength in individuals with spinal cord injury. *Spinal Cord* 1998; 36: 716-723.
17. Bohannon RW, Corrigan D. A broad range of forces is encompassed by the maximum manual muscle test grade of five. *Percept Mot Skills* 2000; 90: 747-750.
18. Aitkens S, Lord J, Bernauer E, Fowler WM, Jr., Lieberman JS, Berck P. Relationship of manual muscle testing to objective strength measurements. *Muscle Nerve* 1989; 12: 173-177.
19. Martin HJ, Yule V, Syddall HE, Dennison EM, Cooper C, Aihie Sayer A. Is hand-held dynamometry useful for the measurement of quadriceps strength in older people? A comparison with the gold standard Bodex dynamometry. *Gerontology* 2006; 52: 154-159.
20. Bohannon RW. Test-retest reliability of hand-held dynamometry during a single session of strength assessment. *Phys Ther* 1986; 66: 206-209.
21. Andre HI, Carnide F, Borja E, Ramalho F, Santos-Rocha R, Veloso AP. Calf-raise senior: a new test for assessment of plantar flexor muscle strength in older adults: protocol, validity, and reliability. *Clin Interv Aging* 2016; 11: 1661-1674.
22. Ebben WP, Long NJ, Pawlowski ZD, Chmielewski LM, Clewien RW, Jensen RL. Using squat repetition maximum testing to determine hamstring resistance training exercise loads. *J Strength Cond Res* 2010; 24: 293-299.
23. Walker J., Halliday D., Resnick R. *Fundamentals of Physics*. 10th, editor. Hoboken, NJ: Wiley; 2011.
24. Moraux A, Canal A, Ollivier G, et al. Ankle dorsi- and plantar-flexion torques measured by dynamometry in healthy subjects from 5 to 80 years. *BMC Musculoskelet Disord* 2013; 14: 104.

25. Spink MJ, Fotoohabadi MR, Menz HB. Foot and ankle strength assessment using hand-held dynamometry: reliability and age-related differences. *Gerontology* 2010; 56: 525-532.
26. Suzuki T, Bean JF, Fielding RA. Muscle power of the ankle flexors predicts functional performance in community-dwelling older women. *J Am Geriatr Soc* 2001; 49: 1161-1167.
27. Kirkwood RN, Trede RG, Moreira Bde S, Kirkwood SA, Pereira LS. Decreased gastrocnemius temporal muscle activation during gait in elderly women with history of recurrent falls. *Gait Posture* 2011; 34: 60-64.
28. Judge JO, Lindsey C, Underwood M, Winsemius D. Balance improvements in older women: effects of exercise training. *Phys Ther* 1993; 73: 254-262; discussion 263-255.
29. Judge JO, Davis RB, 3rd, Ounpuu S. Step length reductions in advanced age: the role of ankle and hip kinetics. *J Gerontol A Biol Sci Med Sci* 1996; 51: M303-312.
30. Rikli RE, Jones CJ. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. *Gerontologist* 2013; 53: 255-267.
31. Thrane G, Joakimsen RM, Thornquist E. The association between timed up and go test and history of falls: the Tromso study. *BMC Geriatr* 2007; 7: 1.
32. Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: Part 1--biological basis of maximal power production. *Sports Med* 2011; 41: 17-38.

ปัจจัยที่สัมพันธ์กับระดับเสี่ยงต่อความผิดปกติทางระบบโครงร่างและกล้ามเนื้อในเกษตรกรผู้ปลูกยางพารา

สุนิสา ชาญเกลี้ยง^{1,2*}, กวิสทธารินทร์ คงชนะพันธ์² และพronava ศุกรเวทย์ศิริ³

Received: November 1, 2019

Revised: March 2, 2020

Accepted: March 4, 2020

บทคัดย่อ

การศึกษาเชิงวิเคราะห์แบบภาคตัดขวางนี้มีวัตถุประสงค์เพื่อศึกษาปัจจัยที่สัมพันธ์กับระดับความเสี่ยงทางสุขภาพต่อความผิดปกติทางระบบดูดโครงร่างและกล้ามเนื้อ ในเกษตรกรผู้ปลูกยางพารา กลุ่มตัวอย่างที่ศึกษามีจำนวน 316 คน มาจากหลักการคำนวณเพื่อศึกษาปัจจัยเสี่ยงและสูงตัวอย่างแบบคลัสเตอร์หอยลายขั้นตอน จากเกษตรกรผู้ชี้ชนที่เป็นปลูกยางพารา จังหวัดอุบลราชธานี เก็บรวบรวมข้อมูลโดยใช้แบบสัมภาษณ์แบบมีโครงสร้าง ประเมินความรู้สึกไม่สบายทางระบบโครงร่างและกล้ามเนื้อ ประเมินความเสี่ยงทางการยศาสตร์ด้วยเทคนิคประเมินทั้งร่างกาย (Rapid entire body assessment; REBA) วัดสมรรถภาพของกล้ามเนื้อ และใช้เมตริกความเสี่ยงทางสุขภาพเพื่อประเมินระดับเสี่ยงต่อความผิดปกติทางระบบดูดโครงร่าง และกล้ามเนื้อ วิเคราะห์ปัจจัยเสี่ยงโดยใช้สถิติพหุค鹌อยโลจิสติก นำเสนอด้วย Adjusted Odds Ratio (OR_{adj}) ที่ความเชื่อมั่น 95% CI และระดับนัยสำคัญทางสถิติ p -value <0.05 ผลการศึกษาพบว่า ความเสี่ยงทางการยศาสตร์ด้วยเทคนิค REBA อยู่ในระดับสูงมากที่ต้องดำเนินการแก้ไขคือ ขั้นตอนการรีดยาง ร้อยละ 87.66 และการทำความสะอาดทุกคน สมรรถภาพของกล้ามเนื้อ ส่วนใหญ่อยู่ในระดับค่อนข้างต่ำ คือ แรงบีบมือ ร้อยละ 56.01 และแรงเหยียดขา ร้อยละ 89.55 ความเสี่ยงทางสุขภาพต่อความผิดปกติทางระบบดูดโครงร่างและกล้ามเนื้อส่วนใหญ่อยู่ในระดับสูงร้อยละ 62.65 โดยพบสูงสุดคือบริเวณหลังส่วนล่าง ร้อยละ 61.71 รองลงมาคือ เข่า ร้อยละ 58.86 และมือและข้อมือ ร้อยละ 56.96 ตามลำดับ ปัจจัยที่สัมพันธ์กับความเสี่ยงสูงต่อความผิดปกติทางระบบดูดโครงร่างและกล้ามเนื้ออย่างมีนัยสำคัญทางสถิติ ได้แก่ การขันย้ายยางพาราไปขายโดยรถยก (OR_{adj} = 1.82; 95% CI = 1.06-2.87) การพักผ่อน ≤ 3 ชั่วโมงต่อวัน (OR_{adj} = 3.38; 95% CI = 1.13-10.11) และสมรรถภาพแรงบีบมือที่ต่ำ (OR_{adj} = 2.13; 95% CI = 1.29-3.27) ดังนั้นจากผลความเสี่ยงสูงทางการยศาสตร์ในเกษตรกรผู้รีดยางพาราและการทำผนังยาง รวมทั้งผลสมรรถภาพแรงบีบมือซึ่งต่ำ จึงแนะนำให้มีระบบการเฝ้าระวังความผิดปกติทางระบบดูดโครงร่างและกล้ามเนื้อด้วยหลักการประเมินความเสี่ยง และให้องค์กรในชุมชนจัดกิจกรรม เช่น การอบรมให้ความรู้ทางด้านการยศาสตร์ กิจกรรมส่งเสริมสุขภาพด้วยการทำการออกกำลังกายที่ทำได้เองเป็นประจำ และแนะนำการพักผ่อนที่เพียงพอ เพื่อลดความเสี่ยงต่อโรคทางระบบดูดโครงร่างและกล้ามเนื้อจากการทำงานได้

คำสำคัญ: ความรู้สึกไม่สบายทางระบบโครงร่างและกล้ามเนื้อ, ความเสี่ยงทางการยศาสตร์, สมรรถภาพทางกาย, เมตริกความเสี่ยงทางสุขภาพ

¹ภาควิชาอนามัยสิ่งแวดล้อม อาชีวอนามัยและความปลอดภัย คณะสาธารณสุขศาสตร์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

²หลักสูตรวิทยาศาสตร์มหาบัณฑิต สาขาวิชาอนามัยและความปลอดภัย คณะสาธารณสุขศาสตร์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

³ภาควิชาระบบดูดวิทยาและชีวสถิติ คณะสาธารณสุขศาสตร์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

*ผู้รับผิดชอบบทความ

Factors correlated with risk levels of musculoskeletal disorders among rubber planters

Sunisa Chaiklieng^{1,2*} Kawitthrarin Khanaphan², Pornnapa Suggaravetsiri³

Abstract

This cross-sectional analytic study aimed to investigate the factors associated with health risk levels of musculoskeletal disorders (MSDs) in rubber planters. There were 316 rubber planters from Ubon Ratchatani Province, Thailand participated in this study by multi-stage cluster sampling. Data were collected by the structure interviewed questionnaire, musculoskeletal discomfort questionnaire, rapid entire body assessment (REBA), and physical fitness test. The health risk assessment matrix was applied for MSDs risk levels assessment. The significant risk factors of MSDs risk levels were indicated by using multiple logistic regression to present adjusted Odds Ratio (OR_{adj}) and 95% confidence interval (95%CI) at p-value <0.05. The results showed that ergonomics risk assessed by REBA was very high with implication needs among rubber tappers (87.66%) and all rubber sheet makers. The muscle strength was likely low for handgrip strength (56.01%) and leg strength (89.55%). The high health risk of MSDs was indicated in most rubber planters (62.65%), mainly area of the lower back (67.71%), followed by the knee (58.86%) and hands/wrists (56.96%). The significant factors correlated with the high risk of MSDs were including rubber transportation with a car (OR_{adj.} = 1.82; 95% CI = 1.06-2.87), resting ≤3 hours a day (OR_{adj.} = 3.38; 95% CI = 1.13-10.11), and had low handgrip strength (OR_{adj.} = 2.13; 95% CI = 1.29-3.27). The significant findings were high ergonomics risk among rubber tappers and rubber sheet makers and the correlated risk factors to MSDs risk level which were low muscle strength, not enough rest, and manual rubber transportation. Those suggestions are for the surveillance program to prevent MSDs by the community's organization such as health promotion with muscle exercise and training program to educate planting farmers of rubber on work environmental ergonomics and to reduce the risk of MSDs.

Keywords: Musculoskeletal discomfort, Ergonomics risk, Physical fitness, Health risk matrix

¹ Department of Environmental Health, Occupational Health and Safety, Faculty of Public Health, Khon Kaen University.

² MSc. Program in Occupational Health and Safety, Faculty of Public Health, Khon Kaen University, Khon Kaen

³ Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen

*Corresponding author: (e-mail: csunis@kku.ac.th)

บทนำ

ข้อมูลสถิติโรคที่เกิดขึ้นตามลักษณะหรือสภาพของงานหรือเนื่องจากการทำงาน จากการกองทุนเงินทดแทนสำนักงานประกันสังคม กระทรวงแรงงาน ในปี พ.ศ. 2556-2560 คือ ความผิดปกติทางระบบกระดูกโครงร่าง และกล้ามเนื้อ เฉลี่ยร้อยละ 2.19 ต่อปี⁽¹⁾ พบรู้ป่วยมากที่สุด คือ กลุ่มอาชีพเกษตรกรผู้ปลูกพืชผักและพืชไร่ จำนวน 68,886 ราย คิดเป็นร้อยละ 39.51⁽²⁾ และจากข้อมูลผู้ป่วยอาการผิดปกติทางระบบกระดูกโครงร่าง และกล้ามเนื้อ จากการทำงานของระบบคลังข้อมูลด้านการแพทย์และสุขภาพ กระทรวงสาธารณสุข ในปี พ.ศ. 2560 พบรู้ป่วยโรคกระดูกโครงร่าง และกล้ามเนื้อ จำนวน 100,743 ราย คิดเป็นอัตราป่วย 167.22 ต่อประชากรแสนราย

อัตราป่วยโรคกระดูกและกล้ามเนื้อจากการทำงาน จังหวัดอุบลราชธานี พบรู้ป่วย 103.48 ต่อประชากรแสนคน เมื่อจำแนกตามรายอาชีพ พบรู้ป่วย ให้แก่เกษตรกรอาชีพผู้ปลูกพืชไร่และพืชผัก ทำไร่ ชาวนาปลูกข้าว รองลงมาอาชีพคนงานรับจ้างทั่วไป⁽³⁾ โดยจากการศึกษาการเจ็บป่วยในเกษตรกรปลูกพืชไร่ ตั้งแต่ปี พ.ศ. 2555-2559 พบรู้ป่วยสูงสุดในกลุ่มโรคทางระบบกระดูกโครงร่าง และกล้ามเนื้อ⁽⁴⁾ และตำแหน่ง พบรู้ป่วยสูงสุดคือบริเวณหลังส่วนล่าง ตามด้วยการปวดบริเวณรยางค์ส่วนบน และรยางค์ส่วนล่าง ตามลำดับ ที่สาเหตุหลักมาจากการทำงานหนักด้วยท่าทางผิดธรรมชาติ การออกแรงเกิน หรือมีท่าทางช้าๆ⁽⁵⁾

เกษตรกรผู้ปลูกยางพารา นับว่าเป็นอาชีพที่มีความเสี่ยงต่อสุขภาพในหลายๆ ด้านโดยเฉพาะด้านการยศาสตร์ ซึ่งเป็นปัญหาที่สำคัญมีผลกระทบต่อสุขภาพของเกษตรกรที่เกิดจากลักษณะท่าทางการทำงานที่ช้าๆ ภาระงานที่หนัก สภาพแวดล้อมอื่นๆ ที่มีผลต่อความผิดปกติทางระบบกระดูกโครงร่าง และกล้ามเนื้อจากการทำงาน ความชุกที่รายงานในงานวิจัยที่ผ่านมาสูงสุด คือ การปวดหลังส่วนล่าง ซึ่งพบรู้ป่วย 5.9 ของกลุ่มที่ศึกษา⁽⁶⁾ และความชุกรองลงมาจากการปวดหลังส่วนล่าง คือการปวดบริเวณมือ ข้อมือ ข้อศอก ที่มีการปวดเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติในช่วงที่มีการทำงานหนักของผู้ปลูกยางพารา⁽⁷⁾

จากการที่ไม่มีหลักประกันทางสังคมจากการทำงานและมีความเสี่ยงต่อสุขภาพส่วนใหญ่ด้านอาการทางระบบกระดูกโครงร่าง และกล้ามเนื้อดังที่กล่าวข้างต้น การศึกษาปัจจัยเสี่ยงต่อความผิดปกติทางระบบกระดูกโครงร่าง และกล้ามเนื้อในเกษตรกรผู้ปลูกยางพาราจึงมีจำเป็นอย่างยิ่งเพื่อเป็นประโยชน์ในการนำข้อมูลไปใช้ในการป้องกัน การส่งเสริมสุขภาพ และวางแผนลดความเสี่ยงจากการผิดปกติทางระบบกระดูกโครงร่าง และกล้ามเนื้อ ในเกษตรกรผู้ปลูกยางพาราต่อไป ซึ่งการศึกษาที่ผ่านมาระบุว่าปัจจัยเสี่ยงจากการทำงานด้านท่าทางที่ไม่เหมาะสม และการออกแรงมีความสัมพันธ์กับกลุ่มอาการผิดปกติทางระบบกระดูกโครงร่าง และกล้ามเนื้อบริเวณรยางค์ส่วนบน ซึ่งท่าทางการทำงานสามารถประเมินได้จากเทคนิคการประเมินความเสี่ยงทางการยศาสตร์⁽⁸⁾ และพบว่าปัจจัยส่วนบุคคลด้านอายุ และเพศมีความสัมพันธ์กับการอาการดังกล่าว เช่นกันในเกษตรกรปลูกยางพาราในภาคใต้ของประเทศไทย⁽⁹⁾

เนื่องจากปัจจุบันภาคตะวันออกเฉียงเหนือมีพื้นที่ปลูกยางพารามากเป็นลำดับที่สองรองจากภาคใต้ของประเทศไทย⁽¹⁰⁾ ผู้วิจัยจึงสนใจศึกษาความสัมพันธ์ของปัจจัยทั้งส่วนบุคคล ความแข็งแรงของสมรรถภาพร่างกาย และปัจจัยเสี่ยงจากการทำงานกับระดับความเสี่ยงทางสุขภาพ ต่อความผิดปกติทางระบบกระดูกโครงร่าง และกล้ามเนื้อ ในเกษตรกรผู้ปลูกยางพารานี้ โดยใช้กรณีเกษตรกรปลูกยางพาราของจังหวัดอุบลราชธานี ซึ่งเป็นจังหวัดที่มีพื้นที่การกรีดยางเป็นลำดับต้นๆ ของภาคตะวันออกเฉียงเหนือ⁽¹¹⁾ เพื่อนำผลที่ได้ไปวางแผนป้องกันอาการผิดปกติทางระบบกระดูกโครงร่าง และกล้ามเนื้อในเกษตรกรต่อไป

วัสดุและวิธีดำเนินการวิจัย

1. รูปแบบการวิจัย

การศึกษาเชิงวิเคราะห์แบบภาคตัดขวาง (Cross-sectional analytic study) ที่มีการประยุกต์ใช้เมตริกการประเมินความเสี่ยงทางสุขภาพต่อการความผิดปกติทางระบบกระดูกโครงร่าง และกล้ามเนื้อ เพื่อประเมินระดับความเสี่ยงต่อ MSDs และศึกษาปัจจัยที่สัมพันธ์กับระดับความเสี่ยงดังกล่าวในเกษตรกรผู้ปลูกยางพารา

ที่ขึ้นทะเบียนของจังหวัดอุบลราชธานี⁽¹¹⁾ ทำการศึกษาในช่วง มกราคม –เมษายน พ.ศ. 2562

2. ประชากรและกลุ่มตัวอย่าง

ประชากรในการศึกษาครั้งนี้คือ เกษตรกรผู้ปลูก ยางพาราที่ขึ้นทะเบียนเกษตรกรชาวสวนยางพารากับสำนักงานการยางแห่งประเทศไทย สาขาเดชอุดม จังหวัดอุบลราชธานี จำนวน 316 คน โดยมีเกณฑ์คัดเข้า ดังนี้ 1) เกษตรกรผู้ที่ขึ้นทะเบียนเกษตรกรชาวสวนยางพาราซึ่งในช่วงการเก็บข้อมูลเกษตรกรไม่มีกิจกรรมการเกษตรอื่นร่วมด้วย ยกเว้นการกรีดยาง 2) เกษตรกรที่ประกอบอาชีพกรีดยางอย่างน้อย 1 ปี และอาศัยอยู่ในพื้นที่จังหวัดอุบลราชธานี 3) ผู้ที่มีสัญชาติไทย อายุ 20 ปีขึ้นไป และสามารถอ่านออกเขียนได้ 4) ยินยอมและเต็มใจเข้าร่วมการวิจัยครั้งนี้ และเกณฑ์คัดออก คือ 1) เกษตรกรผู้ที่เคยได้อุบัติเหตุรุนแรง หรือเคยรับการผ่าตัดจนทำให้เกิดอาการผิดปกติทางระบบโครงร่างและกล้ามเนื้อ 2) สตรีที่อยู่ในช่วงการตั้งครรภ์

3. การคำนวณขนาดตัวอย่าง

การคำนวณขนาดตัวอย่างใช้สูตรคำนวณขนาดตัวอย่าง สำหรับการศึกษาแบบภาคตัดขวาง เชิงวิเคราะห์ โดยใช้สถิติผลอยลوجิสติก (Logistic regression)⁽¹²⁾ ที่ใช้สัดส่วนการยืนยันการทำงานนานๆ ของแรงงานเกษตรที่ทำงานในสวนผลไม้ในภาคตะวันออกของประเทศไทยต่อความผิดปกติทางระบบกระดูกโครงร่างและกล้ามเนื้อจากการศึกษา ก่อนหน้านี้⁽¹³⁾ แทนค่าในสูตร จาก ปัจจัยเสี่ยงของการยืนยันการทำงานนานๆ คือ $P_1 =$ สัดส่วนแรงงานชาวภูชาที่ทำงานในสวนผลไม้ที่ไม่มีการยืนยันทำงานนานๆ มีความผิดปกติของระบบโครงร่างและกล้ามเนื้อ $= 0.35$ และ $P_2 =$ สัดส่วนแรงงานชาวภูชาที่ทำงานในสวนผลไม้ที่มีการยืนยันทำงานนานๆ มีอาการผิดปกติของระบบโครงร่างและกล้ามเนื้อ $= 0.64$ ได้ดังนี้

$$n = \frac{0.54(1-0.54)(1.96+0.84)^2}{[0.64(1-0.64)(0.35-0.64)]^2}$$

$$n = 100.90 \approx 101 \text{ ราย}$$

ทำการปรับเปลี่ยนกลุ่มตัวอย่างสำหรับการวิเคราะห์ Multiple logistic regression⁽¹²⁾ และใช้การสุ่มตัวอย่างแบบหลายขั้นตอน (Multi-stage cluster sampling) จึงปรับขนาดตัวอย่างด้วยค่า Design effect (D); $n(\text{clus}) = n(s) \times D$ การศึกษานี้จึงกำหนดให้ $D=2$ ใช้ค่า $p = 0.6$; $n(\text{clus}) = 158 \times 2 = 316$

ดังนั้นผู้วิจัยใช้ขนาดตัวอย่างในการศึกษาครั้งนี้ 316 คน มีการสุ่มตัวอย่างอย่างง่ายในครั้งนี้ (Cluster random sampling) โดยสุ่มมา 1 อำเภอคือ อำเภอโน้นยืน เนื่องจากตามลักษณะพื้นที่เพาะปลูกมีการเพาะปลูกยางพารามากที่สุด⁽¹¹⁾ และแบ่งออก เป็น 3 โฉน ได้แก่ โฉนเหนือ โฉนกลาง โฉนใต้เพื่อทำการสุ่มนหน่วยตำบลได้ดังนี้ โฉนเหนือ คือ ตำบลยางใหญ่ โฉนกลาง คือ ตำบลบุปปีอย และโฉนใต้ คือตำบลสีวิเชียร ผู้วิจัยจึงตัดสินใจเลือกเก็บข้อมูลทุกคนในตำบลสุ่มเลือก รวมจำนวนตัวอย่างในการศึกษานี้ 316 คน

4. เครื่องมือที่ใช้ในการวิจัย

1) แบบสัมภาษณ์แบบมีโครงสร้าง ประกอบด้วย 2 ส่วน คือ ส่วนที่ 1 ข้อมูลส่วนบุคคล ส่วนที่ 2 ข้อมูลด้านสภาพแวดล้อมในการทำงาน และการยกเครื่องนัยยังวัสดุ ที่ผ่านการตรวจสอบความตรงและความถูกต้องของเนื้อหา (Content validity) ของแบบสัมภาษณ์โดยผู้เชี่ยวชาญด้านอาชีวอนามัย การยศาสตร์ ระบบดิจิทัล และภาษาพื้นบ้าน เพื่อความถูกต้อง ครอบคลุมด้านเนื้อหา ความเหมาะสมสมด้านภาษาและความชัดเจนของข้อความ และปรับปรุงแก้ไขก่อนใช้เก็บข้อมูล

2) แบบประเมินความรู้สึกไม่สบายทางระบบโครงร่างและกล้ามเนื้อบริเวณต่างๆ 10 บริเวณคือ คอ หลังส่วนบน หลังส่วนล่าง ไหล่ แขนท่อนล่าง มือและข้อมือ สะโพก เข่า น่อง เท้าและข้อเท้า โดยบอกความถี่และความรุนแรงของความรู้สึกไม่สบายทางระบบโครงร่างและกล้ามเนื้อ จากการวิจัยที่ผ่านมาโดย สุนิสา ชาญเกลี้ยง และคณะ⁽¹⁴⁾ สอบถามอาการปวด เมื่อย ชา ล้า ในรอบ 1 เดือน ที่ผ่านมา ระบุความรุนแรงของอาการ 4 ระดับ ดังนี้ รุนแรงเล็กน้อย (1) รุนแรงปานกลาง (2) รุนแรงมาก (3) รุนแรงมากจนเกินทนไหว (4) และระบุความถี่ของอาการ 4 ระดับ

คือ นานๆ ครั้ง (1) บางครั้ง (2) บ่อย (3) บ่อยมาก (4) โดยผลกระทบแแนวความรุนแรงและความถี่ (0-16 คะแนน) สามารถจัดระดับความรุนแรงของความรู้สึกไม่สบายเป็น 4 ระดับ⁽¹⁴⁾ คือ ระดับ 1 รู้สึกไม่สบายเล็กน้อย (คะแนน 1-2) ระดับ 2 รู้สึกไม่สบายปานกลาง (คะแนน 3-5) ระดับ 3 รู้สึกไม่สบายมาก (คะแนน 6-8) ระดับ 4 รู้สึกไม่สบายมากที่สุด (คะแนน 9-16) และกรณีไม่สามารถหรือรู้สึกสบายระบุระดับ 0 (คะแนน 0)

3) การประเมินความเสี่ยงทางการยศาสตร์ด้วยเทคนิค Rapid Entire Body Assessment; REBA เนื่องจากเป็นเทคนิคการประเมินลักษณะท่าทางการทำงานที่มีท่าทางเคลื่อนไหวทั้งร่างกาย ซึ่งหมายความว่าใช้ประเมินเกณฑ์การปลูกภูมิพาราที่มีลักษณะการเปลี่ยนท่าทางขณะการทำงานที่ยืนปฏิบัติงานเป็นส่วนใหญ่ มียกของเป็นครั้งคราว หรือนั่งย่องเป็นบางครั้ง⁽¹⁰⁾ และใช้รยางค์ส่วนบนช้าๆ ขณะกรีดยางพารา เก็บน้ำยางและการทำงานแผ่น เป็นต้น โดยพิจารณาทำແหน่งและลักษณะการเคลื่อนไหวของส่วนต่างๆ ร่างกาย ซึ่งประกอบด้วยการพิจารณาท่าทาง มุ่งมองศ่าเคลื่อนไหวของอวัยวะ คอลัมตัว และขา ต้นแขน ปลายแขน ร่วมกับการประเมินภาระงานที่ทำจากความถี่ของการเคลื่อนไหวและการออกแรง

4) การตรวจวัดสมรรถภาพทางกาย การวัดแรงบีบมือ แรงเหยียดหลัง และแรงเหยียดขา โดยใช้อุปกรณ์ Back-leg dynamometer และ Hand grip dynamometer การเก็บรวมข้อมูลโดยผู้ริจจัยในสถานที่ที่อาสาสมัครสะดวกคือ ลานกลางชุมชน หรือลานบริเวณสถานที่ทำงานที่บ้าน โดยทำการตรวจวัด 2 ครั้ง นำผลที่มีค่ามากจากการวัด (กิโลกรัม) หารด้วยน้ำหนักตัว (กิโลกรัม) เปรียบเทียบกับค่ามาตรฐานเป็น 5 ระดับ คือ ดีมาก ดี ปานกลาง ต่ำ และต่ำมาก⁽¹⁰⁾

5. การวิเคราะห์ระดับความเสี่ยงทางการยศาสตร์โดยเทคนิค REBA

ผลคะแนนจากการพิจารณาส่วนต่างๆ ของกลุ่มอวัยวะส่วนต่างๆ คือ

ส่วนที่ 1 การวิเคราะห์คือ (คะแนนอยู่ระหว่าง 1-4) ลัมตัว (คะแนนอยู่ระหว่าง 1-6) และขา (คะแนนอยู่ระหว่าง 1-4)

ส่วนที่ 2 การประเมินภาระงานที่ทำโดยพิจารณาจากแรงที่ใช้หรือน้ำหนักที่ถือ (คะแนนอยู่ระหว่าง 0-3)

ส่วนที่ 3 การวิเคราะห์แขนส่วนบน (คะแนนอยู่ระหว่าง 1-4) แขนส่วนล่าง (คะแนนอยู่ระหว่าง 1-2) และข้อมือ (คะแนนอยู่ระหว่าง 1-4)

ส่วนที่ 4 การประเมินลักษณะการจับยืดดึง (คะแนนอยู่ระหว่าง 0-3)

ส่วนที่ 5 ประเมินระดับของการใช้แรงจากกล้ามเนื้อในการทำงาน (คะแนนอยู่ระหว่าง 1-3)

ระดับความเสี่ยงแบ่งออกเป็น 4 ระดับ ดังนี้

ระดับ 1 (เสี่ยงต่ำ) คะแนน 1 ภาวะที่ยอมรับได้

ระดับ 2 (เสี่ยงปานกลาง) คะแนน 2-3 งานนั้นควรได้รับการตรวจสอบและศึกษารายละเอียดเพิ่มเติม

ระดับ 3 (เสี่ยงสูง) คะแนน 4-7 งานนั้นเริ่มเป็นปัญหา ควรตรวจสอบและรับดำเนินการปรับปรุงให้ดีขึ้น

