

The Precision Between Implant Fixture and Titanium Base Abutment Connection and Cement Gap between Titanium Base Abutment and Zirconia Crown

Sae-Lee D*, Chanatepaporn P*, Puasiri S**, Suwannarong W***, Raunglertpanyakul C****

Abstract

The purposes of this study were to verify the precision between implant fixture and internal abutment connection and to compare the cement gap between commercial titanium base abutment (Osstem TS link abutment, Osstem®, Korea) and customized titanium base abutment produced by third party (Zirkonzahn parallel cemented titanium base HEX, Zirkonzahn, Italy). The implant-abutment connection gap between titanium base abutment and fixture analog, and cement gap between titanium base abutment and zirconia crown were recorded with light body silicone. The thickness of the gap, obtained by imprinted silicone, was stabilized and cross-sectionally cut and then measured in 4 different levels, i.e., (1) at a middle level of internal connection gap, (2) at a middle level of upper part of abutment surface, (3) at a middle level of lower part of abutment surface in which antirotations were presented, and (4) at antirotations gap, by using polarized microscope. All measurement points were re-evaluated 3 times and the mean value was calculated by independent T-test. The statistical analysis revealed that, for the connection gap, the mean gap value of customized titanium base abutment (88.48 ± 6.64 micrometers) was significantly lower than that of the commercial titanium base abutment (124.67 ± 16.26 micrometers) ($P<0.05$), while, for the cement gap at the antirotation points, the mean cement gap value of customized titanium base abutment (76.19 ± 21.23 micrometers) was significantly higher than the commercial titanium base abutment (24.83 ± 12.96 micrometers) ($P<0.05$). It can be concluded that the customized titanium base abutment could be used as an alternative option as it can provide a comparable connection with the commercial one.

Keywords: Titanium base abutment/ Implant internal connection gap/ Cement gap

Introduction

Implant abutment is a component part which connects to the implant fixture in order to support the prosthesis. It could be either the cement-retained or screw-retained restoration, based on the retention of prosthesis to implant fixture. The screw-retained prosthesis is the superstructure that combines the abutment and crown restoration¹, and is directly connected to the implant fixture by a retaining screw. This type of restorations provides a convenient, hygienic and predictable retention and it is easily removed without any damage to the crown.² The screw-retained prosthesis is very useful in several situations, such as a limited

interocclusal space, in which it may not be possible to achieve adequate retention with a cement-retained prosthesis. As a completely cement-free solution, it is recommended in immediate loading cases as it can eliminate the difficulty of excess cement removing from the peri-implant area that may interfere with healing and osseointegration.³ The residual cement has been indicated to cause peri-implantitis and implant failure.⁴ In such a situation when patients are predicted to lose their teeth in the near future, a screw-retained prosthesis is also preferred due to the ease of removal and the restoration can be modified.⁵ However, the fabrication of

* Department of Prosthetic Dentistry, Faculty of Dentistry, Khon Kaen University, Amphur Muang, Khon Kaen.

** Department of Community Dentistry, Faculty of Dentistry, Khon Kaen University, Amphur Muang, Khon Kaen.

*** Department of Periodontology, Faculty of Dentistry, Khon Kaen University, Amphur Muang, Khon Kaen.

**** Dental Department, Detudom Royal Crown Prince Hospital, Amphur Detudom, Ubon Ratchathani.

screw-retained prosthesis is required a casting process by waxing the castable plastic patterns such as the universal clearance limited abutment (UCLA). The wax pattern is developed on this plastic pattern and burned out before casting with a noble metal.⁶ Therefore, it is costly and time consuming. If the screw-retained prosthesis is made of a whole metal, the esthetic outcome may be compromised.

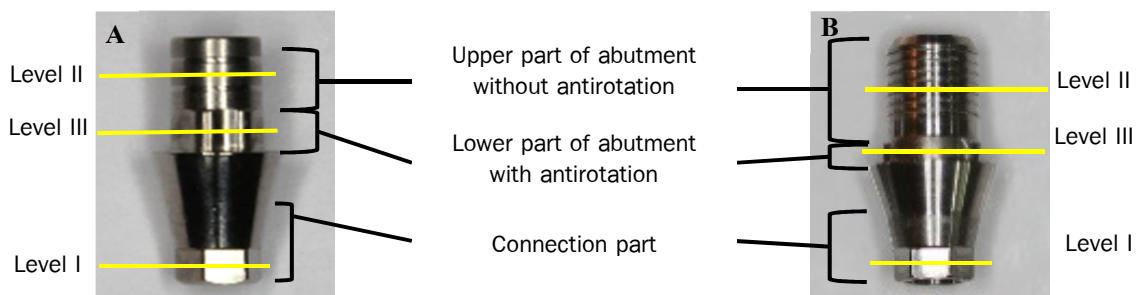
As a consequence, the need for a screw-retained restoration, which can mimic tooth colour, has dramatically increased especially in the esthetic zones such as in anterior region. Previously, the customized zirconia abutment was introduced by companies in various designs for both single and multiple restorations to support the all ceramic prostheses. Recently, the abutment and crown could be combined together as a single unit by using titanium base abutment and monolithic zirconia restoration through cementation technique.

