

The Root Length Changes after Protraction of Mandibular Molars Combined with Corticotomy Assisted by Bone Grafting: 5 Year CBCT Follow-Up

Kongraphan P* Samruajbenjakun B**

Abstract

The aim of this study was to determine root length changes following mandibular second molar protraction into a first molar space after corticotomy and bone grafting. The protraction of mandibular second molars into atrophic edentulous spaces were conducted in 16 patients with a mean age at initial treatment of 25.69 years old. The corticotomy and bone grafting were completed before second molar tooth movement. The root length changes of the mesial root of the mandibular second molar were measured by cone beam computed tomography (CBCT) at initial treatment (T0), 3 months after space closure (T1), and 5 years post-treatment (T2). The paired t-test was used to analyze the mean difference between time points. The root length significantly decreased at all time points. Average root resorption at T0 to T1, T1 to T2, and T0 to T2 were 0.16, 0.67 and 0.84 mm, respectively. In conclusion, there was minor root length loss after molar protraction into an atrophic edentulous space after a corticotomy and bone grafting. Root resorption after the 5 years follow-up period was statistically higher than the protraction period.

Keywords: Molar protraction/ Root resorption/ Corticotomy/ CBCT

Received: February 02, 2020

Revised: April 30, 2020

Accepted: May 05, 2020

Introduction

Mandibular first molars are the first permanent teeth that erupt into the oral cavity when a child is six years of age. These molars are most frequently lost.¹⁻⁵ Edentulous areas of missing permanent molars can cause tipping or migration of adjacent teeth, and supra-eruption of opposing teeth, which bring about malocclusion and considerable periodontal problems.^{6,7} After extraction, bucco-lingual narrowing of the alveolar bone is normally noticed.⁸

Aside from regular prosthesis treatment, the closure of the edentulous space by a second molar protraction is an alternative treatment option, which eliminates prosthetic restoration and can preserve alveolar bone. Closing edentulous spaces in the mandibular posterior region is a major challenge. Successful outcomes are difficult to achieve. Early removal of the mandibular first molar results in both vertical and horizontal changes of alveolar bone ridge dimension, so protracting the second molar is hardly possible

because of complications. The possibility of complications such as root resorption and periodontal defects also increases with the age of the patient and the amount of space to be closed. Some investigators have even asserted that such spaces should not be closed.^{9,10} A longer treatment time is another weak point of this method. Treatment duration for closing the first molar space by protracted second molars ranges from 2 to 4 years depending on bone density, bone turnover rate, and hyalinization of the periodontal ligament (PDL).¹⁰⁻¹² The longer the treatment duration, the more molar protraction leads to periodontal problems and high risk of root resorption.

Apical root resorption is a common unpredictable problem associated with orthodontic treatment. Root resorption induced by orthodontic tooth movement is part of the hyaline zone removal process.¹³ Duration of orthodontic treatment is considered an aggravating factor that induces

* Dental Department, Sakonnakhon Hospital, Amphur Muang, Sakonnakhon.

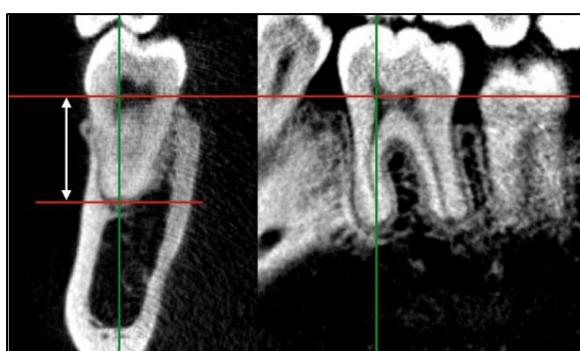
** Department of Preventive Dentistry, Faculty of dentistry, Prince of Songkla University, Hat Yai, Songkla.

root resorption. The longer the treatment duration, the greater chances of root resorption.^{14,15} Root resorption is considered as clinically important when 1-2 mm (1/4) of the root length is lost.¹⁶

