

Assessment of Anti-oxidation Activities of *Saban* Remedy Extracts

Suchada Naknarin*, Arunporn Itharat*,†,‡, Weerachai Pipatrattanaseree†, Sumalee Panthong*,†,

Phrapaponpatchara Pibanknatee†, and Neal M. Davies§

*Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klong Luang, Pathum Thani 12120, Thailand

†Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University, (Rangsit Campus), Klong Luang, Pathum Thani 12120, Thailand

‡Khampramong Temple, 95, Sawang, Phanna Nikhom, Sakon Nakhon, 47130, Thailand

§Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

✉Corresponding authors: iarunporn@yahoo.com, iarunporn@gmail.com

Abstract

Introduction and Objectives: Oxidative stress arises from an imbalance between reactive oxidant species (ROS) and the body's antioxidant defenses, leading to potential damage to proteins, lipids, and DNA, and increasing mutation risks. Antioxidants are crucial in protecting cells from radicals. Nutrient antioxidants play a significant role in detoxifying ROS, and their deficiency is linked to chronic diseases and cancer. Phytochemical antioxidants, including vitamins C, E, and K, plant pigments like carotenoids, and secondary metabolites such as phenolics and polyphenols, are known for their health benefits. Despite its traditional use as a plant-based medicine for cancer patients at the Arokhayasala Temple, the *Saban* remedy lacks published scientific evidence to support its efficacy. Therefore, this study aimed to evaluate the antioxidant properties of *Saban* remedy using different methods to determine its potential antioxidant benefits.

Methods: To investigate the antioxidant activities of *Saban* remedy and its ingredients, two extraction methods, maceration and decoction, were used. The maceration method involved soaking plant materials in 95% ethanol (3 × 3 days). The extracts were filtered and concentrated with a rotary evaporator under reduced pressure at 45 °C. The decoction method involved boiling the plant materials in water for 15 minutes. Subsequently, part of the solution was filtered using a No.1 Whatman® membrane filter. The residue was boiled by the same process as described an additional two times. All three filtrates were mixed and dried using a freeze dryer. In the same pattern, each plant that constitutes the overall ingredients of *Saban* remedy were individually investigated. The antioxidant activities of these extracts were analyzed using multiple assays, including DPPH radical scavenging assay (DPPH assay), ABTS cation radical scavenging assay (ABTS assay), Ferric Reducing Antioxidant Power (FRAP) assay, and Nitroblue Tetrazolium (NBT) reduction assay. Additionally, the study examined the total phenolic and flavonoid

contents of these extracts using Folin-Ciocalteu and aluminum chloride methods, respectively.

Results: The aqueous extracts showed a higher percentage yield than ethanolic extracts. However, most ethanolic extracts exhibited higher total phenolic and flavonoid contents than aqueous extracts. Notably, both extracts of *Cassia garrettiana* demonstrated the highest total phenolic and flavonoid contents among the samples. The DPPH radical scavenging assay revealed that the aqueous extracts were the most effective, with lower values of the 50 percentage of effective concentration values (EC_{50}) compared to ethanolic extracts. The *Saban* remedy aqueous extract exhibited strong radical scavenging activity with an EC_{50} of $7.98 \pm 0.98 \mu\text{g/mL}$, whereas the ethanolic extract had an EC_{50} of $27.92 \pm 0.89 \mu\text{g/mL}$. Similarly, the ABTS assay showed comparable antioxidant activity between the ethanolic and aqueous extracts, with EC_{50} values of $1.06 \pm 0.20 \text{ mg/mL}$ and $1.03 \pm 0.10 \text{ mg/mL}$, respectively. The FRAP assay results demonstrated that the ethanolic and aqueous extracts of *Saban* remedy had FRAP values of 264.86 ± 10.75 and $301.32 \pm 0.46 \text{ mg Fe}^{2+}$ equivalent per gram extract, respectively. The aqueous extract exhibited the highest reducing power, indicating its potential as an electron donor to scavenge free radicals and reduce oxidative damage. In contrast, the NBT reduction assay demonstrated that the *Saban* remedy ethanolic extract had higher antioxidant activity than the aqueous extract. This assay measures the ability of antioxidants to reduce superoxide radicals, which are highly reactive oxygen species contributing to cellular damage. The observed higher activity of the ethanolic extract in this assay suggests the presence of ethanol-soluble compounds with strong superoxide scavenging capabilities.

