

ศึกษาความสัมพันธ์ระหว่างตั้นนีการสร้างเรติคิวโลไซต์กับภาวะพร่องเอนไซม์ G-6-PD ในทารก แรกเกิด โรงพยาบาลสระบุรี

จันทร์ฉาย ไกรสินธุ์

งานโลหิตวิทยาและจุลทรรศนศาสตร์คลินิก กลุ่มงานเทคนิคการแพทย์และพยาธิวิทยาคลินิก
โรงพยาบาลสระบุรี จังหวัดสระบุรี

Received 3rd Oct 2023

Revised 13rd Nov 2023

Accepted 9th July 2024

บทคัดย่อ

เอนไซม์ Glucose-6-phosphate dehydrogenase (G-6-PD) เป็นเอนไซม์ที่พบในเซลล์ต่าง ๆ ของร่างกายและเซลล์เม็ดเลือดแดง มีหน้าที่รักษาเสถียรภาพของเซลล์ ภาวะพร่องเอนไซม์ G-6-PD เป็นความผิดทางพันธุกรรมที่มีอุบัติการณ์สูงมากและพบได้บ่อยในประเทศไทย เป็นสาเหตุหนึ่งที่ทำให้เกิดภาวะตัวเหลืองในทารกแรกเกิด ในรายที่รุนแรงอาจส่งผลให้เกิดความพิการทางสมอง และเกิดโลหิตจางจากการแตกของเม็ดเลือดแดงแบบเบี้ยบพลันได้ ค่า reticulocyte production index(RPI) บ่งชี้การสร้างเม็ดเลือดแดงในไขกระดูกว่าเป็นจำนวนกี่เท่าของภาวะปกติ โดยการคำนวณค่า corrected reticulocyte count กับ maturation time การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาความสัมพันธ์ระหว่าง RPI กับภาวะพร่องเอนไซม์ G-6-PD และความชุกของภาวะพร่องเอนไซม์ G-6-PD ในทารกแรกเกิด วิเคราะห์ข้อมูลจากการตรวจย้อนหลังได้แก่ ผลการตรวจเอนไซม์ G-6-PD ด้วยเครื่องวิเคราะห์อัตโนมัติ careSTART G6PD Biosensor ผลการตรวจค่าヘโมโกลบิน (hemoglobin; Hb) และฮีมาโตคริต (hematocrit; Hct) ด้วยเครื่องตรวจวิเคราะห์เม็ดเลือดอัตโนมัติ Sysmex XN 3000 จากตัวอย่างเลือดของทารกแรกเกิดที่ส่งตรวจที่งานโลหิตวิทยาและจุลทรรศนศาสตร์คลินิก กลุ่มงานเทคนิคการแพทย์และพยาธิวิทยาคลินิก โรงพยาบาลสระบุรี ระหว่างเดือนกรกฎาคม 2565 ถึงเดือนธันวาคม 2565 จำนวน 295 ราย ผลการศึกษาพบภาวะพร่องเอนไซม์ G-6-PD ร้อยละ 15.25 (45/295) เป็นเพศชายร้อยละ 77.78 (35/45) เพศหญิงร้อยละ 22.22 (10/45) สัดส่วนระหว่างเพศชายต่อเพศหญิงเท่ากับ 3.5 ต่อ 1 พบค่า RPI ระหว่างกลุ่มที่มีภาวะพร่องเอนไซม์ G-6-PD กลุ่ม G-6-PD ปกติ แตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p = 0.512$) ส่วนค่า Hb และ Hct ในกลุ่มที่มีภาวะพร่องเอนไซม์ G-6-PD มีค่าต่ำกว่ากลุ่ม G-6-PD ปกติ อย่างมีนัยสำคัญทางสถิติ ($p = 0.031$ และ 0.042) ตามลำดับ การศึกษาระนี้ทำให้ทราบถึงความชุกของภาวะพร่อง G-6-PD ในทารกแรกเกิดที่โรงพยาบาลสระบุรี และความสัมพันธ์ระหว่างค่า Hb, Hct และ Reticulocyte count กับภาวะพร่อง G-6-PD และยังสามารถทำงานของไขกระดูกได้เบื้องต้น ทั้งนี้จะเป็นประโยชน์แก่แพทย์ในการดูแลรักษาผู้ป่วยต่อไป