Up to date, the screw-retained restoration with titanium base abutment design becomes more popular due to a high clinical success and less complications.⁷ The Morse taper connection, in which the internal anti-rotation design is provided, can distribute the lateral loading force through the implant which could lead to a better-shielded abutment screw. Moreover, it also can create a stiff, unified body from a long internal wall engagement which provides a resistance of joint opening.^{8, 9} As many implant manufacturers have produced their own titanium base abutment, so, some laboratories have milled titanium base abutment themselves to use instead of the commercial titanium base which can reduce the cost in some companies. The differences between commercial and customized titanium base abutment can be occurred due to various design and the accuracy of milling machine. Therefore, the internal connection between titanium base abutment and implant fixture should be verified, since its geometrical

passive fit plays an important role for joint strength and stability as well as the rotational and locational stability.¹⁰ According to the recently study, an absolutely passive fit cannot be obtained.¹¹ There were some studies indicated that the acceptable fit varied between 10–300 micrometers, was recommended.^{12–16} If the misfit is presented, several studies indicated that the interface between alveolar bone and implant is threatened with microbial colonization as well as many complications, *i.e.*, screw loosening, screw fracture, plaque accumulation, poor soft tissue reaction and bone loss.^{17–22} Another problem which could be occurred with titanium base abutment, is the dislodgement of crown from titanium base abutment by insufficiency retention. To solve this problem, it is recommended to attach the crown to the titanium base abutment with mechanical and chemical methods including a sandblasting technique combined with a proper cementation system. For a proper seating and adequate retention between titanium base abutment and zirconia crown, the cement space should be adequate but not too large to avoid excessive cement thickness. The recommendation of cement gap was about 20–40 micrometers.^{23–25} The increasing of cement space from 30 to 60 micrometers could enhance a harmful effect on cement durability and lead to air bubbles and void in the cement.²⁶ However, the clinical studies about titanium base abutment are limited. Therefore, the objectives of this study are to verify the precision between implant fixture and abutment internal connection and to determine the zirconia crown cement gap, whether using customized titanium base abutment could be an alternative option to achieve the success outcome.

Materials and methods

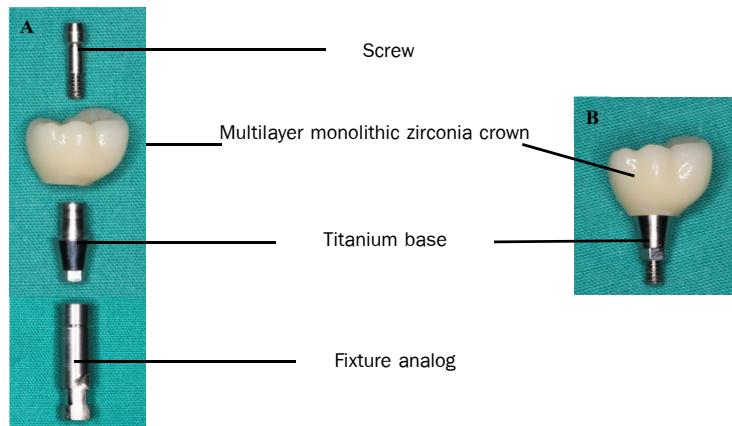
Eighteen posterior single tooth implant restorations were prepared by using customized titanium base abutment produced by third party (Zirkonzahn parallel cemented titanium base HEX, Italy) (Figure 1A) with multilayer monolithic zirconia crowns as


a sample group. Whereas two commercial titanium base abutment (Osstem TS link abutments, Korea) (Figure 1B) with multilayer monolithic zirconia crowns were prepared as a control group. There were some differences of the design between customized and commercial titanium base abutments at antirotation points as shown in Figure 1 and 2. The internal connection gap width was measured between titanium base abutments and an implant fixture analog, while the cement gap was measured between titanium base abutments and the internal surface of multilayer monolithic zirconia crowns (Figure 3).