Discussion: Plant polyphenols exhibit significant antioxidant activity by directly reacting with radicals, donating electrons to stabilize them, and preventing cellular damage. Antioxidants derived from plant extracts play a crucial role in neutralizing oxidative stress and reducing the risk of chronic diseases. In this study, both ethanolic and aqueous extracts demonstrated promising antioxidant activities, but their efficacy varied depending on the assay used. Cell-based antioxidant activity involves the defense systems within cells against oxidative stress, and our results indicate that ethanolic extracts are more potent than aqueous extracts in cell-based assays. However, aqueous extracts exhibited superior antioxidant activity in chemical-based assays, as evidenced by lower EC_{50} values in DPPH and ABTS assays. The differences in antioxidant activity across laboratory methodologies arise due to variations in oxidant species and measurement techniques. Moreover, differences between our findings and previous studies may be attributed to differences in plant species, extraction methods, and environmental factors affecting the phytochemical composition of herbs. Geographical location, soil composition, climate, and seasonal variations significantly influence the levels of bioactive compounds in medicinal plants. Therefore, this study indicates that the *Saban* remedy exhibits potent antioxidant activities capable of inhibiting various oxidants or ROS, as demonstrated by the DPPH, ABTS, FRAP, and NBT reduction assays. The aqueous extract displayed stronger radical scavenging activity in DPPH and FRAP assays, while the ethanolic extract showed higher activity in the NBT reduction assay. These findings highlight the importance of extraction methods in determining the antioxidant efficacy of plant-based remedies.

Conclusion and Recommendation: This study indicates that the *Saban* remedy exhibits anti-oxidation activities capable of inhibiting various oxidants or ROS, including the DPPH assay, ABTS assay, FRAP assay, and NBT reduction assay. The findings of this study provide scientific evidence supporting the traditional use of *Saban* remedy for its antioxidant properties.

Key words: Anti-oxidation, Arokayasala, Khampramong Temple, *Saban* remedy, Thai Traditional medicine

การศึกษาฤทธิ์ด้านออกซิเดชันของตัวรับยาสาบาน

สุชาดา นาคนวินทร์*, อรุณพร อิฐรัตน์**, †, วีระชัย พิพัฒน์รัตนสารี*, สุมาลี ปานทอง*, †, ประปนพัชร์ กินาลพัคตร์นิช*, นีล อัม เดวีส์*

* สถาบันการแพทย์แผนไทยประยุกต์ คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120 ประเทศไทย

† ศูนย์แห่งความเป็นเลิศทางวิชาการด้านการแพทย์แผนไทยประยุกต์ มหาวิทยาลัยธรรมศาสตร์ ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120 ประเทศไทย

‡ วัดค่าประมาณ 95 ต่ำบลส์ว่า อำเภอพรหมนิคม จังหวัดสกลนคร 47130 ประเทศไทย

§ คณะเภสัชศาสตร์, ศูนย์วิจัยเภสัชศาสตร์และสุขภาพ Katz Centre มหาวิทยาลัยอัลเบอรา เมืองย็อกมัตัน จังหวัดอัลเบอรา T6G 2E1 ประเทศไทย