คำสำคัญ : พร่อง G-6-PD, ヘโมโกลบิน, ฮีมาโตคริต, ดัชนีการสร้างเรติคิวโลไซต์

ผู้อพนธ์ประจำงาน : ทนพญ. จันทร์ฉาย ไกรสินธุ์

อาคาร 100 ปี สร. ชั้น 3 งานโลหิตวิทยาและจุลทรรศนศาสตร์คลินิก กลุ่มงานเทคนิคการแพทย์และพยาธิวิทยาคลินิก โรงพยาบาลสระบุรี 18 ถนนเทศบาล 4 ตำบลปากเพรียว อำเภอเมือง จังหวัดสระบุรี 18000

โทร. 036-343500 ต่อ 8322

อีเมลล์: omyim77@gmail.com

Association between reticulocyte production index and G-6-PD deficiency in newborns at Saraburi hospital.

Janshine Kraisin

Hematology and Clinical Microscopy Department, Medical Technology and Clinical Pathology Division, Saraburi Hospital, Saraburi Province.

Abstract

The enzyme Glucose-6-phosphate dehydrogenase (G-6-PD) is present in general cells throughout the body and in red blood cells (RBCs). In RBCs, its role is to maintain cell stability. In cells with a nucleus, the enzyme can be generated. G-6-PD enzyme deficiency is a highly prevalent genetic disorder, frequently found in Thailand. It is a contributing factor to neonatal jaundice, and in severe cases, it can lead to brain damage and acute hemolysis. The Reticulocyte Production Index (RPI) indicates the production of red blood cells in the bone marrow compared to normal conditions. By calculating the corrected reticulocyte count and maturation time, this study aimed to explore the relationship between RPI and G-6-PD enzyme deficiency, as well as the prevalence of G-6-PD enzyme deficiency in newborns at Saraburi Hospital. The G-6-PD enzyme was analyzed using the careSTART G6PD Biosensor, and hemoglobin (Hb) and hematocrit (Hct) were tested with the Sysmex XN 3000 automatic blood analyzer. Blood samples from 295 newborns were examined at the Clinical Hematology and Microscopy Laboratory, Saraburi Hospital. The study found no statistically significant difference in RPI between the G-6-PD enzyme deficiency group and the normal G-6-PD group. However, significant differences were observed in Hb and Hct values. G-6-PD enzyme deficiency was detected in 45 infants (15.25%), with 77.78% being male and 22.22% female. In the normal G-6-PD group, there were 250 infants (84.75%), with 52.40% being male and 47.60% female. The RPI value in the G-6-PD deficiency group was $> 3\%$, indicating compensatory reticulocyte production to replace lost red blood cells. Additionally, when calculating the male-to-female ratio in the G-6-PD deficiency group, it was found to be 3.5 to 1. This study provides insights into the prevalence of G-6-PD deficiency in newborns at Saraburi Hospital and the relationship between Hemoglobin, Hematocrit, Reticulocyte count, and G-6-PD deficiency. Furthermore, it offers preliminary predictions of bone marrow function. This information can aid physicians in caring for patients.

Keywords: G-6-PD deficiency, Hemoglobin, Hematocrit, Reticulocyte Production Index

Corresponding author : Janshine Kraisin

100-Year Building, Floor 3, Hematology and Clinical Pathology Department, Medical Technology and Clinical Pathology Division, Saraburi Hospital, 18 Tessaban Road, Pak Phriao Sub-district, Mueang District, Saraburi Province, 18000

Tel. 036-343500 ext. 8322

E-mail : omyim77@gmail.com

บทนำ (Introduction)