ระดับ 4 (เสี่ยงสูงมาก) คะแนน 8-11⁺ งานนั้นเป็นปัญหาควรรับทำการปรับปรุงหรือแก้ไขโดยทันที

6. การประเมินระดับความเสี่ยงทางสุขภาพต่อ MSDs

ใช้เมตริกความเสี่ยงต่อสุขภาพที่อาศัยองค์ประกอบของโอกาสสัมผัสปัจจัยคุกคามทางการยศาสตร์จากผล REBA (4 ระดับ) และระดับความรู้สึกไม่สบายที่บริเวณต่างๆ (4 ระดับ) ผลลัพธ์ของคะแนนความเสี่ยงและระดับความเสี่ยงต่อ MSDs ประยุกต์จากเมตริกความเสี่ยงทางสุขภาพต่อ MSDs ในการศึกษาที่ผ่านมา⁽¹¹⁾ ดังแสดงในตารางที่ 1 โดยประยุกต์เพื่อการวิเคราะห์ปัจจัยเสี่ยง คือ กลุ่มเกณฑ์การปลูกภูมิพารามีความเสี่ยงสูงต่อ MSDs พิจารณาจากความเสี่ยงที่ระดับ 3 ขึ้นไป (ระดับ 3 ความเสี่ยงสูง และระดับ 4 ความเสี่ยงสูงมาก) และกลุ่มที่มีความเสี่ยงต่ำ พิจารณาจากความเสี่ยงต่ำกว่าระดับ 3 ที่ทำແหน่งได้ทำແหน่งหนึ่งของร่างกาย

7. การวิเคราะห์ข้อมูลเชิงสถิติ

ทำการวิเคราะห์ข้อมูลด้วยโปรแกรม STATA 10 (ลิขสิทธิ์ มหาวิทยาลัยขอนแก่น) การวิเคราะห์ข้อมูลทั่วไปด้วยสถิติเชิงพรรณนา กรณีข้อมูลเป็นข้อมูลต่อเนื่องและมีการแจกแจงปกตินำเสนอด้วยค่าเฉลี่ย ค่าส่วนเบี่ยงเบน

มาตรฐาน กรณีข้อมูลมีการแจกแจงไม่ปกติ นำเสนอด้วยค่ามัธยฐาน ค่าต่ำสุด สูงสุด กรณีเป็นข้อมูลแจกแจงนับนำเสนอโดยตารางแจกแจงความถี่และค่าร้อยละ และการวิเคราะห์หาปัจจัยที่สัมพันธ์กับระดับความเสี่ยงสูงต่อความผิดปกติทางระบบกระดูกโครงร่างและกล้ามเนื้อในเกษตรกรผู้ปลูกยางพารา ใช้สถิติพหุคติโดยโลจิสติก (Multiple logistic regression analysis) ด้วยเทคนิคการวิเคราะห์แบบขั้ดออกทีละตัวแปร (Backward elimination) พิจารณาตัวแปรที่สำคัญในการนำเข้าโมเดล

จากผลการวิเคราะห์อย่างหยาบ (Crude analysis) โดยมีค่า p -value <0.25 และตัวแปรกวน คือ เพศ อายุ และประสบการณ์ทำงาน แสดงปัจจัยเสี่ยงที่สัมพันธ์กับความเสี่ยงต่อ MSDs อย่างมีนัยสำคัญทางสถิติ ด้วยค่า Adjusted Odds Ratio (OR_{adj}), 95%CI และ p -value <0.05

การศึกษานี้ได้รับอนุมัติจริยธรรมในการวิจัยในมนุษย์จากคณะกรรมการการวิจัยในมนุษย์ของมหาวิทยาลัยขอนแก่น เลขที่โครงการ HE 612333

ตารางที่ 1 เมตริกประเมินความเสี่ยงทางสุขภาพต่อ MSDs ในเกษตรกรผู้ปลูกยางพาราโดยใช้ระดับความเสี่ยงของ REBA และระดับความรู้สึกไม่สบาย

ความเสี่ยงทางสุขภาพต่อ	MSDs	ระดับความเสี่ยงด้านการยศาสตร์ (REBA)				คะแนน	ระดับเสี่ยง
		1	2	3	4		
ระดับ	4	4	8	12	16	9-16	4 (สูงมาก)
ความรู้สึกไม่	3	3	6	9	12	6-8	3 (สูง)
สบาย	2	2	4	6	8	3-4	2 (ปานกลาง)
	1	1	2	3	4	1-2	1 (ต่ำ)
	0	0	0	1*	2*	0	ยอมรับได้

ผลลัพธ์ของคะแนน 1* และ 2* ในตารางเมื่อมีระดับของความรู้สึกไม่สบาย (0) แต่ระดับความเสี่ยงด้านการยศาสตร์ (REBA) ระดับ 3 หรือระดับ 4 จะส่งผลต่อความเสี่ยงของ MSDs ในระยะยาว จึงจัดรวมเป็นกลุ่มมีความเสี่ยงต่อ⁽¹¹⁾ ร่วมกับกลุ่มเสี่ยงต่อ MSDs ระดับ 1 และระดับ 2 และกลุ่มที่มีความเสี่ยงระดับ 3 (สูง) และระดับ 4 (สูงมาก) จัดเป็นกลุ่มเสี่ยงสูงต่อ MSDs

ผลการศึกษาวิจัย

1. ลักษณะส่วนบุคคล และภาวะสุขภาพ

กลุ่มตัวอย่างคือ เกษตรกรผู้ปลูกยางพารา ส่วนใหญ่เป็นเพศชาย ร้อยละ 57.28 มีอายุระหว่าง 50-60 ปี (เฉลี่ย 41.54 ปี ส่วนเบี่ยงเบนมาตรฐาน 12.18 ปี อายุต่ำสุด 20 ปี อายุสูงสุด 63 ปี) ส่วนใหญ่นัดมือขวา ร้อยละ 71.84 ทุกคนทำหน้าที่กรีดยางพาราเป็นหลัก มีประสบการณ์กรีดยางพารามากกว่า 3 ปี ร้อยละ 94.30 และมีรายได้ต่อเดือนของครอบครัวตั้งแต่ 20,001-30,000 บาท ร้อยละ 46.84 (เฉลี่ย 31,898.73 บาท ส่วนเบี่ยงเบนมาตรฐาน 8,121.45 บาท รายได้ต่ำสุด 15,000 บาท รายได้

สูงสุด 46,000 บาท) และพุติกรรมสุขภาพ ส่วนใหญ่ไม่เคยสูบบุหรี่ ร้อยละ 78.80 ไม่เคยดื่มแอลกอฮอล์ ร้อยละ 69.30 และไม่มีโรคประจำตัว ร้อยละ 87.66

2. สมรรถภาพของกล้ามเนื้อ

ผลการวัดแรงบีบมือ พบว่า อัตราที่ระดับปานกลาง และระดับต่ำมาก ร้อยละ 32.91 และ 31.96 ตามลำดับ การวัดแรงเหยียดหลังพบว่า อัตราที่ระดับปานกลาง และระดับต่ำ ร้อยละ 54.43 และ 22.47 ตามลำดับ ส่วนแรงเหยียดขา อัตราที่ระดับต่ำมาก ร้อยละ 75.63 และระดับต่ำ ร้อยละ 13.92

3. สภาพแวดล้อมการทำงานและการยศาสตร์

กลุ่มตัวอย่างมีการขนย้ายโดยใช้รถจักรยานยนต์ พ่วงข้างร้อยละ 61.71 และใช้รถยก ร้อยละ 34.81 น้ำหนักที่ถือทั้ง 11-15 กิโลกรัมต่อครั้ง ร้อยละ 58.23 ทำงานมากกว่า 8 ชั่วโมงต่อวัน ร้อยละ 61.08 และพักผ่อนน้อยกว่า 4 ชั่วโมงต่อวัน ร้อยละ 58.23 ด้านท่าทางการทำงานและการออกแรง พบร่วมกันท่าทางการทำงานในลักษณะเดิน ร้อยละ 44.94 มีการยืนติดต่อกันนานมากกว่า 2 ชั่วโมง/วัน ปฏิบัติเป็นประจำ ร้อยละ 92.93 รองลงมา มีการกระดก บิด ข้อ มือ ซ้ำๆ ติดต่อกันนานมากกว่า 2 ชั่วโมง/วัน ปฏิบัติเป็นประจำ ร้อยละ 88.38 และมีการนั่งคุกเข่า ติดต่อกันนานมากกว่า 2 ชั่วโมง/วัน ปฏิบัติเป็นประจำ ร้อยละ 84.34 ตามลำดับ

ผลการประเมินความเสี่ยงทางการยศาสตร์ด้วย REBA จำแนกตามลักษณะงานของเกษตรกรผู้ปลูกยางพารา คือ กรีดยางพารา ($n=316$) เก็บน้ำยางสด ($n=106$) เก็บยางก้อนถวาย ($n=205$) และทำยางแผ่น ($n=5$) พบร่วมกันท่าทางที่มีความเสี่ยงพบในระดับ 3 และระดับ 4 เท่านั้น ในทุกขั้นตอนการทำงาน โดยส่วนใหญ่อยู่ในระดับ 4 ซึ่งขั้นตอนทำงานพบจำนวนมากสุด คือ ทำยางแผ่น พบทุกคน (5 คน) รองลงมาคือการกรีดยาง มีจำนวน 277 คน (ร้อยละ 87.66) ขั้นตอนเก็บน้ำยางสดจำนวน 83 คน (ร้อยละ 78.30) และขั้นตอนเก็บยางก้อนถวาย จำนวน 161 คน (ร้อยละ 50.95) ตามลำดับ

4. ระดับความรู้สึกไม่สบายและความเสี่ยงทางสุขภาพต่อ MSDs

ระดับความรู้สึกไม่สบายทางระบบกระดูกโครงร่าง และกล้ามเนื้อของเกษตรกรผู้ปลูกยางพาราจากการรายงานด้วยตนเองตามส่วนของร่างกาย พบร่วมกับความรู้สึกไม่สบายระดับปานกลาง ที่พบสูงสุดที่บริเวณเข่า ร้อยละ 42.72 รองลงมา มือและข้อมือ ร้อยละ 43.04 และหลังส่วนบน ร้อยละ 41.46 ตามลำดับ อย่างไรก็ตาม เมื่อพิจารณา มีความรู้สึกไม่สบายระดับมาก พ布สูงสุดที่หลังส่วนล่าง ร้อยละ 12.66 รองลงมา เท้าและข้อเท้า ร้อยละ 11.71 และเข่า ร้อยละ 11.03 ตามลำดับ และรุนแรงที่ระดับมากเกินหนึ่งเท่า พบริเวณหลังส่วนล่างเป็นลำดับแรก เช่นกัน

เมื่อพิจารณาความเสี่ยงทางสุขภาพต่อ MSDs โดยอาศัยผลจากเมตริกความเสี่ยงทางสุขภาพต่อ MSDs พบว่าเกษตรกรผู้ปลูกยางพารามีความเสี่ยงสูงต่อการเกิดความผิดปกติทางระบบกระดูกโครงร่างและกล้ามเนื้อ บริเวณใต้บริเวณหนึ่งคือ ร้อยละ 62.65 โดยความเสี่ยงนี้พบสูงสุดคือบริเวณหลังส่วนล่าง ร้อยละ 61.71 รองลงมาเป็นเข่า ร้อยละ 58.86 และมือและข้อมือ ร้อยละ 56.96 ตามลำดับ ดังตารางที่ 2

ตารางที่ 2 ความเสี่ยงทางสุขภาพต่อ MSDs จำแนกตามส่วนของร่างกาย

ส่วนของร่างกาย	ความเสี่ยงต่อการเกิด MSDs			
	ความเสี่ยงสูง	ความเสี่ยงค่อนข้างต่ำ	จำนวน	ร้อยละ
คอก	130	41.14	186	58.86
ขาล่าง	139	43.99	177	56.01
หลังส่วนบน	150	47.47	166	52.53
หลังส่วนล่าง	195	61.71 ¹	121	38.29
แขนท่อนล่าง	138	43.67	178	56.33
มือและข้อมือ	180	56.96 ³	136	43.04
สะโพก	133	42.09	183	57.91
เข่า	186	58.86 ²	130	41.14
น่อง	166	52.53	150	47.47
เท้าและข้อเท้า	165	52.22	151	47.78

^{1,2,3}หมายถึง ตำแหน่งที่มีความเสี่ยงสูงต่อการเกิด MSDs อันดับ 1,2,3

5. ปัจจัยที่สัมพันธ์กับความเสี่ยงสูงต่อ MSDs

จากการวิเคราะห์หาความสัมพันธ์อย่างขยายตัวแปรเดี่ยว (Univariate analysis) โดยทำการวิเคราะห์หาความสัมพันธ์ระหว่างตัวแปรตามและตัวแปรอิสระ ที่ลงทะเบียน คือ ตัวแปรส่วนบุคคล ได้แก่ เพศ อายุ ประสบการณ์ทำงานกรีดยางพารา การสูบบุหรี่ การดื่มแอลกอฮอล์ รายได้ต่อเดือนของครอบครัว และการมีโรคประจำตัว ไม่พบว่าความสัมพันธ์อย่างมีนัยสำคัญทางสถิติ

ด้านลักษณะท่าทางการทำงานและการยศาสตร์ จากขั้นตอนการกรีดยาง เก็บน้ำยางสด เก็บยางก้อนถวาย ทำยางแผ่น และรวมถึงการเดินทางขันส่งไปจำหน่าย พบร่วมกับปัจจัยที่มีความสัมพันธ์กับความเสี่ยงสูงต่อการเกิด

ความผิดปกติทางระบบประดูกโครงร่างและกล้ามเนื้ออย่างมีนัยสำคัญคือ การใช้รดนต์ในการขยับ และการพักผ่อน ≤ 3 ชั่วโมงต่อวัน ดังรายละเอียดในตารางที่ 3

ด้านสมรรถภาพของกล้ามเนื้อ พบร่วงปัจจัยที่มีความสัมพันธ์กับความเสี่ยงต่อการเกิดความผิดปกติทางระบบโครงร่างและกล้ามเนื้อย่างมีนัยสำคัญทางสถิติได้แก่ สมรรถภาพของแรงบีบมือต่ำ และสมรรถภาพของกล้ามเนื้อขาต่ำ ดังแสดงในตารางที่ 4

ตารางที่ 3 ความสัมพันธ์ระหว่างปัจจัยส่วนบุคคลและการทำงานกับความเสี่ยงต่อ MSDs ในเกษตรกรผู้ปลูกยางพารา วิเคราะห์ด้วยตัวแปรเดี่ยว (N=316)

ปัจจัย	ความเสี่ยงต่อ MSDs; จำนวน (ร้อยละ)		OR	95% CI	p-value
	สูง	ค่อนข้างต่ำ			
เพศ					
ชาย	116 (63.74)	66 (36.26)	1.11	0.70-1.76	0.644
หญิง	82 (61.19)	52 (38.81)	1.00		
อายุ (ปี)					
≥ 40	116 (64.09)	65 (35.91)	1.15	0.73-1.83	0.543
<40	82 (60.47)	53 (39.91)	1.00		
ประสบการณ์ทำงานกีดいや (ปี)					
≥ 3	189 (63.42)	109 (36.58)	1.73	0.67-4.49	0.258
<3	9 (50.00)	9 (50.00)	1.00		
การสูบบุหรี่					
เคยสูบ	161 (64.66)	88 (35.34)	1.48	0.86-2.56	0.158
ไม่เคยสูบ	37 (55.22)	30 (44.78)	1.00		
การดื่มแอลกอฮอล์					
เคยดื่ม	143 (65.30)	76 (34.70)	1.44	0.88-2.34	0.146
ไม่เคยดื่ม	55 (56.70)	42 (43.30)	1.00		
รายได้ต่อครอบครัว (บาท/เดือน)					
$>20,000$	192 (63.37)	111 (36.63)	2.02	0.66-6.16	0.217
$\leq 20,000$	6 (46.15)	7 (53.85)	1.00		
โรคประจำวันที่เกี่ยวข้องกับระบบโครงร่างและกล้ามเนื้อ					
มี	31 (75.61)	10 (24.39)	2.00	0.94-4.26	0.070
ไม่มี	167 (60.73)	108 (39.27)	1.00		
พาหนะที่ใช้ในการขยับไปขาย					
รถยนต์	78 (70.91)	32 (29.09)	1.75	1.06-2.87	0.027*
จักรยานยนต์พ่วงขา/ชาเล็ง	120 (58.25)	86 (41.75)	1.00		
น้ำหนักที่หัวในแต่ละครั้ง (กิโลกรัม)					
≥ 12	111 (66.07)	57 (33.93)	1.37	0.86-2.16	0.182
<12	87 (58.78)	61 (41.22)	1.00		
การพักผ่อน (ชั่วโมง/วัน)					
≤ 3	21 (84.00)	4 (16.00)	3.38	1.13-10.11	0.029*
>3	177 (60.82)	114 (39.18)	1.00		

หมายเหตุ: * มีนัยสำคัญที่ p -value < 0.05

ผลการวิเคราะห์เชิงพหุคดดโดยโลจิสติก (multivariate analysis) เมื่อนำเข้าตัวแปรที่กล่าวแล้ว จากผลวิเคราะห์โดยแบ่งเปรียบเทียบ ที่ p -value <0.25 และตัวแปรกวน พบร่วงปัจจัยที่มีความสัมพันธ์กับความเสี่ยงต่อ MSDs ของเกษตรกรผู้ปลูกยางพารา ได้แก่ การใช้รดนต์ในการขยับ การพักผ่อน ≤ 3 ชั่วโมงต่อวัน และสมรรถภาพของกล้ามเนื้อต้านแรงบีบมือต่ำ ดังแสดงในตารางที่ 5

ตารางที่ 4 ความสัมพันธ์ระหว่างสมรรถภาพของกล้ามเนื้อกับความเสี่ยงต่อ MSDs ในเกษตรกรผู้ปลูกยางพารา วิเคราะห์ด้วยตัวแปรเดียว (N=316)

สมรรถภาพของกล้ามเนื้อ	ความเสี่ยงต่อ MSDs; จำนวน (ร้อยละ)		OR	95%CI	p-value
	สูง	ค่อนข้างต่ำ			
แรงบีบมือ					
ต่ำ	124 (70.06)	53 (29.94)	2.06	1.29-3.27	0.002*
ปกติ	74 (53.24)	65 (46.76)	1.00		
แรงเหยียดหลัง					
ต่ำ	79 (67.52)	38 (32.48)	1.39	0.87-2.26	0.171
ปกติ	119 (59.80)	80 (40.20)	1.00		
แรงเหยียดขา					
ต่ำ	158 (66.11)	81 (33.89)	1.80	1.07-3.04	0.026*
ปกติ	40 (51.95)	37 (48.05)	1.00		

หมายเหตุ: * มีนัยสำคัญที่ $p\text{-value} < 0.05$

ตารางที่ 5 ปัจจัยที่มีความสัมพันธ์กับความเสี่ยงต่อ MSDs ในเกษตรกรผู้ปลูกยางพารา วิเคราะห์ด้วยตัวแปรเชิงพหุคด้อยโลจิสติก (N=316)

ปัจจัย	ความเสี่ยงต่อ MSDs; จำนวน (ร้อยละ)		OR	OR _{adj.}	95% CI	p-value
	สูง	ค่อนข้างต่ำ				
เพศ						
ชาย	116 (63.74)	66 (36.26)	1.12	1.07	0.66-1.73	0.787
หญิง	82 (61.19)	52 (38.81)	1.00	1.00		
อายุ (ปี)						
≥ 40	116 (64.09)	65 (35.91)	1.15	1.14	0.69-1.87	0.616
<40	82 (60.47)	53 (39.91)	1.00	1.00		
ประสบการณ์ทำงานกรีดยางพารา (ปี)						
≥ 3	189 (63.42)	109 (36.58)	1.73	1.45	0.53-4.00	0.471
<3	9 (50.00)	9 (50.00)	1.00	1.00		
พาหนะที่ใช้ในการขนย้ายไปขาย						
รถยนต์	78 (70.91)	32 (29.09)	1.75	1.82	1.09-3.03	0.022*
จักรยานยนต์พ่วง/ชาเล็ง	20 (58.25)	86 (41.75)	1.00	1.00		
การพักผ่อน (ชั่วโมง/วัน)						
≤ 3	21 (84.00)	4 (16.00)	3.38	3.83	1.25-11.77	0.019*
>3	177 (60.82)	114 (39.18)	1.00	1.00		
แรงบีบมือ						
ต่ำ	124 (70.06)	53 (29.94)	2.06	2.13	1.32-3.44	0.002*
ปกติ	74 (53.24)	65 (46.76)	1.00	1.00		

หมายเหตุ: * มีนัยสำคัญที่ $p\text{-value} < 0.05$

สรุปและวิจารณ์ผลการศึกษา

1. ระดับความเสี่ยงทางสุขภาพต่อความผิดปกติทางระบบกระดูกโครงร่างและกล้ามเนื้อ (MSDs)

ผลการประเมินความเสี่ยงที่อาศัยเมตริกความเสี่ยงทางสุขภาพซึ่งคำนึงถึงผลกระทบต่อสุขภาพด้านอาการผิดปกติทางระบบกระดูกโครงร่างและกล้ามเนื้อ และโอกาสสัมผัสปัจจัยทางการยศาสตร์การทำงานของเกษตรกรผู้ปลูกยางพารา พบว่าส่วนใหญ่มีระดับความเสี่ยงสูง โดยเฉพาะบริเวณหลังส่วนล่าง ทั้งนี้การประเมินความเสี่ยงทางการยศาสตร์ต่อความผิดปกติทางระบบกระดูกโครงร่างและกล้ามเนื้อนี้อาศัยเทคนิค REBA เนื่องจากเกษตรกรมีท่าทางที่มีความเสี่ยงสูงจากการนั่งหรือยืนทั้งในหน้าต่อหน้าสูง ทำให้ต้องมีการก้ม การนั่งยอง การเอี้ยวตัว การอุกแรงเฉพาะส่วนในขณะกรีดยาง ซึ่งผลความเสี่ยงทางการยศาสตร์ บ่งชี้ว่ามีความเสี่ยงสูงสุดที่ขั้นตอนการกรีดยางและรวมทั้งขั้นตอนการทำยางแผ่น โดยการศึกษาที่ผ่านมาในกลุ่มที่ยืนทำงานและอุกแรงช้าๆ ของรายงานค่าส่วนบนมีความเสี่ยงสูงต่อ MSDs⁽¹⁵⁾ และความเสี่ยงสูงทางการยศาสตร์นี้มีความสัมพันธ์กับการปวดหลังของแรงงานที่อุกแรงภายรวมกิจกรรมชนิดยกเคลื่อนย้ายวัสดุ⁽¹⁶⁾ เนื่องจากการทำงานในลักษณะนี้จะส่งผลให้เกิดการปวดหลังส่วนล่างได้ต่อมาได้ถ้าไม่ได้รับการแก้ไขป้องกัน ดังรายงานในแรงงานกลุ่มเย็บผ้าสำเร็จรูปหญิงด้านอุบัติกรณีของโรคปวดหลังส่วนล่างที่พบว่าสูงกว่าในกลุ่มที่มีท่าทางการทำงานมีความเสี่ยงทางการยศาสตร์สูง⁽¹⁷⁾ ซึ่งการพบว่าเกษตรกรมีความเสี่ยงสูงบริเวณหลังส่วนล่าง เช่น และข้อมือหรือมือ นั่นสอดคล้องกับการการศึกษาที่ผ่านมาในเกษตรกรผู้ปลูกยางพารา⁽⁷⁾ ด้วยลักษณะงานที่ต้องมีการเคลื่อนไหวช้าๆ ที่มีอ่อนล้า และข้อมือ การก้มย่อและเอี้ยวลำตัวเป็นเวลานานๆ ขณะเคลื่อนย้ายแผ่นยางหรือชิ้นยาง จึงทำให้เกิดการปวดบริเวณ เช่น และหลังส่วนล่างตามมา เช่นเดียวกับแรงงานในโรงงานยางพารา⁽¹⁸⁾

2. ปัจจัยที่มีความสัมพันธ์กับความเสี่ยงสูงต่อ MSDs

จากการวิเคราะห์เชิงพหุคุณลักษณะแบบรายตัวพบว่าปัจจัยเสี่ยงต่อการเกิดความผิดปกติทางระบบกระดูก

โครงร่างและกล้ามเนื้อ ได้แก่ ปัจจัยการขนย้ายยางพาราไปขายด้วยรถยก การพักผ่อน ≤ 3 ชั่วโมงต่อวัน และแรงบีบมือที่ต่ำกว่ามาตรฐาน เช่นเดียวกับการพบความแข็งแรงของกล้ามเนื้อขาที่ต่ำสัมพันธ์กับความเสี่ยงต่ออาการผิดปกติทางระบบกระดูกโครงร่างและกล้ามเนื้อจาก การวิเคราะห์แบบตัวแปรเดียว จึงสามารถอธิบายตามกลุ่มปัจจัยได้ดังนี้

ด้านลักษณะส่วนบุคคล ตามการศึกษานี้พบว่าเกษตรกรชาวสวนยางมีอายุที่กระจายแบบปกติโดยมีอายุเฉลี่ย 45 ปี โดยมีเพศหญิงและเพศชายอยู่ในสัดส่วนที่ใกล้เคียงกัน จึงเป็นตัวแทนของประชากรได้ โดยการศึกษานี้ไม่พบว่าปัจจัยส่วนบุคคลสัมพันธ์กับความเสี่ยงต่อ MSDs แต่ปัจจัยด้านวิถีชีวิตการดูแลสุขภาพเป็นปัจจัยที่สัมพันธ์อย่างมีนัยสำคัญทางสถิติ คือพบในการศึกษานี้ว่าเกษตรกรที่พักผ่อนน้อยกว่า 3 ชั่วโมงต่อวัน มีความเสี่ยงสูงกว่าเป็น 3.83 เท่าของกลุ่มที่พักผ่อนมากกว่า 3 ชั่วโมงต่อวัน เนื่องจากลักษณะการทำงานที่ทำให้มีวิถีชีวิตที่แตกต่างจากอาชีพอื่นๆ คือ ระยะเวลาในการทำงานอยู่ในช่วงเวลากลางคืนต่อเนื่องถึงเวลากลางวัน ต้องอดหลับอดนอนพักผ่อนไม่เป็นเวลา คนกรีดยางส่วนใหญ่จะเข้านอนตั้งแต่หัวค่ำ ประมาณสองทุ่ม และตื่นนอนก่อนเที่ยงคืน หรือหลังเที่ยงคืนเล็กน้อยเพื่อออกไปกรีดยางพารา⁽¹⁹⁾ อย่างไรก็ตามอาชีพกรีดยางพารา ถือว่าเป็นอาชีพที่มีความคล้ายคลึงกับอาชีพพยาบาลเนื่องด้วยวิถีชีวิตในการทำงานที่ใกล้เคียงกัน จากการศึกษาของ มาณ ปัทมะ พลยง และคณะ⁽²⁰⁾ ที่พบว่า บุคลากรทางการแพทย์ที่ทำงานล่วงเวลา มีความเสี่ยงต่อการเกิดความผิดปกติระบบโครงร่างและกล้ามเนื้อจากการทำงานเป็น 1.62 เท่าของกลุ่มที่ไม่ทำงานล่วงเวลาทำให้มีการพักผ่อนที่ไม่เพียงพอ ซึ่งโดยปกติร่างกายของคนเรามีความต้องการการนอนหลับโดยเฉลี่ยประมาณ 8 ชั่วโมงต่อวัน แต่จำนวนชั่วโมงของการนอนหลับอาจจะแตกต่างไปในแต่ละบุคคลตามอายุและสภาพการทำงานของร่างกาย จากการศึกษาที่ผ่านมาที่พบว่าหลังจากการอดนอนทั้งคืน จะทำให้เวลาที่ใช้ต่อการตอบสนองปฏิกิริยาจะเพิ่มขึ้น⁽²¹⁾ โดยการอดนอนมีผลต่อความเครียดเพิ่มขึ้น ซึ่งความเครียดมีความสัมพันธ์กับการเกิดความผิดปกติของระบบกระดูกโครงร่างและกล้ามเนื้อตามมาได้⁽²²⁾