* ผู้รับผิดชอบบทความ: iarunporn@yahoo.com, iarunpom@gmail.com

บทคัดย่อ

บทนำและวัตถุประสงค์: ภาระเครื่องออกซิเดชันเกิดขึ้นจากความไม่สมดุลระหว่างสารออกซิเดนท์กับความด้านท่านฤทธิ์ด้านออกซิเดชันของร่างกาย ซึ่งนำไปสู่ความเสียหายของโปรตีน ไขมัน และดีอีนเอ รวมทั้งเพิ่มความเสี่ยงในการรกร่างพันธุ์ของดีอีนเอ โดยสารด้านอนุมูลอิสระมีความสำคัญอย่างยิ่งในการปกป้องเซลล์จากอนุมูลอิสระ สารด้านอนุมูลอิสระที่ได้จากสารอาหารมีบทบาทสำคัญในการด้านสภาวะเครื่องออกซิเดชัน และการขาดแคลนสารด้านอนุมูลอิสระเหล่านี้ ส่งผลให้เกิดโรคเรื้อรังและมะเร็ง สารด้านอนุมูลอิสระจากพุกมย์เคมี เช่นวิตามิน C, E และ K หรือสารสีพืช เช่น แครอทโนยด์ และสารเมตาบอลไลต์ทุกชนิด เช่น ฟีโนลิกและโพลีฟีนอล เป็นสารพุกมย์เคมีที่มีประโยชน์ต่อร่างกาย ซึ่งตัวรับยาสาบาน เป็นยาสมุนไพรที่ใช้เพื่อบรรเทาอาการให้แก่ผู้ป่วยเรื้อรังที่อโรคยาดา วัดค่าประมาณ แต่อย่างไรก็ตามยังไม่มีหลักฐานทางวิทยาศาสตร์ที่ที่เกี่ยวข้องของตัวรับยาสาบานถึงฤทธิ์ด้านออกซิเดชัน ดังนั้นตัวรับยาสาบานและสมุนไพรในตัวรับ จะถูกนำไปศึกษาฤทธิ์ด้านออกซิเดชัน ดังนี้ตัวรับยาสาบานและสมุนไพรในตัวรับ จะถูกนำไปศึกษาฤทธิ์ด้านออกซิเดชัน

วิธีการศึกษา: การศึกษาฤทธิ์ด้านออกซิเดชันของตัวรับยาสาบานและสมุนไพรในตัวรับ ด้วยการสกัดสองวิธี คือการหมักและการต้มน้ำ โดยวิธีการหมัก คือการนำตัวรับยาสาบานไปแช่ในอุ่นน้ำ 95% เป็นเวลา 3 วัน จำนวน 3 รอบ โดยในแต่ละรอบสารสกัดที่ได้ถูกนำมากรองและทำให้เข้มข้นโดยใช้เครื่องรีดแบบบุน้ำกายได้การลดความดันที่อุณหภูมิ 45 °C ส่วนวิธีการต้ม คือการต้มตัวรับยาสาบานในน้ำเดือดเป็นเวลา 15 นาที จากนั้นสารละลายถูกกรองผ่านเมมเบรนของ Whatman® เบอร์ 1 และหากที่เหลือถูกนำไปปั่นต้มซึ่งอีกสองครั้ง จากนั้นทั้งสามส่วนที่ถูกกรองจะนำมาผสมกันและทำให้แห้งโดยใช้เครื่องทำแห้งแบบอีกเซนจ์ ในทำนองเดียวกันส่วนประกอบของสมุนไพรแต่ละชนิดของตัวรับยาสาบานจะถูกนำไปหมักและต้มน้ำเหมือนวิธีข้างต้น จากนั้นสารสกัดทั้งหมดที่ได้จะถูกนำไปทดสอบฤทธิ์ด้านออกซิเดชัน ด้วยวิธีการต่างๆ ได้แก่ การทดสอบการกำจัดอนุมูลอิสระ DPPH (DPPH assay), การทดสอบการกำจัดอนุมูลออกไซด์ ABTS (ABTS assay), การทดสอบพลังการด้านออกซิเดชันโดยการรีดิวช์เหล็ก (Ferric Reducing Antioxidant Power หรือ FRAP assay) และการทดสอบการลดลงของ Nitroblue Tetrazolium (NBT reduction assay) พร้อมทั้งตรวจสอบปริมาณฟีโนลิกและฟลาโวนอยด์โดยใช้วิธี Folin-Ciocalteu และวิธีอะลูมิเนียมคลอไรด์เพื่อประเมินฤทธิ์ด้านออกซิเดชันของตัวรับยาสาบานและสมุนไพรในตัวรับ