กลูโคส 6 ฟอสเฟต ดีไฮดรอเจนase (Glucose-6-phosphate dehydrogenase; G-6-PD) เป็นเอนไซม์ที่พบได้ในเซลล์ทั่วไป ของร่างกาย และเซลล์เม็ดเลือดแดง มีบทบาทสำคัญในวิถี Pentose phosphate pathway (PPP) ทำหน้าที่รักษาเสียรภพของ เซลล์ และช่วยป้องกันไม่ให้เม็ดเลือดแดงถูกทำลายจากอนุมูลอิสระต่าง ๆ และสารที่เป็นพิษต่อเซลล์¹

ภาวะพร่องเอนไซม์ G-6-PD เป็นความผิดปกติที่มีการถ่ายทอดทางพันธุกรรมแบบ X-linked เป็นภาวะพร่องเอนไซม์ในเม็ดเลือดแดงที่พบบ่อยที่สุด พบรู้ที่มีภาวะนี้มากกว่า 400 ล้านรายทั่วโลก² เกิดจากการถ่ายทอดทางพันธุกรรมทางโครโมโซมเอกซ์แบบยื้นด้วย (X-linked recessive) ปัจจุบันมีชนิดของการถ่ายทอดพันธุ์ของยีน G6PD ที่เคยมีรายงานแล้วมากกว่า 140 ชนิด เนื่องจากการถ่ายทอดพันธุ์ของยีน G6PD พบได้บ่อยในประชากรที่อาศัยอยู่ในบริเวณที่มีมาลาเรียเป็นโรคประจำถิ่น เช่น แอฟริกาและเอเชียตะวันออกเฉียงใต้รวมถึงประเทศไทย^{3,4} อย่างไรก็ตามแม้ภาวะพร่องเอนไซม์ G-6-PD จะพบได้บ่อย แต่ภาวะโลหิตจางที่เกิดจากภาวะพร่อง G-6-PD กลับพบได้ไม่นัก อาการและการแสดงของผู้มีภาวะพร่องเอนไซม์ G-6-PD แบ่งได้เป็น 5 กลุ่ม^{5,6} ได้แก่ 1) กลุ่มที่ไม่แสดงอาการ (Asymptomatic) 2) กลุ่มที่มีภาวะเม็ดเลือดแดงแตกจากอนุมูลอิสระ (Oxidative stress-induced hemolytic anemia) 3) กลุ่มที่มีภาวะ Favism 4) กลุ่มที่มีภาวะตัวเหลืองในทารกแรกเกิด (Neonatal jaundice) และ 5) กลุ่มที่มีภาวะเม็ดเลือดแดงแตกเรื้อรัง (Chronic non-spherocytic hemolytic anemia, CNSHA) ภาวะพร่องเอนไซม์ G-6-PD จึงพบได้ทั้งในเพศชายมากกว่าเพศหญิง โดยพบได้ตั้งแต่ร้อยละ 8-32 ในเพศชายและร้อยละ 1.8-19 ในเพศหญิง ทั้งนี้ขึ้นอยู่กับพื้นที่ที่ทำการศึกษา⁷

Reticulocyte Production Index (RPI) เป็นตัวปัจจัยทางคลินิกที่ใช้ในการประเมินการผลิตเซลล์เม็ดเลือดแดงในร่างกาย โดยเฉพาะความสามารถในการผลิตเซลล์เม็ดเลือดแดงที่ยังไม่โตเต็มที่ (reticulocytes) ค่า RPI ที่ปกติอยู่ระหว่าง 0.5 ถึง 2.0 โดยค่าที่สูงขึ้นมากแสดงถึงการเพิ่มขึ้นของการผลิตเซลล์เม็ดเลือดแดง ในขณะที่ค่าที่ต่ำลงมากแสดงถึงปัญหาในการผลิตเซลล์เม็ดเลือดแดง เช่น ภาวะโลหิตจาง ภาวะเลือดออก โดย RPI นั้นมักนำมาใช้ในการวินิจฉัยและติดตามผลการรักษาของโรคที่เกี่ยวข้องกับการเปลี่ยนแปลงระดับของการผลิตเซลล์เม็ดเลือดแดงในร่างกาย การวิเคราะห์ RPI ต้องพิจารณารวมกับข้อมูลอื่น ๆ เช่น ปริมาณเม็ดเลือดแดงในรูปแบบของปริศริต (hematocrit)^{8,9,10}

