

Expression of NY-ESO1 Protein in Multiple Myeloma

Kanet Kanjanapradit, M.D.¹, Natsuda Parinyacupt, M.D.², Pongtep Viboonjuntra, M.D.³

¹Department of Pathology (Anatomical Pathology), Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.

²Department of Pathology (Anatomical Pathology), Songkhla Hospital, Mueang, Songkhla 90100, Thailand.

³Division of Clinical Hematology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.

ABSTRACT

Objective: To evaluate the proportion of New York esophageal squamous cell carcinoma 1 (NY-ESO1) protein expression, via immunohistochemistry staining in bone marrow of multiple myeloma patients. Additionally, to correlate the expression with clinical data and survival outcomes.

Material and Methods: The study population were multiple myeloma patients, diagnosed by bone marrow biopsy in Songklanagarind hospital; from 2012 and 2015. The clinical data and survival outcomes were collected. All cases were stained with NY-ESO1 (E978) antibody and interpreted by one pathologist and a resident.

Results: There were 61 patients that reached the criteria for this study. NY-ESO1 expression was detected in 4 of 61 cases (6.6%). The expression of NY-ESO1 was associated with serum albumin levels (p -value<0.01). However, no association between NY-ESO1 expression nor survival outcome was identified by survival analysis.

Conclusion: NY-ESO1 immunostaining showed low percentages of expression in multiple myeloma neoplastic cells, and was not associated with survival outcome.

Keywords: immunohistochemistry; multiple myeloma; NY-ESO1; survival

Corresponding author: Asst. Prof. Kanet Kanjanapradit, M.D.

Department of Pathology (Anatomical pathology), Faculty of Medicine,
Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.

E-mail: kankanet99@hotmail.com

doi: 10.31584/psumj.2025276780

<https://he01.tci-thaijo.org/index.php/PSUMJ/>

PSU Med J 2025;5(2):53-59

Received 23 January 2025

Revised 9 April 2025

Accepted 15 April 2025

Published online 22 August 2025

INTRODUCTION

Multiple myeloma (MM) is a malignant disease characterized by proliferation of clonal plasma cells in bone marrow having secreted monoclonal immunoglobulins in serum and/or urine. From 1990 to 2016, the incidence of multiple myeloma has increased by 126%, with deaths increasing by 94%^{1,2}.

The diagnostic criteria for multiple myeloma is based on the revised international staging system for multiple myeloma². Treatments for multiple myeloma are a combination of alkylating agents with corticosteroids, and bone marrow transplantation³; wherein, Radiation Therapy (RT) plays a role for palliative treatment of plasma cell myeloma^{4,5}. Recently, newly immunotherapeutic drugs have been invented, after discovery of tumor antigens and their immune response⁶. These drugs significantly improve the survival outcome of patients⁷⁻¹⁰.

Cancer testis antigens (CTA) are one such candidate target for immunotherapy, due to being tumor-specific and immunogenicity. These antigens express in many tumors; however, they only express in some normal tissues; such as testis and placenta¹¹. The expressional control of CTA is associated with epigenetic alteration, DNA demethylation, histone modification and is miRNA-mediated¹²⁻¹⁷.

New York esophageal squamous cell carcinoma (NY-ESO1) is one such CTA antigen¹⁸⁻²⁰. The NY-ESO1 gene is on chromosome Xq28²¹; additionally, this protein expression is found in normal testicular tissue as well as many tumor cells²². The expression of NY-ESO1 in MM is found in about 9.7-40.0% of cases²³⁻²⁶. NY-ESO 1 plays a role in cell proliferation in both stem cells and tumor cells^{27,28}. Additionally, NY-ESO1 can elicit in both cellular and humoral immune responses²⁹. Serum NY-ESO1 antibodies have been identified in many tumors; including multiple myeloma³⁰⁻³². The cytotoxic T lymphocyte that is induced by NY-ESO1 demonstrates a killer effect on tumor cells that was stronger than that of the control group in vitro studies. Therefore, NY-ESO1 may be a

good candidate target for immunotherapy, because of widespread expression, limited off-target toxicities and strong immunogenic to boost immune properties^{33,34}. There have been many studies regarding the correlation between NY-ESO1 expression and histopathological factors in many cancers^{35,36}. For multiple myeloma, the expression of NY-ESO1 is related to relapsed disease; however, its role as a prognostic marker is still unclear³⁷.