Corticotomy with bone augmentation is the method provided for accelerating tooth movement.¹⁷⁻¹⁹ Bone grafting has been offered to increase alveolar bone volume, prevent dehiscence and fenestration, and increase the metabolic response during tooth movement.^{18,20} The injury from bone decortication decreases alveolar bone density (osteopenia) and thereby reduces the resistance of tooth movement.²¹ Moreover, corticotomy can enhance the remodeling of hard and soft tissue to help fasten tooth movement via the regional acceleratory phenomenon (RAP).²² No excessive pressure in the PDL occurs due to lower cortical resistance, transient osteopenia, increased local tissue turnover, and increased angiogenesis resulting in less hyalinization of the PDL.^{21,23} When the hyalinization decreases, the root resorption decreases as well.¹¹

As mentioned above, a corticotomy with bone grafting results in an increase in alveolar bone width, reduces treatment time, and decreases risk of root resorption.¹⁷⁻²³ This method is useful for patients with mandibular first molar loss as they have bone deficiency and a longer space for second molar movement. Therefore, the purpose of this study was to evaluate long-term root length changes from cone beam computed tomography (CBCT) images after a corticotomy with bone grafting for second molar protraction to close the edentulous space left by first molar extraction cases.

Materials and Methods


This retrospective study was approved by the Prince of Songkla University Faculty of Dentistry, Ethics committee (EC6107-XX-P-LR). Sixteen patients had their permanent mandibular first molar extracted, of whom fourteen were females and two were males (the mean age at initial treatment was 25.69 ± 5.49 years). From CBCT, the bucco-lingual width of medullary bone in that area was less than the bucco-lingual width of the cervical one-third of the mesial root of the mandibular second molar at the same site. In all samples, the

mandibular first molar spaces were closed by second molar protraction every 2 weeks after a corticotomy and bone grafting (the allograft was mixed with a cortical autograft). The molar protraction was performed by a segmented loop mechanic with 200 grams of force (Figure 1). Mean mandibular second molar movement was 5.09 ± 1.76 mm with a range of 3-7.5 mm. The protraction period was 7.69 ± 5.02 months. A CBCT (80 kV, 5 mA, 0.125 mm voxel resolution, and 60 x 60 mm field of view; J Morita MPG, Kyoto, Japan) was taken at initial treatment (T0), 3 months after space closure (T1), and 5 years post-treatment (T2).

Figure 1 A segmented loop mechanic was used by the 0.017" x 0.025" TMA to the mandibular second molar protraction.

Each CBCT was converted into (DICOM) Digital Imaging and Communications in Medicine files and processed by One Volume Viewer Imaging software. The three-dimensional position of the tooth was modified following Feiner's technique.²⁴ The axial slice was constructed in coordination within the dental arch. The other planes were automatically reconstructed. For accurate positioning, the buccal and lingual points of the cementoenamel junction (CEJ) of the mesial root of the second molar in the coronal plane, and the mesial and distal points of the CEJ in the sagittal plane were connected. The root length was measured at the mesial root of the second molar along the axis of the root, perpendicular to an imaginary line between the buccal and lingual of the CEJ to the apex of the tooth roots in the coronal view (Figure 2).

Figure 2 The root length was measured in the coronal view of the mesial root of the mandibular second molar from the CEJ to the apex of the tooth root (white arrow line).

CBCT measurements were measured twice by the same investigator after 4 weeks. Intraclass correlation coefficients were re-conducted for repeated assessment to examine intra-examiner reliability. Method errors were calculated by using the Dahlberg formula. The paired t-test was used to analyze the root length data at T1-T0, T2-T1, and T2-T0 of CBCT data at an alpha significance level of 0.05.

Results

The sixteen CBCT records were remeasured by the same investigator. The intraclass correlation coefficient was greater than 0.9. Consequently, the method was found to have excellent reliability. Dahlberg's formula was 0.05 mm for the distance.

The root length significantly decreased after protraction and after 5 years post-treatment, with an average of 0.16 mm (1.29%) and 0.67 mm (5.08%), respectively. The overall root length loss was an average of 0.84 mm (6.31%) from T0 to T2 (Table 1). From T0 to T1, all molars had a root resorption of less than 1 mm. From T1 to T2, 75% of molars had root resorption of less than 1 mm. From the total of T0 to T2, 68.75% had less than 1 mm root resorption and none of the molars had more than 2 mm resorption.