การใช้ RPI ในทารกแรกเกิดสามารถช่วยในการตรวจสอบความสมบูรณ์ของกระบวนการผลิตเซลล์เม็ดเลือดแดง หากการแรกเกิดไม่ได้รับการวินิจฉัยและรักษาภาวะพร่องเอนไซม์ G-6-PD ได้ทัน จะนำไปสู่ภาวะดีซ่าน (jaundice) และภาวะบิลิรูบินในเลือดสูง (hyperbilirubinemia) อาจทำให้ทารกมีอาการผิดปกติทางสมอง เรียกว่า kernicterus ส่งผลให้พัฒนาการล่าช้ากว่าปกติ และอาจมีระดับสติปัญญาลดลงด้วย^{11,12} นอกจากนี้มีรายงานว่าการเพิ่มขึ้นของ reticulocytes จำนวนมากในทารกแรกเกิดอาจขัดขวางต่อการวินิจฉัยภาวะพร่องเอนไซม์ G-6-PD ได้เนื่องจาก reticulocytes มีเอนไซม์ G-6-PD ในปริมาณที่สูงกว่าเม็ดเลือดแดงที่โตเต็มวัย^{13,14} ในการศึกษานี้จึงมีวัตถุประสงค์เพื่อศึกษาความสัมพันธ์ระหว่างดัชนีการสร้างเตติคิวโลไซต์กับภาวะพร่องเอนไซม์ G-6-PD ในทารกแรกเกิดโรงพยาบาลสระบุรี เพื่อประโยชน์ในการวินิจฉัยและรักษาของแพทย์ได้ทันเวลา

วัตถุประสงค์ (Objectives)

1. เพื่อศึกษาความสัมพันธ์ระหว่างตัวชี้วัดการสร้างเรติคิวโลไซต์กับภาวะพร่องเอนไซม์ G-6- PD ในทารกแรกเกิด โรงพยาบาลสาระบุรี
2. เพื่อศึกษาความชุกของภาวะพร่องเอนไซม์ G-6-PD ในทารกแรกเกิด ที่ส่งตรวจทางห้องปฏิบัติการเทคนิคการแพทย์ โรงพยาบาลสาระบุรี ระหว่างเดือนกรกฎาคม 2565 ถึง เดือนอันดับเดือน 2565

วิธีการวิจัย (Materials & Methods)

กลุ่มตัวอย่าง (Subjects)

ข้อมูลผลการตรวจทางห้องปฏิบัติการได้แก่ G-6-PD, Hemoglobin, Hematocrit และ Reticulocyte count ที่แผนกทารกแรกเกิด (Neonatal intensive care unit; NICU) โรงพยาบาลสระบุรี ที่มีการเจาะเก็บเลือดใส่สารกันเลือดแข็ง EDTA เพื่อส่งตรวจทางห้องปฏิบัติการโลหิตวิทยาและจุลทรรศน์ศาสตร์คลินิก โรงพยาบาลสระบุรี ระหว่างเดือนกรกฎาคม 2565 ถึงเดือนธันวาคม 2565 จำนวนทั้งหมด 295 ตัวอย่าง

เกณฑ์คัดเข้า (inclusion criteria) คือ ผลการตรวจเลือดเพื่อหา เอนไซม์ G-6-PD, Hemoglobin, Hematocrit, Reticulocyte count Index โดยเครื่องตรวจวิเคราะห์ careSTAT G6PD Biosensor และเครื่องวิเคราะห์เม็ดเลือดอัตโนมัติ Sysmex XN-3000 ของทารกแรกเกิด เพศหญิงและเพศชายซึ่งคลอดที่โรงพยาบาลสระบุรี มีอายุระหว่าง 1 ถึง 6 วัน