Hence, the objective of this study was to identify the expression of NY-ESO1 protein, via immunostaining in the bone marrow of MM patients; in addition to correlate the expression with clinical and survival outcomes.

MATERIAL AND METHODS

Population and sample

Patients were retrospectively selected from the database of the Department of Pathology, Songklanagarind Hospital; from January 2012 until December 2015, with clinicopathology data being collected. The inclusion criteria were: patients that were diagnosed as multiple myeloma by bone marrow biopsy in Sonklanagarind Hospital, and had adequate paraffin-embedded tissue for immunostaining. The exclusion criteria were: patients having had prior chemotherapy, second primary cancer and inadequate tissue for immunostaining. This study was approved by the Ethical committee of the Faculty of Medicine, Prince of Songkla University (Rec. 62-170-5-1)

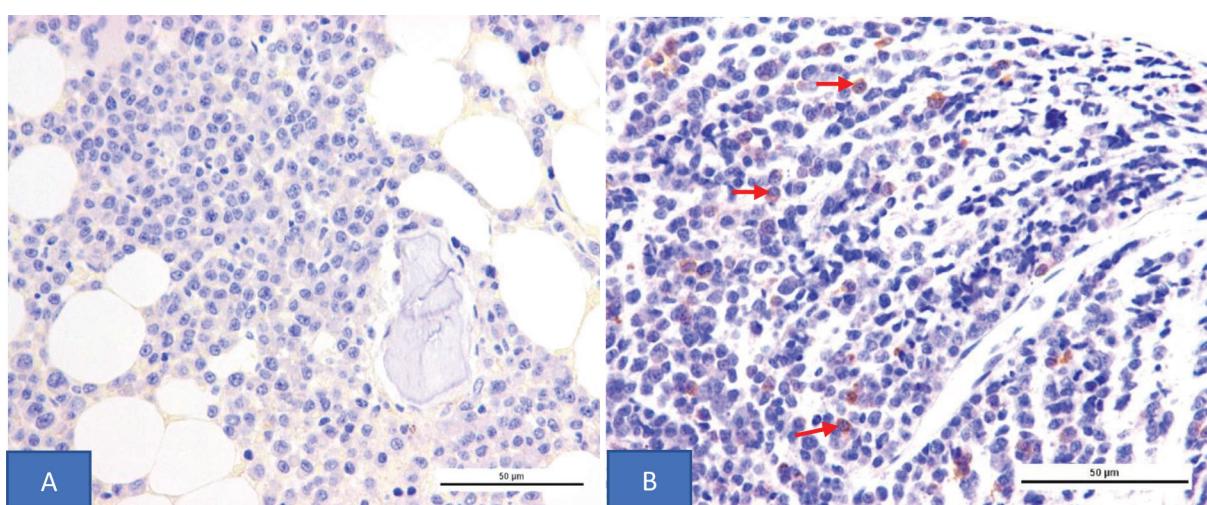
Immunohistochemistry

The paraffin block was sectioned into a 2 μ m unstained slide and baked in a microwave oven for approximately 10 minutes. Then, the slide was deparaffinized with xylene and rehydrated with ethyl alcohol. All sections were stained with monoclonal mouse primary antibodies to NY-ESO1 (clone E978). Staining was performed with the Leica BOND-MAX automated immunostainer. All sections were examined by one general pathologist and one pathological resident. The percentage

of immunoreactive cells and staining intensity were evaluated in the most representative area. The proportion between immunoreactive cells (cytoplasmic staining and/or nucleus) and all plasma cells was scored as 5 groups (score 0: <5%, score 1: 5% to <25%, score 2: 25% to <50%, score 3: 50 to <75%, and score 4: 75–100%). The intensity was scored from 0–3 (0=negative, 1=weak, 2=moderate, and 3=strong staining). The total scores were calculated by summation of the proportion score and intensity score. Cases with a total score ≥ 3 were interpreted as positive staining (Figure 1)³⁸.

Statistical analysis

Clinicopathological characteristics of the patients are presented in percent, mean and median, and compared using Ordinary least squares (OLS) regression. The Kaplan–Meier method was used to estimate the overall survival (OS) distributions, and the log-rank test was performed to compare the survival difference in each group. Differences were considered statistically significant when the p-value was less than 0.05. All statistical analyses were calculated by R studio program 3.3.1.