นอกจากนั้นความแข็งแรงของร่างกายต่ำยังเป็นปัจจัยเสี่ยงที่สำคัญของการผิดปกติทางระบบกระดูกโครงร่างและกล้ามเนื้อได้ โดยพบว่าสมรรถภาพของแรงเหยียดขาต่ำ และแรงบีบมือต่ำ สัมพันธ์กับความเสี่ยงสูงของความผิดปกติทางระบบกระดูกโครงร่างและกล้ามเนื้อ อธิบายได้ว่าการที่มีกล้ามเนื้อบริเวณที่ออกแรงมาก ต่อเนื่องส่งผลให้กล้ามเนื้อต้องการเลือดไปเลี้ยงมากขึ้น ซึ่งการกรีดยางต้องมีการใช้แรงจากกล้ามเนื้อบริเวณมือหรือข้อมือ แขนอย่างต่อเนื่อง โดยมีการออกแรงกระตุกข้อมือ สั้นๆ ช้าๆ และขณะทำงานติดต่อ กันนานมากกว่า 2 ชั่วโมง โดยไม่มีการผ่อนคลายหรือการใช้งานออกแรงแบบสติต (Static load) ทำให้เลือดไหลเวียนเข้าสู่กล้ามเนื้อได้น้อยลง ส่งผลให้มีอาการ ปวด ชา เมื่อย บริเวณข้อเข่า มือหรือข้อมือตามมาได้⁽²³⁾ นอกจากนั้นผลการศึกษา่อนหน้านี้ ที่รายงานว่าแรงเหยียดหลังที่ต่ำมีความสัมพันธ์กับการปวดหลังส่วนล่างตามมาของกลุ่มที่นั่งทำงานนานๆ เช่น แรงงานเย็บผ้า⁽²⁴⁾ และแรงเหยียดขา หรือแรงเหยียดหลังที่ต่ำ สัมพันธ์กับการเกิด MSDs ในกลุ่มยืนทำงานนานๆ เช่น อาชีพครุ⁽²⁵⁾ เม้นอาชีพเหล่านี้ไม่มีการออกแรงกายมากก็ตาม โดยเฉพาะการใช้มือและข้อมือในการทำงานช้าๆ ในการกรีดยางของเกษตรกรผู้ปลูกยางพารา จึงมีความเสี่ยงสูงต่อ MSDs ซึ่งสอดคล้องกับในกลุ่มแรงงานตัดเหล็ก ปลอกเสาระบบมือโดยกว่าแรงบีบมือที่ต่ำ สัมพันธ์กับการปวดข้อมือหรือข้อมือ⁽²²⁾

ด้านปัจจัยการทำงาน พบร่างกายของเกษตรกรผู้ปลูกยางพาราที่ใช้รotonต์ในการขันย้ายยางพาราไปขาย มีความเสี่ยงสูงต่อ MSDs เป็น 2.13 เท่าของกลุ่มที่ไม่ใช้รotonต์ในการขันย้าย อธิบายได้จากปริมาณชั้นงานที่ต้องลำเลียงออกมากด้วยแรงกายเพื่อขันใส่รotonต์ไปขาย เนื่องจากรotonต์ไม่สามารถเข้าใกล้จุดเก็บแผ่นยางหรือก้อนยางพารา ทำให้เกิดการทำงานด้านการลำเลียงวัสดุในระยะไกลกว่ากลุ่มที่ใช้รotonต์เล็กพ่วงจักรยานยนต์ ซึ่งการศึกษาที่ผ่านมาพบว่ากลุ่มแรงงานที่มีจำนวนครัวเรือนมากวัดจำนวนมาก หรือการยกของที่น้ำหนักมาก มีความสัมพันธ์กับการบาดเจ็บขา⁽²³⁾ และการปวดหลังส่วนล่างได้⁽¹⁶⁾

3. ข้อเสนอแนะเพื่อการนำไปใช้ประโยชน์

1). ข้อมูลด้านปัจจัยที่สัมพันธ์กับความเสี่ยงต่อระบบกระดูกโครงร่างและกล้ามเนื้อจากเมตริกความเสี่ยงต่อสุขภาพในกลุ่มเกษตรกรผู้ปลูกยางพารานี้ สามารถนำไปใช้เป็นแนวทางในการเฝ้าระวังโดยวางแผนลดความเสี่ยงต่อความผิดระบบกระดูกโครงร่างและกล้ามเนื้อในกลุ่มเกษตรกรผู้ปลูกยางพาราได้ เช่น การจัดหาอุปกรณ์ช่วยผ่อนแรงในการยก ขันเคลื่อนย้าย ที่สนับสนุนโดยองค์กรที่เกี่ยวข้องในท้องถิ่น

2) เกษตรกรผู้ปลูกยางพาราที่มีท่าทางในการทำงานที่ช้าๆ ในการทำงานกรีดยาง โดยเฉพาะบริเวณมือและข้อมือที่ส่งผลให้ประสิทธิภาพของกล้ามเนื้อมืออยู่ในระดับที่ต่ำมาก และการพักผ่อนที่ไม่เพียงพอ จึงเสนอแนะให้เจ้าหน้าที่สาธารณสุข หรือพยาบาลอาชีวอนามัยได้แนะนำเรื่องช่วงเวลาพักระหว่างงานเพื่อลดการเกร็งของกล้ามเนื้อในการทำงาน เวลาพักที่เหมาะสมของมือและแขน อย่างน้อย 10-15 นาที และส่งเสริมการออกกำลังกายเสริมสร้างความแข็งแรงของกล้ามเนื้อ

3) บุคลากรทางด้านการแพทย์และการสาธารณสุข ควรส่งเสริมสุขภาพให้กับเกษตรกรชาวสวนยางปรับเปลี่ยนพฤติกรรมเสี่ยงจากการทำงาน เช่น การจัดอบรมด้านการศึกษาต่อเกี่ยวกับท่าทางการทำงานที่เหมาะสม การใช้อุปกรณ์ในการผ่อนแรงช่วยในการยก ขันเคลื่อนย้าย

4) เนื่องจากข้อจำกัดของการศึกษาแบบภาคตัดขวาง นี้ที่มีการสอบถามความรู้สึกของอาการที่เกิดขึ้นในช่วงที่ผ่านมาอาจเกิดผล Recall-bias ที่ไม่สามารถระบุได้ชัดถึงปัจจัยที่พบร่างส่งผลต่อ MSDs โดยตรงหรือไม่ ดังนั้นการศึกษาต่อไปควรใช้รูปแบบการศึกษาแบบติดตามไปข้างหน้าเพื่อหาผู้ป่วยรายใหม่และระบุปัจจัยสาเหตุของการเกิดโรคทางระบบกระดูกโครงร่างและกล้ามเนื้อได้ชัดเจนมากขึ้น

กิตติกรรมประกาศ

งานวิจัยนี้ได้รับงบประมาณสนับสนุนจากสำนักการวิจัยแห่งชาติ (วช.)

เอกสารอ้างอิง

1. Social Security Office, Thailand. The statistics of occupational injuries or illnesses [Internet]. [cited 10 September 2019]. Available from <http://www.sso.go.th/wpr/uploads/uploadImages/file/accidentanalyze2561.pdf>.
2. Health Data Center. Occupational and Environmental disease [Internet]. [cited 10 September 2019]. Available from <https://hdcservice.moph.go.th>.
3. Department of Environmental and Occupational disease. Statistics of work-related musculoskeletal disorder- situation of occupational injuries and illnesses of worker 2018. [cited 10 September 2019]. Available from http://envocc.ddc.moph.go.th/uploads/situation22561/2561/_01_envocc_situation.pdf
4. Chaiklieng S. Suggaravetsiri P, Peungsangpan S, Trinwuttipong K. The prevalence and severity of occupational diseases among field crop farmers in Nongbualamphu Province. J Disease Control and Prevention 7 Khon Kaen 2019; 26 (1): 77-86
5. Osborne A, Blake C, Fullen BM, Meredith D, Phelan J, McNamara J, Cunningham C. Prevalence of musculoskeletal disorders among farmers: A systematic review. Am J Ind Med 2012; 55:143–58.
6. Joomjee R, Bureelerd O, Songserm N, Theppitak C. Prevalence of musculoskeletal symptoms among the Para-rubber farmers Thailand. In: Proceeding of the National Ergonomics conference, 15-17 December 2016, Medical Faculty, Suranaree University, Nakhon Rachasima, p.1-10.
7. Bensa-ard N, Tuntiseranee P, Anuntaseree S. Work conditions and prevalence of musculoskeletal pain among Para-rubber planters: A case study in Tambon Nakleua, Kantang District, Trang Province. Songkla Med J 2004; 22(2): 101-10.
8. Chaiklieng S. Work physiology and ergonomics. 1st ed. Khon Kaen: Khon Kaen University; 2014.
9. Jaijong P. Risk factors of upper extremity musculoskeletal disorders in rubber tapper workers [Master thesis in M.N.S. Occupational Health Nursing]. Chonburi: Phurapha University, 2014.
10. Office of Agricultural Economics. Statistics of Agriculture in Thailand. (2017). [Cited 10 September 2019]. Available <http://www.oae.go.th>.
11. Office of Agriculture, Ubon Rachatani, Department of Agriculture extension. Proportion of Para rubber planting (zoning) [Internet]. [cited 10 September 2019]. Available from: <http://www.ubonratchathani.doae.go.th>.
12. Hsieh FY, Bloch DA, Larsen MD. A sample method of sample size calculation for linear and logistic regression. Statistics in Medicine 1998; 17(4):1623-34.
13. Thetkathuek A, Meepradit P, Sangiamsak T. A Cross-sectional study of musculoskeletal symptoms and risk factors in Cambodian fruit farm workers in Eastern region, Thailand. Safety and Health at Work 2018; 9(2): 912-22.
14. Chaiklieng S, Suggaravetsiri P, Phokee W. Risk factors, ergonomics risk and prevalence of back pain among electronic workers. The KKU full research report. Khon Kaen: Khon Kaen University, 2015.

15. Chaiklieng S, Pannak A. Health Risk Assessment of Shoulder Pain among Electronic Workers. *J Public Health* 2017; 47(2): 212-21.
16. Chaiklieng S, Juntrathep P, Suggaravetsiri P, Puntumetakul R. Prevalence and ergonomics risk factors of low back pain in garbage solid waste collectors of Nongbou Lampoo local administrative organization. *J Med Tech Phy Ther* 2555; 24(1): 97-109.
17. Chaiklieng S, Homsombat T. Incidence and postural risk factors for low back pain among informal garment female workers. *Advances in Intelligent Systems and Computing* 2020; 967: 222-30. Cham, Springer. DOI: 10.1007/978-3-030-20142-5_23.
18. Natun N, Natapintu K. The muscle pain of workers the rubber plant: A case study of plant in Udon Thani province. *Research and Development Health System J* 2015; 7(3), 178-83.
19. Rubber authority of Thailand. Office of the rubber replanting aid fund, Ministry of Agriculture. Work practice of planting. Search 10 September 2019, จาก <http://www.raot.co.th>
20. Polyong P, Kongsombatsuk M, Sangsrijan W, Samanusron K. Prevalence and factors affecting the work-related musculoskeletal disorders among hospital staff of a hospital in Rayong Province. *Disease Control J* 2017; 34(3), 280-92.
21. Philip P, Taillard J, Sagaspe P, Valtat C, Sanchez-Ortuno M, Moore N, et al. Age, performance and sleep deprivation. *J Sleep Research* 2004; 13: 105-10.
22. Chaiklieng S, Suggaravetsiri P, Sungkhabut W, Stewart J. Prevalence and risk factors associated with upper limb disorders and low back pain among informal workers of hand-operated rebar benders. *Advances in Intelligent Systems and Computing* 2020; 1026: 611-8. Cham, Springer. DOI: https://doi.org/10.1007/978-3-030-27928-8_93
23. Chaiklieng S, Riabroj W, Puntumetakul R. Risk factors of repetitive strain injuries among workers of the stone sculpture industry, Chonburi Province. *KKU Res J* 2556; 17(2): 325-37.
24. Homsombat T, Chaiklieng S. Physical fitness and muscular discomfort among informal garment female workers in Udon Thani Province, Thailand. *J Med Assoc Thai* 2017; 100(2): 230-8.
25. Chaiklieng S, Suggaravetsiri P. Risk factors for repetitive strain injuries among school teachers in Thailand. *WORK* 2012; 41: 2510-15.

ผลของการใช้เทปยึดหยุ่นและการออกกำลังกายกล้ามเนื้อแกนกลางลำตัว ต่อระดับความเจ็บปวด ระดับพร่องความสามารถและความยึดหยุ่นของเอวในผู้ป่วย อาการปวดหลังส่วนล่างชนิดไม่จำเพาะเจาะจง: การศึกษาเชิงทดลองชนิดมีการสุ่ม

ขันนาโนมานวิน¹, นายนอตุชาขัน² และ ยอดชาย บุญประกอบ^{3*}

Received: November 7, 2019

Revised: February 15, 2020

Accepted: February 25, 2020

บทคัดย่อ

การติดเทปยึดหยุ่นเป็นวิธีหนึ่งที่นิยมใช้ในการรักษาการบาดเจ็บทางกีฬาและผู้ป่วยระบบกล้ามเนื้อและกระดูกอย่างไร้ตัว ผลการรักษาผู้ป่วยอาการปวดหลังส่วนล่างชนิดไม่จำเพาะเจาะจงในระยะกึ่งเฉียบพลันด้วยการติดเทปยึดหยุ่นยังไม่มีหลักฐานการศึกษาขึ้นยังผลที่ชัดเจน การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อประเมินผลการรักษารวมระหว่างการติดเทปยึดหยุ่นกับการรักษาแనวนอนรักษาต่อระดับอาการปวด ระดับพร่องความสามารถและความยึดหยุ่นของเอว โดยเป็นการศึกษาเชิงทดลองชนิดมีการสุ่ม กระทำในอาสาสมัครที่เป็นผู้ป่วยอาการปวดหลังส่วนล่างชนิดไม่จำเพาะเจาะจงในระยะกึ่งเฉียบพลัน (6-12 สัปดาห์) จำนวน 84 คน เป็นเพศชาย 36 คน และเพศหญิง 48 คน อาสาสมัครในกลุ่มควบคุมได้รับการรักษาชนิดอนุรักษ์นิยมคือได้รับคลื่นเห็นอีสิ่ยและการออกกำลังกายกล้ามเนื้อแกนกลางลำตัว ส่วนกลุ่มทดลองได้รับการรักษาด้วยคลื่นเห็นอีสิ่ยและเทปยึดหยุ่น โดยทั้งสองกลุ่มได้รับการรักษาสัปดาห์ละ 3 ครั้ง เป็นระยะเวลา 2 สัปดาห์ ตัวแปรที่ใช้ในการประเมินได้แก่ visual analog scale (VAS) เพื่อประเมินการเปลี่ยนแปลงระดับความเจ็บปวด ดัชนี Oswestry disability เพื่อประเมินการเปลี่ยนแปลงความพร่องความสามารถในการทำงานที่และการทดสอบโซบอเรชันดัดแปลง เพื่อประเมินความยึดหยุ่นของบริเวณเอว ผลการศึกษาพบว่าเมื่อเปรียบเทียบภายในกลุ่มระดับอาการปวด และความพร่องความสามารถลดลงอย่างมีนัยสำคัญทางสถิติ รวมถึงความยึดหยุ่นบริเวณเอวเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ ($p < 0.001$) ที่สัปดาห์ที่สองและสัปดาห์ที่สี่ ในขณะที่การเปรียบเทียบระหว่างกลุ่มพบร่างกลุ่มทดลองมีการลดลงของระดับอาการปวด และความพร่องความสามารถอย่างมีนัยสำคัญทางสถิติ รวมถึงการเพิ่มขึ้นของความยึดหยุ่นของหลังอย่างมีนัยสำคัญทางสถิติเฉพาะในสัปดาห์ที่สี่เท่านั้น ($p < 0.001$) สรุปผลการศึกษา การรักษาด้วยเทปยึดหยุ่นกับคลื่นเห็นอีสิ่ยมีประสิทธิภาพในการรักษาได้คล้ายคลึงกับคลื่นเห็นอีสิ่ยกับการออกกำลังกายกล้ามเนื้อแกนกลางลำตัวในผู้ป่วยปวดหลังส่วนล่างชนิดไม่จำเพาะเจาะจง

คำสำคัญ: ปวดหลังส่วนล่างแบบไม่เจาะจง ผ้ายึด การออกกำลังกายกล้ามเนื้อแกนกลางลำตัว คลื่นเห็นอีสิ่ย

¹ ภาควิชาเวทียาศาสตร์การกีฬาและการออกกำลังกาย บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น ประเทศไทย

² ภาควิชาสรีรวิทยา มหาวิทยาลัยเทคโนโลยีการแพทย์ ย่างกุ้ง ประเทศไทยเมียนมาร์

³ สาขาวิชากายภาพบำบัด คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น ประเทศไทย

*ผู้รับผิดชอบบทความ

The effects of elastic taping and core stability exercises on pain intensity, disability level and lumbar flexibility in sub-acute non-specific low back pain : a randomized controlled trial

Khin Nan Ohnmar Win¹, Myo Thuzar Khin² and Yodchai Boonprakob^{3*}

Abstract

Elastic taping (ET) is widely used in sport injuries and patients with musculoskeletal problems, however, the effect of ET is not very clear in patient with sub-acute non-specific low back pain (NSLBP). The objective of this study was to investigate the combined effect of ET to conventional treatments on pain intensity (PI), disability level (DL) and lumbar flexibility (LF). This study was a randomized controlled clinical trial. Eighty four (36 males and 48 females) patients with sub-acute NSLBP were recruited and were divided into 2 groups. The control group, patients were treated by ultrasound and core stabilizing exercise (CSE), whereas patient of the intervention group were treated by ultrasound and ET. Both groups were treated three times per week within 2 weeks. Visual Analog Scale (VAS) was used for measuring pain intensity. Oswestry Disability Index (ODI) was used for determining functional disability. Modified Schober's Test (MST) was also used for measuring lumbar flexibility. The results demonstrated that there are significant pain reduction and reducing disability and significant improving in lumbar flexibility in both groups when compared the baseline with the second week and with the fourth week ($p < 0.001$). There are showed better improvement in the intervention group, but there are also significant relief of pain and decreasing disability and increasing in lumbar flexibility between groups after intervention and at the fourth week ($p < 0.001$). In conclusion, ET and US or US and CSE had therapeutic effects similarly for treating patients with sub-acute NSLBP.

Keywords: Non-specific low back pain, Elastic taping, Core stability exercises, Ultrasound

¹ Department of exercise and sport sciences, Graduate school, Khon Kaen University, Thailand 40002

² Department of Physiotherapy, University of Medical Technology, Yangon

³ Department of physical therapy, Faculty of Associated Medical science, Khon Kaen University, Thailand 40002

*Corresponding Author: (e-mail: yodchai@kku.ac.th)

Introduction

Low back pain, one of the major health problems around the world, is a musculoskeletal concern⁽¹⁾. It is described as pain, stiffness and muscle tension on the place under the costal cage to inferior gluteal fold, with or without sciatica (leg pain)⁽²⁾. 60-80% of adults are experiencing low back pain in their lives time with high incidence and prevalence relatively⁽³⁾. Almost 85% of low back pain is considered as non-specific cases because of its unknown origin or pathoanatomical causes⁽⁴⁾. NSLBP is defined as low back pain (LBP) not attributable to a recognizable, without known specific pathology (eg, infection, tumor, osteoporosis, lumbar spine fracture, inflammatory disorder, structural deformity, radicular syndrome, or cauda equina syndrome)⁽⁵⁾. Identification of “red flags” is used as indicator and if the patients have no “red flags” signs, it is considered as non-specific low back pain⁽²⁾.

In back pain management, pharmacological and non-pharmacological treatments are widely used⁶. Although these treatments are in hand, pain does not heal within 6 months. In most people, the pain and associated disabilities persist for months; however, only a small proportion remains severely disabled. For those whose pain does not resolve completely, recurrence during the next year is very common⁽²⁾. Therefore, clinicians become sought different types of treatments for low back pain and elastic taping become potential treatment as it improves pain in musculoskeletal problems⁽⁷⁾.

As the elastic taping is a new trend of management for the musculoskeletal problems with its improving adjunctive effect to the conventional therapy⁽⁸⁾ and it either has immediate

improvement on pain and disability or substantial improvement on functional endurance only after first week of application⁽⁹⁾, we interested to study its pain improving for immediate and substantial effects on low back pain. In the previous time, elastic taping was used mainly for acute musculoskeletal problems as in use of sport medicine⁽¹⁰⁾. But, nowadays, it's usage in pain management is very popular because most of the patients reported that they satisfied to receive elastic taping as a conjunctive treatment with other treatments or elastic taping alone⁽¹¹⁾.

As the main problems of non-specific low back pain are pain and disability⁽²⁾, we interested the possible effects of elastic taping on pain and disability caused by low back pain. The VAS is a ruler, usually contains 10 cm and anchored by two ends of: no pain on the left end and worst pain that can be imaginable on the right end⁽¹²⁾. VAS is reliable to use to assess pain intensity in acute stage as well as for accessing the pain intensity of chronic stage^(13,14). Oswestry Disability Index (ODI) or Oswestry LBP Disability Questionnaire is one of the most common useful outcome measurements for LBP in the clinical setting. ODI is a principal-tools that measure condition-specific outcome and widely used in the assessment of spinal disorders. It is a vigorous and valid measurement tool and becomes worldwide outcome measurement. It is a good specific outcome measurement in the subjects with LBP⁽¹⁵⁾. Modified Schober's Test (MST) is widely used as a universal test for measuring lumbar movements in the sagittal plane. It is mainly used to test the lumbar flexibility in back pain and other lumbar problems like ankylosing spondylitis (AS). It has been modified from the original Schober's test by

Macrae and Wright in order to observe the significant difference in the skin movement respective to the spinous process under it⁽¹⁶⁾. There are other tests like goniometry and inclinometer, etc. Among them, MST is widely used to evaluate function of lumbar spine. It has been mentioned that MST is highly reliable for measuring lumbar ROM⁽¹⁷⁾. On the other hand, core stability exercises (CSE) are very good at reducing pain and disability in back pain for the short term⁽¹⁸⁾. As the core muscles give stability to proximal part and mobility to distal part, it is the most appropriate intervention to treat non-specific low back pain⁽¹⁹⁾. Core stability exercises are widely used in Myanmar for treating low back pain in clinical setting. As the elastic taping alone cannot give long term pain improving, reducing the recurrence and there was no study which combined core stability exercises with the elastic taping for improving symptoms of low back pain. In this study, therefore, we studied the short-term effect of elastic taping combined with core stability exercises in sub-acute non-specific low back pain. We hypothesized that a combined treatment should be given better effect than one treatment in these patients.

Material and Methods

Design and setting

This study was a randomized controlled trial, a single blinded, assessor blinding with intention to treat analysis and it was conducted at the Department of Physical Medicine and Rehabilitation, North Okkalapa General Hospital (NOGH) and Yangon Orthopedic Hospital (YOH), Yangon, Lower Myanmar. I collected data from June 2018

and finished it at the end of February 2019 after receiving ethical approval from Khon Kaen University and approval from Institutional Review Board of University of Medical Technology.

Participants

The sample size was calculated using pain intensity of VAS score in the previous study that measured the effectiveness of elastic taping for 59 subjects with chronic non-specific low back pain, the intervention group (IG) = 30 persons or and the control group, (CG) = 29 persons⁹. The average mean of post-test VAS score for the intervention group (μ_{trt}) = 4.7 with the standard deviation of (σ_{trt}) = 1.4 and the average mean of post-test VAS score in the control (sham taping) group (μ_{con}) = 5.6 with the standard deviation (σ_{con}) = 1.4. Ratio (control/treatment) = (r) = 1, significance level = alpha (α) = 0.05 ($z_{1-\alpha/2} = z_{(0.975)} = 1.959964$) and a type II error probability = beta (β) = 0.20, ($z_{1-\beta} = z_{(0.80)} = 0.8416212$) and $\Delta = \mu_{trt} - \mu_{con} = 4.7 - 5.6 = -0.9$ ($\Delta^2 = 0.81$) were used to calculate the sample size as follow:

$$\begin{aligned}
 n_{trt} &= \frac{\left(z_{1-\alpha/2} + z_{1-\beta}\right)^2 \left[\delta_{trt}^2 + \frac{\delta_{con}^2}{r}\right]}{\Delta^2} \\
 &= \frac{(1.959964 + 0.8416212)^2 \left[(1.4)^2 + \frac{(1.4)^2}{1}\right]}{0.81} \\
 &= \frac{(7.8488796329)(3.92)}{0.81} \\
 &= \frac{30.7676081608}{0.81} \\
 &= 37.9847 \sim 38 \\
 &= 42 \text{ (with 10% drop out)}
 \end{aligned}$$

Therefore, a total of 84 persons were chosen for this study.

Eighty-four participants, 30-59yrs, both sexes, with sub-acute (6 weeks to 12 weeks) non-specific back pain (SNSLBP) with or without leg pain who voluntarily participated were recruited into two groups by computerized randomization of balanced allocation in the intervention group (IG) and the control group (CG) for 14 blocks using Win Pepi software and each block consisted of 6 participants. They complained pain more than 3 times per week with or without previous history of low back pain. Pregnant patients, patients who has malignancy, history of surgery to lumbar spine, red flags sign (eg. cancer, major trauma, bladder and bowel dysfunction) and/or allergy to elastic taping were not included in this study.

Procedure

A total of 586 patients were selected from the North Okkalapa General Hospital (NOGH) and Yangon Orthopedic Hospital (YOH). The data was collected from June 2018 to February 2019. The participants were examined by the rehabilitation medicine physician, then they were screened by their pain level. All the patients whose pain were 5-7- (moderate pain intensity) on Visual Analog Scale (VAS) were selected in this study. Before participating in this study, the patients signed informed consent form. All the participants were assessed at the baseline by using Visual Analog Scale (VAS), Oswestry Disability Index (ODI) and Modified Schober's Test (MST) after allocating into two groups by computerized blocked allocation, 42 participants in each group. The participants in the intervention group have been tested for allergy to ET (applied piece of ET to the participant's skin and let it on skin for 30 mins and checked the area for allergy

such as redness, itching, etc.). They received ultrasound therapy (US), core stability exercises (CSE) and elastic taping (ET). The participants in the control group received ultrasound therapy (US) and core stability exercises (CSE) (Figure 3).

Taping application

In this study, Helio Olympia Kinesiology tape rolls were used. The place to apply ET was shaved (if needed) and cleaned with alcohol. Participant was sitting on the chair with feet supported fully and bending forward as much as he/she could. The tape was applied to the site of pain by four I-bands technique with 25%-30% of maximal stretch, the first band was horizontally, the second band was vertically and the third and fourth were crossed to get the star shape. The tape remained in place for 2 days and applied 6 times during total two weeks of intervention.

Ultrasound Therapy

In this study, Metron Accusonic Plus Ultrasound Therapy Unit, Model AP 100 from Metron Medical Australia Pty Ltd, Austria was used and (US) therapy was given to the site of the pain with frequency 1 MHz and intensity 1 W/cm² for 5 mins in circular motion in prone lying position to all (84) participants.

Figure 1 Application of elastic taping for participants from intervention group

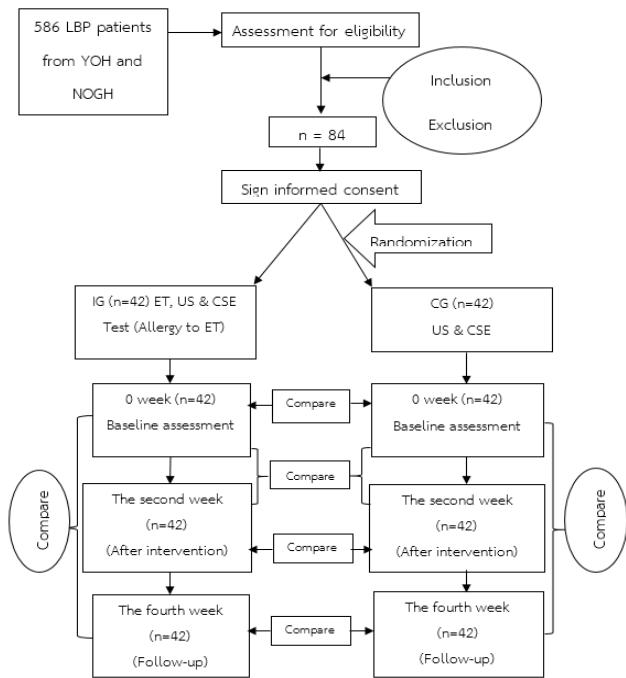


Figure 2 The use of ultrasound therapy on the site of pain

Core stability exercises

CSE training included pelvic tilt, bridging with knee extension, trunk curl (Crunch), double legs abdominal press, cat and camel (back raise), quadrated arm/leg raise, and arm/leg raise exercises. Each exercise had to be performed with 5 repetitions after receiving US therapy. All the exercises must be performed under careful supervision and must be recorded in participant's record form⁽²⁰⁾.

Ultrasound therapy and core stability exercises were given by the physiotherapist from the hospital who was assigned as one of research assistants for this study and elastic taping was performed by the principal investigator. The treatments were given 3 times per week for two weeks and participants performed CSE 5 days per week for two weeks. Pain intensity (PI), disability level (DL) and lumbar flexibility (LF) were assessed at the baseline, after all the treatment (second weeks), and at the fourth week again at follow up session to know the retention effects and compared within group and between groups.