เกณฑ์คัดออก (exclusion criteria) ไม่มี

การคำนวณค่า Reticulocyte Production Index (RPI)

คำนวณจาก corrected reticulocyte count และ maturation time ดังสูตรคำนวณ

$$\text{Corrected reticulocyte count} = \text{Reticulocyte count} \times (\text{Patient's Hct.} / \text{Normal Hct.})$$

$$\text{Reticulocyte Production Index} = \frac{\text{Corrected reticulocyte count} (\%)}{\text{Maturation time in peripheral blood (day)}}$$

การวิเคราะห์ข้อมูลทางสถิติ (Statistical Analyses)

วิเคราะห์ข้อมูลโดยการศึกษาเชิงวิเคราะห์แบบย้อนหลัง เพื่อถูกความสัมพันธ์ระหว่างตัวนี้การสร้าง reticulocyte กับภาวะพร่องเอนไซม์ G-6- PD ในทารกแรกเกิด โรงพยาบาลสระบุรี และเพื่อถูกต้องการตรวจพบภาวะพร่องเอนไซม์ G-6-PD ในทารกแรกเกิด คิดเป็นร้อยละของจำนวนตัวอย่างที่ทำการศึกษา สำหรับค่า Hemoglobin, Hematocrit และ Reticulocyte Production Index (RPI) รายงานเป็นค่า Mean, SD โดยใช้สถิติ independent t-test โปรแกรมสำเร็จรูป IBM SPSS Statistics เวอร์ชัน 29.0.1.0 ในการเปรียบเทียบความแตกต่างระหว่างกลุ่ม โดยกำหนดนัยสำคัญทางสถิติที่ $p\text{-value} < 0.05$

จริยธรรมการวิจัย (Ethical Considerations)

การวิจัยนี้ผ่านการรับรองตามมาตรฐานการปฏิบัติงานจริยธรรมการวิจัยในมนุษย์ โรงพยาบาลสระบุรี เลขที่โครงการวิจัย SRBR65-027 ข้อมูลจากการวิจัยครั้งนี้ถือเป็นความลับและจะแสดงผลการวิจัยในภาพรวมเพื่อประโยชน์ในเบื้องต้นของผลการตรวจวิเคราะห์ทางห้องปฏิบัติการเท่านั้น

ผลการศึกษา (Results)

ผลการศึกษาจากกลุ่มตัวอย่าง จำนวน 295 ราย เป็นทารกเพศชาย 166 ราย (56.27%) และทารกเพศหญิง 129 ราย (43.73%) พบ tharokที่มีภาวะพร่องเอนไซม์ G-6-PD จำนวน 45 ราย (15.25%) เป็นทารกเพศชาย 35 ราย (77.78%) และเพศหญิง 10 ราย (22.22%) จากการวิเคราะห์ข้อมูลผลตรวจนิวเคราะห์เอนไซม์ G-6-PD, Hemoglobin, Hematocrit และ Reticulocyte Production พบว่า เพศชายมีความถี่ของ Deficiency สูงกว่าเพศหญิง แสดงให้เห็นว่าผลการตรวจ G6PD สำหรับเพศชายมีแนวโน้มที่จะพบ Deficiency มากกว่าเพศหญิงที่ $p = 0.0016$ และ กลุ่มภาวะพร่องเอนไซม์ G-6-PD และกลุ่ม G-6-PD ปกติ มีค่า RPI มีค่าแตกต่างกันอย่างไม่มีนัยสำคัญทางสถิติ ($p = 0.512$) พบค่า Hb และ Hct ในกลุ่มที่มีภาวะพร่องเอนไซม์ G-6-PD ปกติ มีค่าต่ำกว่ากลุ่ม G-6-PD ปกติ อย่างมีนัยสำคัญทางสถิติ ($p = 0.031$ และ 0.042) ตามลำดับ ดังแสดงในตารางที่ 1