Table 1 The root length changes from CBCT data at initial treatment (T0), 3 months after space closure (T1), and 5 years post-treatment (T2).

	T0	T1	T2	T1-T0	p-value	T2-T1	p-value	T2-T0	p-value
Root length mm (%)									
Mean	13.36	13.20	12.52	-0.16 (-1.29)		-0.67 (-5.08)		-0.84 (-6.31)	
SD	1.33	1.43	1.43	0.22 (1.83)	0.00**	0.55 (4)	0.00**	0.60 (4.53)	0.00**

** indicates statistical significance at $p < 0.01$

Discussion

Long and atrophic edentulous spaces at the mandibular first molar pose a challenge for orthodontists as to whether or not to move the second molar tooth into the limited bone condition space. Some orthodontists believe that space closure of the edentulous molar area is impossible or undesirable with limited orthodontic movement. For instance, Graber stated that movement of posterior teeth is often difficult because of the large root surface area, the high tissue resistance, and the anchorage needs involved.²⁵ Other studies found that the mandibular first molar space cannot be completely closed by protraction of the mandibular second

molar. Stepovich attempted to close first molar edentulous spaces in 8 adult patients but completed only 3, while all 8 spaces in the young adult group were closed.⁹ Hom's study reported that only 5 from 19 quadrant molar spaces were completely closed.¹⁰ Goldberge and Turley reported that from 20 quadrants, there was averaged 1 mm left in 9 quadrants.²⁶ In this study, all spaces in 16 quadrants were completely closed when applying corticotomy and bone grafting before protraction, and by using a segmented loop mechanic to move the second molar in adult patients. The corticotomy creates an osteoporosis stage in the alveolar bone and stimulates the

RAP process.¹⁸ During the RAP, alveolar bone in that area is softened by a burst of cell activity and so then moving a large anatomical tooth through the softened area is not complicated.

Previous studies evaluated the root length changes from periapical radiographs, while this study measured it from a more precise CBCT procedure.^{27,28} From systematic reviews, the CBCT is a more reliable tool to detect external root resorption than periapical radiographs.²⁸

Root resorption is a condition occurring after the hyalinization phase of orthodontic tooth movement because hyalinization causes osteoclast activity in order to eradicate the necrotic tissue and also the normal root structure nearby the hyalinization zone.^{29,30} It is considered as clinically important when 1-2 mm (1/4) of the root length is lost.³¹ The posterior teeth present a low incidence of root resorption because of the small movement distance during regular orthodontic treatment.³² However, protraction of the molar is different because the large distance required of molar tooth movement means there is a chance of losing the root structure.³³ Injury to the cortical bone by corticotomy induced the RAP response, which enhanced bone turnover and reduced bone density (transient osteopenia).²² The resistance of bone is reduced during tooth movement. When there is tooth movement through the corticotomy area, the occurrence of hyalinization decreases, leading to less root resorption.^{11,34} After corticotomy and bone grafting, an immediate heavy orthodontic force can be applied to take full advantage from the RAP effect.³⁵ In contrast to conventional treatment, the heavy force with corticotomy increased tooth movement without increasing the amount of root resorption.³⁶ In this study, using 200 grams of force following the previous study,³⁷ the mean root length significantly decreased by 0.16 ± 0.22 mm at 3 months after the protraction was completed. However, this result was less than that reported by Stepovich,⁹ Hom,¹⁰ and Kim,³⁸ which presented that the average root resorption of mandibular molars after protraction without corticotomy was 0.38, 1.3, and 0.8 mm, respectively.

Minor apical root resorption is a common consequence of orthodontic tooth movement.³⁹ The data from Sameshima and Sinclair's study was supported this claim

reporting that the root resorption of lower molars during regular orthodontic treatment was an average 0.42 ± 1.22 mm.³² In this study, the root length at T1 and T2, which was measured between 3 months after space closure and 5 years post-treatment, was reduced by 0.67 mm. Accordingly, root resorption possibly occurred due to common orthodontic tooth movement since there was orthodontic adjustment in the finishing phase after molar space closure. The effect of RAP begins within 1-3 days after injury and rises to peak at 1-2 months, and it can persist up to 6 to 24 months.²² This result may indicate that during protraction with the RAP effect from corticotomy, the resorption of the root length was slowed down. In the author's opinion, after the effect of RAP gradually decreased, the root length can be lost following orthodontic tooth movement.