Figure 3 Flow chart of the study

(PI: Pain Intensity; DL: Disability Level; LF: Lumbar Flexibility; IG: Intervention Group; CG: Control Group)

Statistical analysis

The data were analyzed by Stata MP 15.1. The descriptive statistics were presented as frequency and percentage for categorical variable and as summary statistics such as mean (SD) for continuous variable. The data distribution was assessed by Kolmogorov-Smirnov normality test. I used Mauchly's test for sphericity to test homogeneity of variance. If data passed this test, sphericity was assumed; however, if data failed this test, Greenhouse-Geisser modification was applied. A two-way mixed model analysis of variance (ANOVA) was performed to detect differences for the outcome measures with groups (the intervention and the control groups) and time (at baseline, the 2nd week and the 4th week follow-up) as the independent variables. When a

significant group into time interaction effect was detected, independent t-tests were performed to determine magnitude of mean differences between groups at each time point period. One-way repeated measure ANOVA was performed to find out differences for VAS, ODI and MST as the repeated measures at baseline, the 2nd week and the 4th week follow-up. Furthermore, if there was a significant time effect, dependent t-test was used to compare mean magnitude of each time with baseline. All test statistics were two-sided and considered as statistically significant for a *p*-value of less than 0.05.

Results

All the baseline demographic and clinical characteristics of the participants in both groups were very similar in this study. Some data were tested by statistical analysis, for example VAS, ODI, and MST which did not show a significant difference (**Table1**).

One-way repeated measures analysis of variance (one-way ANOVA) was run to determine if there were differences in pain intensity measure (VAS), disability level measure (ODI) and lumbar flexibility measure (MST) between baseline and follow-up periods for each group and the results revealed that there were statistically significant differences in mean VAS ($F_{(2, 82)} = 211.55, p < 0.001$ in the intervention group and $F_{(2, 82)} = 84.64, p < 0.001$ in the control group), mean ODI ($F_{(2, 82)} = 122.26, p < 0.001$ in the intervention group and $F_{(2, 82)} = 55.49, p < 0.001$ in the control group) and mean MST ($F_{(2, 82)} = 122.26, p < 0.001$ in the intervention group and $F_{(2, 82)} = 29.89, p < 0.001$ in the control group) in both groups. Pair-wise

comparisons using Bonferroni recorded that both groups have significant reduction in pain intensity, disability level and increasing in lumbar flexibility from baseline to each follow-up period (**Table 2**).

Two-ways mixed analysis of variance (two-ways mixed ANOVA) mentioned a statistically significant group and visit (time factor) interaction effect on pain intensity ($F_{(2, 164)} = 37.07; p < 0.001$), functional disability ($F_{(2, 164)} = 23.1; p < 0.001$) and lumbar flexibility ($F_{(2, 164)} = 29.6; p < 0.001$). It was found out that the statistically significant reduction in VAS, functional disability measure (ODI) and lumbar flexibility measure (MST) in treatment group than in control group, at both second week and fourth week while conducting multiple comparisons between intervention and control groups at each time point using independent t-test.

The mean differences in pain intensity between the intervention and control groups were: 1.8 (95% CI: 1.2 to 2.4; *p* < 0.001) at second week of intervention and 2.2 (95% CI: 1.6 to 2.8; *p* < 0.001) for fourth week of intervention, the mean differences in functional disability between the intervention and the control groups were: 11.6 (95% CI: 7.1 to 15.9; *p* < 0.001) at second week of intervention and 15.0 (95% CI: 10.3 to 19.7; *p* < 0.001) for fourth week (follow-up) and mean differences in lumbar flexibility between the intervention and control groups were: 1.4 (95% CI: 0.9 to 1.9; *p* < 0.001) at second week of

Discussion

In this study, pain intensity at rest was the primary outcome. Other outcomes were functional disability and lumbar flexibility. The results in this study provided statistically significant reduction in

pain intensity at rest (VAS), functional disability (ODI) and lumbar flexibility (MST) in both groups when compared the baseline with the second week and compared the baseline with the fourth week. However, there were significant pain reduction, disability reducing and improving lumbar intervention and 1.9 (95% CI: 1.4 to 2.5;

$p < 0.001$) at fourth week (follow-up) (Table 3). flexibility in both groups, after two weeks of intervention, but the results showed statistically significant differences in the intervention group when compared with the control group immediately after the intervention and at the fourth week or follow up assessment.

Table 1 Baseline demographic and clinical characteristics of the participants

Characteristics	Intervention group (n=42)	Control group (n=42)
Age (years), mean \pm SD	41.2 \pm 8.8	42.3 \pm 8.1
Gender, n (%)		
Male	17 (40.5)	19 (45.2)
Female	25 (60.0)	23 (54.8)
BMI (kg/m ²), mean \pm SD	23.9 \pm 3.1	23.8 \pm 2.9
Education, n (%)		
Illiterate	2 (4.8)	3 (7.1)
Primary School	9 (21.4)	7 (16.7)
Middle School	7 (16.7)	8 (19.1)
High School	12 (28.6)	10 (23.8)
Above High School	12 (28.6)	14 (33.3)
Occupation, n (%)		
Sedentary	27 (64.3)	24 (57.1)
Manual	15 (35.7)	18 (42.9)
Marital Status, n (%)		
Single	18 (42.9)	13 (31.0)
Married	24 (57.1)	29 (69.1)
Previous History of LBP, n (%)		
Negative	18 (42.9)	21 (50.0)
Positive	24 (57.1)	21 (50.0)
Sciatica, n (%)		
Negative	27 (64.3)	34 (81.0)
Positive	15 (35.7)	8 (19.1)
VAS, mean \pm SD	5.9 \pm 0.8	5.8 \pm 0.9
ODI, mean \pm SD	46.8 \pm 15.1	45.4 \pm 15.5
MST, mean \pm SD	2.5 \pm 1.5	2.6 \pm 1.4

Table 2 Differences in pain intensity on Visual Analog Scale (VAS), disability level on Oswestry Disability Index (ODI) and lumbar flexibility on Modified Schober's Test (MST) of sub-acute non-specific low back pain patient's baseline, the second week and the fourth week (follow-up) by the intervention and the control groups

Outcome Measure	Group	Period of intervention	Bonferroni	
			Means difference (95% CI)	p-value
Visual Analog Scale (VAS)	The intervention group	Week 0 vs 2	4.4 (3.8, 5.0)	<0.001
		Week 0 vs 4	4.7 (4.1, 5.4)	<0.001
	The control group	Week 0 vs 2	2.5 (1.9, 3.2)	<0.001
		Week 0 vs 4	2.5 (1.8, 3.2)	<0.001
Oswestry Disability Index (ODI)	The intervention group	Week 0 vs 2	32.1 (26.0, 38.2)	<0.001
		Week 0 vs 4	35.5 (29.4, 41.6)	<0.001
	The control group	Week 0 vs 2	19.1 (12.2, 26.0)	<0.001
		Week 0 vs 4	19.0 (12.1, 26.0)	<0.001
Modified Schober's Test	The intervention group	Week 2 vs 0	-3.0 (-3.6, -2.3)	<0.001
		Week 4 vs 0	-3.3 (-4.0, -2.7)	<0.001
	The control group	Week 2 vs 0	-1.4 (-2.2, -0.7)	<0.001
		Week 4 vs 0	-1.3 (-2.0, -0.6)	<0.001

The minimally clinically important change (MCIC) for pain intensity of sub-acute non-specific low back pain (SNSLBP) and chronic non-specific low back pain (CNSLBP) is at least 20mm on 100mm VAS⁽²¹⁾. In our study, pain intensity on VAS cores were 5.9 at the baseline, 1.5 at the second week (immediately after intervention) and 1.1 at the fourth week (follow-up) in the intervention group. In previous study, researchers reported that MCIC for ODI was score of more than or equal to 10 points in all types of LBP⁽²²⁾. In our study, ODI score which represent functional disability were 46.8 at the baseline, 14.7 at the second week (immediately after intervention) and 11.3 at the fourth week (follow-up) in the intervention group.

There is overall improving in lumbar flexibility seen in the intervention group. It means that our results reflect both statistically significant change and MCIC when we compared the baseline with the second week and the baseline with the fourth week.

Although, nowadays, the ET methods are becoming very popular, the background mechanism of the effects of ET in treating musculoskeletal problems are still unclear⁽²³⁾. There were some previous studies about ET focused on pain of Achilles' tendon, shoulders, knees, acute low back pain (ALBP) and chronic low back pain (CLBP). The reviews were consistently concluded that there was no great

quality evidence of the use of ET in management of musculoskeletal problems despite the short-term pain reduction effect of ET. They mostly focused on CLBP and its related

conditions⁽²³⁻²⁵⁾. researchers studied about the effect of ET in CLBP and reported that ET could alleviate pain and normalize muscle function⁽²⁶⁾.

Table 3 Differences in pain intensity on Visual Analog Scale (VAS), disability level on Oswestry Disability Index (ODI) and lumbar flexibility on Modified Schober's Test (MST) of sub-acute non-specific low back pain patients between the intervention and the control groups at each visit

Outcome measure	Period of intervention	Group	Mean ± SD	Independent t-test		
				Mean difference (95% CI)	t -statistic	p-value
Visual Analog Scale (VAS)	0 week	Intervention	5.8 ±0.8	-0.02 (-0.4, 0.3)	-0.1	0.894
		Control	5.9 ±0.9			
	The second week	Intervention	1.5 ±1.3	1.8 (1.2, 2.4)	6.0	<0.001
		Control	3.3 ±1.4			
	The fourth week	Intervention	1.1 ±1.0	2.2 (1.6, 2.8)	7.3	<0.001
		Control	3.3 ±1.5			
Oswestry Disability Index (ODI)	0 week	Intervention	46.8±15.1	1.5 (-5.2, 8.1)	0.4	0.664
		Control	45.3±15.5			
	The second week	Intervention	14.7±8.8	11.6 (7.1, 15.9)	5.2	<0.001
		Control	26.3±11.4			
Modified Schober's Test (MST)	The fourth week	Intervention	11.3 ±9.5	15.0 (10.3,19.7)	6.3	<0.001
		Control	26.3±11.9			
	0 week	Intervention	2.5 ±1.5	0.1 (-0.5, 0.7)	0.3	0.767
		Control	2.6 ±1.4			
	The second week	Intervention	5.5 ±1.2	1.4 (0.9, 1.9)	5.3	<0.001
		Control	4.0 ±1.2			
	The fourth week	Intervention	5.8 ±1.1	1.9 (1.4, 2.5)	7.1	<0.001
		Control	3.9 ±1.4			

In previous study, the researcher compared the effectiveness of ET and placebo taping in 60 patients with CLBP and reported significant immediate pain reduction in the ET group at the end of the first week, but there was no significant difference at the fourth week⁽⁹⁾. This study was similar method with our study but different results that they could only reported immediate improvement in pain intensity because the researcher applied ET only one time and let the tape in place for 7 days. This short intervention, one week of ET engendered confidence and greater awareness to remain active⁽²³⁾. It should emphasize the effects of pain and functional disability reduction of ET in musculoskeletal concerns. Besides, Kelle and co-workers compared ET with minimal care in 109 patients with acute non-specific low back pain (ANSLBP). They also reported that ET provided the immediate pain reduction in ANSLBP, even it was not a statistically significant difference between groups but overall pain reduction was seen in ET group. They also suggested that ET can be used as a complementary method of treatment in ANSLBP. Their technique of applying ET was quite similar with the technique in our study, but they applied only three times and the tape remained four days in place to be treated. They reported overall pain reduction and decreasing functional disability earlier in ET group than the minimal care group⁽²⁷⁾.

The period that the tape can remain in place briefly depends upon the body site to be applied. For example, the time must be shorter when applying on extreme mobile parts such as knee and elbow, in the lumbar area, the time may be 3-4 days, after that the ends of the tape become curl because of the friction of clothing⁽²⁷⁾.

In our study, we applied ET six times throughout two weeks of intervention period and the tape was remained two days in place per one application to wipe out the possible effects of allergic reaction by hot weather, dust and sweating. If the elastic tape is too stretched out, there will lead to reduce or change its effect, so it is superb to use less tension rather than too excessive tension during application^(26,28). The ET method used in this study is very appropriate for the pain reduction with 25%-30% of stretch.

As the pain intensity directly relates to the physical disability and so, when the pain increased, functional disability also increased. Pain was both clinically and statistically significant decreased after the intervention and so, functional disability also significantly reduced. As the pain intensity and functional disability are reversely related to the lumbar flexibility and so, when the pain and functional disability increased, lumbar flexibility decreased. Pain was both clinically and statistically significant decreased after the intervention and so lumbar flexibility was significantly improved.

The possible mechanism of pain reduction by ET is an improvement of intramuscular blood flow and it helps to promote the proprioceptive and nociceptive stimulation at the selected region⁽²⁹⁾. The technique used in the current study covered space correction technique, using light to moderate tension (15-50%) of maximum stretch which gives increased space on the area of the pain and inflammation. This increased space is believed in reducing pressure by lifting the skin directly under the tape. Then, it is very essential to alleviate pain as the elastic quality of the tape helps to lift fascia and soft tissues lead to creating

more space and resulting decreased pressure over the injured tissues. ET decreased the pressure under the area of the strip which act as channel to direct the waste products and exudates to nearest lymph ducts. It also increases circulation, assists in the reduction of pain and removal of fluid. This is also helpful for the lumbar stability⁽³⁰⁾. So, ET also provides optimal support to the muscles, correct and maintain the alignment, remove fluid congestion and actuate the endogenous analgesic system^(31,32). According to some previous studies, it was suggested that the ET stimulates the autonomic nervous system contributing to vasodilation of blood vessels in the taping area resulting in increased blood circulation. Improved blood circulation can supply much oxygen to the muscles^(33,34). Therefore, ET improve the resistance to pain and fatigue for the extensor muscles of lumbar spine and lead to achieve the significant pain reduction on VAS in SNSLBP⁽³⁵⁾. The results of the current study pointed out combining ET to the conventional treatments was faster and better pain relief, more efficiently better in functional disability control and very useful to improve and maintain the lumbar flexibility for the patients with SNSLBP.

Therefore, we believe that combining the ET to the conventional treatments has better improvement in treating patients with SNSLBP. All the treatments were given two weeks and there was a follow up period at the fourth week. The current study represents only immediate and short term (1 month) improvement of SNSLBP. Further study should investigate the long-term effect of combining ET to conventional treatments for the patients with SNSLBP.

Conclusion

Adding ET to the conventional treatments give the early significant pain reduction, disability decreasing and improving flexibility in lumbar spine in the sub-acute non-specific low back pain. It also supports to get the significant sustained effect of improving the symptoms for short term. The results are both clinically and statistically significant change in the intervention group. Therefore, we suggest that combining the ET to the conventional treatments has better improvement in treating patients with SNSLBP. But we investigated only immediate and short-term effects, so further study should be investigated the long-term effect of applying ET in low back pain.

Acknowledgement

We would like to convey our deep attitude for Exercise and sport sciences Development and Research group to provide financial support.

References

1. Van Tulder M, Malmivaara A, Esmail R, Koes B. Exercise therapy for low back pain: a systematic review within the framework of the cochrane collaboration back review group. *Spine*. 2000 Nov 1; 25(21): 2784-96.
2. Koes BW, Van Tulder M, Thomas S. Diagnosis and treatment of low back pain. *BMJ*. 2006 Jun 15; 332(7555): 1430-4.
3. Waddell G, Burton AK. Occupational health guidelines for the management of low back pain at work: evidence review. *Occup Med (Lond)*. 2001 Mar 1; 51(2): 124-35.

4. McCarthy C, Roberts C, Gittins M. A process of subgroup identification in non-specific low back pain using a standard clinical examination and cluster analysis. *Physiother Res Int* 2012; 17: 92-00.
5. Balagué F, Mannion AF, Pellisé F, Cedraschi C. Non-specific low back pain. *Lancet* 2012; 379(9814): 482-491.
6. Chou R, Qaseem A, Snow V, Casey D, Cross JT, Shekelle P, Owens DK. Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. *Ann Intern Med*. 2007 Oct 2; 147(7): 478-91.
7. Kelle B, Güzel R, Sakallı H. The effect of Kinesio taping application for acute non-specific low back pain: a randomized controlled clinical trial. *Clin Rehabil*. 2016 Oct; 30(10):997-1003.
8. Kaya E, Zinnuroglu M, Tugcu I. Kinesio taping compared to physical therapy modalities for the treatment of shoulder impingement syndrome. *Clin Rheumatol*. 2011 Feb 1; 30(2): 201-7.
9. Castro-Sánchez AM, Lara-Palomo IC, Matarán Peñarrocha GA, Fernández-Sánchez M, Sánchez-Labracá N, Arroyo-Morales M. Kinesio Taping reduces disability and pain slightly in chronic non-specific low back pain: a randomised trial. *J physiother*. 2012 Jun 1; 58(2): 89-95.
10. Kahanov L. Kinesio Taping®, part 1: an overview of its use in athletes. *Athl Ther Today*. 2007 May 1; 12(3): 17-8.
11. Álvarez-Álvarez S, San José F, Rodríguez Fernández AL, Gueita-Rodríguez J, Waller BJ. Effects of Kinesio® Tape in low back muscle fatigue: randomized, controlled, double-blinded clinical trial on healthy subjects. *J Back Musculoskelet Rehabil*. 2014 Jan 1; 27(2): 203-12.
12. DeLoach LJ, Higgins MS, Caplan AB, Stiff JL. The visual analog scale in the immediate postoperative period: intrasubject variability and correlation with a numeric scale. *Anesth Analg*. 1998 Jan 1; 86(1): 102-6.
13. Bijur PE, Silver W, Gallagher EJ. Reliability of the visual analog scale for measurement of acute pain. *Acad Emerg Med*. 2001 Dec; 8(12): 1153-7.
14. Jensen MP. The validity and reliability of pain measures in adults with cancer. *J Pain*. 2003 Feb 1; 4(1): 2-1.
15. Fairbank JC, Pynsent PB. The Oswestry disability index. *Spine*. 2000 Nov 15; 25(22): 2940-53.
16. Macrae IF, Wright V. Measurement of back movement. *Ann Rheum Dis*. 1969 Nov; 28(6): 584.
17. Renuka D, Vijaya K, Amol B. LUMBAR RANGE OF MOTION: RELIABILITY BETWEEN SCHOBER'S TEST & MODIFIED SCHOBER'S TEST. *Rom J Physiother*. 2015 May 1; 21(35).
18. Wang XQ, Zheng JJ, Yu ZW, Bi X, Lou SJ, Liu J, Cai B, Hua YH, Wu M, Wei ML, Shen HM. A meta-analysis of core stability exercise versus general exercise for chronic low back pain. *PloS ONE*. 2012; 7(12).
19. Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. *Sports Med*. 2006 Mar 1; 36(3): 189-98.

20. Ko KJ, Kang SJ. Effects of 12-week core stabilization exercise on the Cobb angle and lumbar muscle strength of adolescents with idiopathic scoliosis. *J Exerc Rehabil.* 2017 Apr; 13(2): 244.

21. Beurskens AJ, De Vet HC, Köke AJ. Responsiveness of functional status in low back pain: a comparison of different instruments. *Pain.* 1996 Apr 1; 65(1):71 -6.

22. Ostelo RW, de Vet HC. Clinically important outcomes in low back pain. *Best Practice & Res Clin Rheumatol.* 2005 Aug 1; 19(4): 593-607.

23. Kaya E, Zinnuroglu M, Tugcu I. Kinesio taping compared to physical therapy modalities for the treatment of shoulder impingement syndrome. *Clin Rheumatol.* 2011 Feb 1;30(2):201-7.

24. Hwang-Bo G, Lee JH. Effects of kinesio taping in a physical therapist with acute low back pain due to patient handling: a case report. *Int J Occup Environ Health.* 2011 Sep 1; 24(3): 320.

25. Mannion AF, Balagué F, Pellisé F, Cedraschi C. Pain measurement in patients with low back pain. *Nat Clin Rheumatol.* 2007 Nov; 3(11): 610-8.

26. Paoloni M, Bernetti A, Fratocchi G, Mangone M, Parrinello L, Del Pilar Cooper M, Sesto L, Di Sante L, Santilli V. Kinesio Taping applied to lumbar muscles influences clinical and electromyographic characteristics in chronic low back pain patients. *Eur J Phys Rehabil Med.* 2011 Jun 1; 47(2): 237-44.

27. Casazza BA. Diagnosis and Treatment of Acute Low Back Pain. *AFP* 2012 Feb; 85(4): 343-50.

28. Added MA, Costa LO, Fukuda TY, De Freitas DG, Salomão EC, Monteiro RL, Costa LD. Efficacy of adding the kinesio taping method to guideline-endorsed conventional physiotherapy in patients with chronic nonspecific low back pain: a randomised controlled trial. *BMC Musculoskelet Disord.* 2013 Dec 1; 14(1): 301.

29. González-Iglesias J, Fernández-de-Las-Peñas C, Cleland J, Huijbregts P, Gutiérrez-Vega MD. Short-term effects of cervical kinesio taping on pain and cervical range of motion in patients with acute whiplash injury: a randomized clinical trial. *J Orthop Sports Phys Ther.* 2009 Jul; 39(7): 515-21.

30. Kase K. Clinical therapeutic applications of the Kinesio (! R) taping method. 2nd ed. Albuquerque. 2003.

31. Chen WC, Hong WH, Huang TF, Hsu HC. Effects of kinesio taping on the timing and ratio of vastus medialis obliquus and vastus lateralis muscle for person with patellofemoral pain. *J Biomech.* 2007 Jul; 40(2): S318.

32. Kelle B, Güzel R, Sakallı H. The effect of Kinesio taping application for acute non specific low back pain: a randomized controlled clinical trial. *Clin Rehabil.* 2016 Oct; 30(10): 997-1003.

33. Ozmen T, Aydogmus M, Dogan H, Acar D, Zoroglu T, Willems M. The effect of kinesio taping on muscle pain, sprint performance, and flexibility in recovery from squat exercise in young adult women. *J Sport Rehabil.* 2016 Feb 1; 25(1): 7-12.

34. Kase K, Hashimoto T. Changes in the volume of the peripheral blood flow by using kinesio taping. 1998 [cited 28 May 2017] Available from:<https://www.theratape.com/education-center/wpcontent/uploads/2012/11/Kinesio-StudyPeripheral-Blood-Flow.pdf>
35. Chang WD, Lin HY, Lai PT. Core strength training for patients with chronic low back pain. *J Phys Ther Sci.* 2015; 27(3): 619-22.

Prevalence and risk factors of musculoskeletal symptoms among municipal solid waste workers in Phayao Province, Northern Thailand

Sarawut Sangkham^{1*} and Sakesun Thongtip¹

Received: December 10, 2019

Revised: March 12, 2020

Accepted: March 14, 2020

Abstract

Background: Solid waste management needs to be performed worldwide. In developing countries, municipal solid waste is collected manually, requiring heavy physical labor outdoors, which may contribute to the development of work-related musculoskeletal disorders (MSDs). **Purpose:** To determine the prevalence and risk factors of musculoskeletal symptoms among municipal solid waste workers in local administrative organizations in Phayao Province, Northern Thailand. **Methods:** A cross-sectional analytic study using sociodemographic, work profile and environment workplace exposure data was conducted. The Standard Nordic Questionnaires among municipal solid waste workers (MSWWs) were used to interview 135 employees who participated in the study. **Results:** The highest prevalence of musculoskeletal symptoms among MSWWs was shoulder pain (55.56%), followed by low back pain (42.96%), wrist/hand pain (42.22%) and ankle pain (30.37%). There was one risk factor that was significantly associated with musculoskeletal symptoms: a frequency of lifting of ≥ 150 times/day [adjusted odds ratio (aOR) 4.46; 95% confidence interval (CI), 1.28–15.48]. Additionally, regarding body parts, a frequency of lifting of ≥ 150 times /day was shown to be a risk factor for wrist/hand pain [aOR 3.06; 95% CI, 1.11–8.44] and knee pain [aOR 4.00; 95% CI, 1.05–15.20]. Lifting heavy objects above the knees was associated with a risk of shoulder pain [aOR 3.80; 95% CI, 1.56–9.26], and workers who lifted objects continuously were at risk of knee pain [aOR 4.97; 95% CI, 1.02–24.31]. **Conclusion:** These findings demonstrate that the frequency of lifting, lifting continuously and lifting objects above the knees are risk factors for musculoskeletal symptoms, and it is recommended that MSWWs' posture and workplace environment are monitored.

Keywords: Musculoskeletal symptoms, Municipal solid waste workers, Prevalence, Risk factors

¹ Department of Environmental Health, School of Medicine, University of Phayao, Phayao, Thailand 56000

*Corresponding author: (e-mail: sarawut.sa@up.ac.th)

1. Introduction

Due to rapid growth in the population, urbanization and human activities, there are currently major environmental problems causing a drastic increase in municipal solid waste generation, and the various types of waste have been shown to be a threat to human health⁽¹⁻³⁾. Solid waste management is a serious challenge, and in developing countries, solid waste management requires predominantly manual handling tasks^(4, 5). Municipal solid waste workers' (MSWs') roles are significant to the reduce, reuse, and recycling movements, which are regarded as sustainable within the waste management hierarchy⁽⁶⁾. In Thailand, manual municipal solid waste collection is the most common occupation requiring physical labor outdoors, including separating, handling, transporting, storing, and disposing of waste, and it is performed by the municipality's local administrative organizations (LAOs). The collection of solid waste is hard work and can affect occupational health. The workers use vehicles that are driven through traffic and collect waste from the rear of the trucks during the collection window daily⁽⁷⁻⁹⁾. MSWs worldwide have the highest risk for work-related disorders, injuries, illnesses, and exposure to various work-related hazards⁽¹⁰⁻¹²⁾. Work-related musculoskeletal disorders (WMSDs) are widely known to be causes of occupational problems in people worldwide⁽¹³⁾. However, MSWs are frequently exposed to significant occupational hazards⁽¹⁴⁾. Previous studies have shown that MSWs have a higher probability of developing MSDs than the general population due to the nature of their work⁽¹⁵⁾. An individual's working environment may be associated with risk factors for musculoskeletal

symptoms, and there are also a large number of past reports on musculoskeletal problems, especially among waste collectors^(16, 17). Moreover, the work-related illnesses that occur among household waste collectors are mostly musculoskeletal disorders due to their poor posture during work⁽¹⁸⁾.

Nonetheless, the identified studies provided little information, and several risk factors were unclear, such as municipal solid waste collection. Occupational epidemiological analytical studies are needed to identify the causes of these health hazards to prevent occupational health problems when solid waste collection systems are implemented and new employees are hired⁽¹⁶⁾. However, employees are exposed to such health hazards associated with musculoskeletal symptoms because the municipality's local government organization in Phayao Province does not yet have information on health hazards in the work environments of solid waste collection workers.

Thus, the main objective of this study was to determine the prevalence and risk factors of musculoskeletal symptoms among municipal solid waste workers in the municipalities of local administrative organizations in Phayao Province, Northern Thailand and to use the information as a guideline to assess, monitor and prevent health risks associated with the work of solid waste collection workers in the local government organization.

2. Materials and methods

2.1 Study design

A cross-sectional analysis was conducted to determine the prevalence and risk factors of musculoskeletal symptoms among municipal

solid waste workers in Phayao Province, Northern Thailand.

2.2 The population and sample size

The study was conducted among MSWW workers in 21 municipalities of local administrative organizations in Phayao Province, Northern Thailand. Because the population is small, 143 workers who were at least 20 years old were included in the study to represent the entire population, including all employees in the municipalities. The inclusion criteria were permanent or temporary employment and employment for at least one year. The exclusion criteria were a history of surgery for injuries not related to work and an underlying disease causing musculoskeletal symptoms, such as rheumatoid arthritis, gout, and accidental injuries. The workers fulfilled the eligibility criteria, and 135 (94.0%) of them participated in the study.

2.3 Ethical approval

The research study was approved by the Human Ethics Committee at the University of Phayao. The ethical clearance certificate number was Project No. 2/117/61 (February 18, 2019).

2.4 Tools and data collection

In this study, the data were collected by using structural questionnaires and face-to-face interviews. The questionnaires were divided into three parts. The first part consisted of general sociodemographic characteristics, including the participant's age (years), gender, height (cm), body weight (kg), marital status, education level, and monthly income (USD); the number of household members; his or her work history; any underlying diseases; alcohol consumption; cigarette smoking; and an annual health report. The second part corresponded to a work profile and individuals'

physical and working environments, such as their position, job-related tasks, employment duration (years), working duration (hours/day), and frequency at which they lift objects (times/day); the weight of the containers or bags lifted (kg); the range of working hours; whole-body vibrations from vehicles and machines; continuous lifting tasks; and holding on vehicles and lifting heavy objects above the knees. All questions were either multiple-choice and fixed-choice or open-ended. The third part was constructed based on musculoskeletal symptoms by body region using the Standardized Nordic Questionnaire (SNQ)⁽¹⁹⁾ and translated into the Thai language. Cronbach's alpha coefficient was used to evaluate the reliability of the questionnaire, and the internal consistency value was 0.89 for the severity of pain. The interview duration was approximately 15-20 minutes per person, and the interview was administered by a researcher during August – October 2019.