ตารางที่ 1 แสดงความสัมพันธ์ระหว่างเพศ ผลการตรวจทางห้องปฏิบัติการระหว่างกลุ่มภาวะพร่องเอนไซม์ G-6-PD และ กลุ่ม G-6-PD ปกติ

	ตัวแปร	Total (n = 295)	Complete/Partial deficiency (n = 45)	Normal (n = 250)	p-value
เพศ					0.0016*
	ชาย, n (%)	166 (56.27)	35 (77.78)	131 (52.40)	
	หญิง, n (%)	129 (43.73)	10 (22.22)	119 (47.60)	
ผลการตรวจทางห้องปฏิบัติการ					
	Hemoglobin, g/dL (mean \pm SD)		16.98 \pm 2.51	17.91 \pm 2.69	0.031
	Hematocrit, % (mean \pm SD)		48.02 \pm 6.97	50.39 \pm 7.12	0.042
	Reticulocyte production index, % (mean \pm SD)		2.99 \pm 1.81	4.15 \pm 1.12	0.512

อภิปรายผล (Discussion)

การศึกษาครั้งนี้พบว่าสัดส่วนระหว่างเพศชายต่อเพศหญิงในกลุ่มพร่องเอนไซม์ G-6-PD พบว่ามีความชุกในอัตราส่วน 3.5 ต่อ 1 ดัชนีการสร้างเรติคิวโลไซต์ (RPI) ระหว่างกลุ่มภาวะพร่องเอนไซม์ G-6-PD และกลุ่ม G-6-PD ปกติ พบว่าแตกต่างกันอย่างไม่มีนัยสำคัญทางสถิติ โดยกลุ่มภาวะพร่องเอนไซม์ G-6-PD และกลุ่มที่ G-6-PD ปกติ มีค่า RPI $> 3\%$ ซึ่งประเมินได้ว่าเด็กแรกเกิดทั้งสองกลุ่มมีไข้ระดูที่เร่งการสร้างเซลล์เม็ดเลือดแดงเพื่อตอบสนองภาวะโลหิตจาง เพื่อชดเชยการแตกของเม็ดเลือดแดง และทารกแรกเกิดในกลุ่มที่เอนไซม์ G-6-PD ปกติ อาจเป็นโรคที่อยู่ในกลุ่ม Hemolytic anemia ชนิดอื่น ซึ่งต้องมีการให้การตรวจและรักษาของแพทย์ต่อไป

ผู้ป่วยที่มีภาวะ Hemolytic anemia และ acute hemorrhage มีค่า reticulocyte count หรือค่า RPI ที่สูงขึ้น มีค่า RPI $> 3\%$ ที่มีภาวะโลหิตจางบ่งชี้ถึงการสูญเสียเซลล์เม็ดเลือดแดง (จากสาเหตุต่าง ๆ เช่น การทำลาย เลือดออก ฯลฯ) โดยมีการผลิต reticulocytes ชดเชยที่เพิ่มขึ้นเพื่อทดแทนเซลล์เม็ดเลือดแดงที่สูญเสียไป¹⁵ สำหรับการผลิตเซลล์เม็ดเลือดแดง ซึ่งค่า RPI ควรอยู่ระหว่าง 0.5% ถึง 2.5% สำหรับบุคคลที่มีสุขภาพดี ส่วนค่า RPI $< 2\%$ ที่มีภาวะโลหิตจางบ่งชี้ถึงความผิดปกติของการเจริญเติบโต ซึ่งหมายถึงการสูญเสียเซลล์เม็ดเลือดแดง แต่ยังลดการผลิต reticulocytes (เช่น การตอบสนองที่ไม่เพียงพอในการแก้ไขภาวะโลหิตจาง)