1. Specimen preparation

To obtain the connection gap specimen, the light body addition silicone (Elite® HD, Zhermack, Badia Polesine RO, Italy) was injected on the connection part of titanium base abutment before seated into implant analog and the retentive screw was torqued 30 Ncm with torque wrench according to the company guideline. Only one implant fixture analog was randomly chosen

and represented of an implant fixture for both control and experimental groups. After the polymerization was completed, the titanium base abutment was removed. The thin film of light body addition silicone was presented inside the implant analog (Figure 4A). To stabilize this thin silicone film, a regular body addition silicone (Provil® Novo, Heraeus Kulzer GmbH, Hanau, Germany)


was injected inside the analog over the silicone imprint. After the polymerization, the replica impression was removed and the external side was then stabilized with the regular body silicone within the acrylic block with dimension of 10 x 10 x 8 mm (Figure 4B), in order to construct the silicone model (Figure 4C). Eighteen replica impression specimens from 18 customized titanium base abutments were prepared for experimental group. While in a control group, there were 2 replica impression specimens which were replicated from 2 commercial titanium base abutments. Only two commercial titanium base abutments were randomized chosen because of the quality assurance from the manufacturer.

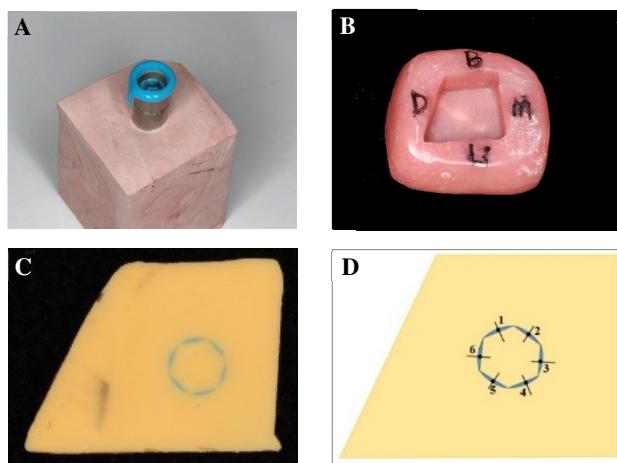

Figure 1 (A) Customized titanium base abutment, and (B) Commercial titanium base abutment with three segmented levels.

Figure 2 (A) Occlusal view of customized titanium base abutment with 2 adjaceted antirotation points, and (B) The 3 distributed antirotation points of the commercial titanium base abutment.

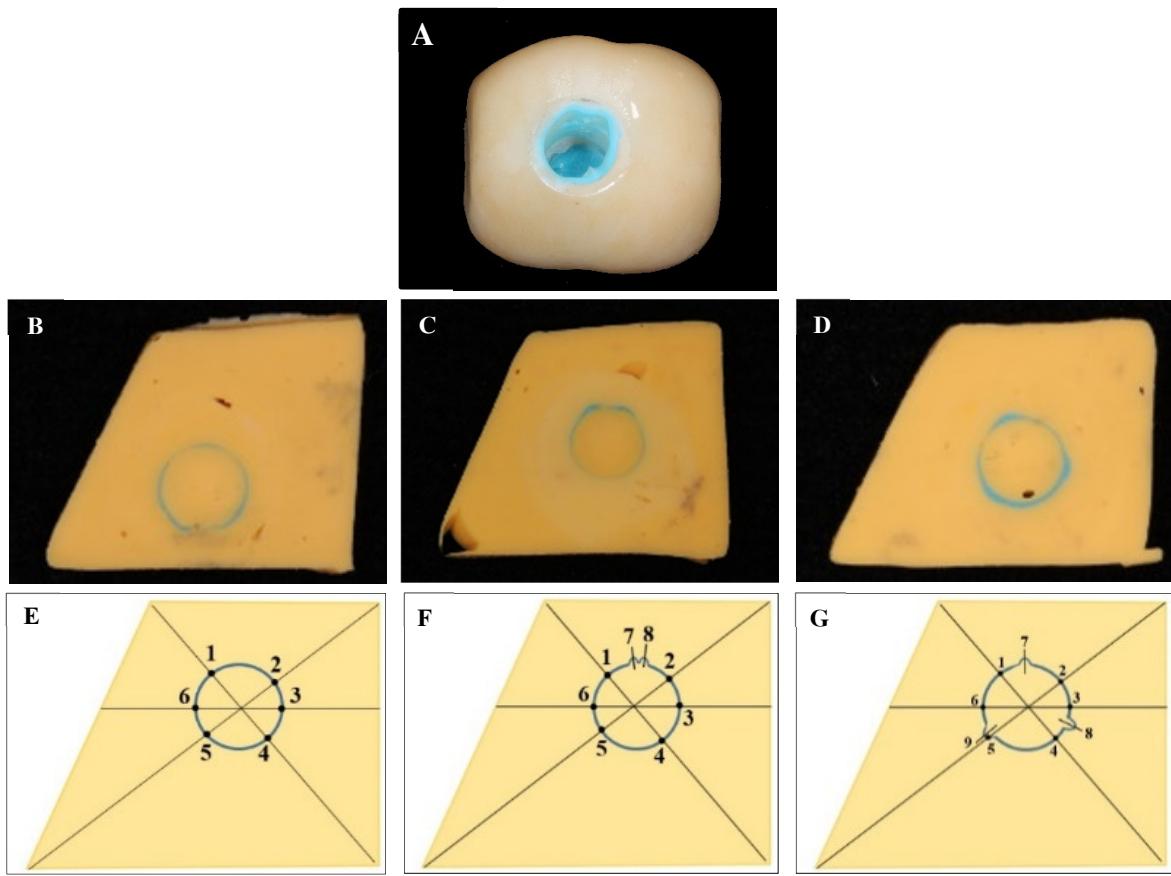

Figure 3 (A) The restoration component before assembly, and (B) After cementation of the zirconia crown on the titanium base abutment.