ผลการศึกษา: สารสกัดชั้นอุ่นน้ำของตัวรับยาสาบานและสมุนไพรในตัวรับ มี %yield ต่ำกว่าสารสกัดชั้นน้ำ และจากการทดสอบปริมาณฟลาโวนอยด์รวมและปริมาณฟีโนลิกรวม พบว่าสารสกัดชั้นอุ่นน้ำของตัวรับยาสาบานมีปริมาณฟลาโวนอยด์รวมและปริมาณฟีโนลิกรวมสูงกว่าสารสกัดชั้นน้ำ โดยเฉพาะอย่างยิ่งสารสกัดชั้นอุ่นน้ำ

และชั้นน้ำของแสมสารที่แสดงปริมาณฟลาโวนอยด์และปริมาณฟีโนลิกธรรมสูงที่สุด และจากการทดสอบฤทธิ์ต้านออกซิเดชันด้วยวิธีการ DPPH assay พบว่าสารสกัดคำรับยาสามารถชั้นน้ำมีประสิทธิภาพดีกว่าสารสกัดชั้นอุทกานอล โดยสารสกัดชั้นน้ำมีค่าความเข้มข้นของสารที่มีประสิทธิภาพ 50% (EC_{50}) เท่ากับ $7.98 \pm 0.98 \mu\text{g/mL}$ เมื่อเปรียบเทียบ กับสารสกัดชั้นอุทกานอล ($EC_{50} = 27.92 \pm 0.89 \mu\text{g/mL}$) และเมื่อทดสอบฤทธิ์ต้านออกซิเดชันด้วยวิธี ABTS assay ของสารสกัดชั้นอุทกานอลและชั้นน้ำของคำรับยาสามารถ พบว่า มีค่า EC_{50} ใกล้เคียงกัน คือสารสกัดชั้นอุทกานอล มีค่า EC_{50} เท่ากับ 1.06 ± 0.20 และสารสกัดชั้นน้ำ มีค่า EC_{50} เท่ากับ $1.03 \pm 0.10 \mu\text{g/mL}$ และจากผลจากการทดสอบฤทธิ์ต้านอนุมูลอิสระด้วยวิธี FRAP assay พบว่าสารสกัดชั้นอุทกานอลและสารสกัดชั้นน้ำของคำรับยาสามารถ มีค่า FRAP เท่ากับ 264.86 ± 10.75 และ $301.32 \pm 0.46 \text{ mg Fe}^{2+}$ เทียบเท่าต่อกันของสารสกัดตามลำดับ แสดงให้เห็นว่าสารสกัดชั้นน้ำมีฤทธิ์ดีกว่าสารสกัดชั้นอุทกานอล ซึ่งบ่งชี้ถึงศักยภาพในการเป็นผู้ให้อิเล็กตรอนเพื่อกำจัดอนุมูลอิสระของสารสกัดชั้นน้ำ ในทางตรงกันข้ามจากการทดสอบฤทธิ์ต้านออกซิเดชันด้วยวิธี NBT reduction assay พบว่าสารสกัดชั้นอุทกานอล มีฤทธิ์ต้านออกซิเดชันดีกว่าสารสกัดชั้นน้ำ ซึ่งการทดสอบ NBT reduction assay เป็นการทดสอบที่วัดความสามารถของสารต้านออกซิเดชันในการลดอนุมูลอิสระซูเปอร์ออกไซด์ ซึ่งเป็นอนุมูลออกซิเจนที่มีความไวสูงและสามารถก่อให้เกิดความเสียหายต่อเซลล์ได้โดยฤทธิ์ที่ดีกว่าของสารสกัดชั้นอุทกานอลในการทดสอบนี้บ่งชี้ถึงการมีอยู่ของสารประกอบที่ละลายในอุทกานอลซึ่งมีความสามารถในการกำจัดอนุมูลซูเปอร์ออกไซด์อย่างมีประสิทธิภาพ