การพร่องเอนไซม์จิจิกพีดีหรือ G-6-PD deficiency ที่รุนแรงอาจทำให้เกิดโลหิตจางได้ ซึ่งเป็นสาเหตุหนึ่งที่ทำให้เด็กทารกแรกเกิดเหลืองได้ G-6-PD deficiency จัดเป็น Hemolytic anemia ซึ่งไขกระดูกยังเร่งสร้างเม็ดเลือดแดงขึ้นเพื่อทดเชยส่วนที่เสียไปได้อย่างรวดเร็ว ก็จะทำให้เกิดภาวะโลหิตจางจากการแตกของเม็ดเลือดแดงเนื่องจากการพร่อง G-6-PD กลับคืนเป็นปกติได้อย่างรวดเร็ว

ข้อมูลจากการศึกษาครั้งนี้ทำให้ทราบถึงความชุกของภาวะการพร่อง G-6-PD และความสัมพันธ์ระหว่างดัชนีการสร้าง reticulocyte กับภาวะพร่องเอนไซม์ G-6-PD ในทารกแรกเกิด โรงพยาบาลสระบุรี ดังนั้นก่อนอนุญาตให้ผู้ป่วยกลับบ้าน ควรให้ความรู้เรื่องภาวะพร่องเอนไซม์ G-6-PD พร้อมทั้งให้ความรู้เรื่องอาหารและยาที่เด็กไม่ควรได้รับ สิ่งที่กระตุ้นที่ทำให้เกิดอาการทางคลินิกในผู้ป่วยมีภาวะพร่องเอนไซม์ G-6-PD ได้แก่

- อาหาร โดยเฉพาะถั่วปากอ้า ซึ่งมีสาร Vicine, Decinine, Convicine และ Isouramil ซึ่งเป็นสารอนุมูลอิสระ (Oxidants)
- การติดเชื้อโรคต่างๆ ซึ่งจะทำให้เซลล์เม็ดเลือดขาว หลังสารอนุมูลอิสระ (Oxidants) มากขึ้น
- การเป็นโรคเบาหวานที่ทำให้เกิดกรด (Diabetic ketoacidosis)
- การได้รับยาต่าง ๆ

สรุปผล (Conclusion)

การศึกษาครั้งนี้แสดงให้เห็นถึงความสัมพันธ์ระหว่างค่า RPI กับภาวะพร่องเอนไซม์ G-6-PD ของทารกแรกเกิดในโรงพยาบาลสระบุรี กรณีทารกแรกเกิดที่มีภาวะพร่องเอนไซม์ G-6-PD มีค่า RPI $> 3\%$ และว่าเป็นภาวะโลหิตจางที่มีการสร้าง reticulocyte ขึ้นมากเชย เพื่อทดแทนเซลล์เม็ดเลือดแดงที่สูญเสียไป นอกจากนั้นเมื่อคิดสัดส่วนความชุกของกลุ่มพร่องเอนไซม์ G-6-PD ระหว่างทารกแรกเกิดเพศชายต่อเพศหญิงในโรงพยาบาลสระบุรี พบว่ามีความชุกในอัตราส่วน 3.5 ต่อ 1 ดังนั้นการศึกษาในครั้งนี้ยังสามารถทำนายการทำงานของไขกระดูกได้เบื้องต้น ทั้งนี้จะเป็นประโยชน์แก่แพทย์ในการดูแลรักษาผู้ป่วยต่อไป

กิตติกรรมประกาศ (Acknowledgements)

งานวิจัยฉบับนี้สำเร็จลุล่วงได้ด้วยดี โดยได้รับความกรุณาจาก คุณเกรียงไกร กล้าประจันทร์ นักเทคนิคการแพทย์ชำนาญ การพิเศษ หัวหน้ากลุ่มงานเทคนิคการแพทย์และพยาธิวิทยาคลินิก โรงพยาบาลสระบุรี คุณพงษ์ชัย คำพรหม นักเทคนิคการแพทย์ ชำนาญการ หัวหน้าห้องปฏิบัติการเคมีคลินิก กลุ่มงานเทคนิคการแพทย์และพยาธิวิทยาคลินิก โรงพยาบาลสระบุรี และขอขอบคุณ เพื่อนร่วมงานโลหิตวิทยาและจุลทรรศนศาสตร์คลินิก โรงพยาบาลสระบุรีทุกท่าน ที่ช่วยเหลือและสนับสนุนการทำวิจัยในครั้งนี้ และ ทำให้งานวิจัยครั้งนี้สำเร็จด้วยดี