Figure 4 (A) The replica impression of connection gap was obtained with light body silicone. (B) An acrylic block was used as a template for stabilization. (C) The cross-sectionally cut of silicone model after the stabilization of replica impression. (D) The diagram of 6 measurement sites.

To obtain the cement gap specimen, twenty multilayer monolithic zirconia crowns were fabricated in the laboratory (Zirkonzahn M1 Wet Heavy, Zirkonzahn, Italy), 18 for Zirkonzahn titanium base abutments and 2 for Osstem titanium base abutments. Cement space were set up at 30 micrometers in the CAD software of milling machine. The internal surface of zirconia crown and outer surface of titanium base abutment were sandblasted with 110 micrometers aluminum oxide (Al_2O_3) particles under 0.2 MPa (2 bar) pressure. The preparation of the cement gap specimen was similar to the connection

gap. After the light body addition silicone was injected on the external surface of abutment, the crown was put on top until it was completely seated on abutment with a stable pressure 50 N. After the polymerization was completed, the crown was removed and then regular body addition silicone was injected over the thin film of light body silicone inside the crown (Figure 5A). After the polymerization, the replica impression was removed from the crown and the external side was stabilized with the regular body silicone by using the acrylic block. Finally, the silicone model was constructed.

Figure 5 (A) The replica impression of cement gap obtained with light body silicone. (B) The cross-sectionally cut of silicone model at the middle of upper part. (C and D) The cross-sectionally cut of silicone model at the middle of lower part in which the antirotations were presented, obtained from customized and commercial titanium base abutment, respectively. (E, F and G) The diagram of the measurement sites at the upper part (E), at the lower part of customized titanium base abutment (F), and at the lower part of commercial titanium base abutment (G).

2. Measuring and statistical analysis

The silicone model were cross-sectionally cut with razor blade (Gillette, Gillette Co., Massachusetts, USA) as shown in Figure 4C and 5B, 5C, and 5D. The sectional positions were at 3 different levels, (1) level I, at a middle level of connection gap, (2) level II, at a middle level of upper part of abutment surface, and (3) level III, at a middle level of lower part of abutment surface, in which the antirotations were presented (Figure 1). Every sections were measured, by a single operator, with the polarized microscope (Nikon ECLIPSE LV100POL, Melville, USA) at a magnification of

x50. For measuring a connection gap, 6 measurement points (Figure 4D) were verified by drawing the lines perpendicular cut through the thickest part of all 6 sides of replica impression that was embedded in the silicone model. Each point was re-evaluated 3 times, hence, there were 18 measurements for each specimen. Then, the mean connection gap value was calculated.

For measuring a cement gap, 3 parts were distinguishably defined due to its antirotated configuration, *i.e.*, the first measurement points were obtained from the upper part by drawing 3 intersecting lines cut through the replica impression as shown in the

diagram in Figure 5E. The second measurement points were obtained from the lower part, which were measured the same as the upper part (no.1–6 in Figure 5F and 5G). The last measurement points were the antirotation points, which their configuration were different between commercial and customized titanium base abutments. The commercial titanium base abutment presents 3 distributed antirotation points, while there are 2 adjacent antirotation points on customized titanium base abutment (Figure 2). These antirotation measurement points of customized titanium base abutment were shown at point no.7–8 in Figure 5C and 5F, whereas, the antirotation measurement points of commercial titanium base abutment were shown at point no.7–9 in Figure 5D and 5G, respectively. Independent T-test was used (SPSS 19.0, SPSS Inc., Chicago, USA) to verify the significant difference at P-value 0.05.

Results

The data for both connection gap and cement gap were taken for normality test with Shapiro-Wilk, and they were non-normally distributed, therefore Mann-Whitney U test was used with 95% confidence interval.

Implant fixture and titanium base abutment

Internal connection gap

The results showed that the means value of internal connection gap of the customized titanium base abutment (88.48 ± 6.64 micrometers), compared to the commercial titanium base abutment (124.67 ± 16.26 micrometers), was significantly lower ($P=0.023$).