อภิปรายผล: สารพุกยนเคนในพืชคือ Polyphenols มีฤทธิ์ต้านอนุมูลอิสระ โดยการทำปฏิกิริยาโดยตรงกับอนุมูลอิสระ การให้อิเล็กตรอนเพื่อท้าให้หอนุมูลอิสระมีเสถียรภาพ และป้องกันความเสียหายจากอนุมูลอิสระที่เกิดขึ้นกับเซลล์ สารต้านอนุมูลอิสระที่ได้จากการสกัดพืชมีบทบาทสำคัญในการลดความเครียดออกซิเดชันและลดความเสี่ยงของโรคเรื้อรัง ในการศึกษานี้ พบว่าสารสกัดชั้นน้ำของคำรับยาสามารถชั้นน้ำและชั้นน้ำของสารสกัดชั้นน้ำมีฤทธิ์ดีอย่างไรก็ตามจะเห็นว่าฤทธิ์ของสารสกัดที่แตกต่างกันขึ้นอยู่กับวิธีการทดสอบที่ใช้ จากการศึกษานี้จึงให้เห็นว่าสารสกัดชั้นอุทกานอล มีฤทธิ์ที่ดีกว่าสารสกัดชั้นน้ำในฤทธิ์ต้านออกซิเดชันในระดับเซลล์ ซึ่งเกี่ยวข้องกับระบบป้องกันภาวะความเครียดออกซิเดชันภายในเซลล์ อย่างไรก็ตามสารสกัดชั้นน้ำแสดงฤทธิ์ต้านออกซิเดชันที่ดีกว่าสารสกัดชั้นอุทกานอลในการทดสอบทางเคมี ดังเห็นจากค่าความเข้มข้นของสารที่มีประสิทธิภาพ 50% (EC_{50}) ที่ต่ำกว่าในการทดสอบ DPPH และ ABTS ซึ่งความแตกต่างของฤทธิ์ต้านออกซิเดชันในแต่ละวิธีการทดสอบ เกิดจากความหลากหลายชนิดของอนุมูลออกซิเจนที่ใช้และเทคนิคการวัดผลการทดสอบ นอกจากนี้ความแตกต่างระหว่างผลการศึกษานี้กับงานวิจัยก่อนหน้านี้อาจมาจากการแตกต่างของชนิดพืช วิธีการสกัด และปัจจัยแวดล้อมที่มีผลต่อองค์ประกอบทางเคมีของสมุนไพร เช่น สถานที่เพาะปลูก องค์ประกอบของดิน สภาพภูมิอากาศ และถูกกาลที่เก็บเกี่ยว ดังนั้นการศึกษานี้แสดงให้เห็นว่า คำรับยาสามารถมีฤทธิ์ต้านออกซิเดชันที่มีศักยภาพในการขับยั่งอนุมูลอิสระหลายชนิด ดังที่แสดงในการทดสอบ DPPH, ABTS, FRAP และ NBT reduction assay และสารสกัดชั้นน้ำแสดงความสามารถในการกำจัดอนุมูลอิสระได้ดีในวิธีการทดสอบ DPPH และ FRAP ในขณะที่สารสกัดชั้นอุทกานอลแสดงฤทธิ์ที่สูงกว่าในการทดสอบ NBT reduction assay ผลการทดสอบเหล่านี้นั้นยังคงความสำคัญของวิธีการสกัดในการกำหนดประสิทธิภาพของฤทธิ์ต้านออกซิเดชันจากสมุนไพร

ข้อสรุปและข้อเสนอแนะ: การศึกษานี้บ่งชี้ว่าคำรับยาสามารถ แสดงฤทธิ์ต้านออกซิเดชันที่สามารถขับยั่งกุ่มสารออกซิเดชันที่ได้หลงประถมา จากการทดสอบด้วยวิธี DPPH, ABTS, FRAP, NBT reduction assays ผลการศึกษานี้ เป็นหลักฐานทางวิทยาศาสตร์ที่แสดงถึงฤทธิ์ต้านออกซิเดชันของคำรับยาสามารถและสนับสนุนการใช้คำรับยาสามารถในทางแพทย์แผนไทย