2.5 Data analysis

The data analyses were conducted using STATA version 14 (Stata Corp LP., Texas, USA 2015). Descriptive statistical analyses were performed to describe the sociodemographic and health data, work profiles, frequencies and proportions of tasks performed in the workplace, and prevalence of musculoskeletal symptoms; the data are expressed as the frequency, percentage, mean, standard deviation [SD], median, maximum and minimum. The outcome variable was analyzed using a univariable analysis of each independent variable. Any variable whose univariable test result showed a *p*-value of less than 0.25 was included in the first multivariable model, and the likelihood ratio was assessed by the chi-squared test. Then,

a multivariable model containing all covariates identified was used to assess the importance of each covariate using the *p-value* of its Wald statistic by the backward elimination technique⁽²⁰⁾, which accounts for confounding factors and other important factors that need further analysis, and to determine the odds ratio (OR) of various risk factors at a 95% confident interval. The significance level (*p-value*) was set to be below 0.05.

3. Results

3.1 MSWWs' sociodemographic and health data

All 135 MSWWs were men, with a mean age of 42.7 (*SD* 9.77) years. Most of the workers had ages between 40 and 49 years (40.0%) and less than 40 years (34.1%). Most (64.4%) of the workers were married. It found that 54.8% of the workers had a high school education. The monthly

income (77.0%) was approximately USD 297.03 and USD 495.02 for most workers, and the median income was USD 297.03 (min.-max., USD 231.02-692.61). The mean number of household members was 3.96 (*SD* 1.59), and for 65.9% of the workers, this number was greater than or equal to four (≥ 4 persons). Furthermore, most of these employees were cigarette smokers (63.0%), and 67.4% of them consumed alcohol. Most of the MSWWs had a body mass index (kg/m^2) of 48.9%, which was considered normal (18.5–22.99 kg/m^2), followed by 47.4%, which was considered obese. The median body mass index was 22.8 (min.-max., 15.9-36.1 kg/m^2). Majority of the workers (84.4%) did not have an underlying disease, and 54.81% did not undergo annual health examinations. Almost all MSWWs (80.0%) had been employed previously, as shown in **Table 1**.

Table 1 Sociodemographic of the MSWWs (n=135)

Characteristics	Frequency (%)
Gender	
Male	135 (100.00)
Age (Years)	
< 40	46 (34.07)
40-49	54 (40.00)
≥ 50	35 (25.93)
Mean (SD)	42.73 (9.77)
Min-Max	20, 64
Marital status	
Single	43 (31.85)
Married	87 (64.44)
Widower	5 (3.71)
Education level	
Primary School	51 (37.78)
High school	74 (54.81)
Diploma or above	10 (7.41)
Income (USD)*	
	30 (22.22)
< 297.03	
297.03-495.02	104 (77.04)
≥ 495.05	1 (0.74)
Mean (SD)	314.27 (65.51)
Median	297.03
P ^{25th} -P ^{75th}	297.03, 330.03
Min-Max	231.02, 692.61
Number of household members	
< 4	46 (34.07)
≥ 4	89 (65.93)
Mean (SD)	3.96 (1.59)
Min-Max	1, 9

Table 1 Sociodemographic of the MSWWs (n=135)

(cont.)

Characteristics	Frequency (%)
Alcohol consumption	
No drank	44 (32.59)
Current drinker	91 (67.41)
Cigarette smoke	
No smoking	50 (37.04)
Current smoker	85 (62.96)
BMI (kg/m²)	
< 18.50	5 (3.70)
18.5-22.99	66 (48.89)
≥ 23.00	64 (47.41)
Mean (SD)	23.56 (3.66)
Median	22.77
P ^{25th} -P ^{75th}	20.82, 26.04
Min-Max	15.92, 36.11
Previous work	
Yes	108 (80.00)
No	27 (20.00)
Underlying disease	
Yes	21 (15.56)
No	114 (84.44)
Annual medical checkups	
Yes	61 (45.19)
No	74 (54.81)

Presented in frequency and percentage

* 1 USD was approximately = 30.30 THB

3.2 Work profile and working environment among municipal solid waste workers

The vast majority of 88.2% among MSWWs workers were temporary employed position and government/permanent position (11.8%). It was reported that there was a fifth work-related task; most of these workers were workers who lifted containers or bags/separators in the rear of the trucks (51.85%), followed by vehicle drivers (22.22%) and workers who lifted containers or bags (19.26%). It was found that the smallest proportion of workers were separators in the rear of the trucks (5.19%) and sewage workers (1.48%). Most of these workers had employment durations of five or more years (52.6%), and the median duration was 5.0 years (min.-max., 1 – 34 years).

The employees' working hours ranged from 3 – 12 hours/day. Most MSWWs (68.9%) reported that they spend six or more hours/day at the workplace. Only 31.1% reported spending less than six hours/day at their workplace. Most MSWWs (54.1%) had a lifting frequency greater

than or equal to 150 times/day, and 45.9% of the workers had a frequency of less than 150 times/day. The MSWWs' median frequency of lifting was 150 times/day, and the range of the minimum and maximum frequency was 0 – 500 times/day. Most MSWWs (52.6%) lifted containers or bags weighing more than or equal to 30 kg, and 47.4% of the workers lifted containers weighing less than 30 kg each day. The median weight of the containers or bag lifted was 30 kg (min.-max., 0 – 150 kg). Regarding the daily shifts, most MSWWs (60.7%) work from 7 am to 4 pm, 25.2% work from 5 am to 12 pm, and 14.1% work from 12 am to 10 am, as shown in **Table 2**.

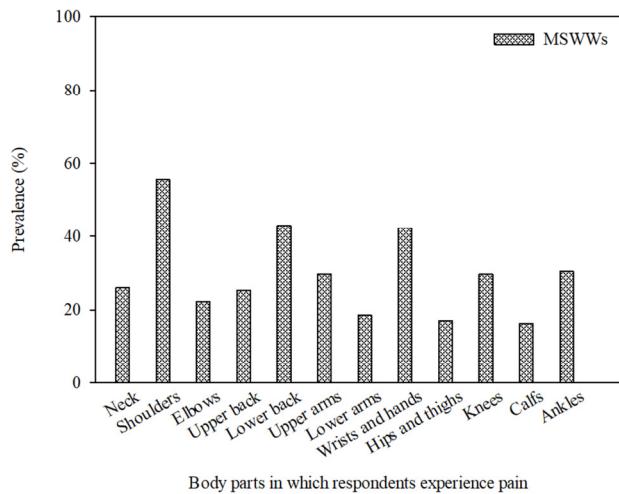

Most of the respondents (65.9%) were exposed to whole-body vibrations in vehicles or machines while working. Additionally, a large proportion of the workers (75.6%) reported lifting containers or materials and lifting objects above the knees. Most respondents (76.3%) reported holding objects every day in vehicles for their job, as shown in **Table 2**.

Table 2 Work profile and working environment of the MSWWs (n = 135)

Work profile	Frequency (%)
Positions	
Government/permanent position	16 (11.85)
Temporary employed position	119 (88.15)
Job tasks	
Lifting containers or bags	26 (19.26)
Separators in the rear of the trucks	7 (5.19)
Lifting containers or bags/separators in the rear of the trucks	70 (51.85)
Vehicle drivers	30 (22.22)
Sewage workers	2 (1.48)
Employment duration (in years)	
< 5	64 (47.41)
≤ 5	71 (52.59)
Mean (SD)	7.63 (7.61)
Median	5.00
P ^{25th} -P ^{75th}	3,10
Min-Max	1, 34
Daily working hours (hours/day)	
< 6	42 (31.11)
≥ 6	93 (68.89)
Mean (SD)	6.12 (1.69)
Median	6.00
P ^{25th} -P ^{75th}	4, 8
Min-Max	3, 12
Frequency of lifting (times/day)	
< 150	62 (45.93)
≥ 150	73 (54.07)

Table 2 Work profile and working environment of the MSWWs (n = 135) (cont.)

Work profile	Frequency (%)
Mean (SD)	156.24 (130.49)
Median	150.00
P ^{25th} - P ^{75th}	10, 250
Min-Max	0, 500
Weight of container or bags lifting (kg)	
< 30	64 (47.41)
≥ 30	71 (52.59)
Mean (SD)	44.74 (69.38)
Median	30.00
P ^{25th} - P ^{75th}	10, 60
Min-Max	0, 150
Rang in working time	
07 am-4 pm	82 (60.74)
12 am -10 am	19 (14.07)
5 am- 12 pm	34 (25.19)
Physical and working environments	
Whole-body vibrations in vehicles or machines while working	
Yes	89 (65.93)
No	46 (34.07)
Lifting continuously	
Yes	102 (75.56)
No	33 (24.44)
Holding with vehicle	
Every day	103 (76.30)
Sometimes	32 (23.70)
Lifting containers or materials and lifting objects above the knees	
Yes	102 (75.56)
No	33 (24.44)

Figure 1 Prevalence of musculoskeletal symptoms in 12 body parts among MSWWs.

Figure 1 demonstrates the prevalence of musculoskeletal symptoms in 12 defined body parts of MSWWs over the last 12 months. The majority (84.4%) of these workers had musculoskeletal symptoms. Shoulder pain was found to be the most common (55.6%), followed by low back pain, wrist/hand pain and ankle pain (43.0%, 42.2%, and 30.4%, respectively).

3.3 Factors affecting musculoskeletal symptoms among MSWWs

Univariate analysis of the variables, including age, body mass index (kg/m^2), positions, job task, employment duration (years), daily working duration (hours/day), frequency of lifting (times/day), weight of containers or bags lifted (kg), holding in vehicles, whole-body vibrations from vehicles or machines while working, lifting heavy objects above the knees, continuous lifting, alcohol consumption, smoking, previous work, number of household members and underlying

diseases, was used to identify the significant variables contributing to musculoskeletal symptoms in the MSWWs. This study showed that a daily working duration of eight or more hours/day (≥ 8 hours /day) compared with a daily working duration of less than eight hours (< 8 hours/day) were risk factors for musculoskeletal symptoms, with OR 4.04, 95% CI [0.90-18.30]. Moreover, a frequency of lifting objects of more than or equal to 150 times/day (≥ 150 times/day) compared with that of less than 150 times/day (< 150 times/day) was a statistically significant risk factor for musculoskeletal symptoms, with OR 2.75, 95% CI [1.03-7.33] ($p < 0.05$), as exhibited in **Table 3**.

Eventually, multiple logistic regression analyses were conducted with significant variables selected at $p < 0.25$ and other factors that have been shown to influence musculoskeletal symptoms with backward elimination, including the daily working duration, frequency of lifting, lifting heavy objects above the knees, weight of the containers or bag lifted and underlying diseases; the regression was adjusted for the covariates (age and duration of employment). The frequency of lifting objects more than or equal to 150 times/day (≥ 150 times/day) compared with that of less than 150 times/day (< 150 times/day) was found to be a statistically significant risk factor for musculoskeletal symptoms, with an adjusted odds ratio (aOR) of 4.46, 95% CI [1.28-15.48] ($p < 0.05$), as illustrated in **Table 4**.

Table 3 Crude odd ratio (cOR) with 95% confidence interval (95% CI) of musculoskeletal symptoms based on simple logistic regression (n = 135)

Factors	Musculoskeletal symptoms		cOR	95%CI	p-value
	Present	Absent			
	(n=114)	(n=21)			
Age (Years)					
<40	38 (33.33)	8 (38.10)	Ref		
≥ 40	76 (66.67)	13 (61.90)	1.23	0.47-3.22	0.674
BMI (kg/m²)					
18.5-22.99 (Normal)	56 (49.12)	10 (47.62)	Ref		
< 18.50 (Underweight)	4 (3.51)	1 (4.76)	1.40	0.14-13.86	0.962
≥ 23.00 (Obese/overweight)	54 (47.37)	10 (47.62)	1.35	0.14-13.37	
Positions					
Government/permanent position	13 (11.40)	3 (14.29)			
			Ref		
Temporary employed position	101(88.60)	18 (85.71)	1.29	0.34-5.00	0.713
Job tasks					
- Lifting containers or bags	20 (17.54)	6 (28.57)	Ref		
- Separators in the rear of the trucks	6 (5.26)	1 (4.76)	1.80	0.18-18.05	0.335
- Lifting containers or bag/separate in the rear of the trucks	63 (55.26)	7 (33.33)	2.70	0.81-8.97	
- Vehicle drivers	24 (21.05)	6 (28.57)	1.20	0.33-4.31	
- Sewage workers	1 (0.88)	1 (4.76)	0.30	0.02-5.55	
Employment duration (in years)					
< 5	53 (46.49)	11 (52.38)	Ref		
≥ 5	61 (53.51)	10 (47.62)	1.27	0.50-3.22	0.620
Daily working hours (in hours)					
< 8	80 (70.18)	19 (90.48)	Ref		
≥ 8	34 (29.82)	2 (9.52)	4.04	0.90-18.30	0.035*
Frequency of lifting (times/day)					
< 150	48 (42.11)	14 (66.67)	Ref.		
≥ 150	66 (57.89)	7 (33.33)	2.75	1.03-7.33	0.037*
Weight of container or bags lifting (kg)					
< 30	54 (47.37)	10 (47.62)	Ref		
≥ 30	60 (52.63)	11 (52.38)	1.01	0.40-2.57	0.983

Table 3 Crude odd ratio (cOR) with 95% confidence interval (95% CI) of musculoskeletal symptoms based on simple logistic regression (n = 135) (cont.)

Factors	Musculoskeletal symptoms		cOR	95%CI	p-value
	Present	Absent			
	(n=114)	(n=21)			
Holding with vehicle					
Sometimes	26 (22.81)	6 (28.57)	Ref		
Every day	88 (77.19)	15 (71.43)	0.74	0.26-2.10	0.575
Vibrations in vehicles or machines					
No	39 (34.21)	7 (33.33)	Ref.		
Yes	75 (65.79)	14 (66.67)	0.96	0.36-2.58	0.938
Lifting continuously					
No	26 (22.81)	7 (33.33)	Ref		
Yes	88 (77.19)	14 (66.67)	0.59	0.22-1.62	0.316
Alcohol consumption					
No drank	35 (30.70)	9 (42.86)	Ref		
Current drinker	79 (69.30)	12 (57.14)	1.69	0.65-4.38	0.283
Smoking					
No smoking	40 (35.09)	10 (47.62)	Ref		
Current smoker	74 (64.91)	11 (52.38)	1.68	0.70 - 5.70	0.280
Previous work					
No	23 (20.18)	4 (19.05)	Ref		
Yes	91 (79.82)	17 (80.95)	0.93	0.29-3.03	0.905
Underlying disease					
Yes	19 (16.67)	2 (9.52)	Ref		
No	95 (83.33)	19 (90.48)	1.90	0.41-8.85	0.382
Lifting containers, bags, or materials above knees					
No	25 (21.93)	8 (38.10)	Ref		
Yes	89 (78.07)	13 (61.90)	2.19	0.82-5.87	0.128
Number of household members					
< 4	42 (36.84)	4 (19.05)	Ref		
≥ 4	72 (63.16)	17 (80.95)	0.40	0.13 - 1.28	0.100

cOR, Crude odds ratios; Ref, Reference

* Significant at $p < 0.05$

Table 4 Adjusted odds ratio (aOR) with 95% confidence interval (95% CI) of musculoskeletal symptoms based on multiple logistic regression (n = 135)

Factors	Musculoskeletal symptoms		aOR	95%CI	p-value
	Present (n=114)	Absent (n=21)			
Age (Years)					
<40	38 (33.33)	8 (38.10)	Ref		
≥ 40	76 (66.67)	13 (61.90)	1.04	0.34-3.24	0.941
Employment duration (in years)					
< 5	53 (46.49)	11 (52.38)	Ref		
≥ 5	61 (53.51)	10 (47.62)	2.07	0.66-6.47	0.213
Daily working hours (in hours)					
< 8	80 (70.18)	19 (90.48)	Ref		
≥ 8	34 (29.82)	2 (9.52)	3.64	0.75-17.76	0.110
Frequency of lifting (times/day)					
< 150	48 (42.11)	14 (66.67)	Ref		
≥ 150	66 (57.89)	7 (33.33)	4.46	1.28-15.48	0.019*
Weight of container or bags lifting (kg)					
< 30	54 (47.37)	10 (47.62)	Ref		
≥ 30	60 (52.63)	11 (52.38)	0.67	0.21-2.20	0.511
Lifting containers, bags, or materials above knees					
No	25 (21.93)	8 (38.10)	Ref		
Yes	89 (78.07)	13 (61.90)	2.09	0.71-6.16	0.184
Underlying disease					
No	95 (83.33)	19 (90.48)	Ref		
Yes	19 (16.67)	2 (9.52)	2.38	0.44-12.84	0.314
Number of household members					
< 4	42 (36.84)	4 (19.05)	Ref		
≥ 4	72 (63.16)	17 (80.95)	0.34	0.10-1.22	0.098

Adjusted odds ratio: aOR; Ref, Reference

* Significant at $p<0.05$

It was found that MSWWs who had a frequency of lifting of ≥ 150 times/day was a statistically significant risk factor for wrist/hand pain and knee pain than those with a frequency of lifting of < 150 times/day, with an aOR of 3.06 (95% CI [1.11-8.44]) and aOR of 4.00 (95% CI [1.05-15.20]) ($p<0.05$), respectively. The workers who were exposed to whole-body vibrations and machines while working every day was a statistically significant risk factor for knee pain than those who were sometimes exposed to whole-body vibrations and machines, with 71%, aOR 0.29, 95% CI [0.11-0.76] ($p<0.05$). Moreover, the results indicated that workers who had been lifting

continuously was a statistically significant risk factor for knee pain, with an aOR of 4.97 and 95% CI of [1.02-24.31] ($p<0.05$). Additionally, lifting heavy containers or objects above the knees was a statistically significant risk factor for shoulder pain compared with not lifting heavy objects, with an aOR of 3.80 and 95% CI of [1.56-9.26] ($p<0.05$). In addition, we found that the presence of an underlying disease was a statistically significant risk factor for wrist/hand pain and knee pain compared with the absence of an underlying disease, with an aOR of 3.34 (95% CI [1.16-9.67]) and aOR of 3.90 (95% CI [1.29-11.85]) ($p<0.05$), as indicated in **Table 5**.

Table 5 Risk factors for musculoskeletal symptoms in 12 body parts among MSWWs in Phayao Province, Northern Thailand

Factors	(n = 135)	Shoulders		Elbows		Knees		Calfs		Ankles		
		Upper	back	Lower	Upper	Wrists and	Hips and	hands	aOR	aOR	aOR	
Age (yrs.)		aOR [95%CI]	aOR [95%CI]	aOR [95%CI]	aOR [95%CI]							
<40	46 (34.07) 89 (65.93)	Ref	Ref	Ref	Ref							
≥40	0.84 (0.32, 2.15)	1.22 (0.53, 2.85)	1.23 (0.47, 3.18)	0.51 (0.20, 1.33)	0.45 (0.19, 1.06)	0.91 (0.37, 2.19)	0.57 (0.20, 1.62)	0.65 (0.28, 1.51)	0.53 (0.18, 1.52)	1.16 (0.44, 3.08)	1.79 (0.55, 5.85)	
Employment duration (yrs.)												
<5	64 (47.41) 71 (52.59)	Ref	Ref	Ref	Ref							
≥5	0.98 (0.40, 2.40)	1.47 (0.66, 3.26)	1.02 (0.42, 2.47)	1.37 (0.54, 3.48)	1.55 (0.70, 3.48)	1.89 (0.81, 4.39)	0.96 (0.35, 2.68)	0.79 (0.35, 1.74)	1.75 (0.62, 4.96)	1.41 (0.57, 3.51)	0.81 (0.28, 2.37)	1.23 (0.53, 2.87)
Daily working hours (hrs.)												
<8	99 (73.33) 36 (26.67)	Ref	Ref	Ref	Ref							
≥8	1.35 (0.55, 3.30)	1.38 (0.59, 3.22)	0.59 (0.22, 1.61)	1.10 (0.42, 2.87)	1.93 (0.83, 4.51)	1.14 (0.47, 2.77)	0.47 (0.14, 1.52)	0.73 (0.31, 1.71)	1.90 (0.69, 5.25)	1.33 (0.53, 3.30)	1.26 (0.43, 3.70)	1.88 (0.80, 4.43)
Frequency of lifting (times/day)												
<150	62 (45.93) 73 (54.07)	Ref	Ref	Ref	Ref							
≥150	1.30 (0.42, 4.03)	2.00 (0.75, 5.30)	2.85 (0.81, 0.04)	1.27 (0.42, 3.84)	0.71 (0.26, 1.91)	1.25 (0.45, 3.50)	3.43 (1.11, 8.44)	3.06* (0.83, 4.12)	2.19 (0.52, 9.14)	4.00* (1.05, 15.20), p<0.030	1.43 (0.33, 6.32)	0.81 (0.29, 2.28)
Weight of the containers or bags lifting (kg)												
<30	64 (47.41) 71 (52.59)	Ref	Ref	Ref	Ref							
≥30	0.74 (0.27, 2.00)	1.32 (0.55, 3.21)	0.61 (0.22, 1.64)	1.20 (0.43, 3.30)	2.43 (0.96, 6.18)	1.48 (0.57, 3.81)	1.92 (0.58, 6.36)	1.35 (0.56, 3.27)	1.53 (0.45, 5.18)	1.85 (0.62, 5.49)	3.97 (0.80, 19.77)	1.77 (0.66, 4.72)

1 ■ มกราคม - เมษายน 2563 32 ฉบับที่ 1 ■ วารสารเทคโนโลยีการแพทย์และกายภาพบำบัด 32 ฉบับที่ 1 ■ มกราคม - เมษายน 2563

Table 5 Risk factors for musculoskeletal symptoms in 12 body parts among MSWWs in Phayao Province, Northern Thailand (cont..)

Factors	(n = 135)	Neck	Shoulders	Upper back	Elbows	Lower back	Upper arms	Lower arms	Wrists and hands	Hips and thighs	Knees	Cuffs	Ankles
		aOR [95%CI]	aOR [95%CI]	aOR [95%CI]	aOR [95%CI]	aOR [95%CI]	aOR [95%CI]	aOR [95%CI]	aOR [95%CI]	aOR [95%CI]	aOR [95%CI]	aOR [95%CI]	aOR [95%CI]
Whole-body vibrations in vehicles or machines while working													
No	46 (34.07)	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref
Yes	89 (65.93)	0.41 (0.16, 1.03)	0.84 (0.35, 2.02)	0.91 (0.34, 2.41)	0.50 (0.19, 1.34)	0.69 (0.30, 1.62)	1.52 (0.60, 3.89)	0.87 (0.29, 2.61)	1.06 (0.43, 2.60)	1.13 (0.37, 3.42)	0.29* (0.11, 0.76), <i>p</i> <0.012	0.45 (0.14, 1.41)	0.59 (0.24, 1.46)
Lifting continuously													
No	33 (24.44)	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref
Yes	102 (75.56)	1.21 (0.30, 4.83)	1.79 (0.51, 6.24)	2.06 (0.46, 9.17)	0.46 (0.09, 2.31)	1.85 (0.51, 6.54)	1.01 (0.26, 13.73)	1.94 (0.28, 13.73)	1.24 (0.30, 5.87)	2.47 (0.40, 15.35)	4.97* (1.02, 24.31), <i>p</i> <0.048	5.18 (0.68, 39.38)	0.96 (0.25, 3.73)
Lifting containers or materials and lifting objects above the knees													
No	33 (24.44)	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref
Yes	102 (75.56)	0.94 (0.35, 2.54)	3.80* (1.56, 9.26), <i>p</i> <0.003	2.50 (0.84, 7.47)	1.32 (0.42, 4.11)	2.02 (0.78, 5.23)	0.90 (0.36, 2.23)	2.25 (0.59, 8.60)	0.70 (0.29, 1.71)	1.65 (0.47, 5.75)	1.48 (0.52, 4.24)	1.14 (0.36, 3.62)	0.97 (0.38, 2.49)
Underlying disease													
No	114 (84.44)	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref	Ref
Yes	21 (15.56)	1.97 (0.68, 5.70)	0.77 (0.27, 2.14)	0.53 (0.34, 3.76)	1.13 (0.60, 0.27)	0.85 (0.30, 2.40)	1.21 (0.42, 3.49)	1.55 (0.41, 5.87)	3.34* (1.16, 9.67), <i>p</i> <0.026	1.77 (0.52, 6.05)	3.90* (1.29, 11.85), <i>p</i> <0.016	0.76 (0.19, 3.08)	2.05 (0.74, 5.66)

Note: Data presented as aOR [95% CI]. The reference group for each factor: age: <40 years (Ref.); employment duration <5 years (Ref.); working time <8 h/day (Ref.); frequency of lifting <150 times/day (Ref.); weight of container or bags lifting <30 kg (Ref.); whole-body vibrations in vehicles or machines while working: no (Ref.); lifting continuously: no (Ref.); lifting objects above the knees: no (Ref.) and underlying disease: no (Ref.).

Covariates adjusted: age, employment duration, working time, frequency of lifting, weight of container or bags lifting, whole-body vibrations in vehicles or machines while working, lifting continuously, lifting containers or materials and lifting objects above the knees and underlying disease.

aOR, adjusted odds ratio; CI, confidence interval; Ref., reference

* Significant at *p*<0.05.

4. Discussion

4.1 Sociodemographic and health data

The age of the MSWWs was found to exhibit a lower odds ratio for the presence of musculoskeletal symptoms ($aOR = 1.04$). There was no relation between the presence of musculoskeletal symptoms and the age of the workers. In contrast, Chaiklieng and Juntratep⁽²¹⁾, in a previous study, indicated that solid waste collectors employed for ≥ 40 years in LAOs in Northeast Thailand, were at risk of musculoskeletal symptoms, with an aOR of 5.35 (95% CI [1.09-26.19]), and Reddy and Yasobant⁽²²⁾ suggested that workers who were >45 years old were at risk for musculoskeletal symptoms, with an aOR of 7.56 (95% CI [2.18-26.18]). However, being aged ≥ 40 years is not related to the presence of low back pain in solid waste collectors (SWCs)⁽²³⁾. Similarly, a study conducted in India showed that habits such as cigarette smoking and alcohol consumption do not influence MSD pain severity⁽²²⁾. Conversely, Chaiklieng and Juntratep⁽²¹⁾ showed that smoking every day was significantly associated with musculoskeletal symptoms in SWC workers, with an aOR of 7.27 and 95% CI of (1.14-46.27). Furthermore, this study showed that the body mass index (kg/m^2) was not associated with musculoskeletal symptoms among MSWs. In this study, as in the previous studies, the results show that solid waste collectors are predominantly aged ≥ 40 years. However, most of them are men who are smokers (62.96%) and alcohol drinkers (67.41%), which increases their risk for accidents or injuries while working.

4.2 Working environment

The results of this study showed that most workers were temporary workers (88.6%) and most

MSWWs had >5 years of employment experience, which involved lifting loads of ≥ 30 kg/day for ≥ 8 hours/day (29.8%). In contrast, Chaiklieng and Juntratep⁽²¹⁾, in a previous study conducted in Nong Bua Lam Phu, Northeastern Thailand, indicated that MSWWs were at a significantly increased risk of musculoskeletal symptoms, especially those in the ≥ 4 years of employment group, with an aOR of 4.95 and 95% CI of [1.02-23.94]. In contrast, a study conducted in India showed that workers with employment durations of >5 years were not associated with MSDs⁽²²⁾. In addition, it was found that lifting containers or bags weighing ≥ 30 kg showed no relation with musculoskeletal symptoms. Moreover, the most prevalent tasks among MSWWs were holding on the vehicles with their arms and hands (76%), as shown in Figure 2, lifting continuously (76%), lifting containers, bags, or other waste materials above the knees (76%), and whole-body vibrations from vehicles and machines (65.9%).

It is obvious that MSWWs are exposed to occupational health hazards in working environments. Although these factors have no association with musculoskeletal symptoms, they contribute to workplace hazards⁽²⁴⁾. It has been reported in Chiang Mai, Thailand by Narisara et al.⁽²⁵⁾ that the most significant ergonomic hazards include lifting trash bags/bins (86.92%), followed by a forward-bending body position, a twisting position, and repetitive tasks (86.5%, 85.0%, and 80.0%, respectively). Additionally, literature reviews on handling solid waste in informal and organized manners showed that MSDs are a direct result of repeatedly moving and lifting heavy objects, such as containers, filled bags, and other materials filled

with solid waste, as well as long days, leading to acute chronic pain and discomfort⁽²⁶⁾. However, this study found that workers were handling segregation in the rear of the vehicle during waste collection (5.19%), as shown in Figure 3. These issues may lead to muscle pain, fatigue, back pain, sprains and wrist/hand pain⁽²⁶⁾. As a result, in 66 MSWWs (57.9%), significant associations were found between a frequency of lifting of ≥ 150 times/day and musculoskeletal symptoms, with a high aOR of 4.46, 95% CI of [1.28-15.48], and $p=0.019$.

The results of this study are similar to those of previous studies conducted among solid waste workers showing they are at a high risk of MSDs^(27, 28). Likewise, in Brazil, a study demonstrated that MSWWs are commonly exposed to vibrations, awkward postures, and repetitive movements⁽²⁹⁾.