Cement gap between titanium base abutment and zirconia crown

The mean value of cement gap obtained from the upper part and lower part of customized titanium base abutment (51.04 ± 16.86 and 42.22 ± 16.45 micrometers, respectively) were lower than the commercial

Table 1 Mean and standard deviation of connection gap (micrometer) when comparing between commercial and customized titanium base abutment.

Group	Number	Mean \pm SD
Commercial titanium base abutment	2	$124.67 \pm 16.26^*$
Customized titanium base abutment	18	$88.48 \pm 6.64^*$

Note: Mann-Whitney U test $p = 0.023$

Table 2 Mean and standard deviation of cement gap (micrometer) when comparing between commercial and customized titanium base abutment.

Group	Number	Mean \pm SD		
		Upper cement gap	Lower cement gap with antirotation	Antirotation points
Commercial titanium base abutment	2	64.33 ± 10.84	68.00 ± 13.44	$24.83 \pm 12.96^*$
Customized titanium base abutment	18	51.04 ± 16.86	42.22 ± 16.45	$76.19 \pm 21.23^*$

Note: Mann-Whitney U test * $p = 0.027$

titanium base abutment (64.33 ± 10.84 and 68.00 ± 13.44 micrometers, respectively), but there was no statistically significant different. In the contrary, the means value of cement gap obtained from antirotation point of customized titanium base (76.19 ± 21.23 micrometers) was significantly higher than the commercial titanium base (24.83 ± 12.96 micrometers) ($P=.027$).

Discussion

The titanium base abutment is a superstructure component of dental implant that plays an important role for treatment outcome. The internal connection gap between titanium base abutment and implant fixture and the cement gap between titanium base abutment and zirconia crowns, are crucial factors, since it could affect to the longevity of restoration and also could lead to implant failures.^{7, 17-20, 22}

The results from previous studies revealed that clinical level of acceptable connection fit was about 10–150 micrometers.¹⁴⁻¹⁶ A clinical study was also confirmed that they cannot find the relation between marginal bone level and prosthesis misfit at a mean discrepancy of 111 micrometers,¹³ while another study indicated that the clinical acceptable marginal gaps could be varied between 30–200 micrometers.¹² In this study, the thickest points of the connection gap were chosen for measurement, both connection gap of the customized and commercial titanium base abutment did agree well with the previous studies. Interestingly, the customized titanium base abutment provided a narrower gap than the commercial one, *i.e.*, 88.48 ± 6.64 and 124.67 ± 16.26 micrometers, respectively. These significantly different value may come from the different setting protocol of the laboratory and implant company or the precision of milling process of different milling machine, *e.g.*, four or five axis of rotation. In addition to the three spatial dimensions in 3 axis milling device, the addition

rotatable tension bridge in 4 axis and rotating milling spindle in 5 axis milling devices provide the milling possibility which can cope with undercut, increase efficiency of milling machine and improve their tool life.²⁷ Moreover, the difference tolerance values during the CAD/CAM process might cause the difference connection gap, these machining tolerance is determined as permissible limit from ideal measurement between the components when these components are held in place by their screws. There are two factors that contribute to machining tolerances, dimensional variation and surface roughness. The dimensional tolerance allows the range that a machine components can vary from its definite dimension while the surface roughness after machining process affects the fit of the contact surface. There was a study reported that the machining tolerance measurement of various implant component was 22–100 micrometers.²⁸ While another study indicated that the discrepancy at the implant interface was 34–119 micrometers.²⁹ Although the most desirable situation was passive fit between implant components, these tolerances alone was not sufficient to provide the passive fit because the screw torquing can certainly create stress in the implant, framework, and surrounding bone. However, these tolerance data can be useful as it can be a guidance information of the amount of the displacement which occurred during prosthesis fabrication.

Another weak point of titanium base abutment and its restoration is the adhesive connection between the titanium base abutment and the zirconia superstructure which is essential for long-term clinical success.²⁶ For the abutment height, an additional 4–7 mm of abutment height, increases retention by 67%³⁰, and at least 5 mm of abutment height is needed to ensure the retention of a cement-retained restoration.³¹ While another study recommended that the minimum abutment heights, necessary to provide adequate

retention, were 3 mm for narrow platform and 4 mm for wide platform in single cement-retained restorations.³² In this study, the height of titanium base abutment was 4 mm, which is acceptable for providing adequate retention for zirconia crown. For the cement space evaluation, the proper internal cement gap of the conventional fabricated all ceramic crown, *e.g.*, slip casting or hot pressing technique, are within a range of 25–50 micrometers. A space of 25–30 micrometers is provided for the cement and space of 20 micrometers is compensated for distortion of the wax pattern.^{23–25} If all ceramic crown is constructed with CAD/CAM technique, several step, *i.e.*, scanning, designing, and milling step, are involved and each step should be well controlled, as to provide the overall fit of the crown. One study recommended that the optimal cement gap must be more than 30 micrometers³³, while the others indicated that a range could be varied from 20 to 40 micrometers.^{34–37} There was a significant higher retention if a luting gap between zirconia and titanium component was set at 30 micrometers.²⁶ Therefore, the cement gap in this study was initially set at 30 micrometers in the CAD software of milling machine. However, the mean gap value that were measured in this study, was higher than the setting value, which might come from the uncontrollable sandblasting process. The sandblasting process of internal surface of zirconia crown with 110 micrometers aluminum oxide (Al_2O_3) particles can remove a significant amount of material from restorations. This process is recommended to enhance the retention of the luting cement to the crown surface, despite it might affect to the mechanical properties and phase transformation of zirconia by introducing flaws and reshaping the surface.^{38, 39}