RESULTS

Clinicopathological data

The clinicopathological data of patients having results of NY-ESO1 staining are summarized in Table 1. There were 4 cases (6.6%) that demonstrated NY-ESO1 positive staining. No association between clinical variables and NY-ESO1 expression were identified: except serum albumin levels. Serum albumin levels in the negative staining group were higher than those of the positive staining group (p-value<0.01). Most of the patients were in tumor stage 3.

Survival analysis

Log-rank test revealed no statistical significance between survival time of NY-ESO1 positive and negative patients (p-value=0.69) (Figure 2). Additionally, univariate analysis showed no statistical significance between survival time and NY-ESO1 immunostaining results (p-value=0.99) (Table 2). The clinical factors, laboratory results and type of treatment were not associated with clinical outcome by statistical analysis. Multivariate analysis could not be evaluated due to insufficient positive cases for calculation.

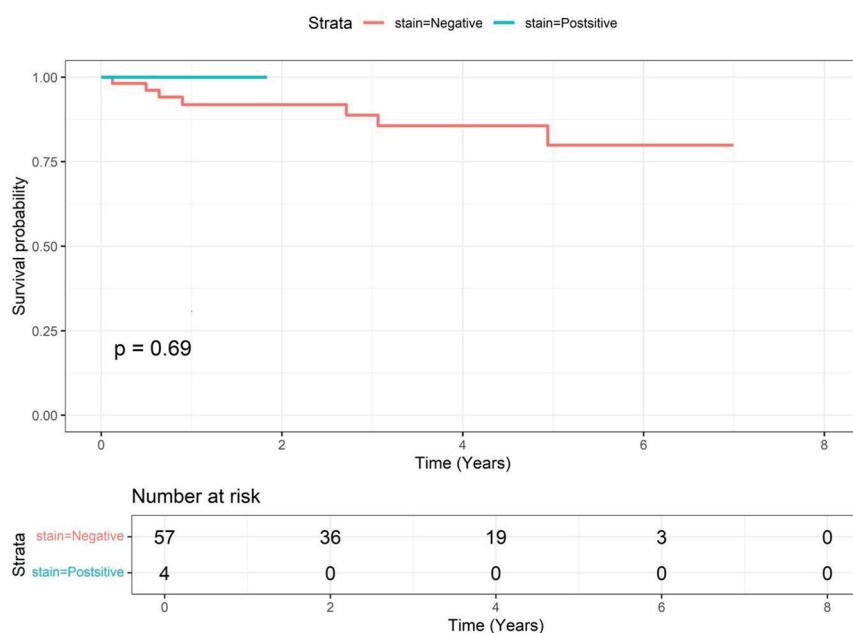


Figure 1 (A) NY-ESO1 immunohistochemistry staining showed negative results in the bone marrow of multiple myeloma patients (B) NY-ESO1 immunohistochemistry staining showed positive staining in cytoplasm of plasma cells (arrow)

Table 1 Demographic data of patients and New York esophageal squamous cell carcinoma 1 (NY-ESO1) immunostaining results

Variable	NY-ESO1 negative (n=57)	NY-ESO1 positive (n=4)	p-value*
Age	39–87 year (Mean 61.80)	43–76 (Mean 59.50)	0.68
Gender			
Male	26 (45.6%)	3 (75.0%)	0.34
Female	31 (54.4%)	1 (25.0%)	
Stage			
I	7 (12.3%)	1 (25.0%)	0.60
II	18 (31.6%)	1 (25.0%)	
III	32 (56.1%)	2 (50.0%)	
Serum Beta2 microglobulin (median)	5.6 mg/L (IQR=4.1, 9.6)	4.2 mg/L (IQR=4.3, 15.7)	0.69
Serum albumin (mean)	3.4 g/dL (S.D.=0.7)	2.4 g/dL (S.D.=0.9)	0.004
Serum creatinine (median)	1.1 mg/dL (IQR=0.8, 1.8)	1.1 gm/dL (IQR=0.9, 1.5)	1
Treatment			
Chemotherapy	26 (45.6%)	2 (50.0%)	1
Immunotherapy	23 (40.5%)	2 (50.0%)	
Bone marrow transplant	8 (13.9%)	0 (0.0%)	
Light chain restriction			
Kappa	34 (59.6%)	2 (50.0%)	1
Lambda	23 (40.4%)	2 (50.0%)	
Status after treatment			0.74
Alive	15 (26%)	0 (0.0%)	
Death	7 (12%)	0 (0.0%)	
Unknown	35 (62%)	4 (100.0%)	