คำสำคัญ: ฤทธิ์ต้านอนุมูลอิสระ, คำรับยาสามารถ, การแพทย์แผนไทย, วัดค่าประมง, โกรกยาศาลา

Introduction and Objectives

Oxidative stress occurs when there is an imbalance between the generation of oxidants or reactive oxygen species (ROS) and the body's ability to neutralize them with antioxidants. This imbalance can result in damage to critical biomolecules, including proteins, lipids, and particularly DNA. Such damage can elevate the risk of mutations. Antioxidants are particularly effective and precise in shielding cells from free radicals^[1]. There is substantial evidence supporting the role of nutrient antioxidants in detoxifying reactive oxygen species (ROS). A deficiency in these nutrient antioxidants is linked to the development of various chronic, degenerative diseases, and cancer^[2-3]. Phytochemical antioxidants include a range of compounds, such as simple molecule antioxidants like vitamins C, E, and K; plant pigments like carotenoids (β -carotene), xanthophylls, lycopene, and anthocyanins; as well as secondary plant metabolites that range from simple phenolics to more complex polyphenols^[3-4]. Antioxidant activity is crucial in cancer treatment and prevention as it neutralizes free radicals and reduces oxidative stress, which contribute to DNA damage, cell mutation, and tumor progression. *Saban* remedy is a plant based herbal medicine administered to cancer patients at Arokhayasala in Khampramong Temple,

Thailand^[5]. In this study, focusing on antioxidant activity aligns with the traditional use of the *Saban* remedy as a supportive treatment for cancer patients, suggesting it may work indirectly by alleviating oxidative stress and enhancing the body's defense systems. This approach provides measurable evidence to support traditional claims, highlighting the remedy's potential role in cancer management and laying the groundwork for future studies on its anticancer properties. These extracts were investigated for antioxidant activities using various known methodologies. Additionally, the study examined the total phenolic and flavonoid contents of these extracts.

Methodology

1. Plant materials and extraction methods

The plants were collected from Kanchanaburi province, Thailand, in January 2019 and authenticated by the Department of Applied Thai Traditional Medicines, Thammasat University. The vouchered specimens were deposited at the herbarium of Southern Center of Thai Medicinal Plants, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand (Table 1).

The plants were washed, sliced thinly, and dried in a hot air oven at a temperature, not more than 50 °C, and ground to a coarse

powder. The plant was extracted by two methods, maceration, and decoction. Then, these ingredients were weighed and mixed into the *Saban* remedy formula. One kg of the dried remedy was macerated with 95% ethanol (3×3 days). The extracts were filtered and concentrated with a rotary evaporator under reduced pressure at 45°C . One kg of the dried remedy was boiled in distilled water for 15 minutes. Subsequently, part of the solution was filtered using a No.1 Whatman[®] membrane filter. The residue was boiled by the same process as described an additional two times. All three filtrates were mixed and dried using a freeze dryer. In the same pattern, each plant that constitutes the overall ingredients of *Saban* remedy were individually investigated.

2. Chemicals and reagents

All the chemicals and reagents used in this study were analytical grade. Folin-Ciocalteu's phenol reagent, quercetin, butylated hydroxytoluene (BHT), 2,2-di-phenyl-1-picrylhydrazyl (DPPH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), potassium persulfate, 2,2 -azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,4,6tri(2pyridyl) 1,3,5triazine (TPTZ), sodium nitrite (NaNO_2), aluminum chloride hexahydrate ($\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$), nitroblue tetrazolium (NBT), and phorbol-myristate-acetate (PMA) were