Another interesting point was the mean value of antirotation gap which was statistically significant different between these two groups. This can be described by the position of antirotation configuration. The antirotation part of customized titanium base abutment are located

in the adjacent position (Figure 2A), which may lead to the difficulty for accessing of milling machine burs on the connected surface. Hence, the wider cement gap in antirotation area could be occurred, when compare to the commercial antirotation part which are distributed in three different position and it might easier for accessing of the milling process. Moreover, the cutting tool diameter which is used in machine process could also affect to the gap width. As in the limited access area, even when the narrowest bur diameter is used, the internal substance might be excessively removed than necessary. However, the misfit of the cement gap at the antirotation part of both customized and commercial groups are within the clinical acceptable range.^{33, 34, 37}

Conclusion

Within the limitation of the present study, it can be concluded that the customized titanium base abutment can be chosen as an alternative option when the commercial titanium base abutment is not available. However, the effect of different antirotation part of titanium base abutment on the retention and resistance form of the crown and the prospective clinical study need to be verified.

Acknowledgement

This study was supported by Faculty of Dentistry, Khon Kaen University, Thailand.

References

1. Anonymous. The glossary of prosthodontic terms. *J Prosthet Dent* 2005;94(1):10–92.
2. Manawar A DB, Aparna I.N, Naim H. Factors influencing success of cement versus screw-retained implant restorations: a clinical review. *Osseointegr* 2012;3(4):43–7.
3. Agar JR, Cameron SM, Hughbanks JC, Parker MH. Cement removal from restorations luted to titanium abutments with simulated subgingival margins. *J Prosthet Dent* 1997; 78(1):43–7.