4.3 Overall prevalence of musculoskeletal symptoms

The majority of municipal solid waste workers in Phayao Province, Northern Thailand, which was 114 workers (84.4%), had musculoskeletal symptoms. Similarly, previous studies have shown that the prevalence of MSDs in MSWWs in India and Tehran, Iran were 70.0%⁽²²⁾ and 65.0%⁽³⁰⁾, respectively. In addition, our study showed that shoulder pain was the most common MSD, followed by low back pain and wrist/hand pain, affecting 55.56%, 42.96%, and 42.22% of workers, respectively. In addition, Abd El-Wahab et al.⁽³¹⁾ reported low back/sciatic pain (OR = 3.5, 95% CI = 1.8 – 7.0) among municipality workers in Alexandria, Egypt. Likewise, musculoskeletal pain in MSWWs in India was found in the knees (84.5%), shoulders (74.5%), and lower back (50.9%)⁽²²⁾. According to Mehrdad et al.⁽³⁰⁾, the prevalence of

symptoms in the low back, knees, shoulders, upper back and neck was 45.0%, 29.0%, 24.0%, 23.0%, and 22.0%, respectively. Asante et al.⁽³²⁾ reported that the prevalence of low back pain (LBP) lasting 12 months was 32% to 74% among waste collection workers, although none of the included studies quantified the relationships between the risk factors and LBP. In Thailand, municipal solid waste workers (MSWWs) in municipality authorities are involved in various types of waste handling activities, such as waste collection, transportation, sorting, processing and disposal. Hence, solid waste management procedures in Thailand are associated with occupational-related hazards such as musculoskeletal disorders.

4.4 Risk factors associated with musculoskeletal symptoms among MSWWs

The results of this study showed that an age ≥ 40 years was not associated with pain in any of the body parts. However, in contrast to the finding of this study in MSWWs in Northeastern Thailand aged ≥ 40 years, Juntratep and Sunisa reported that musculoskeletal symptoms were significantly associated with musculoskeletal symptoms (aOR 5.35, [95% CI, 1.09-26.19])⁽²¹⁾. However, being aged ≥ 40 years is not related to LBP among solid waste collectors⁽²³⁾. However, a study in Finland showed that male workers performing manual labor had a higher risk of joint pain than did female workers (OR 1.65, [95% CI, 1.33-2.05] and aOR 2.60, [95% CI, 1.9-3.6]). It was obvious that the elbows, neck, low back, and wrist/hands were body parts at risk of joint pain, with an aOR of 2.76 [95% CI, 1.95-3.92], and it was found that the age group 50-64 years was at risk of joint pain, with an aOR of 3.12 [95% CI, 2.24-4.34]^(33, 34). However, age and the presence of

an underlying disease were not significantly associated with low back pain (LBP). Likewise, a study conducted by Sunisa et al.⁽²³⁾ showed that age and the presence of an underlying disease were not associated with LBP among SWCs in Nong Bua Lam Phu, Northeastern Thailand. However, it was found that an employment duration of ≥ 5 years was a risk factor of low back pain, with an aOR of 2.32, [95% CI, 0.97-5.50], ($p < 0.05$), which is consistent with the results in a study by Sunisa et al.⁽²³⁾. Workers with an employment duration of ≥ 4 years showed a relationship with low back pain, with an aOR of 3.37, [95% CI, 1.11-10.07], and this relationship was statistically significant at $p < 0.031$, which is consistent with the results shown by Salve et al.⁽¹⁵⁾ A study conducted in India showed an odds ratio for LBP and working experience of ≥ 10 years among municipal waste loaders in Mumbai, with an OR of 3.14 [1.30-7.59, $p < 0.01$]. However, it was found that lifting containers or bags weighing ≥ 30 kg was not related to LBP. Consistent with the study results reported by Sunisa et al.⁽²³⁾, no association was found lifting containers or bags weighing > 50 kg among SWCs. Moreover, the MSWWs who had a frequency of lifting ≥ 150 times/day were at risk of wrist/hand pain and knees, with an aOR of 2.93, [95% CI, 1.06-8.14], ($p < 0.039$) and an aOR of 3.73, [95% CI, 0.98-14.30], ($p < 0.05$), respectively. It was found that of these workers, whole-body exposure to whole-body vibrations and machines while working every day increased the risk of knee pain by 71% (aOR 0.29, [95% CI, 0.11-0.76]) ($p < 0.012$). In addition, lifting heavy containers or materials above the knees was a risk factor for shoulder pain, with an aOR of 3.80, [95% CI, 1.56-9.26], ($p < 0.003$). Since lifting was the most frequent

cause of injury among SWCs in the private (28%) and public sectors (37%)⁽¹²⁾, heavy lifting also leads to a higher rate of back and shoulder pain⁽³¹⁾. Risk factors are considered to be modifiable or non-modifiable variables related to an increased risk of disorders or ergonomic hazards⁽³⁵⁾. Additionally, we found that the presence of an underlying disease was a statistically significant risk factor for wrist/hand pain and knees pain compared with the absence of an underlying disease, with an aOR of 3.34, [95% CI, 1.16-9.67], ($p < 0.026$) and an aOR of 3.90, [95% CI, 1.29-11.85], ($p < 0.016$), respectively.

The prevalence of musculoskeletal symptoms has also been shown to be high, even in many developing countries, such as Thailand. MSWWs collect solid waste manually, and household solid waste collectors have many job-related responsibilities. Hence, heavy physical labor performed outdoors, such as heavy lifting, loading, lifting/carrying, pulling/pushing, handling, and segregation, has been shown to induce pain in the hips/thighs, shoulders, wrists/hands, elbows, and knees, irrespective of the load carried⁽³⁶⁻³⁹⁾. Furthermore, the study has shown a higher prevalence of MSDs in the hips/thighs than those reported in other studies, suggesting that musculoskeletal problems are common among waste collectors⁽¹⁰⁾. This result may have occurred because waste workers repetitively engage in lifting heavy community dustbins throughout the workday. Similarly, past studies conducted with solid waste workers in developing countries such as Taiwan⁽⁷⁾, Egypt⁽¹¹⁾, India⁽¹⁵⁾, and Nigeria⁽⁴⁰⁾ have reported a high prevalence of MSDs, particularly in the low back, shoulders, wrist/hands, upper back, neck, and knee⁽¹¹⁾.

Implications

There are few studies on risk factors for musculoskeletal symptoms among municipal solid waste workers in Thailand. This study shows some risk factors of musculoskeletal symptoms related to this type of work. Knowledge of these factors can be utilized to identify and modify high-risk job-related tasks before workers develop musculoskeletal symptoms, such as the design of mechanical support in a working environment.

Study limitations

The limitations of the present study include the small sample size by study area, which was composed of municipal solid waste workers from local administrative organizations (LAOs) in Phayao Province, Northern Thailand.

The study's limitations result from the inclusion of an ergonomics risk assessment. Consequently, the data retrieved and risk factors of musculoskeletal symptoms identified may not be representative of the whole population of MSWWs. Additionally, the assessment being conducted through interviews may lead to recall bias in the reports of musculoskeletal symptoms experienced over the previous year. There were no medical diagnoses from a physician, and therefore, there may be some errors in the data.

Conclusions

The study indicates that the prevalence of musculoskeletal symptoms was high among municipal solid waste workers over the last 12 months in Phayao Province, Northern Thailand. The structural questionnaire interview revealed that all 135 employees were men, most of whom

were 40-49 years of age. Most MSWWs reported experiencing pain in the shoulder, low back, wrist/hands, and ankles, and a frequency of lifting of ≥ 150 times/day was significantly associated with musculoskeletal symptoms among MSWWs. In addition, the difference in exposure to a wide variety of factors in the physical work environment including lifting in awkward postures, lifting loads that are hard to hold and having too few mechanicals support on during work. The risk factors contributing to musculoskeletal symptoms among MSWWs were as follows: a frequency of lifting of ≥ 150 times/day was a risk factor of wrist/hand pain and knee pain, lifting continuously was a risk factor for knee pain, and whole-body exposure to vibrations and machines while working every day was a risk factor for knee pain. Moreover, these workers lifted heavy containers or materials above the knees, which was a risk factor for shoulder pain. Consequently, frequent lifting work needs to be minimized to reduce the incidence of musculoskeletal symptoms. The information provided in this study may be used to develop new approaches to prevent musculoskeletal symptoms in workers. To that end, MSWWs need to be evaluated, their health needs to be monitored, and assistive tools for lifting or preventive measures need to be implemented through training; annual medical checkups for all workers, particularly those working as solid waste collection employees, should be provided. Additional studies should be conducted to further assess the risk factors for musculoskeletal symptoms among MSWWs in the workplace to prevent musculoskeletal symptoms.

Acknowledgements: The corresponding author is appreciative of the municipality of the local administrative organization's government in Phayao Province for allowing the data collection and is grateful to all participating municipal solid waste workers for participating in the interview and questionnaire so that we could complete the data collection.

References

1. Chandramohan A, Ravichandran C, Sivasankar V. Solid waste, its health impairments and role of rag pickers in Tiruchirappalli city, Tamil Nadu, Southern India. *Waste Manag Res* 2009; 28(10): 951-8.
2. Getahun T, Mengistie E, Haddis A, Wasie F, Alemayehu E, Dadi D, et al. Municipal solid waste generation in growing urban areas in Africa: current practices and relation to socioeconomic factors in Jimma, Ethiopia. *Environ Monit Assess* 2012; 184(10): 6337-45.
3. Thirarattanasunthon P, Siriwong W, Robson M, Borjan M. Health risk reduction behaviors model for scavengers exposed to solid waste in municipal dump sites in Nakhon Ratchasima Province, Thailand. *Risk Manag Healthc Policy* 2012; 5: 97-104.
4. Bleck D, Wettberg W. Waste collection in developing countries--tackling occupational safety and health hazards at their source. *Waste Manag* 2012; 32(11): 2009-17.
5. Yukalang N, Clarke B, Ross K. Solid waste management solutions for a rapidly urbanizing area in Thailand: recommendations based on stakeholder input. *Int J Environ Res Public Health* 2018; 15(7): 1302.
6. Velasco Garrido M, Bittner C, Harth V, Preisser AM. Health status and health-related quality of life of municipal waste collection workers - a cross-sectional survey. *J Occup Med Toxicol* 2015; 10: 22.
7. Yang CY, Chang WT, Chuang HY, Tsai SS, Wu TN, Sung FC. Adverse health effects among household waste collectors in Taiwan. *Environ Res* 2001; 85(3): 195-9.
8. Ivens UI, Lassen JH, Kaltoft BS, Skov T. Injuries among domestic waste collectors. *Am J Ind Med* 1998; 33(2): 182-9.
9. Sangkham S, Arunlertaree C. Occupational health hazards among solid waste collectors and prevention. *Srinagarind Med J* 2019; 34(6): 649-57.
10. Kuijer PP, Sluiter JK, Frings-Dresen MH. Health and safety in waste collection: Towards evidence-based worker health surveillance. *Am J Ind Med* 2010; 53(10): 1040-64.
11. Abou-ElWafa HS, El-Bestar SF, El-Gilany AH, Awad EE. Musculoskeletal disorders among municipal solid waste collectors in Mansoura, Egypt: a cross-sectional study. *BMJ Open* 2012; 2(5): e001338.
12. Bunn TL, Slavova S, Tang M. Injuries among solid waste collectors in the private versus public sectors. *Waste Manag Res* 2011; 29(10): 1043-52.
13. Anderson SP, Oakman J. Allied health professionals and work-Related musculoskeletal disorders: a systematic review. *Saf Health Work* 2016; 7(4): 259-67.
14. Emmatty FJ, Panicker W. Ergonomic interventions among waste collection workers: A systematic review. *Int J Ind Ergon* 2019; 72: 158-72.

15. Salve P, Chokhandre P, Bansod D. Assessing musculoskeletal disorders among municipal waste loaders of Mumbai, India. *Int J Occup Med Environ Health* 2017; 30(6): 875-86.
16. Poulsen OM, Breum NO, Ebbehøj N, Hansen ÅM, Ivens UI, van Lelieveld D, et al. Collection of domestic waste. Review of occupational health problems and their possible causes. *Sci Total Environ* 1995; 170(1): 1-19.
17. Tsujimura H, Taoda K, Kitahara T. A field study on the physiological workload of garbage collectors in the Japanese summer. *Ind Health* 2012; 50(6): 556-66.
18. Jeong BY, Lee S, Lee JD. Workplace accidents and work-related illnesses of household waste collectors. *Saf Health Work* 2016; 7(2): 138-42.
19. Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Biering-Sørensen F, Andersson G, et al. Standardised Nordic Questionnaires for the analysis of musculoskeletal symptoms. *Appl Ergon* 1987; 18(3): 233-7.
20. Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. United States of America: John Wiley & Sons, Inc.; 2000.
21. Chaiklieng S, Juntratep P. Prevalence and risk factors of musculoskeletal disorders among solid waste collectors employed by the local administrative organizations at Nong Bua Lam Phu Province. *KKU Res J* 2011; 4(2): 49-58.
22. Reddy EM, Yasobant S. Musculoskeletal disorders among municipal solid waste workers in India: A cross-sectional risk assessment. *J Family Med Prim Care* 2015; 4(4): 519-24.
23. Sunisa C, Peerapong J, Pornnapa S, Rungthip P. Prevalence and ergonomic risk factors of low back pain among solid waste collectors of local administrative organizations in Nong Bua Lam Phu province. *J Med Tech Phy Ther* 2012; 24(1): 97-109.
24. Jerie S. Occupational risks associated with solid waste management in the informal sector of Gweru, Zimbabwe. *J Environ Public Health* 2016; 2016: 9024160.
25. Narisara L, Chawapornpan C, Thanee K. Occupational health hazards and health status related to risk among waste collectors. *Nursing Journal* 2017; 44(2): 138- 50.
26. Binion E, Gutberlet J. The effects of handling solid waste on the wellbeing of informal and organized recyclers: a review of the literature. *Int J Occup Environ Health* 2012; 18(1): 43-52.
27. Jayakrishnan T, Jeeja M, Bhaskar R. Occupational health problems of municipal solid waste management workers in India. *Int J Environ Health Eng* 2013; 2(1): 42.
28. Singh S, Chokhandre P. Assessing the impact of waste picking on musculoskeletal disorders among waste pickers in Mumbai, India: a cross-sectional study. *BMJ Open* 2015; 5(9): e008474.
29. Da Silva MC, Fassa AG, Kriebel D. Musculoskeletal pain in ragpickers in a southern city in Brazil. *Am J Ind Med* 2006; 49(5): 327-36.
30. Mehrdad R, Majlessi-Nasr M, Aminian O, Sharifian SA, Malekahmadi SF. Musculoskeletal disorders among municipal solid waste workers. *Acta Med Iran* 2008; 46(3): 233-8.
31. Abd El-Wahab EW, Eassa SM, Lotfi SE, El Masry SA, Shatat HZ, Kotkat AM. Adverse health problems among municipality workers in Alexandria (Egypt). *Int J Prev Med* 2014; 5(5): 545-56.

32. Asante BO, Trask C, Adebayo O, Bath B. Prevalence and risk factors of low back disorders among waste collection workers: A systematic review. *Work* 2019; 64(1): 33-42.

33. Leino-Arjas P HK, Puska P. Socioeconomic variation in back and joint pain in Finland. *Eur J Epidemiol* 1998; 14(1): 79-87.

34. Seiluri T, Lahti J, Rahkonen O, Lahelma E, Lallukka T. Changes in occupational class differences in leisure-time physical activity: a follow-up study. *Int J Behav Nutr Phys Act* 2011; 8: 14.

35. Hoy D, Brooks P, Blyth F, Buchbinder R. The epidemiology of low back pain. *Best Pract Res Clin Rheumatol* 2010; 24(6): 769-81.

36. An H, Englehardt J, Fleming L, Bean J. Occupational health and safety amongst municipal solid waste workers in Florida. *Waste Manag Res* 1999; 17(5): 369-77.

37. Ziae M, Choobineh A, Abdoli-Eramaki M, Ghaem H. Individual, physical, and organizational risk factors for musculoskeletal disorders among municipality solid waste collectors in Shiraz, Iran. *Ind Health* 2018; 56(4): 308-19.

38. Aminuddin SF, Rahman HA. Health risk survey for domestic waste management agency workers: Case study on Kota Bharu municipal council (MPKB), Kelantan, Malaysia. *Int J Environ Sci Dev* 2015; 6(8): 629-34.

39. Zakaria J, Sukadarin E, Omar F, Salleh N. Musculoskeletal disorder among municipal solid waste collectors. *Asia Pac Environ Occup Health J* 2017; 3 (1): 28-32.

40. Ayotamuno Josiah M, Gobo Akuro E. Municipal solid waste management in Port Harcourt, Nigeria: Obstacles and prospects. *Manag Environ Qual Int J* 2004; 15(4): 389-98.

ความสัมพันธ์ระหว่างการกลยุทธ์ของยีน G6PD โพลิมอร์ฟิซึมของยีน HMOX1 และโพลิมอร์ฟิซึมของยีน BLVRA กับความรุนแรงของภาวะตัวเหลืองในทารกแรกเกิดชาวไทย ในภาคตะวันออกเฉียงเหนือ

ชนาพร เกียรติสิยมณู¹, สุธิพรรณ กิจเจริญ², ผกาพรรณ เกียรติชุสกุล³,
กนกวรรณ แสนไชยสุริยา⁴, เกรียงไกร กิจเจริญ² และนพมาศ เชื้อมหองหลาง^{2*}

Received: September 24, 2019

Revised: December 3, 2019

Accepted: January 2, 2020

บทคัดย่อ

ภาวะตัวเหลืองในทารกแรกเกิดเป็นภาวะที่พบบ่อยในทารกแรกเกิด ซึ่งเกี่ยวข้องกับกลยุทธ์ปัจจัย โดยเฉพาะพันธุกรรมในการศึกษานี้จึงมีวัตถุประสงค์เพื่อหาความซุกของการกลยุทธ์ของยีน G6PD, โพลิมอร์ฟิซึมของยีน HMOX1 (GT-repeats) และ BLVRA (rs699512; A>G) และศึกษาความสัมพันธ์ของการมีโพลิมอร์ฟิซึมเหล่านี้ต่อความรุนแรงของภาวะตัวเหลืองในทารกแรกเกิด โดยศึกษาในตัวอย่างทารกแรกเกิดที่มีภาวะตัวเหลืองทั้งหมด 271 รายซึ่งทำการตรวจกลยุทธ์ของยีน G6PD และโพลิมอร์ฟิซึมของยีน BLVRA (rs699512; A>G) ด้วยวิธี AS-PCR และ PCR-RFLP ตามลำดับ ส่วนการตรวจโพลิมอร์ฟิซึม GT-repeats ของยีน HMOX1 ใช้เทคนิค PCR และ fragment analysis พบความซุกของการกลยุทธ์ของยีน G6PD โพลิมอร์ฟิซึม HMOX1 (<23 GT repeats) และ BLVRA (rs699512; A>G) ร้อยละ 55.7, 62.3 และ 42.1 ตามลำดับ เมื่อวิเคราะห์ความสัมพันธ์ระหว่างโพลิมอร์ฟิซึมของยีนต่างๆ กับระดับความรุนแรงของภาวะตัวเหลืองในทารกแรกเกิด พบว่าการกลยุทธ์ของยีน G6PD และการมีโพลิมอร์ฟิซึมชนิด HMOX1 (< 23 GT repeats) และ BLVRA (rs699512; A>G) เป็นปัจจัยเสี่ยงที่สำคัญของการเกิดภาวะตัวเหลืองที่รุนแรงมากขึ้นในทารกแรกเกิด ดังนั้นในทารกแรกเกิดที่มีภาวะตัวเหลืองรุนแรง จึงควรพิจารณาตรวจหากการกลยุทธ์ของยีน G6PD หรือโพลิมอร์ฟิซึมชนิด HMOX1 (< 23 GT repeats) หรือ BLVRA (rs699512; A>G) ร่วมด้วย

คำสำคัญ: ภาวะตัวเหลืองในทารกแรกเกิด, G6PD, HMOX1, BLVRA

¹ นักศึกษาปริญญาโท สาขาวิทยาศาสตร์การแพทย์ คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

² กลุ่มวิชาจุลทรรศน์คลินิก คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

³ ภาควิชาคุณรักษศาสตร์ โรงพยาบาลศรีนครินทร์ คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

⁴ ศูนย์วิจัยและพัฒนาการตรวจวินิจฉัยทางห้องปฏิบัติการทางการแพทย์ คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

*ผู้รับผิดชอบบทความ

Association between G6PD, HMOX1 and BLVRA variants and severity of hyperbilirubinemia in northeastern Thai neonates

Chanaporn Kiatsayompoo¹, Suttiphan Kitcharoen², Pakaphan Kiatchoosakun³, Kanokwan Sanchaisuriya⁴, Kriengkrai Kitcharoen² and Noppmats Khemtonglang^{2*}

Abstract

Neonatal hyperbilirubinemia is a common disorder that is associated with a variety of factors, especially genetic factors. This study aimed to examine the prevalence of *G6PD*, *HMOX1* (GT-repeats) and *BLVRA* (rs699512; A>G) variants and their association with the severity of neonatal hyperbilirubinemia in northeastern Thai neonates. A total of 271 neonates with hyperbilirubinemia were analyzed for *G6PD* mutation, *HMOX1* (GT-repeats) and *BLVRA* (rs699512; A>G) polymorphisms by multiplex AS-PCR, fragment analysis and PCR-RFLP, respectively. The prevalence of *G6PD* mutation, *HMOX1* (short GT repeats) and *BLVRA* (rs699512; A>G) polymorphisms were found in 55.7%, 62.3% and 42.1% of subjects, respectively. The present study showed that the *G6PD* mutation, *HMOX1* (≤ 23 GT-repeats) and *BLVRA* (rs699512; A>G) polymorphisms were significant risk factors for developing severe neonatal hyperbilirubinemia. Therefore, neonates with severe hyperbilirubinemia should be investigated for the *G6PD* mutation or *HMOX1* (≤ 23 GT-repeats) or *BLVRA* (rs699512; A>G) polymorphisms.

Keywords: Neonatal hyperbilirubinemia, *G6PD*, *HMOX1*, *BLVRA*

¹ Medical Sciences Program, Graduate School, Faculty of Associated Medical Sciences, KhonKaen University, KhonKaen

² Clinical Microscopy, Faculty of Associated Medical Sciences, KhonKaen University, KhonKaen

³ Department of Pediatrics, Srinagarind Hospital, Faculty of Medicine, KhonKaen University, KhonKaen

⁴ Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen

* Corresponding author: (e-mail: noppamat@kku.ac.th)

Introduction

Hyperbilirubinemia is the most common condition found in neonates. It is a multifactorial disorder involving bilirubin over-production, reduced conjugation and impaired bilirubin excretion⁽¹⁾. Common risk factors for neonatal hyperbilirubinemia consist of fetal-maternal blood group incompatibility, breastfeeding, prematurity and G6PD deficiency⁽²⁾. Moreover, in recent years, the role of genetic factors in the bilirubin metabolism pathway has become apparent⁽³⁾.

Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme that catalyzes the first step in the pentose phosphate pathway. It is essential for maintaining a normal red blood cell's life span and for oxidizing processes⁽⁴⁾. G6PD deficiency is a risk factor for severe hyperbilirubinemia and this deficiency is caused by mutations in the *G6PD* gene⁽⁵⁾. Previous studies have shown that G6PD Viangchan (871G>A), G6PD Mahidol (487G>A), G6PD Union (1360C>T), G6PD Canton (1376G>T), G6PD Kaiping (1388G>A), G6PD Chinese-4 (392G>A) and G6PD Chinese-5 (1024C>T) are the common variants in Thailand⁽⁶⁾.

Heme oxygenase 1 (HMOX1) is the initial and rate-limiting enzyme in the conversion of heme to biliverdin, which is further metabolized to bilirubin⁽⁷⁾. The (GT)*n* dinucleotide length polymorphism of the *HMOX1* promoter may modulate the transcriptional activity (gene expression); increased HMOX1 activity will result in an overproduction of bilirubin⁽⁸⁾.

Biliverdin reductase A (BLVRA) is an enzyme that reduces biliverdin to bilirubin⁽⁹⁾. In the *BLVRA* gene, there is rs699512; A>G polymorphism, the only common non-synonymous SNP within the *BLVRA* gene, as shown in the dbSNP

database. It is possible that SNPs within the *BLVRA* gene might affect TSB levels⁽¹⁰⁾.

In this study, we determined the prevalence of *G6PD*, *HMOX1* (GT-repeats) and *BLVRA* (rs699512; A>G) variants and the association of these variants with the severity of hyperbilirubinemia in northeastern Thai neonates with hyperbilirubinemia.

Materials and methods

Subjects

Ethical approval for the study protocol was obtained from the Institutional Review Board (IRB) of Khon Kaen University, Khon Kaen, Thailand (HE611463). Based on the prevalence of these polymorphisms reported in previous studies⁽¹¹⁻¹³⁾, the sample size required was statistically estimated at 271. One hundred and forty DNA samples were recruited from a previous study (HE591531)⁽¹⁴⁾ and one hundred and thirty-one leftover EDTA blood samples of neonates with hyperbilirubinemia were collected from routine screening for G6PD deficiency using fluorescent spot test (FST) at the Diagnostic Microscopy Unit, Clinical Laboratory Division, Srinagarind Hospital, Khon Kaen University.

Criteria for study subjects

The subjects included near full-term and full-term neonates (35-42 weeks of gestation) with hyperbilirubinemia (hyperbilirubinemia was defined by the American Academy of Pediatrics 2004)⁽¹⁵⁾. Neonates with known risk factors for neonatal hyperbilirubinemia were excluded, including maternal history with diabetes mellitus, neonates with ABO and Rh incompatibility, neonates with infection requiring antibiotics and neonates with congenital anomalies.

Clinical data were acquired from medical records by a pediatrician. The clinical data collected in this study included maximum total serum bilirubin level, the onset of hyperbilirubinemia, requirement for phototherapy, duration of phototherapy and hospital re-admission.

Molecular analysis

Genomic DNA was isolated from peripheral blood leukocytes. The DNA was extracted from leukocytes using a DNAzol kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's protocol. All DNA samples were screened for seven *G6PD* mutations commonly present in Thai populations, including *G6PD* Viangchan (871G>A), *G6PD* Mahidol (487G>A), *G6PD* Union (1360C>T), *G6PD* Canton (1376G>T), *G6PD* Kaiping (1388G>A), *G6PD* Chinese-4 (392G>A) and *G6PD* Chinese-5 (1024C>T) by multiplex allele-specific polymerase chain reaction (AS-PCR) as previously described⁽¹⁶⁾. AS-PCR positive samples were selected for zygosity detection by PCR-RFLP, as previously described⁽⁶⁾.

The *HMOX1* (GT-repeats) polymorphism was identified by fragment analysis. The primers FF-127: 5'FAM-AGAGCCTGCAGCTTCAGA-3' and R-127: 5'-ACAAAGTCTGGCCATAGG-AC-3' were used in the polymerase chain reaction (PCR). The lengths of the PCR products were determined on a fragment analyzer using Peak Scanner v1.0 (Applied Biosystems, Foster City, CA, USA) on the ABI3730xl sequencer with Peak Scanner V.1.0 software-500 LIZ (Applied Biosystems) as a size marker.

The *BLVRA* (rs699512; A>G) polymorphism was detected by the PCR-RFLP method with a mismatched primer set (F-BV512: 5'-GACCT-GAACCTCTGCTTTG-3' and R-BV512: 5'- TACAAA-GACCAGTTAAGGGATG-3') and HpyCH4V restriction enzymes (New England Biolabs, Ipswich, MA, USA). The samples that were identified as wild type, heterozygote and homozygote by the PCR-RFLP method were selected to be confirmed by DNA sequencing. Statistical analysis

Statistical analysis was performed using STATA software version 10.1 (StataCorp LLC, Texas, USA). Prevalence and allele frequency of each polymorphism were presented as percentage and 95% confident interval (CI). The association between the categorical outcome variables (including the onset of hyperbilirubinemia \leq 48 hr., phototherapy and hospital re-admission) and the gene polymorphisms were assessed using multiple logistic regression analysis. For continuous outcomes (including maximum TSB and duration of phototherapy), a multiple linear regression analysis was applied. The Odds ratio and coefficient value with 95% confident interval (CI) were presented to determine the significance of the association. A *p*-value $<$ 0.05 was considered to indicate statistical significance.

Results

The prevalence of *G6PD* mutation, *HMOX1* (GT-repeats) polymorphism and *BLVRA* (rs699512; A>G) polymorphism.

A total of 271 neonates with hyperbilirubinemia were included in this study. The prevalence of *G6PD* mutation, *HMOX1* (GT-repeats) polymorphism and *BLVRA* (rs699512; A>G)

polymorphism are shown in **Table 1**. The *HMOX1* (GT-repeats) and *BLVRA* (rs699512; A>G) genotype frequencies were consistent with Hardy-Weinberg equilibrium ($p = 0.27$ and $p = 0.69$, respectively). The *G6PD* mutations were identified in 151 samples (55.7%). Heterozygotes, homozygotes and hemizygotes were identified in 34 samples (12.5%), 9 samples (3.3%) and 108 samples (39.9%), respectively.