*statistical significance at a p-value<0.05

Figure 2 Kaplan-Meier curve showed no statistical difference between survival time of New York esophageal squamous cell carcinoma 1 (NY-ESO1) positive and negative patients

Table 2 Univariate analysis (Cox's proportional hazard model) of demographic data and New York esophageal squamous cell carcinoma 1 (NY-ESO1) immunostaining results

Variable	Hazard ratio (95% CI)	p-value (Wald's test)
Age	1.02 (0.94, 1.1)	0.61
Gender (male vs female)		
Male	Ref=1	
Female	5.63 (0.67, 47.04)	0.11
Stage		
Stage I and II	Ref=1	
Stage III	1.34 (0.3, 6.01)	0.71
Serum Beta2 microglobulin (median)	0.99 (0.91, 1.07)	0.73
Serum albumin (mean)	1.78 (0.55, 5.78)	0.34
Serum creatinine (median)	0.86 (0.51, 1.44)	0.56
Treatment		
Chemotherapy	Ref=1	
Immunotherapy	2.04 (0.37, 11.18)	0.41
Bone marrow transplant	1.07 (0.1, 11.96)	0.95
Light chain restriction		
Kappa	Ref=1	
Lambda	1.30 (0.29, 5.83)	0.73
NY-ESO1 results		
Negative	Ref=1	
Positive	0 (0, Inf)	0.99

95% CI=95% confidence interval

DISCUSSION

NY-ESO1 protein expression in this study (6.6%) was lower than the range of expression in previous studies (9.7–40%^{22–26}). NY-ESO1 plays a role in decreasing cell cycle progression. Expression of NY-ESO1 protein was found in multiple myeloma patients, with advanced stage disease having cytogenetic abnormalities³⁷. In this study, approximately 50% of positive NY-ESO1 positive cases were in the advanced stage; this correlates with other studies. Decreasing NY-ESO1 expression inhibited multiple myeloma growth and osteolytic lesions. On the other hand, high NY-ESO1 expression was associated with relapsing multiple myeloma. Thus, NY-ESO1 plays a role in cell cycle progression, which could explain the poor outcome of the patients³⁹. However, the results of this study showed no

correlation between clinical characteristics and expression of NY-ESO1. These results could be from the limitation of the small number of cases; hence, the need for confirmation in further studies having a larger group of this population.

NY-ESO1 expression in this study showed an inverse correlation with serum albumin levels; however, an explanation for this correlation is still unclear. There has been a study that showed correlation between low serum albumin levels and high serum levels of interleukin-6 (IL-6) that promoted proliferation of plasma cells in bone marrow. Low levels of serum albumin have also been associated with poor prognostic outcomes⁴⁰. Expression of NY-ESO1 in neoplastic plasma cells might represent the high aggressiveness of neoplastic cells that are associated with increased levels of IL-6, and may indirectly decrease the level of serum albumin. However, due to the limited number of NY-ESO1 expression cases, the correlation between NY-ESO1 expression and serum albumin could not be completely concluded. Hence, further studies to evaluate the correlation between serum IL-6 and expression of NY-ESO1 is required to confirm this hypothesis.

The limitations of this study were its small population, and no positive NY-ESO1 cases being followed up for more than 3 years. Therefore, multivariate analysis could not be calculated. Furthermore, the number of NY-ESO1 expression cases in this study were limited to 4 cases. As this might affected the survival analysis further studies containing a large population group is suggested to improve power of the study.

CONCLUSION

The expression of the NY-ESO1 protein in MM patients was low, and was not associated with survival time.

ACKNOWLEDGEMENT

This research was supported by the Department of Pathology (Anatomical Pathology), Sonklanagarind Hospital; Thailand.

FUNDING SOURCES

Faculty of Medicine, Prince of Songkla University.