The amount of tooth movement is the one of many factors that related to root resorption.^{40,41} Long distance of tooth movement causes more hyalinized tissue to be removed.³⁸ Kim stated that the small amount of root resorption in the mandibular molar protraction resulted from tooth movement through the trabecular bone during protraction.³⁸ Hence, local osteopenia situation within trabecular bone created by RAP response after corticotomy was occurred and promoted the soften trabecular bone, resulting in the fasten tooth movement. This situation also reduced hyalinization process leading to root resorption reduction.

The longer treatment time was significantly associated with increased root resorption.¹⁴⁻¹⁵ A previous study reported the rate of molar movement using skeletal anchorage was 0.33 mm/months.⁴² In this study, protraction period was 7.69 ± 5.02 months (average 0.67 mm/months). Reducing treatment duration by corticotomy may be advantageous to reduce the risk of root resorption.⁴³ However, molar protraction increased the total treatment time than conventional treatment. Therefore, orthodontic treatment with selective decortication and alveolar augmentation has been proposed, in order to enhance speed of tooth movement and hyalinization reduction by decreasing the bone density and increasing tissue turnover.^{18,44}

The clinical usefulness of a corticotomy has a clear effect on fastening tooth movement.¹⁷⁻¹⁹ However, the studies on a corticotomy to reduce root resorption are still rare.^{11,34} Some studies shown that a corticotomy can reduce root resorption in orthodontic treatment.^{34,45,46} Moreover, the root length loss does not affect the longevity or the functional efficacy of the tooth.⁴⁷ Closing the space by molar protraction benefits patients by replacing lost teeth without prosthesis. However, age, size of the edentulous area, periodontal status, and patient compliance are factors that should be considered before deciding whether to close a molar space or not.^{12,38,48}

Conclusion

This study was conducted to evaluate the root length of molars after protraction assisted with corticotomy and bone grafting. There was minor apical root length loss after protraction of the molar into the atrophic edentulous space after a corticotomy and bone grafting. After long-term follow-up, root shortening was apparent. However, none of the molars had more than 2 mm resorption. The mandibular second molar protraction assisted with corticotomy combined with bone grafting to close the mandibular first molar edentulous space has the benefit of accelerating tooth movement with minor root resorption.

Acknowledgement

The scholarship from the Faculty of Dentistry, Prince of Songkla University is gratefully acknowledged.

References

1. Dechkunakorn S, Chaiwat J, Sawaengkit P. Congenital absence and loss of teeth in an orthodontic patient group. *J Dent Assoc Thai* 1990;40(4):165-76.
2. Răducanu AM, Feraru V, Herteliu C, Răducanu MA. Prevalence of loss of permanent first molars in a group of romanian children and adolescents. *Oral Health Dent Management* 2009;2(4):7.
3. Müller F, Naharro M, Carlsson GE. What are the prevalence and incidence of tooth loss in the adult and elderly population in Europe? *Clin Oral Impl Res* 2007; 18(3):2-14.
4. Marcus S, Drury T, Brown L, Zion G. Tooth retention and tooth loss in the permanent dentition of adults: United States, 1991. *J Dent Res* 1996;75:684-95.
5. Roberts WE, Hall W, Gluskin A. Edentulous spaces in the mandibular posterior segments. *Decision Making in Dental Treatment Planning* St Louis: Mosby. 1998:177-9.
6. Lindskog-Stokland B, Hansen K, Tomasi C, Hakeberg M, Wennström J. Changes in molar position associated with missing opposed and/or adjacent tooth: a 12-year study in women. *J Oral Rehabil* 2012;39(2):136-43.
7. Porrini R, Rocchetti V, Vercellino V, Cannas M, Sabbatini M. Alveolar bone regeneration in post-extraction socket: a review of materials to postpone dental implant. *Biomed Mater Eng* 2011;21(2):63-74.
8. Taner TU, Germec D, Er N, Tulunoglu I. Interdisciplinary treatment of an adult patient with old extraction sites. *Angle Orthod* 2006;76(6):1066-73.
9. Stepovich ML. A clinical study on closing edentulous spaces in the mandible. *Angle Orthod* 1979;49(4):227-33.
10. Hom BM, Turley PK. The effects of space closure of the mandibular first molar area in adults. *Am J Orthod* 1984;85(6):457-69.
11. Iino S, Sakoda S, Ito G, Nishimori T, Ikeda T, Miyawaki S. Acceleration of orthodontic tooth movement by alveolar corticotomy in the dog. *Am J Orthod Dentofac Orthop* 2007;131(4):448. e1-e8.
12. Baik U-B, Chun Y-S, Jung M-H, Sugawara J. Protraction of mandibular second and third molars into missing first molar spaces for a patient with an anterior open bite and anterior spacing. *Am J Orthod Dentofac Orthop* 2012;141(6):783-95.
13. Brezniak N, Wasserstein A. Orthodontically induced inflammatory root resorption. Part I: the basic science aspects. *Angle Orthod* 2002;72(2):175-9.