4. Abichandani SN KA. Abutment selection, designing, and its influence on the emergence profile: A comprehensive review. *Eur J of Prosthodont* 2013;1(1):1-10.
5. Shadid R SN. A comparison between screw- and cement-retained implant prostheses. A literature review. *J Oral Implantol* 2012;38(3):298-307.
6. Watanabe F, Uno I, Hata Y, Neuendorff G, Kirsch A. Analysis of stress distribution in a screw-retained implant prosthesis. *Int J Oral Maxillofac Implants* 2000;15(2):209-18.
7. Weber HP, Kim DM, Ng MW, Hwang JW, Fiorellini JP. Peri-implant soft-tissue health surrounding cement- and screw-retained implant restorations: a multi-center, 3-year prospective study. *Clin Oral Implants Res* 2006;17(4):375-9.
8. Binon PP. Implants and components: entering the new millennium. *Int J Oral Maxillofac Implants* 2000;15(1):76-94.
9. Finger IM, Castellon P, Block M, Elian N. The evolution of external and internal implant/abutment connections. *Pract Proced Aesthet Dent* 2003;15(8):625-32.
10. Byrne D, Houston F, Cleary R, Claffey N. The fit of cast and premachined implant abutments. *J Prosthet Dent* 1998;80(2):184-92.
11. Carlsson L. Built-in strain and untoward forces are the inevitable companions of prosthetic misfit. *Nobelpharma News* 1994;8(5).
12. Boeckler AF, Stadler A, Setz JM. The significance of marginal gap and overextension measurement in the evaluation of the fit of complete crowns. *J Contemp Dent Pract* 2005;6(4):26-37.
13. Jemt T, Book K. Prosthesis misfit and marginal bone loss in edentulous implant patients. *Int J Oral Maxillofac Implants* 1996;11(5):620-5.
14. Jemt T, Lie A. Accuracy of implant-supported prostheses in the edentulous jaw: analysis of precision of fit between cast gold-alloy frameworks and master casts by means of a three-dimensional photogrammetric technique. *Clin Oral Implants Res* 1995;6(3):172-80.
15. Kan JY, Rungcharassaeng K, Bohsali K, Goodacre CJ, Lang BR. Clinical methods for evaluating implant framework fit. *J Prosthet Dent* 1999;81(1):7-13.
16. Klineberg IJ, Murray GM. Design of superstructures for osseointegrated fixtures. *Swed Dent J Suppl* 1985;28:63-9.
17. Besimo CE, Guindy JS, Lewetag D, Meyer J. Prevention of bacterial leakage into and from prefabricated screw-retained crowns on implants in vitro. *Int J Oral Maxillofac Implants* 1999;14(5):654-60.
18. Binon PP, McHugh MJ. The effect of eliminating implant/abutment rotational misfit on screw joint stability. *Int J Prosthodont* 1996;9(6):511-9.
19. Boggan RS, Strong JT, Misch CE, Bidez MW. Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants. *J Prosthet Dent* 1999;82(4):436-40.
20. Jansen VK, Conrads G, Richter EJ. Microbial leakage and marginal fit of the implant-abutment interface. *Int J Oral Maxillofac Implants* 1997;12(4):527-40.
21. Sakaguchi RL, Borgersen SE. Nonlinear finite element contact analysis of dental implant components. *Int J Oral Maxillofac Implants* 1993;8(6):655-61.
22. Steinebrunner L, Wolfart S, Bossmann K, Kern M. *In vitro* evaluation of bacterial leakage along the implant-abutment interface of different implant systems. *Int J Oral Maxillofac Implants* 2005;20(6):875-81.
23. Campbell SD. Comparison of conventional paint-on die spacers and those used with the all-ceramic restorations. *J Prosthet Dent* 1990;63(2):151-5.
24. Emtiaz S, Goldstein G. Effect of die spacers on precermentation space of complete-coverage restorations. *Int J Prosthodont* 1997;10(2):131-5.
25. Passon C, Lambert RH, Lambert RL, Newman S. The effect of multiple layers of die-spacer on crown retention. *Oper Dent* 1992;17(2):42-9.
26. Ebert A, Hedderich J, Kern M. Retention of zirconia ceramic copings bonded to titanium abutments. *Int J Oral Maxillofac Implants* 2007;22(6):921-7.
27. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. *Br Dent J* 2008;204(9):505-11.
28. Tsun Ma JIN, Jeffrey E. Rubenstein. Tolerance measurements of various implant components. *Int J Oral Maxillofac Implants* 1997;12:371-5.
29. Sorensen JA AS, Tomas C. Comparison of interface fidelity of implant systems [abstract 2191]. *J Dent Res* 1991;70:540.
30. Kaufman EG CA, Colin L. Factors influencing the retention of cemented gold castings. *J Prosthet Dent* 1961;11:487-502.
31. Strong SM. What's your choice: cement- or screw-retained implant restorations? *Gen Dent* 2008;56(1):15-8.

32. Saleh Saber F, Abolfazli N, Nuroloyuni S, Khodabakhsh S, Bahrami M, Nahidi R, et al. Effect of Abutment Height on Retention of Single Cement-retained, Wide- and Narrow-platform Implant-supported Restorations. *J Dent Res Dent Clin Dent Prospects* 2012;6(3):98-102.

33. Wu JC, Wilson PR. Optimal cement space for resin luting cements. *Int J Prosthodont* 1994;7(3):209-15.

34. Pan YH, Ramp LC, Lin CK, Liu PR. Comparison of 7 luting protocols and their effect on the retention and marginal leakage of a cement-retained dental implant restoration. *Int J Oral Maxillofac Implants* 2006;21(4):587-92.

35. Pan YH, Ramp LC, Lin CK, Liu PR. Retention and leakage of implant-supported restorations luted with provisional cement: a pilot study. *J Oral Rehabil* 2007;34(3):206-12.

36. Santosa RE, Martin W, Morton D. Effects of a cementing technique in addition to luting agent on the uniaxial retention force of a single-tooth implant-supported restoration: an in vitro study. *Int J Oral Maxillofac Implants* 2010;25(6):1145-52.

37. Squier RS, Agar JR, Duncan JP, Taylor TD. Retentiveness of dental cements used with metallic implant components. *Int J Oral Maxillofac Implants* 2001;16(6):793-8.

38. Karakoca S, Yilmaz H. Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics. *J Biomed Mater Res B Appl Biomater* 2009;91(2):930-7.

39. Zhang Y, Lawn BR, Rekow ED, Thompson VP. Effect of sandblasting on the long-term performance of dental ceramics. *J Biomed Mater Res B Appl Biomater* 2004;71(2):381-6.