purchased from Sigma-Aldrich (USA). Iron (III) chloride hexahydrate ($\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$) was purchased from Orec (New Zealand). Hydrochloric acid (HCl) was purchased from Merck (Germany). Sodium carbonate and sodium hydroxide (NaOH) were purchased from Univar (Australia). Gallic acid was obtained from Thermo Fisher Scientific (Thailand). Aluminum chloride, Dimethyl sulfoxide (DMSO) was obtained from RCI Labscan (Thailand). The human promyelocytic leukemia cell line (HL-60: ATCC[®] CCL-240TM) was purchased from the American Type Culture Collection (ATCC). Iscove's Modified Dulbecco's Medium (IMDM), penicillin-streptomycin (P/S), and phosphate buffer saline (PBS), Fetal bovine serum (FBS), hanks' Balanced Salt Solution (HBSS), and trypsin-EDTA were purchased from Gibco[®] (OK, USA). Sulforhodamine B (SRB) was purchased from Fluka (Munich, Germany).

3. Chemical analysis of *Saban* remedy and its ingredients

3.1 Determination of total phenolic content

The total phenolic content was determined according to the Folin-Ciocalteu assay^[6]. First, the reaction mixture was prepared using the extract or standard solution, distilled water, and Folin-Ciocalteu's reagent (1:5 with water). Subsequently, 7.5% (w/v) sodium carbonate was added and then incubated at room

temperature for 30 minutes. The absorbance of the blue color was measured at 765 nm. Then, the total phenolic content was calculated according to a gallic acid calibration curve and expressed as milligram gallic acid equivalent per gram extract (mg GAE/g extract).

3.2 Determination of total flavonoid content

The total flavonoid content was analyzed using the aluminum chloride colorimetric method^[7]. Briefly, extract or standard solution was mixed with the reaction mixture containing 5% (w/v) NaNO₂ and 10% (w/v) AlCl₃· 6H₂O and further incubated for 5 minutes. Then, 1M NaOH and distilled water were added and incubated for 30 minutes to develop a pink color. The mixture was assayed at 510 nm, and total flavonoid content was expressed as milligram quercetin equivalent per gram (mg QE/g gram).

4. In vitro anti-oxidation activities

4.1 DPPH Radical Scavenging Assay (DPPH assay)

The antioxidant activity of these plant extractions was evaluated by the DPPH radical scavenging assay. The assay was described by Yamasaki *et al.*, 1994^[8] and utilized with some minor modifications. A 100 μ l of sample solution was added into 96 well-micro plates,

and then 100 μ l of 6×10^{-5} M 2,2-diphenyl-1-picrylhydrazyl (DPPH) in absolute ethanol was pipetted into each well. Afterwards, the plate was incubated in the dark to avoid light for 30 minutes at room temperature. The absorbance was measured at 520 nm using a spectrophotometer. This antioxidant activity testing method used butylated hydroxytoluene (BHT) as a positive control. All tests were determined in triplicate. The 50 percentage of effective concentration values (EC₅₀) were reported as Mean \pm SEM of three replicates.

4.2 ABTS cation radical scavenging assay (ABTS assay)

The procedure followed the method of Re *et al.*, 1999^[9] with some minor modifications. ABTS cation radical was produced by the reaction between 7 mM of 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) in water and 2.45 mM potassium persulfate (1:1), stored in the dark at room temperature for 16 h before use. ABTS solution was diluted with ethanol to obtain an absorbance of 734 nm. After the addition of 296 μ l of diluted ABTS solution to 4 μ l of the extracts, the absorbance was measured at 0 minutes after the initial mixing and incubated for 6 minutes. Then, the absorbance was measured at 6 minutes. An appropriate solvent was utilized as the base-

line control in this assay. All the measurements were carried out at least three times. Trolox was used as a standard antioxidant substance. The 50 percentage of effective concentration values (EC_{50}) were reported as Mean \pm SEM of three replicates.