The numbers of GT-repeats of the *HMOX1* promoter were highly polymorphic, ranging from 15 to 40. The two most frequent alleles had 23 and 30 GT-repeats (**Figure 1**). The alleles were grouped into two subclasses; short (S) allele with ≤ 23 GT-repeats and long (L) allele with >23 GT-repeats. The L/L genotype was found in 102 samples (37.7%), the S/L genotype was found in 99 samples (36.5%), and the S/S genotype was found in 70 samples (25.8%). The frequencies of the L and S alleles were 0.56 and 0.44, respectively.

The *BLVRA* rs699512 A>G polymorphism was found in 114 samples (42.1%). Heterozygotes (A/G) and homozygotes (G/G) were identified in 101 samples (37.3%) and 13 samples (4.8%), respectively. The frequency of A and T alleles were 0.77 and 0.23, respectively.

Associations of *G6PD* mutation, *HMOX1* (GT-repeats) polymorphism and *BLVRA* (rs699512; A>G) polymorphism with severity of hyperbilirubinemia

A multiple regression analysis was applied to determine the association between the gene

polymorphisms and the severity of hyperbilirubinemia in neonates, using the *G6PD* mutation, *HMOX1* (≤ 23 GT-repeats) polymorphism, and *BLVRA* (rs699512; A>G) polymorphism as independent variables. The maximum TSB, the onset of hyperbilirubinemia ≤ 48 hr., phototherapy, duration of phototherapy and hospital re-admission were dependent variables. The association of the genetic variables and severity for neonatal hyperbilirubinemia are shown in **Table 2** and **Table 3**. The *G6PD* mutation was found to be significant independent predictors for maximum TSB (coefficient 0.62, 95% CI: 0.02-1.22, *p-value* 0.043) and duration of phototherapy (coefficient 10.32, 95% CI: 4.72-15.93, *p-value* 0.000). Furthermore, The *G6PD* mutation was also a significant independent risk factor for onset of hyperbilirubinemia ≤ 48 hr (OR 2.37, 95% CI: 1.42-3.98, *p-value* 0.001), requirement for phototherapy (OR 2.17, 95% CI: 1.10-4.23, *p-value* 0.024), and hospital re-admission (OR 2.77, 95% CI: 1.06-7.24, *p-value* 0.038).

The *HMOX1* (≤ 23 GT-repeats) polymorphism was found to be a significant independent predictor for maximum TSB (coefficient 0.48, 95% CI: 0.01-1.04, *p-value* 0.037).

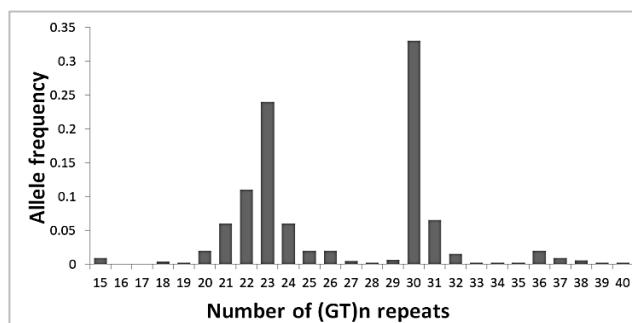

The *BLVRA* (rs699512; A>G) polymorphism was found to be a significant independent predictor variable for the duration of the phototherapy (coefficient 8.03, 95% CI: 2.46-13.61, *p-value* 0.005) and it was found to be a significant independent risk factor for hospital re-admission (OR 2.44, 95% CI: 1.04-5.68, *p-value* 0.039).

Table 1 Prevalence of *HMOX1* (GT-repeats), *HMOX1* (-413A>T) and *BLVRA* (rs699512; A>G) polymorphisms and proportion of various *G6PD* genotypes (n = 271)

Polymorphism	Genotype frequency, Number of subjects (%)	Allele frequency	P _{HWE}
<i>HMOX1</i>			
(GT) _n repeats ^a			0.27
L/L	102 (37.7)		
S/L	99 (36.5)		
S/S	70 (25.8)		
L allele		0.56	
S allele		0.44	
<i>BLVRA</i> (rs699512; A>G)			
A/A	157 (57.9)		0.69
A/G	101 (37.3)		
G/G	13 (4.8)	0.77	
A allele		0.23	
G allele			
<i>G6PD</i> mutation ^b			
No mutation	120 (44.3)		NA
Heterozygote	34 (12.5)		
Homozygote	9 (3.3)		
Hemizygote	108 (39.9)		

^a L > 23 repeats, S ≤ 23 repeats

^b *G6PD* mutations investigated in this study included *G6PD* Viangchan (871G>A), *G6PD* Mahidol (487G>A), *G6PD* Union (1360C>T), *G6PD* Canton (1376G>T), *G6PD* Kaiping (1388G>A), *G6PD* Chinese-4 (392G>A) and *G6PD* Chinese-5 (1024C>T). NA: not applicable

Figure 1 Distribution of the (GT)_n repeats of *HMOX1* promoter among 271 neonates. GT-repeats ranged from 15 to 40. Two most frequent alleles were 23 and 30 GT-repeats.

Associations of *G6PD* mutation, *HMOX1* (GT-repeats) polymorphism and *BLVRA* (rs699512; A>G) polymorphism with severity of hyperbilirubinemia

A multiple regression analysis was applied to determine the association between the gene polymorphisms and the severity of hyperbilirubinemia in neonates, using the *G6PD* mutation, *HMOX1* (≤23 GT-repeats) polymorphism, and *BLVRA* (rs699512; A>G) polymorphism as independent variables. The maximum TSB, the onset of hyperbilirubinemia ≤48 hr., phototherapy, duration of phototherapy and hospital re-admission were dependent variables. The association of the genetic variables and severity for neonatal hyperbilirubinemia are shown in **Table 2** and **Table 3**. The *G6PD* mutation was found to be significant independent predictors for maximum TSB (coefficient 0.62, 95% CI: 0.02-1.22, *p*-value 0.043) and duration of phototherapy (coefficient 10.32, 95% CI: 4.72-15.93, *p*-value 0.000). Furthermore, The *G6PD* mutation was also a significant independent risk factor for onset of hyperbilirubinemia≤48 hr (OR 2.37, 95% CI: 1.42-3.98, *p*-value 0.001), requirement for phototherapy (OR 2.17, 95% CI: 1.10-4.23, *p*-value 0.024), and hospital re-admission (OR 2.77, 95% CI: 1.06-7.24, *p*-value 0.038).

The *HMOX1* (≤23 GT-repeats) polymorphism was found to be a significant independent predictor for maximum TSB (coefficient 0.48, 95% CI: 0.01-1.04, *p*-value 0.037).

The *BLVRA* (rs699512; A>G) polymorphism was found to be a significant independent predictor variable for the duration of the phototherapy (coefficient 8.03, 95% CI: 2.46-13.61, *p*-value 0.005) and it was found to be a significant independent risk factor for hospital re-admission (OR 2.44, 95% CI: 1.04-5.68, *p*-value 0.039).

Table 2 Results of multiple linear regression for the association of genetic polymorphisms and severity for neonatal hyperbilirubinemia among 271 neonates with hyperbilirubinemia; presented as coefficient value with 95% confident interval (CI)

Genetic variable	Maximum TSB (mg/dl)	Duration of phototherapy (hr.)
<i>G6PD</i> mutation	0.62 (95% CI: 0.02, 1.22) ^a	10.17 (95% CI: 4.65-15.70) ^a
<i>HMOX1</i> (<23 GT-repeats)	0.48 (95% CI: 0.01, 1.04) ^a	-5.69 (95% CI: -11.54, -0.16)
<i>BLVRA</i> (rs699512; A>G)	0.52 (95% CI: -0.55, 0.66)	8.03 (95% CI: 2.46-13.61) ^a

^a Statistically significant; $p < 0.05$

TSB: Total serum bilirubin

Table 3 Results of multiple logistic regression for the association of genetic polymorphisms and severity for neonatal hyperbilirubinemia among 271 neonates with hyperbilirubinemia; presented as Odds ratio value with 95% confident interval (CI)

Genetic variable	Onset of Hyperbilirubinemia	Phototherapy	Hospital re-admission
	≤ 48 hr.		
<i>G6PD</i> mutation	2.37 (95% CI: 1.42-3.98) ^a	2.17 (95% CI: 1.10-4.23) ^a	2.77 (95% CI: 1.06-7.24) ^a
<i>HMOX1</i> (<23 GT-repeats)	1.07 (95% CI: 0.62-1.83)	0.92 (95% CI: 0.45-1.87)	0.73 (95% CI: 0.35-1.77)
<i>BLVRA</i> (rs699512; A>G)	1.49 (95% CI: 0.89-2.48)	1.18 (95% CI: 0.59-2.32)	2.44 (95% CI: 1.04-5.68) ^a

^a Statistically significant ($p < 0.05$)

Discussion

The present study showed that *G6PD* mutation, *HMOX1* (<23 GT-repeats) polymorphism and *BLVRA* (rs699512; A>G) polymorphism were considered to be significant risk factors and predictors for the development of neonatal hyperbilirubinemia. To our knowledge, this study is the first report of the prevalence of *HMOX1* (GT-repeats) and *BLVRA* (rs699512; A>G) polymorphisms in Thai neonates.

The *G6PD* deficiency is widely recognized as a risk factor associated with neonatal hyperbilirubinemia⁽¹⁷⁻²⁰⁾. The present study confirmed that *G6PD* mutation was an independent risk factor for all parameters indicating severe hyperbilirubinemia (the onset of hyperbilirubinemia ≤ 48 hr., higher maximum TSB, requirement for phototherapy, longer duration of phototherapy, and hospital re-admission. The results were

similar to the study of Huang *et al.*⁽¹⁹⁾, who reported that the duration of phototherapy was found to be longer in G6PD deficient male neonates than in the control group. Similarly, Khemtonglang *et al.*⁽¹⁴⁾ reported a longer duration for phototherapy and a higher number of hospital re-admissions in northeastern Thai neonates with G6PD deficiency. Kaplan *et al.*⁽²¹⁾ have shown that jaundice in G6PD deficient neonates is the result of an imbalance between the production and conjugation of bilirubin with a tendency for inefficient bilirubin conjugation. Therefore, neonates carrying the G6PD mutation are susceptible to severe hyperbilirubinemia due to an increase in the unconjugated bilirubin. This suggested that the *G6PD* mutation is an important genetic factor associated with severe neonatal hyperbilirubinemia. Thus, an investigation of the *G6PD* mutation is recommended in northeastern Thai neonates with hyperbilirubinemia.

In this study, the (GT)n repeats were found to be highly polymorphic in nature, ranging from 15 to 40. This is consistent with other studies^(11, 12, 22). The study identified the two most frequent alleles, which were 23 and 30 GT-repeats, and is consistent with previous studies from Japan^(8, 23, 24) and northern India⁽¹¹⁾. In our study, the alleles were grouped into two subclasses; short (S) allele (≤ 23 GT-repeats) and long (L) allele (> 23 GT-repeats). The number of GT repeats promoter has a controlling effect on the rate of gene expression (transcriptional activity). Short allele GT repeats on the promoter may play an important genetic role in up-regulating the equilibrium between bilirubin production and elimination⁽²⁵⁾. The result of this study showed that the *HMOX1* short GT-repeats (≤ 23) polymorphism was an independent

predictor variable for the higher maximum TSB (coefficient 0.48, 95% CI: 0.01-1.04, *p*-value 0.037). Previous studies showed an association between short GT-repeats and neonatal hyperbilirubinemia. Katayama *et al.*⁽⁸⁾ reported an association between the short allele (< 22 GT-repeats) and hyperbilirubinemia in the early neonatal period in Japanese neonates (OR 3.1, 95% CI: 1.03-9.53). Furthermore, the SS or SL genotypes were more frequent in hyperbilirubinemia neonates than the control group. Their result was similar to those reported by Weng *et al.*⁽¹³⁾ and Tiwari *et al.*⁽¹¹⁾. Weng *et al.*⁽¹³⁾ showed that short GT-repeats (< 24 GT-repeats) were highly prevalent in neonatal hyperbilirubinemia. Tiwari *et al.*⁽¹¹⁾ demonstrated that the SS genotype ($S < 22$ GT-repeats) was significantly associated with neonatal hyperbilirubinemia (OR 4.4, 95% CI: 1.2-16.8). The result of our study showed that the short GT-repeats associated with the higher maximum TSB indicated more severity of neonatal hyperbilirubinemia.

BLVRA is the enzyme that reduces biliverdin to bilirubin in the heme degradation pathway⁽¹⁰⁾. The result of this study revealed that the *BLVRA* (rs699512; A>G) polymorphism was an independent predictor variable for a longer duration of phototherapy and hospital re-admission. Whereas no association was found between the *BLVRA* (rs699512; A>G) polymorphism and maximum TSB, the onset of hyperbilirubinemia (≤ 48 hrs) and phototherapy. The results are similar to the study of Yang *et al.*⁽¹²⁾ which described no correlation between the *BLVRA* (rs699512; A>G) polymorphism and TSB levels in Chinese neonates. Whereas, a recent study⁽⁵⁾ showed that the G allele carriers were protected from the development of neonatal hyperbilirubinemia (adjusted OR = 0.86, *p*-value

= 0.04). However, the exact mechanism by which the variation at the rs699512 locus alters the BLVRA function is still unclear. Nevertheless, the present study showed that the *BLVRA* (rs699512; A>G) polymorphism associated with the increased severity of neonatal hyperbilirubinemia.

This study has some limitations. Firstly, this study did not determine the other related genes that are associated with bilirubin metabolism, especially *UGT1A1* polymorphisms, since a previous study in northeastern Thai neonates with hyperbilirubinemia⁽¹⁴⁾ has shown the low allele frequency of the two most common polymorphisms of the *UGT1A1* gene; the frequency of the 211G>A allele was 0.094 and that of TA₇ in promoter was 0.103. Secondly, severe cases of neonatal hyperbilirubinemia did not occur in this study because of a systematic approach for early diagnosis and management of neonates with hyperbilirubinemia at Srinagarind Hospital, Faculty of Medicine, Khon Kaen University. Further studies should be carried out to verify the association of all genes involved in bilirubin metabolism to the severity of the hyperbilirubinemia in larger study populations.

Conclusions

The present study showed that the *HMOX1* (<23 GT-repeats) polymorphism, *BLVRA* (rs699512; A>G) polymorphism and *G6PD* mutation could be considered to be significant risk factors and significant predictors for the development of severe neonatal hyperbilirubinemia. Therefore, in cases of severe neonatal hyperbilirubinemia with unidentified etiology, an investigation for common *G6PD* mutations together with *HMOX1* (<23 GT-repeats) and/or *BLVRA* (rs699512; A>G) polymorphism should be considered.

Acknowledgements

This work was supported by research grants from Khon Kaen University and the National Research Council of Thailand (NRCT). The authors are grateful to the participants who gave their time in this study.

References

1. Porter ML, Dennis BL. Hyperbilirubinemia in the term newborn. Am Fam Physician 2002; 65(4): 599-606.
2. Keren R, Luan X, Friedman S, Saddlemire S, Cnaan A, Bhutani VK. A comparison of alternative risk-assessment strategies for predicting significant neonatal hyperbilirubinemia in term and near-term infants. Pediatrics 2008; 121(1): 170-9.
3. Watchko JF, Lin Z. Exploring the genetic architecture of neonatal hyperbilirubinemia. Semin Fetal Neonatal Med 2010; 15(3): 169-75.
4. Kaplan M, Hammerman C. Neonatal screening for glucose-6-phosphate dehydrogenase deficiency: biochemical versus genetic technologies. Semin Perinatol 2011; 35(3): 155-61.
5. Li Y, Wu T, Chen L, Zhu Y. Associations between G6PD, OATP1B1 and BLVRA variants and susceptibility to neonatal hyperbilirubinaemia in a Chinese Han population. J Paediatr Child Health 2019; 55(9): 1077-83.
6. Kitcharoen S, Dechytin S, Khemtonglang N, Kleesuk C. Relationship among glucose-6-phosphate dehydrogenase (G-6-PD) activity, G-6-PD variants and reticulocytosis in neonates of northeast Thailand. Clin Chim Acta 2015; 442: 125-9.

7. Maines MD, Trakshel GM, Kutty RK. Characterization of two constitutive forms of rat liver microsomal hemeoxygenase. Only one molecular species of the enzyme is inducible. *J Biol Chem* 1986; 261(1): 411–9.
8. Katayama Y, Yokota T, Zhao H, Wong RJ, Stevenson DK, Taniguchi-ikeda M, et al. Association of HMOX1 gene promoter polymorphisms with hyperbilirubinemia in the early neonatal period. *Pediatr Int* 2015; 57(4): 645-9.
9. Ahmad Z, Salim M, Maines MD. Human Biliverdin Reductase Is a Leucine Zipper-like DNA-binding Protein and Functions in Transcriptional Activation of Heme Oxygenase-1 by Oxidative Stress. *J Biol Chem* 2002; 277 (11): 9226–32.
10. Lin R, Wang X, Wang Y, Zhang F, Wang Y, Fu W, et al. Association of polymorphisms in four bilirubin metabolism genes with serum bilirubin in three Asian populations. *Hum Mutat* 2009; 30(4): 609–15.
11. Tiwari PK, Sethi A, Basu S, Raman R, Kumar A. Heme oxygenase-1 gene variants and hyperbilirubinemia risk in North Indian newborns. *Eur J Pediatr* 2013; 172(12): 1627–32.
12. Yang H, Wang Q, Zheng L, Lin M, Zheng X Bin, Lin F, et al. Multiple genetic modifiers of bilirubin metabolism involvement in significant neonatal hyperbilirubinemia in patients of Chinese descent. *PLoS One* 2015; 10(7): 1–16.
13. Weng YH, Chiu YW, Cheng SW, Yang CY. Risk assessment of gene variants for neonatal hyperbilirubinemia in Taiwan. *BMC Pediatr* 2016; 16(1): 144.
14. Khemtonglang N, Kitcharoen S, Kiatchoosakun P, Dechyothin S, Kleesuk C. Relationship between glucose-6-phosphate dehydrogenase deficiency and ugt1a1 genotypes in neonates with hyperbilirubinemia. *Southeast Asian J Trop Med Public Health* 2017; 48(3): 655-61.
15. American Academy of Pediatrics Subcommittee on H. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. *Pediatrics* 2004; 114(1): 297-316.
16. Sakunthai K. Phenotypic and genotypic characteristics of glucose-6-phosphate dehydrogenase deficiency in female neonates with hyperbilirubinemia. [Master's Thesis]. Graduate School, Khon Kaen University: 2018.
17. Maisels MJ. Neonatal jaundice. *Pediatr Rev* 2006; 27(12): 443-54.
18. Kaplan M, Hammerman C. Glucose-6-phosphate dehydrogenase deficiency and severe neonatal hyperbilirubinemia: a complexity of interactions between genes and environment. *Semin Fetal Neonatal Med* 2010; 15(3): 148-56.
19. Huang CS, Hung KL, Huang MJ, Li YC, Liu TH, Tang TK. Neonatal jaundice and molecular mutations in glucose-6-phosphate dehydrogenase deficient newborn infants. *Am J Hematol* 1996; 51(1): 19-25.
20. Kaplan M, Algur N, Hammerman C. Onset of jaundice in glucose-6-phosphate dehydrogenase-deficient neonates. *Pediatrics* 2001; 108(4): 956-9.
21. Kaplan M, Rubaltelli FF, Hammerman C, Vilei MT, Leiter C, Abramov A, et al. Conjugated bilirubin in neonates with glucose-6-phosphate dehydrogenase deficiency. *J Pediatr* 1996; 128(5): 695-7.

22. Yamada N, Yamaya M, Okinaga S, Nakayama K, Shibahara S, Sasaki H. Microsatellite polymorphism in the heme oxygen- ase-1 gene promoter is associated with susceptibility to emphy- sema. Am. J Hum Genet 2000; 66: 187-95.
23. Kanai M, Akaba K, Sasaki A, Sato M, Harano T, Shibahara S, et al. Neonatal Hyperbilirubinemia in Japanese Neonates : Analysis of the Heme Oxygenase-1 Gene and Fetal Hemoglobin Composition in cord blood. Pediatr Res 2003; 54(2): 165-71.
24. Yasuda H, Okinaga S, Yamaya M. Association of susceptibility to the development of pneumonia in the older Japanese population with haem oxygenase-1 gene promoter polymorphism. J Med Genet 2006; 43: 17.
25. Stern L, Khanna NN, Levy G, Yaffe SJ. Effect of phenobarbital on hyperbilirubinemia and glucuronide formation in newborns. Am J Dis Child 1970; 120: 26-31.

ความสัมพันธ์ของโพลิมอร์ฟิซึมของจีนแอลฟ้าไฟบริโนเจน (FGA -58G/A) กับกลุ่มอาการกล้ามเนื้อหัวใจขาดเลือดเฉียบพลันในผู้ป่วยเบาหวานชนิดที่ 2

ชนานิกานต์ มากมูล^{1,2}, นันทรัตน์ โภมาณะสิน^{2,3*}, บุรพา ปุสธรรມ^{2,4} และ วิทย์ เหลืองวัฒนาณนท⁵

Received: July 26, 2019

Revised & Accepted: August 16, 2019

บทคัดย่อ

ไฟบริโนเจนเป็นหนึ่งในตัวบ่งชี้ทางกระบวนการอักเสบที่มีบทบาทสำคัญเกี่ยวกับพยาธิสรีวิทยาของโรคหัวใจร่วมหลอดเลือด (cardiovascular disease; CVD) ปริมาณของไฟบริโนเจนที่เพิ่มขึ้นมีความสัมพันธ์กับการเกิดภาวะผนังหลอดเลือดแข็ง (atherosclerosis) และ CVD ซึ่งเป็นภาวะแทรกซ้อนของผู้ป่วยเบาหวานชนิดที่ 2 โดยโพลิมอร์ฟิซึมของจีนไฟบริโนเจนเป็นหนึ่งในปัจจัยสำคัญที่ทำให้มีการเพิ่มขึ้นของปริมาณไฟบริโนเจน ดังนั้นการศึกษานี้จึงได้ศึกษาความสัมพันธ์ระหว่างโพลิมอร์ฟิซึมของยีนแอลฟ้าไฟบริโนเจน (FGA -58G/A) กับการเกิดโรคหลอดเลือดหัวใจ (coronary artery disease; CAD) ในผู้ป่วยเบาหวานชนิดที่ 2 โดยศึกษาในกลุ่มผู้ป่วยเบาหวานที่ได้รับการวินิจฉัยว่ามีภาวะเจ็บเดื้อนอกคงที่ (stable CAD) หรือมีภาวะหัวใจขาดเลือดเฉียบพลัน (acute coronary syndrome; ACS) จำนวน 123 ราย และกลุ่มควบคุมที่ไม่เป็นเบาหวานและไม่มีการตีบของหลอดเลือดหัวใจหลักมากกว่าร้อยละ 50 จำนวน 86 ราย ตรวจวัดโพลิมอร์ฟิซึมของ FGA -58G/A ด้วยเทคนิค polymerase chain reaction-restriction fragment length polymorphism ผลการศึกษาพบว่าจีโนไทป์ AA และแอลลิล A ของ FGA -58G/A มีความสัมพันธ์อย่างอิสระกับเบาหวาน [adjusted OR (95% CI) = 3.3 (1.2, 8.9) และ 3.3 (1.6, 6.6) ตามลำดับ] นอกจากนี้ยังพบว่าจีโนไทป์ AA และแอลลิล A ยังมีความสัมพันธ์กับการเกิด ACS ในผู้ป่วยเบาหวาน [adjusted OR (95% CI) = 3.9 (1.3, 11.7) และ 2.0 (1.2, 3.5) ตามลำดับ] แต่ไม่พบความสัมพันธ์กับการเกิด stable CAD จากผลการศึกษานี้ อาจปั่งบอกว่าโพลิมอร์ฟิซึม FGA -58G/A มีความสัมพันธ์กับการลุกลามของ atherosclerosis ที่นำไปสู่การเกิด ACS ซึ่งเป็นกลุ่มอาการทางคลินิกชนิดรุนแรงของ CAD ในผู้ป่วยเบาหวานชนิดที่ 2

คำสำคัญ: ไฟบริโนเจน โพลิมอร์ฟิซึม เบาหวานชนิดที่ 2 กลุ่มอาการกล้ามเนื้อหัวใจขาดเลือดเฉียบพลัน

¹ ชีววิทยาศาสตร์ บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

² กลุ่มวิจัยหัวใจและหลอดเลือด มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

³ สาขาวิชาเทคนิคการแพทย์ คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

⁴ ภาควิชาอายุรศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

⁵ ศูนย์หัวใจสิริกิติ์ ภาควิชาระบบอกรถยนต์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น

*ผู้รับผิดชอบบทความ

Association of alpha fibrinogen -58G/A genetic polymorphism with acute coronary syndrome in type 2 diabetes mellitus

Chananikan Makmool^{1,2}, Nantarat Komanasin^{2,3*}, Burabha Pussadhamma^{2,4} and Wit Lueangwattananon⁵

Abstract

Fibrinogen is one of the inflammatory markers and plays a crucial role in pathophysiological process of cardiovascular diseases (CVD). High levels of fibrinogen are associated with atherosclerosis progression and CVD complication in type 2 diabetes mellitus (DM). Furthermore, fibrinogen genetic polymorphisms are one of the important factors affecting their levels. Therefore, this study aimed to evaluate the associations of *FGA* -58G/A polymorphism with clinical manifestations of coronary artery disease (CAD) in type 2 DM. A case-control study included 123 documented DM patients presenting with either acute coronary syndrome (ACS) or stable CAD and 86 control individuals without DM and presenting none or less than 50% stenosis of coronary artery. All subjects were genotyped for the *FGA* -58G/A polymorphism by using polymerase chain reaction-restriction fragment length polymorphism technique. The results showed that AA genotype and A allele of the *FGA* -58G/A polymorphism were independently associated with DM [adjusted OR (95% CI) = 3.3 (1.2, 8.9) and 3.3 (1.6, 6.6), respectively]. Moreover, the AA genotype and A allele were also significantly associated with ACS in diabetic patients [adjusted OR (95% CI) = 3.9 (1.3, 11.7) and 2.0 (1.2, 3.5), respectively], while the association with stable CAD was not observed. In conclusion, the results of this study may indicate the association of the *FGA* -58G/A polymorphism with the atherosclerotic progression which may in turn leads to the severe clinical manifestation of CAD in DM.

Keywords: Fibrinogen, Polymorphism, Diabetes mellitus, Acute coronary syndrome

¹ Biomedical Sciences Program, Graduate School, Khon Kaen University

² Cardiovascular Research Group, Khon Kaen University

³ School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University

⁴ Department of Medicine, Faculty of Medicine, Khon Kaen University

⁵ Queen Sirikit Heart Center of the Northeast, Khon Kaen University

*Corresponding author: (e-mail: nankom@kku.ac.th)

Introduction

Diabetes mellitus (DM) is a major risk factor for coronary artery disease (CAD). It has been known that cardiovascular disease (CVD) is the most important complication of type 2 diabetic patients. A number of studies showed that the diabetic patients had a 2-4 fold increased risk of developing CAD. Moreover, the incidence of severe clinical CVD complication in DM is higher than those in non-DM⁽¹⁾. However, there is no selective agent responsible for the atherosclerotic process in diabetic patients due to its several influences. Assessment of some biomarkers and conventional risk factors has been ineffective in completely predicting the development of the atherosclerotic process suggesting that specific genetic factor should be taken into account.

Recently, many studies have suggested that endothelial dysfunction occurs in response to cardiovascular risk factors resulting in the development of atherosclerosis⁽²⁾. One of the most important causes of endothelial dysfunction is inflammation. Inflammation is implicated in the pathogenesis of type 2 diabetes and in the development of atherosclerotic plaque and their destabilization^(3,4). Inflammatory processes involve altering of endothelial and smooth muscle cells, leukocytes recruitment, as well as complement activation⁽⁵⁾. Fibrinogen is one of an acute phase reactant proteins which is elevated in response to inflammatory conditions. It plays a crucial role in the early stages of plaque formation and late complications of CVD⁽⁶⁾. In addition, fibrinogen strongly affects hemostasis, blood rheology, and platelet aggregation. Increased levels of fibrinogen have been reported to be associated with enhancing atherosclerosis, reducing blood flow, and

predisposing to thrombosis⁽⁷⁾. Some reports demonstrated that the elevated plasma fibrinogen concentration is not only responsible for CVD but also increase in other cardiovascular risk factors such as metabolic syndrome, hypertension, obesity and diabetes mellitus^(8, 9). Thus, high plasma fibrinogen levels could contribute to the excess cardiovascular morbidity and mortality in these conditions.