14. Chan E, Darendeliler MA. Physical properties of root cementum: Part 5. Volumetric analysis of root resorption craters after application of light and heavy orthodontic forces. *Am J Orthod Dentofac Orthop* 2005;127(2):186-95.
15. Kurol J, Owman-Moll P, Lundgren D. Time-related root resorption after application of a controlled continuous orthodontic force. *Am J Orthod Dentofac Orthop* 1996;110(3):303-10.
16. Healey D. Root resorption. Available from: www.orthodontists.org.nz/root_resorption.htm 2004.
17. Frost H. The biology of fracture healing: an overview for clinicians. Part II. *Clin Orthop Relat Res* 1989;248:294-309.
18. Wilcko WM, Wilcko MT, Bouquot J, Ferguson DJ. Rapid orthodontics with alveolar reshaping: two case reports of decrowding. *Int J Periodontics Restorative Dent* 2001;21(1):9-20.
19. Hajji SS. The influence of accelerated osteogenic response on mandibular de-crowding. St Louis Univ.: St Louis; 2000.
20. Wilcko MT, Wilcko WM, Bissada NF, editors. An evidence-based analysis of periodontally accelerated orthodontic and osteogenic techniques: a synthesis of scientific perspectives. *Semin Orthod* 2008;14(4):305-16.
21. Ferguson DJ, Malrami S. Rapid orthodontics following alveolar decortication: why the resistance. *J Parod d' Implant Orale* 2013;32:121-9.
22. Frost H. The regional acceleratory phenomenon: a review. *Henry Ford Hosp Med J* 1983;31(1):3-9.
23. Hoogeveen EJ, Jansma J, Ren Y. Surgically facilitated orthodontic treatment: a systematic review. *Am J Orthod Dentofac Orthop* 2014;145(4):S51-S64.
24. Fleiner J, Hannig C, Schulze D, Stricker A, Jacobs R. Digital method for quantification of circumferential periodontal bone level using cone beam CT. *Clin Oral Investig* 2013;17(2):389-96.
25. Graber T. *Orthodontics: principles and practice* (ed. 3) WB Saunders Company. Philadelphia; 1972.
26. Goldberg D, Turley P. Orthodontic space closure of the edentulous maxillary first molar area in adults. *Int J Adult Orthod Orthognath Surg* 1989;4(4):255-66.
27. Takeshita WM, Iwaki LCV, da Silva MC, Sabio S, Albino PRF. Comparison of periapical radiography with cone beam computed tomography in the diagnosis of vertical root fractures in teeth with metallic post. *J Conserv Dent* 2014;17(3):225-9.
28. Yi J, Sun Y, Li Y, Li C, Li X, Zhao Z. Cone-beam computed tomography versus periapical radiograph for diagnosing external root resorption: a systematic review and meta-analysis. *Angle Orthod* 2016;87(2):328-37.
29. Li Y, Jacox LA, Little SH, Ko C-C. Orthodontic tooth movement: The biology and clinical implications. *Kaohsiung J Med Sci* 2018;34(4):207-14.
30. Brudvik P, Rygh P. The initial phase of orthodontic root resorption incident to local compression of the periodontal ligament. *Eur J Orthod* 1993;15(4):249-63.
31. Levander E, Malmgren O. Evaluation of the risk of root resorption during orthodontic treatment: a study of upper incisors. *Eur J Orthod* 1988;10(1):30-8.
32. Sameshima GT, Sinclair PM. Predicting and preventing root resorption: Part I. Diagnostic factors. *Am J Orthod Dentofac Orthop* 2001;119(5):505-10.
33. Maltha J, Leeuwen E, Dijkman G, Kuijpers-Jagtman A. Incidence and severity of root resorption in orthodontically moved premolars in dogs. *Orthod Craniofac Res* 2004;7(2):115-21.
34. Byloff-Clar H. Treatment with active plates with and without corticotomy in late cases (juvenile). Clinical and histologic study. *Stoma(Heidelb)* 1967;20(2):134-41.
35. Amit G, Kalra J, Pankaj B, Suchinder S, Parul B. Periodontally accelerated osteogenic orthodontics (PAOO)-a review. *J Clin Exp Dent* 2012;4(5):e292-6.