Corresponding author

Daraporn Sae-Lee

Department of Prosthetic Dentistry,

Faculty of Dentistry, Khon Kaen University,

Amphur Muang, Khon Kaen, 40002

Tel.: +66 4320 2405 #45170

Fax.: +66 4320 2862

E-mail: darsae@yahoo.com

ความแนบสนิทของส่วนต่อระหัวงฐานไทเทเทียมกับรากเทียมและความหนาชั้นชีเมนต์ระหว่างฐานไทเทเนียมกับครอบพันเซอร์โคเนีย

ดารารพ แซลี^{*} พิศเพลิน ธนาเทพพาร* สุบิน พัวศิริ** วรารณ์ สุวรรณวงศ์*** ชลพร เรืองเลิศปัญญา***

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อตรวจสอบความแนบสนิทระหว่างหลักยึดฐานไทเทเนียมกับส่วนต่อภายนอกของรากเทียม และวัดความหนาชั้นชีเมนต์ที่ใช้ด้วยครอบพันบนหลักยึดฐานไทเทเนียม ศึกษาเปรียบเทียบระหว่างหลักยึดฐานไทเทเนียมจากบริษัทผู้ผลิต (Osstem TS link abutment, Osstem^o, Korea) กับหลักยึดฐานไทเทเนียมที่ผลิตขึ้นในห้องปฏิบัติการโดยบริษัทที่ไม่ใช้ผู้ผลิตโดยตรง (Zirkonzahn parallel cemented titanium base HEX, Zirkonzahn, Italy) ใช้วัสดุพิมพ์ชิลิโคนหินดินน้ำอ้อยบันทึกขนาดช่องว่างบริเวณรอยต่อระหว่างหลักยึดฐานไทเทเนียมกับรากเทียมจำลองและความหนาชั้นชีเมนต์ระหว่างหลักยึดฐานไทเทเนียมกับครอบพันเซอร์โคเนีย คงสภาพชิ้นงานที่ได้ด้วยวัสดุพิมพ์ชิลิโคน นำไปตัดช่วงและวัดความหนาที่ระดับต่างๆ 4 ระดับ คือ (1) ที่ระดับกึ่งกลางของรอยต่อระหว่างหลักยึดฐานไทเทเนียมกับรากเทียมจำลอง (2) ที่ระดับกึ่งกลางของผิวชั้นบนของหลักยึด (3) ที่ระดับกึ่งกลางของผิวชั้นล่างของหลักยึดที่เป็นบริเวณที่มีจุดต้านต่อการหมุน และ (4) ที่จุดต้านต่อการหมุน วัดขนาดช่องว่างด้วยกล้องจุลทรรศน์โพลาร์ไรซ์ไมโครสโคปโดยวัดชั้้ 3 ครั้ง คำนวณค่าเฉลี่ยและวิเคราะห์ผลด้วยสถิติที่ทดสอบที่ ผลการวิจัยพบว่าหลักยึดฐานไทเทเนียมที่ผลิตในห้องปฏิบัติการมีความแนบสนิทมากกว่าหลักยึดฐานไทเทเนียมจากบริษัทผู้ผลิต โดยมีค่าเฉลี่ยขนาดช่องว่างน้อยกว่าอย่างมีนัยสำคัญทางสถิติ (88.48 ± 6.64 ไมครอน และ 124.67 ± 16.26 ไมครอน ตามลำดับ) สำหรับค่าความหนาของชั้นชีเมนต์ที่บริเวณจุดต้านต่อการหมุนพบว่าหลักยึดฐานไทเทเนียมจากบริษัทผู้ผลิตมีค่าเฉลี่ยความหนาชั้นชีเมนต์น้อยกว่าหลักยึดฐานไทเทเนียมที่ผลิตขึ้นในห้องปฏิบัติการ (24.83 ± 12.96 ไมครอน และ 76.19 ± 21.23 ไมครอน ตามลำดับ) จากการศึกษานี้สรุปได้ว่าฐานไทเทเนียมที่ผลิตในห้องปฏิบัติการสามารถใช้เป็นทางเลือกหนึ่งแทนฐานไทเทเนียมที่ผลิตจากบริษัทได้ โดยมีความแนบสนิทที่ใกล้เคียงกัน

คำสำคัญ: หลักยึดฐานโลหะไทเทเนียม/ ขนาดช่องว่างบริเวณส่วนต่อภายนอกของรากเทียม/ ความหนาชั้นชีเมนต์

ผู้รับผิดชอบบทความ

ดารารพ แซลี^{*}

ภาควิชาทันตกรรมประดิษฐ์

คณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่น

อําเภอเมือง จังหวัดขอนแก่น 40002

โทรศัพท์: 0 4320 2405 #11170

โทรสาร: 0 4320 2862

จดหมายอิเล็กทรอนิกส์: darsae@yahoo.com

* ภาควิชาทันตกรรมประดิษฐ์ คณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่น อําเภอเมือง จังหวัดขอนแก่น

** ภาควิชาทันตกรรมชุมชน คณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่น อําเภอเมือง จังหวัดขอนแก่น

*** ภาควิชาปรัชญา คณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่น อําเภอเมือง จังหวัดขอนแก่น

**** แผนกทันตกรรม โรงพยาบาลสมเด็จพระบูพราชาธรรมชุติม จังหวัดอุบลราชธานี