CONFLICT OF INTEREST

No conflicts of interest to be declared.

REFERENCES

- Röllig C, Knop S, Bornhäuser M. Multiple myeloma. *The Lancet* 2015;385:2197–208.
- Cowan AJ, Allen C, Barac A, Basaleem H, Bensenor I, Curado MP, et al. Global burden of multiple myeloma: a systematic analysis for the global burden of disease study 2016. *JAMA Oncol* 2018.
- Sureda A, Dreger P, Bishop MR, Kroger N, Porter DL. Prevention and treatment of relapse after stem cell transplantation in lymphoid malignancies. *Bone Marrow Transplant* 2018.
- Rades D, Conde-Moreno AJ, Cacicedo J, Segedin B, Rudat V, Schild SE. Excellent outcomes after radiotherapy alone for malignant spinal cord compression from myeloma. *Radiother Oncol* 2016;50:337–40.
- Tsang RW, Campbell BA, Goda JS, Kelsey CR, Kirova YM, Parikh RR, et al. Radiation therapy for solitary plasmacytoma and multiple myeloma: guidelines from the international lymphoma radiation oncology group. *Int J Radiat Oncol Biol Phys* 2018;101:794–808.
- Vinay K, Abbas AK, Fausto N, Robbins SL, Cotran RS. Robbins and cotran pathologic basis of disease. In: Rinay K, editor. 9th ed. Philadelphia: Elsevier Saunders; 2015;p.310–2.
- Abramson HN. The multiple myeloma drug pipeline–2018: a review of small molecules and their therapeutic targets. *Clin Lymphoma Myeloma Leuk* 2018;18:611–27.
- Gerecke C, Fuhrmann S, Strifler S, Schmidt-Hieber M, Einsele H, Knop S. The diagnosis and treatment of multiple myeloma. *Dtsch Arztebl Int* 2016;113:470–6.
- Kazandjian D, Ola L. A look backward and forward in the regulatory and treatment history of multiple myeloma: approval of novel–novel agents, new drug development, and longer patient survival. *Seminars in Oncology* 2016;43:682–9.
- Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. *N Engl J Med* 2015;373:1207–19.
- Gjerstorff MF, Andersen MH, Ditzel HJ. Oncogenic cancer/testis antigens: prime candidates for immunotherapy. *Oncotarget* 2015;6:15772–87.
- Baljevic M, Holstein SA. Present and future of immunotherapy in the management of multiple myeloma. *J Oncol Pract* 2018;14:403–10.
- Fratta E, Coral S, Covre A, Parisi G, Colizzi F, Danielli R, et al. The biology of cancer testis antigens: putative function, regulation and therapeutic potential. *Mol Oncol* 2011;5:164–82.
- Song X, Song W, Wang Y, Wang J, Li Y, Qian X, et al. MicroRNA-874 functions as a tumor suppressor by targeting cancer/testis antigen HCA587/MAGE-C2. *J Cancer* 2016;7:656–63.
- Greve KB, Lindgreen JN, Terp MG, Pedersen CB, Schmidt S, Mollenhauer J, et al. Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability. *Mol Oncol* 2015;9:437–49.
- Por E, Byun HJ, Lee EJ, Lim JH, Jung SY, Park I, et al. The cancer/testis antigen CAGE with oncogenic potential stimulates cell proliferation by up-regulating cyclins D1 and E in an AP-1- and E2F-dependent manner. *J Biol Chem* 2010;285:14475–85.
- Kim Y, Park D, Kim H, Choi M, Lee H, Lee YS, et al. miR-200b and cancer/testis antigen CAGE form a feedback loop to regulate the invasion and tumorigenic and angiogenic responses of a cancer cell line to microtubule-targeting drugs. *J Biol Chem* 2013;288:36502–18.
- Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. *Nat Rev Cancer* 2005;5:615–25.
- Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. *Front Immunol* 2018;9:947.
- Chen YT. The journey from autologous typing to SEREX, NY-ESO-1, and cancer/testis antigens. *Cancer Immun* 2012;12:8.
- Chen YT, Boyer AD, Viars CS, Tsang S, Old LJ, Arden KC. Genomic cloning and localization of CTAG, a gene encoding an autoimmunogenic cancer-testis antigen NY-ESO-1, to human chromosome Xq28. *Cytogenet Cell Genet* 1997;79:237–40.
- Andrade VC, Vettore AL, Felix RS, Almeida MS, Carvalho F, Oliveira JS, et al. Prognostic impact of cancer/testis antigen expression in advanced stage multiple myeloma patients. *Cancer Immun* 2008;8:2.
- Atanackovic D, Arfsten J, Cao Y, Gnjatic S, Schnieders F, Bartels K, et al. Cancer–testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. *Blood* 2007;109:1103–12.
- Jungbluth AA, Ely S, DiLiberto M, Niesvizky R, Williamson B, Frosina D, et al. The cancer–testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. *Blood* 2005;106:167–74.
- de Carvalho F, Vettore AL, Inaoka RJ, Karia B, Andrade VC, Gnjatic S, et al. Evaluation of LAGE-1 and NY-ESO-1 expression in multiple myeloma patients to explore possible benefits of their homology for immunotherapy. *Cancer Immun* 2011;11:1.
- Schuberth PC, Jakka G, Jensen SM, Wadle A, Gautschi F, Haley D, et al. Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma. *Gene Ther* 2013;20:386–95.
- Cronwright G, Le Blanc K, Gotherstrom C, Darcy P, Ehnman M, Brodin B. Cancer/testis antigen expression in human

mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. *Cancer Res* 2005;65:2207-15.

28. Cho HJ, Caballero OL, Gnjatic S, Andrade VC, Colleoni GW, Vettore AL, et al. Physical interaction of two cancer-testis antigens, MAGE-C1 (CT7) and NY-ESO-1 (CT6). *Cancer Immun* 2006;6:12.
29. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. *Immunol Rev* 2002;188:22-32.
30. Stockert E, Jager E, Chen YT, Scanlan MJ, Gout I, Karbach J, et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. *J Exp Med* 1998;187:1349-54.
31. Kurashige T, Noguchi Y, Saika T, Ono T, Nagata Y, Jungbluth A, et al. Ny-ESO-1 expression and immunogenicity associated with transitional cell carcinoma: correlation with tumor grade. *Cancer Res* 2001;61:4671-4.
32. Luetkens T, Kobold S, Cao Y, Ristic M, Schilling G, Tams S, et al. Functional autoantibodies against SSX-2 and NY-ESO-1 in multiple myeloma patients after allogeneic stem cell transplantation. *Cancer Immunol Immunother* 2014;63:1151-62.
33. Liu JW, Lu X, Yang ZM, Deng LJ, Yang L. Immune effects of specific CTLs response induced by dendritic cells pulsed with NY-ESO-1 peptide. *J Pecking Univ (Health Sci)* 2017;49:840-6.
34. Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, et al. Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. *Proc Natl Acad Sci USA* 2000;97:4760-5.
35. Napoletano C, Bellati F, Tarquini E, Tomao F, Taurino F, Spagnoli G, et al. MAGE-A and NY-ESO-1 expression in cervical cancer: prognostic factors and effects of chemotherapy. *Am J Obstet Gynecol* 2008;198:e1-7.
36. Szender JB, Papanicolau-Sengos A, Eng KH, Miliotto AJ, Lugade AA, Gnjatic S, et al. NY-ESO-1 expression predicts an aggressive phenotype of ovarian cancer. *Gynecol Oncol* 2017;145:420-5.
37. van Rhee F, Szmania SM, Zhan F, Gupta SK, Pomtree M, Lin P, et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. *Blood* 2005;105:3939-44.
38. Iura K, Kohashi K, Hotokebuchi Y, Ishii T, Maekawa A, Yamada Y, et al. Cancer-testis antigens PRAME and NY-ESO-1 correlate with tumour grade and poor prognosis in myxoid liposarcoma. *J Pathol Clin Res* 2015;1:144-59.
39. Li F, Zhao F, Li M, Pan M, Shi F. Decreasing New York esophageal squamous cell carcinoma 1 expressin inhibits multiple myeloma growth and osteolytic lesions. *J Cell Physiol* 2020;235:2183-94.
40. Kim EJ, Yoo C, Lee DH, Kim SW, Lee JS, Suh C. Serum albumin level is a significant prognostic factor reflecting disease severity in symptomatic multiple myeloma. *Ann Hematol* 2010;89:391-7.