Previous study suggested that approximately 50% of the total variability in fibrinogen levels is determined by the genes encoding the three fibrinogen chains; alpha, beta, and gamma (*FGA*, *FGB*, and *FGG* genes, respectively)⁽¹⁰⁾. *FGA* -58G/A (rs2070011) is a single nucleotide polymorphism (SNP) in a promoter of the *FGA* gene which has been reported to affect the levels of fibrinogen and associate with DM⁽¹¹⁾. However, there is no study investigating the possible relationship of the polymorphism with DM and the progression of atherosclerotic plaque in coronary artery of the patients with macrovascular complication. Therefore, we decided to investigate whether the *FGA* -58G/A polymorphism influence the progression of CAD complication in type 2 DM.

Materials and methods

Study subjects

A total of 207 participants who attended to the Cardiac Catheterization Unit, Queen Sirikit Heart Center of the Northeast Hospital, Khon Kaen University, were recruited in this study. Patients with cancer, autoimmune disease, infectious diseases, *renal failure*, and immune-compromised individuals were excluded. Type 2 DM was diagnosed according to the criteria of the World Health Organization⁽¹²⁾. According to the coronary

angiographic results, the DM patients (n = 123) presented with either acute coronary syndrome (ACS) (n = 56) or stable CAD (n = 67) which defined as more than 50% stenosis in at least one of the three main coronary vessels. ACS was defined as unstable angina, non-ST-elevation myocardial infarction (NSTEMI) or ST-elevation myocardial infarction (STEMI) corresponding to European Society of Cardiology (ESC), American College of Cardiology Foundation (ACCF) and American Heart Association (AHA)⁽¹³⁾. The individuals without DM and presenting none or less than 50% stenosis of the coronary artery were classified as a control group (n = 84). Other clinical variables including age, sex, CAD risk factors, and use of medicines were obtained from medical records. Individuals presenting at least one of the following parameters including total cholesterol (TC) \geq 240 mg/dL, triglyceride \geq 200 mg/dL, high density lipoprotein-cholesterol (HDL-C) < 40 mg/dL, and low density lipoprotein-cholesterol (LDL-C) \geq 160 mg/dL or use of lipid-lowering drugs were diagnosed as dyslipidemia⁽¹⁴⁾. Individuals whom had blood pressure \geq 140/90 mmHg and/or used anti-hypertensive drugs were defined as hypertension⁽¹⁵⁾. Participants with body mass index (BMI) \geq 25 kg/m² were classified as obesity⁽¹⁶⁾. Metabolic syndrome was considered if any three in five risk factors were presented: (i) waist circumference \geq 90 cm in male and \geq 80 cm in female, (ii) TG \geq 150 mg/dL or on lipid-lowering drug treatment, (iii) HDL-C < 40 mg/dL in male and < 50 mg/dL in female, (iv) blood pressure \geq 130/85 mmHg or use of anti-hypertensive medications, and (v) fasting blood glucose (FBG) \geq 100 mg/dL or use of glucose-lowering drugs⁽¹⁷⁾. The study protocol was approved by the Khon Kaen University

Ethics Committee for Human Research (HE621240) and consent forms were obtained from all participants.

Genotyping

Genomic DNA was extracted from peripheral white blood cells using a Flexi Gene DNA extraction kit (QIAGEN, Hilden, Germany). Genotyping of *FGA* -58G/A polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The genomic DNA was amplified by PCR using specific primers including forward primer (5'GAG GGT TGA CTG TCT ACA CA 3') and reverse primer (5'CAG GCC TGG GGT CAT AAA 3'). The optimal condition for the PCR reaction was an annealing temperature of 58 °C. The PCR product was further digested with 2 units of *Aci*I restriction enzyme (New England Biolabs Inc., MA, USA). Each genotype of the polymorphism was interpreted with different sizes of amplicons as follows: GG homozygote demonstrated 236 and 83 base pair (bp) bands; GA heterozygote demonstrated 318, 236 and 83 bp bands; and AA homozygote demonstrated 318 bp band.

Statistical analysis

Statistical analysis was performed using SPSS software version 17.0 (SPSS Inc, IL, USA). Distributions of genotype and allele frequencies, categorical variables and the Hardy-Weinberg equilibrium were determined using a Chi-square test. Kolmogorov-Smirnov test was used to assess the data whether is normal distribution. Continuous variables were expressed as means \pm standard deviations (SDs) and categorical variables were reported as number and percentages. Continuous

variables without normal distribution were reported as a geometric means \pm SDs. Logistic regression analysis was performed to evaluate the association between the *FGA* -58G/A polymorphism with DM and severity of CAD complication in DM patients. Statistical significance was defined as a *p*-value less than 0.05.

Results

Clinical and demographic characteristics of the study individuals are shown in **Table 1**. Individuals in DM group presented higher proportions of hypertension, metabolic syndrome, as well as levels of FBG and LDL-C as compared to controls. No significant differences between both groups were observed for SBP, DBP, BMI, TC, TG, and HDL-C.

The allele and genotype frequencies of the *FGA* -58G/A polymorphism in DM patients and controls are presented in **Table 2**. The SNP was in agreement with Hardy-Weinberg equilibrium in each group. The significant differences were observed in genotype (*p* = 0.022) and allele (*p* = 0.015) frequencies between DM patients and controls. To evaluate the association of genetic variations with DM, multivariate logistic regression analysis was performed. The results demonstrated that presences of AA genotype and A allele of the *FGA* -58G/A polymorphism were independently associated with DM after adjustment for sex, age, hypertension, and metabolic syndrome (**Table 2**).

Table 1 Demographic data of the study subjects

Variables	Controls (n=84)	DM (n=123)	<i>p</i> -value
Age (years)*	59.6 \pm 8.8	61.5 \pm 9.0	0.136
Gender			
Male, n (%)	38 (45.2)	69 (56.1)	0.125
Female, n (%)	46 (54.8)	54 (43.9)	
DS, n (%)	69 (82.1)	108 (87.8)	0.256
HT, n (%)	59 (70.2)	101 (82.1)	0.045
MET, n (%)	38 (45.2)	113 (91.9)	<0.001
Obesity, n (%)	42 (50.0)	57 (46.3)	0.605
SBP (mmHg)	127.9 \pm 18.1	135.3 \pm 22.0	0.399
DBP (mmHg)	73.1 \pm 9.5	74.7 \pm 11.3	0.115
BMI (kg/m ²)	25.3 \pm 3.7	24.8 \pm 3.6	0.316
FBG (mg/dL)*	92.5 \pm 12.3	155.2 \pm 66.2	0.002
TC (mg/dL)*	166.0 \pm 41.9	173.7 \pm 50.2	0.537
TG (mg/dL)*	133.5 \pm 82.8	154.2 \pm 113.6	0.071
LDL-C (mg/dL)*	87.4 \pm 35.4	103.4 \pm 41.4	0.010
HDL-C (mg/dL)*	43.5 \pm 14.3	38.7 \pm 10.4	0.244

Independent sample *t*-test and Chi-square test were used to compare continuous values and categorical variables between both groups, respectively. Category data are expressed as n (%), continuous data are expressed as mean \pm SD. * Values are presented as geometric means \pm SD. DM, diabetes mellitus; DS, dyslipidemia; HT, hypertension; MET, metabolic syndrome; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; FBG, fasting blood glucose; TG, triglyceride; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

Table 2 Genotype distributions of the *FGA* -58G/A polymorphism in study subjects and its association with DM

Genotype/ allele	Frequency, n (%)		<i>p</i> - value	OR (95% CI)			
	Controls (n=84)	DM (n=123)		Crude OR	<i>p</i> - value	Adjusted OR*	<i>p</i> - value
GG	26 (31.0)	29 (23.6)	0.022	1.0	-	1.0	-
GA	45 (53.6)	54 (43.9)		1.1 (0.6,2.1)	0.828	1.3 (0.6,2.9)	0.573
AA	13 (15.5)	40 (32.5)		2.8 (1.2,6.3)	0.015	3.3 (1.2,8.9)	0.021
G allele	97 (57.7)	112 (45.5)	0.015	1.0	-	1.0	-
A allele	71 (42.3)	134 (54.5)		2.8 (1.5,4.9)	0.001	3.3 (1.6,6.6)	0.001

Chi-square-test was used to compare the frequencies of genotypes between DM and control groups. *Conditional logistic regression model adjustment for sex, age, hypertension and metabolic syndrome. DM, Diabetes mellitus; OR, Odds ratio; CI=Confidence interval

To assess the influence of the *FGA* -58G/A polymorphism on the severity of CAD complication, DM individuals were divided into two subgroups including DM with stable-CAD and with ACS. Significant differences were found in the frequencies of AA genotype ($p = 0.003$) and A allele ($p = 0.004$) in DM with ACS when compared to controls. However, the significant differences were not found in patients with stable-CAD when compared to controls (Table 3). Multivariate logistic regression analysis was performed to investigate the relationship between the *FGA* -58G/A polymorphism and ACS in diabetic individuals (Table 4). The results demonstrated that after adjustment for sex, age, hypertension, and metabolic syndrome, the AA genotype and A allele were significantly associated with an increased risk of ACS.

Table 3 Genotype distributions of the *FGA* -58G/A polymorphism in DM with CAD according to clinical manifestation

Genotype/ allele	(1) Controls (n=84)	Frequency, n (%)		p-value	
		DM with CAD manifestation		(2) stable CAD (n=67)	(3) ACS (n=56)
		(2)	(3)		
GG	26 (31.0)	17 (25.4)	12 (21.4)	0.304	0.003
GA	45 (53.6)	33 (49.3)	21 (37.5)		
AA	13 (15.5)	17 (25.4)	23 (41.1)		
G allele	97 (57.7)	67 (50.0)	45 (40.2)	0.180	0.004
A allele	71 (42.3)	67 (50.0)	67 (59.8)		

Chi-square test was performed for comparison of the frequencies of each genotype among the study groups. DM, Diabetes mellitus; CAD, Coronary artery disease; ACS, Acute coronary syndrome

Table 4 Association of the *FGA* -58G/A polymorphism with ACS in DM

Genotype/ allele	OR (95% CI)			
	Crude OR	p-value	Adjusted OR*	p-value
GG	1.0	-	1.0	-
GA	1.0 (0.4, 2.4)	0.980	1.0 (0.4, 2.8)	1.000
AA	3.8 (1.5, 10.1)	0.006	3.9 (1.3, 11.7)	0.014
G allele	1.0	-	1.0	-
A allele	2.0 (1.3, 3.3)	0.004	2.0 (1.2, 3.5)	0.014

*Conditional logistic regression model adjustment for sex, age, hypertension and metabolic syndrome. DM, diabetes mellitus; ACS, acute coronary syndrome; OR, Odds ratio; CI, Confidence interval

Discussion

Fibrinogen is a complex protein composed of three pairs of subunits (FGA, FGB, and FGG). In addition to its physiological role as a cofactor for platelet aggregation and a precursor of fibrin, fibrinogen is involved in many pathophysiological processes such as inflammation, atherosclerosis, and thrombosis⁽¹⁸⁾. Previous study showed that fibrinogen is a potential biomarker for prediction of future risk of CVD⁽¹⁹⁾. A high fibrinogen concentration has been reported to enhance the risk of CVD in diabetic individuals⁽²⁰⁾. In addition, several studies also have provided evidences for the relation between plasma fibrinogen levels and DM. Actually, the elevated level of fibrinogen was observed in type 2 DM patients, and predicted the progression of CVD in diabetes. Several polymorphisms inducing overproduction of the three fibrinogen subunits might influence the high levels of plasma fibrinogen, which in turn develop type 2 DM and CAD. Therefore, the genetic variations in these genes may define susceptibility to the disease. A previous study demonstrated that the nucleotide base substitutions of the *FGA* -58G/A polymorphism in the 5' UTR (promoter) of the *FGA* gene can modulate the *FGA* gene

expression through accelerating the mRNA transcription, which may affect increasing mRNA levels and resulting in the high level of fibrinogen⁽²¹⁾.

At present investigation demonstrated the association of the *FGA* -58G/A polymorphism with the plaque progression leading to ACS in type 2 diabetic patients. To the best of our knowledge, this study is the first report of the effect of the *FGA* -58G/A polymorphism on the severity of CAD complication in diabetes. We have observed that AA genotype and minor A allele of the *FGA* -58G/A polymorphism was associated with an increased risk of DM in this population. This result supported the previous study reported by Hwang *et al.*⁽¹¹⁾ which suggested that major G allele of this polymorphism had a protective effect on DM. Our study also found that diabetic individuals carrying the minor A allele of the polymorphism were independently associated with ACS. These results suggested that the *FGA* -58G/A polymorphism may affect the occurrence and severe progression of atherosclerosis in type 2 DM. However, the mechanism that links genetic variations of the *FGA* -58G/A polymorphism to risk of DM and severe CAD complication in diabetic individuals are remained unclear. To date, genome-wide association studies (GWAS) have identified a large number of robust associations between genetic variations and type 2 DM. Ban HJ and colleagues⁽²²⁾ found that the *FGA* -58G/A polymorphism combined with the rs9658173 of peroxisome proliferator-activated receptor PPAR- δ (PPARD) gene was associated with contributing risk of type 2 DM, through elevating the levels of FBG⁽²³⁾. Moreover, the polymorphism was significantly

related to the increased plasma levels of TG and TC⁽¹¹⁾. Therefore, this polymorphism may have a possible role in the developing of DM via modulating plasma concentrations of lipids and glucose.

Mannila *et al.*⁽²⁴⁾ demonstrated that the *FGA* -58G/A polymorphism appeared to influence the relation between plasma fibrinogen concentration and fibrin clot porosity. They found that the presence of homozygous for the A allele leads to increase fibrinogen concentration and decrease fibrin clot porosity. In addition, prior study has shown that *FGA* -58G/A polymorphism was in a strong linkage disequilibrium with *FGA* Thr312Ala polymorphism (rs6050)⁽¹¹⁾. As Thr312Ala polymorphism influences clot stability through increasing factor XIII cross-linking⁽²⁵⁾ leading to thicker fibrin fibers which resist to lysis⁽²⁶⁾. This might be an evidence to explain a possible effect of the *FGA* -58G/A polymorphism on an increased ACS risk in patients with DM. However, it should be noted that the sample size was not large enough which might have reduced the statistical power of tests. Thus, further investigation with a larger sample size is needed to elucidate the effect of *FGA* -58G/A polymorphism on ACS in type 2 DM.

Conclusions

The present study has demonstrated the association of the *FGA* -58G/A polymorphism with ACS in type 2 DM. This relationship suggested the importance of genetic variations of the *FGA* -58G/A which may eventually be used as the ACS risk assessment in diabetic individuals.

Acknowledgements

The authors would be appreciating to Cardiovascular Research Group (CVRG) and Research Fund for Supporting Lecturer to Admit High Potential Student to Study and Research on His Expert Program of Graduate School and Faculty of Associated Medical Sciences, Khon Kaen University.

References

1. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. *Circulation* 1979; 59: 8-13.
2. Hadi HAR, Carr CS, Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. *Vasc Health Risk Manag* 2005; 1: 183-98.
3. Madjid M, Willerson JT. Inflammatory markers in coronary heart disease. *Br Med Bull* 2011; 100: 23-38.
4. Sjoholm A, Nystrom T. Inflammation and the etiology of type 2 diabetes. *Diabetes-Metab Res* 2006; 22: 4-10.
5. Ross R. Atherosclerosis--an inflammatory disease. *N Engl J Med* 1999; 340: 115-26.
6. Bruno G, Cavallo-Perin P, Bargero G, Borra M, D'Errico N, Pagano G. Association of fibrinogen with glycemic control and albumin excretion rate in patients with non-insulin-dependent diabetes mellitus. *Ann Intern Med* 1996; 125: 653-7.
7. Kattula S, Byrnes JR, Wolberg AS. Fibrinogen and fibrin in hemostasis and thrombosis. *Arterioscler Thromb Vasc Biol* 2017; 37: e13-21.
8. Mahendra JV, Kumar SD, Anuradha TS, Talikoti P, Nagaraj RS, Vishali V. Plasma fibrinogen in type 2 diabetic patients with metabolic syndrome and its relation with ischemic heart disease (IHD) and retinopathy. *J Clin Diagn Res* 2015; 9: BC18-21.
9. Shankar A, Wang JJ, Rochtchina E, Mitchell P. Positive association between plasma fibrinogen level and incident hypertension among men: population-based cohort study. *Hypertension* 2006; 48: 1043-9.
10. Jacquemin B, Antoniades C, Nyberg F, Plana E, Muller M, Greven S, et al. Common genetic polymorphisms and haplotypes of fibrinogen alpha, beta, and gamma chains affect fibrinogen levels and the response to proinflammatory stimulation in myocardial infarction survivors: the AIRGENE study. *J Am Coll Cardiol* 2008; 52: 941-52.
11. Hwang J-Y, Ryu M-H, Go M, Oh B, Shin Cho Y. Association between single nucleotide polymorphisms of the fibrinogen alpha chain (FGA) gene and type 2 diabetes mellitus in the korean population. *Genomics Inform* 2009; 7: 57-64.
12. World Health Organization (WHO). Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: Report of a WHO/IDF consultation. Geneva: the WHO Document Production Services; 2006.
13. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction. *Circulation* 2018; 138: e618-51.

14. National Cholesterol Education P. ATP III guidelines at-a-glance quick desk reference: [Bethesda, Md.] : [National Institutes of Health, National Heart, Lung, and Blood Institute], [2001]; 2001.
15. Whitworth JA. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. *J Hypertens* 2003; 21: 1983-92.
16. World Health Organization. Refining Obesity and its Treatment. The Asia-Pacific Perspective. Sydney: Health Communications Australia; 2000.
17. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JL, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. *Circulation* 2009; 120: 1640-5.
18. Kamath S, Lip GYH. Fibrinogen: biochemistry, epidemiology and determinants. *QJM-INT J MED* 2003; 96: 711-29.
19. Wang J, Tan G-J, Han L-N, Bai Y-Y, He M, Liu H-B. Novel biomarkers for cardiovascular risk prediction. *J Geriatr Cardiol* 2017; 14: 135-50.
20. Bembde AS. A study of plasma fibrinogen level in type-2 diabetes mellitus and its relation to glycemic control. *Indian J Hematol Blood Transfus* 2012; 28: 105-8.
21. Smith EB, Thompson WD, Crosbie L, Stirk CM. Fibrinogen/fibrin in atherogenesis. *Eur J Epidemiol* 1992; 8: 83-7.
22. Ban HJ, Heo JY, Oh KS, Park KJ. Identification of type 2 diabetes-associated combination of SNPs using support vector machine. *BMC Genet* 2010; 11: 26-7.
23. Shin HD, Park BL, Kim LH, Jung HS, Cho YM, Moon MK, et al. Genetic polymorphisms in peroxisome proliferator-activated receptor delta associated with obesity. *Diabetes* 2004; 53: 847-51.
24. Mannila MN, Eriksson P, Ericsson CG, Hamsten A, Silveira A. Epistatic and pleiotropic effects of polymorphisms in the fibrinogen and coagulation factor XIII genes on plasma fibrinogen concentration, fibrin gel structure and risk of myocardial infarction. *Thromb Haemost* 2006; 95: 420-7.
25. Standeven KF, Grant PJ, Carter AM, Scheiner T, Weisel JW, Ariens RA. Functional analysis of the fibrinogen A α Thr312Ala polymorphism: effects on fibrin structure and function. *Circulation* 2003; 107: 2326-30.
26. Li J-F, Lin Y, Yang Y-H, Gan H-L, Liang Y, Liu J, et al. Fibrinogen A α Thr312Ala polymorphism specifically contributes to chronic thromboembolic pulmonary hypertension by increasing fibrin resistance. *PLoS One* 2013; 8: e69635-36.

แบบฟอร์มส่งบทความลงตีพิมพ์ใน วารสารเทคนิคการแพทย์และกายภาพบำบัด

วันที่ เดือน พ.ศ.

เรื่อง ส่งบทความและลายมือชื่อยินยอมของผู้นิพนธ์

เรียน บรรณาธิการวารสารเทคนิคการแพทย์และกายภาพบำบัด

● บทความที่ส่ง (เลือกการได้หลายชื่อ)

- ยังไม่เคยได้รับการตีพิมพ์ในวารสารหรือสิ่งพิมพ์เดิมมาก่อน
- เป็นผลงานของผู้เขียน โดยไม่ได้คัดลอกมาจากส่วนหนึ่งส่วนใดหรือผลการศึกษาใด ของผู้อื่น
- อุยระห่วงการส่งไปขอรับการพิจารณาตีพิมพ์ในวารสารอื่นด้วย (โปรดระบุ รายละเอียด)

- บางส่วน เคยได้รับการตีพิมพ์มาแล้ว (โปรดระบุรายละเอียดการตีพิมพ์และแบบ ต้นฉบับ)

● ประเภทบทความที่ส่ง (โปรดเลือกเรื่อง)

- นิพนธ์ต้นฉบับ (Original article).....
- บทความปริทัศน์ (Review article).....
- บทความทั่วไป (General article).....
- จดหมายถึงบรรณาธิการ (Letter to the editor)
- อื่น ๆ

● รายชื่อผู้นิพนธ์ทุกคนพร้อมลายมือชื่อยินยอมให้ลงตีพิมพ์ในวารสารนี้

1. ลงชื่อ.....
2. ลงชื่อ.....
3. ลงชื่อ.....
4. ลงชื่อ.....
5. ลงชื่อ.....
6. ลงชื่อ.....

ลงชื่อผู้เสนอแบบฟอร์ม.....

(.....)

Corresponding author

สถานที่ติดต่อพร้อมหมายเลขโทรศัพท์ โทรสารและ e-mail address

โปรดส่งแบบฟอร์มนี้

โดยการแนบไฟล์ในระหว่างที่ท่านส่งต้นฉบับแบบ Online Submission ใน <http://www.tci.thaijo.org/index.php/ams>

วารสารเทคนิคการแพทย์และกายภาพบำบัด

คำแนะนำสำหรับผู้เขียน

วารสารเทคนิคการแพทย์และกายภาพบำบัดเป็นวารสารที่จัดทำขึ้นเพื่อเผยแพร่ผลงานวิจัย ความรู้และความก้าวหน้าทางวิชาการ ทางด้านเทคนิคการแพทย์และกายภาพบำบัด และสาขาวิชาอื่นที่เกี่ยวข้องโดยกรอบบรรณาธิการ งานวิจัยในการตรวจทาง แก้ไขต้นฉบับ และพิจารณาตีพิมพ์ตามความเหมาะสม บทความทุกประเภทจะได้รับการพิจารณาถึงความถูกต้อง ความน่าเชื่อถือ ความน่าสนใจ ตลอดจนความเหมาะสมของเนื้อหาจากผู้ทรงคุณวุฒิจากในหรือนอกกองบรรณาธิการ วารสารมีหลักเกณฑ์และคำแนะนำทั่วไป ดังต่อไปนี้

1. ประเภทของบทความ บทความที่จะได้รับการตีพิมพ์ในวารสาร อาจเป็นบทความประเภทใดประเภทหนึ่งดังต่อไปนี้

1.1 บทบรรณาธิการ (Editorial) เป็นบทความสั้นๆ ที่บรรณาธิการ หรือผู้ทรงคุณวุฒิที่กองบรรณาธิการเห็นสมควร เขียนแสดงความคิดเห็นในเรื่องมุ่งๆ ต่างๆ เกี่ยวกับบทความในวารสาร หรือเรื่องที่บุคคลนั้นเชี่ยวชาญ

1.2 บทความทั่วไป (General article) เป็นบทความวิชาการ ด้านเทคนิคการแพทย์และกายภาพบำบัด และสาขาวิชาอื่นที่เกี่ยวข้อง ที่ไม่นำวิชาการเรื่องใดเรื่องหนึ่งเป็นการเฉพาะที่คนทั่วไปสามารถอ่านเข้าใจได้

1.3 บทความปริทัศน์ (Review article) เป็นบทความที่เขียนจาก การรวบรวมความรู้ในเรื่องใดเรื่องหนึ่งทางเทคนิคการแพทย์และ กายภาพบำบัด และ สาขาวิชาอื่นที่เกี่ยวข้อง ที่ผู้เขียนได้จากการอ่าน และวิเคราะห์จากการสารต่างๆ ควรเป็นบทความที่รวบรวมความรู้ ใหม่ๆ ที่น่าสนใจที่ผู้อ่านสามารถนำไปประยุกต์ได้ โดยอาจมีบทสรุป หรือ ข้อคิดเห็นของผู้เขียนตัวที่ 2 บทความประเภทนี้ประกอบด้วย บทคัดย่อภาษาไทยและภาษาอังกฤษ พร้อมคำรหัส (Key word) บทนำ เนื้อเรื่อง และเอกสารอ้างอิง

1.4 นิพนธ์ต้นฉบับ (Original article) เป็นรายงานผลการศึกษาวิจัย ทางด้านเทคนิคการแพทย์และกายภาพบำบัด และ สาขาวิชาอื่นที่เกี่ยวข้องของผู้เขียนเอง ประกอบด้วยบทคัดย่อ บทนำ วัสดุและวิธีการ ผลการศึกษา สรุปและวิจารณ์ ผลการศึกษา และเอกสารอ้างอิง

1.5 จดหมายถึงบรรณาธิการ (Letter to the editor) จะเป็นข้อคิดเห็นเกี่ยวกับบทความที่ตีพิมพ์ไปแล้วในวารสารและกองบรรณาธิการได้ พิจารณาเห็นว่าจะเป็นประโยชน์ต่อผู้อ่านท่านอื่น หรือ อาจเป็นผลการศึกษา การค้นพบความรู้ใหม่ๆ ที่สั้นและสมบูรณ์ในตัว

1.6 บทความอื่นๆ ที่กองบรรณาธิการเห็นสมควรเผยแพร่

2. การเตรียมต้นฉบับ

2.1 ไฟล์พิมพ์ต้นฉบับในไฟล์ Word 2007 ขึ้นไป

2.2 หน้าแรกประกอบด้วยชื่อเรื่อง ชื่อผู้เขียนและสถานที่ทำงานทั้งภาษาไทยและภาษาอังกฤษ และระบุชื่อผู้เขียนที่รับผิดชอบในการติดต่อ (corresponding author) ให้ที่ชัดเจน ชื่อเรื่องควรสั้น และได้ใจความตรงตาม เนื้อเรื่อง

2.3 เนื้อเรื่องและการใช้ภาษา เนื้อเรื่องอาจเป็นภาษาไทย หรือภาษา อังกฤษ ถ้าเป็นภาษาไทยให้ยึดหลักพจนานุกรมฉบับราชบัณฑิตยสถานและ ควรใช้ภาษาไทยให้มากที่สุด ยกเว้นคำภาษาอังกฤษที่แปลแล้วได้ความไม่ชัดเจน

2.4 รูปภาพ ตาราง และคำอธิบายให้วางแทรกในเนื้อหาตามความเหมาะสม

2.5 นิพนธ์ต้นฉบับให้เรียงลำดับเนื้อหาดังนี้ บทคัดย่อภาษาไทยและภาษาอังกฤษพร้อมคำรหัส (Key word) ไม่เกิน 5 คำ บทนำ (Introduction) วัสดุและวิธีการ (Materials and Methods) ผลการศึกษา (Results) สรุปและวิจารณ์ผลการศึกษา (Conclusion and Discussion) กิตติกรรมประการ (Acknowledgement) และเอกสารอ้างอิง (References)

2.6 เอกสารอ้างอิงใช้ตามระบบ Vancouver's International Committee of Medical Journal โดยใส่หมายเลขอ้างตามลำดับที่ อ้างอิงในเนื้อเรื่อง (superscript) โดยบทความที่มีผู้เขียนจำนวน 6 คน หรือน้อยกว่าให้ใส่ชื่อ ผู้เขียนทุกคน ถ้ามากกว่า 6 คน ให้ใส่ชื่อเฉพาะ 6 คนแรก ตามด้วยอักษร et al. ดังตัวอย่าง

วารสารภาษาอังกฤษ

Leelayuwat C, Hollinsworth P, Pummer S, Lertmemongkolchai G, Graeme T, Mullberg J, et al. Antibody reactivity profiles following immunisation with diverse peptides of the PERB11 (MIC) family. *Clin Exp Immunol* 1996; 106: 568-76.

หนังสือที่มีบรรณลักษณ์

Solberg HE. Establishment and use of reference values with an introduction to statistical technique. In: Tietz NW, ed. *Fundamentals of Clinical Chemistry*. 3rd. ed. Philadelphia: WB Saunders, 1987: 202-12.

3. โปรดส่งต้นฉบับแบบ online submission ที่ <http://www.tci.thaijo.org/index.php/ams>

4. เงื่อนไขในการพิมพ์

4.1 เรื่องที่สั่งมาลงพิมพ์ต้องไม่เคยตีพิมพ์หรือกำลังรอตีพิมพ์ ใน วารสารอื่น

4.2 ข้อความหรือข้อคิดเห็นต่างๆ เป็นของผู้เขียนบทความนั้นๆ ไม่ใช่ความเห็นของกองบรรณาธิการหรือของวารสาร และไม่ใช่ความเห็นของ คณะกรรมการแพทย์ มหาวิทยาลัยขอนแก่น

4.3 วารสารจะมอบ pdf ของบทความที่ได้รับการตีพิมพ์ ให้กับผู้เขียนที่รับผิดชอบบทความเป็นอภินันทนาการ