เอกสารอ้างอิง (References)

1. สารคด พรประเสริฐ. ภาวะโลหิตจางและการตรวจวินิจฉัยทางห้องปฏิบัติการ. แขนงวิชาจุลทรรศนศาสตร์คลินิก ภาควิชาเทคนิคการแพทย์ คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่. 2552;26-28
2. Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 2008; 371:64-74.
3. Nuchprayoon I, Sanpavat S, Nuchprayoon S. Glucose-6-phosphate dehydrogenase (G6PD) mutations in Thailand: G6PD
4. นายแพทย์กิตติ ต่อจรัส. แพทย์หญิงพิมพ์ลักษณ์ เจริญขวัญ.แนวทางตรวจปฏิบัติสำหรับการรักษาภาวะโลหิตจางและราลัสซีเมีย, สมาคมโลหิตวิทยาแห่งประเทศไทย; 2562
5. Wasi P, Na-Nakorn S, Suingdumrong A. Studies of the distribution of haemoglobin E, thalassaemias and glucose-6-phosphate dehydrogenase deficiency in north-eastern Thailand. Nature 1967; 214:501-2.
6. Betke K, Brewer GJ, Kirkman HN, Luzzatto L, Motulsky AG, Ramont B, et al. Standardization of procedure for the study of glucose-6-phosphate-dehydrogenase: report of a WHO Scientific Group. WHO Tech RepSer 1979; 366:1-53.
7. Tachavanich K, Viprakasit V, Pung-Amritt P, Veerakul G, Chansing K, Tanphaichitr VS. Development of a comprehensive red blood cell enzymopathy laboratory in Thailand: the study of normal activity in eight erythroenzymes in Thais. Southeast Asian J Trop Med Public Health 2009;40:317-26.
8. Minucci A, Giardina B, Zuppi C, Capoluongo E. Glucose-6-phosphate dehydrogenase laboratory assay: How, when, and why? IUBMB Life. 2009; 61:27-34.
9. WHO working group. G-6-PD deficiency. Bull WHO. 1989 67: 601-11.
10. วนิดา (อัศวามหาศักดา) อิฐรัตน์. โลหิตวิทยาทั้นยุค. 2545; 1: 190-3.
11. ไพบูลย์ ศรีตุลานนท์, อภิชาต เลิศนิมานรดี, วิจารณ์ พานิช, การศึกษาภาวะพร่องเอนไซม์กลูโคส-6-ฟอสเฟต ดีไฮดรอเจนเอนส์ในประเทศไทย ปริมาณเอนไซม์ในเกรดเลือดเมื่อเทียบกับเม็ดเลือดแดง. สารคิริราช. 2513; 10:1137-49.
12. Access Bio, Inc. care START G6PD Biosensor – Access Bio. สืบคันเมื่อ 14 มีนาคม 2565. จากเว็บไซต์: <https://accessbio.net/products/analyzers/care-start-g6pd-biosensor>.
13. ยุพิน อนิวรรตตองกุร, ชวิติ กาญจน์เพชรรัตน์, สุทธิพรรณ ประสาทแก้ว. การนับจำนวนเรติคูโลซัยท์. ภาควิชาจุลทรรศน์คลินิก คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น, 2532; 76-9.
14. Kaplan M, Beutler E, Vreman HJ et al. Neonatal hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient heterozygote. Pediatrics 1999; 104: 68-74.
15. Tuchinda S, Ruvkunagel DL, Na-Nakorn S, Wasi P. Thai variant and the distribution of alleles of glucose-6-phosphate dehydrogenase deficiency in Thailand. Biochem Genet 1968; 2: 253-64.
16. Simmon A, Statland BE. Hematology: A combined theoretical and technical approach. 2nd ed. Oxford: Butterworth-Heinemann 1977: 273-4.