36. Kraiwattanapong K, Samruajbenjakun B. Effects of different force magnitudes on corticotomy-assisted orthodontic tooth movement in rats. *Angle Orthod* 2018;88(5):632-7.

37. Kook Y, Lee W, Kim S, Chung K. Corticotomy-assisted space closure in adult patients with missing lower molars. *J Clin Orthod* 2013;47(2):85-95.

38. Kim SJ, Sung EH, Kim JW, Baik HS, Lee KJ. Mandibular molar protraction as an alternative treatment for edentulous spaces: focus on changes in root length and alveolar bone height. *J Am Dent Assoc* 2015;146(11):820-9.

39. Weltman B, Vig KW, Fields HW, Shanker S, Kaizar EE. Root resorption associated with orthodontic tooth movement: a systematic review. *Am J Orthod Dentofac Orthop* 2010;137(4):462-76.

40. Feller L, Khammissa RA, Thomadakis G, Fourie J, Lemmer J. Apical external root resorption and repair in orthodontic tooth movement: biological events. *Biomed Res Int* 2016;2016(2):1-7.

41. Motokawa M, Sasamoto T, Kaku M, Kawata T, Matsuda Y, Terao A, et al. Association between root resorption incident to orthodontic treatment and treatment factors. *Eur J Orthod* 2012;34(3):350-6.

42. Roberts WE, Arbuckle GR, Analoui M. Rate of mesial translation of mandibular molars using implant-anchored mechanics. *Angle Orthod* 1996;66(5):331-8.

43. Lee W. Corticotomy for orthodontic tooth movement. *J Korean Assoc Oral Maxillofac Surg* 2018;44(6):251-8.

44. Wilcko MT, Wilcko WM, Pulver JJ, Bissada NF, Bouquot JE. Accelerated osteogenic orthodontics technique: a 1-stage surgically facilitated rapid orthodontic technique with alveolar augmentation. *J Oral Maxillofac Surg* 2009;67(10):2149-59.

45. Machado I, Wilcko MT, Wilcko WM. Root resorption following periodontally accelerated osteogenic orthodontics. *APOS Trends Orthod* 2016;6(2):78-84.

46. Shoreibah E, Ibrahim S, Attia M, Diab M. Clinical and radiographic evaluation of bone grafting in corticotomy-facilitated orthodontics in adults. *J Int Acad Periodontol* 2012;14(4):105-13.

47. Brezniak N, Wasserstein A. Root resorption after orthodontic treatment: Part 1. Literature review. *Am J Orthod Dentofac Orthop* 1993;103(1):62-6.

48. Abuabara A. Biomechanical aspects of external root resorption in orthodontic therapy. *Med Oral Patol Oral Cir Bucal* 2007;12(8):E610-3.

Corresponding Author

Bancha Samruajbenjakun

Department of Preventive Dentistry,

Faculty of dentistry, Prince of Songkla University,

Hat Yai, Songkla, 90110.

Tel.: +66 7428 7561

Email: samruaj@hotmail.com

การเปลี่ยนแปลงของความยั่วراهพื้นภายหลังเคลื่อนฟันกรรมล่างร่วมกับการทำครอติโคโนมี และปลูกกระดูก: ติดตามผลด้วยภาพถ่ายรังสีโคนบีมคอมพิวเต็ตโภโนกราฟฟี 5 ปี ภายหลังการรักษา

พนิพนา คงกระพันธ์* บัญชา สำราญเบญจกุล**

บทคัดย่อ

การศึกษานี้มีวัตถุประสงค์เพื่อประเมินการเปลี่ยนแปลงของความยั่วراهพื้นภายหลังเคลื่อนฟันกรรมล่างแท้ที่ 2 เพื่อแทนที่ตำแหน่งฟันกรรมล่างแท้ที่ 1 ที่สูญเสียไป จากผู้ป่วยจำนวน 16 คน อายุเฉลี่ย 25.69 ปี ที่ได้รับการทำครอติโคโนมีและปลูกกระดูกก่อนเคลื่อนฟันกรรมล่างแท้ที่ 2 โดยศึกษาข้อมูลความยั่วراهพื้นค้างในไอลักษณะของฟันกรรมล่างแท้ที่ 2 จากภาพถ่ายรังสีโคนบีมคอมพิวเต็ตโภโนกราฟฟีก่อนการรักษา 3 เดือนภายหลังช่วงว่าปีด และ 5 ปีภายหลังการรักษา ใช้การทดสอบความแตกต่างของค่าถ่วงของสองประชากร ไม่ใช้รีสโนกริวาร์ทความแตกต่างของความยั่วراهพื้นในระหว่างช่วงเวลา ผลการศึกษาพบว่าความยั่วراهพื้นลดลงในแต่ละช่วงเวลา โดยพบว่ารีสโนกริวาร์ทของรากฟันภายหลังเคลื่อนฟันสำเร็จ การลดลงของรากฟันเพิ่มขึ้นภายหลังติดตามผล 5 ปีภายหลังการรักษา และมีการลดลงของรากฟันทั้งหนาและด้านได้รีสโนกริวาร์ทของรากฟันในระหว่างช่วงเวลา 0.16, 0.67 และ 0.84 มิลลิเมตรตามลำดับ จากการศึกษานี้สรุปได้ว่าสามารถพบรีสโนกริวาร์ทของรากฟันในระหว่างช่วงเวลา 2 ภายหลังเคลื่อนฟันเพิ่มขึ้นกว่าช่วงฟันกรรมล่างแท้ที่ 1 ที่สูญเสียไปร่วมกับการทำครอติโคโนมีและปลูกกระดูก และเมื่อติดตามการเปลี่ยนแปลงของความยั่วراهพื้น 5 ปีภายหลังการรักษา พบว่ามีการลดลงของรากฟันในช่วงหลังจากการเคลื่อนฟันเพิ่มขึ้นกว่าช่วงเดียวกันและติดตามผลอย่างมีนัยสำคัญทางสถิติมากกว่าการลดลงของรากฟันในช่วงที่ทำการเคลื่อนฟันภายใต้การทำครอติโคโนมีและปลูกกระดูก

คำชี้แจง: การเคลื่อนฟันกรรม/ การลดลงของรากฟัน/ การทำครอติโคโนมี/ ภาพถ่ายรังสีโคนบีมคอมพิวเต็ตโภโนกราฟฟี

ผู้รับผิดชอบบทความ

บัญชา สำราญเบญจกุล

ภาควิชาทันตกรรมบึงกัน สาขานักศึกษาจัดฟัน

คณะทันตแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์

อำเภอหาดใหญ่ จังหวัดสงขลา 90110

โทรศัพท์: 0 7428 7561

จดหมายอิเล็กทรอนิกส์: samruaj@hotmail.com

* แผนกทันตกรรม โรงพยาบาลสกลนคร อำเภอเมือง จังหวัดสกลนคร

** ภาควิชาทันตกรรมบึงกัน คณะทันตแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อำเภอหาดใหญ่ จังหวัดสงขลา