4.3 Ferric reducing antioxidant power Assay (FRAP assay)

The procedure followed the method of Benzie and Strain 1996; Pulido *et al.*, 2000; Firuzi *et al.*, 2005^[10-12] with some minor modifications. Twenty microlitres of sample solution were added to 96-well microplates. Control solvent was added to the absolute ethanol of the ethanolic extract and distilled water of the aqueous extract. After that, 180 μ l of the fresh FRAP reagent was added to 96-well microplates. The sample was kept at room temperature for 8 minutes before being measured for UV absorbance. Its absorbance was measured at 593 nm using a microplate reader. All the measurements were carried out at least three times. Trolox was used as a standard antioxidant reference substance. The values were reported as Mean \pm SEM of three replicates. The results were calculated using a Trolox calibration curve and expressed as milligram Trolox acid equivalent per gram extract (mg TEAC/g extract).

4.4 NBT reduction assay

Intracellular superoxide formation was quantified by nitroblue tetrazolium reduction (NBT) assay according to the method of Srisawat *et al.*, 2010 and Mosmann, 1983^[13-14]. Briefly, the human promyelocytic leukemia cells (HL-60) were cultivated for seven days in an IMDM medium supplemented with 20% heated fetal bovine serum containing 1.3% DMSO. HL60 was incubated with various dilutions of the extracts and dissolved in HBSS at 37 °C in a 5% CO₂ atmosphere with 95% humidity for 15 minutes. Then, the samples were incubated with ten μ g/ml PMA and 1.25 mg/ml NBT solution for another hour. At the end of the incubation time, 2 ml of 1 M HCl was added. After vortexing and centrifugation at 4,000 rpm for 10 min, the precipitate of insoluble formazan deposits was dissolved in 300 μ l DMSO. The absorbance was measured at 572 nm. This antioxidant activity testing method used propyl gallate as a positive control. The inhibition against superoxide formation measured by NBT reduction was calculated as a percentage inhibition

5. Statistical analysis

The results of the biological activities are reported as Mean \pm Standard Error Mean (SEM) from three replicated experiments.

EC_{50} values were calculated using regression analysis. Mean differences among groups were analyzed by Student's *t*-test. Statistical analysis was conducted by using GraphPad Prism software (CA, USA).

Results

1. Extraction yields and Chemical compounds analysis

All plants were extracted by both the maceration and decoction methods. The percentage yield of all extracts and results of total phenolic and total flavonoids contents are shown in Table 1. The ethanolic extracts showed a percentage yield lower than aqueous extracts. *T. crispa* Forman. had the highest percentage yield of 6.03%, followed by 5.53% of *T. triandra* (Colebr.) Diels. Percentage yield by maceration method showed that *T. baenzigeri* L. had the highest percentage yield of 16.40%, followed by 14.95% of *T. crispa* Forman.

The most ethanolic extracts showed higher total phenolic and flavonoid contents than aqueous extracts. Both extracts of *C. garrettiana* Craib showed the highest amounts of total phenolic. The ethanol extract of *Saban* remedy was determined to have a higher total phenolic than the aqueous extract. Likewise, the highest amounts of flavonoid content were determined in both extracts of *C. garrettiana*

Craig. The ethanol extract of *Saban* remedy was shown to have a higher total flavonoid content than the aqueous extract. The results are similar to the total phenolic contents.

2. *In vitro* anti-oxidation activities

Several analytical methods were used to improve antioxidant effectiveness. The results of antioxidant activity were determined by four different test methods: DPPH, ABTS, FRAP, and NBT reduction assay (Table 2). The aqueous extracts were the most effective DPPH radical scavengers. The *Saban* remedy aqueous extract was an effective radical scavenger with an EC_{50} of $7.98 \pm 0.98 \mu\text{g/mL}$ when compared with the ethanolic extract of *Saban* remedy ($EC_{50} = 27.92 \pm 0.89 \mu\text{g/mL}$). The *Saban* remedy ethanolic extract was a less effective radical scavenger than the positive butylated hydroxytoluene (BHT) which showed an $EC_{50} = 17.04 \pm 0.93 \mu\text{g/mL}$. In parallel with these findings, both aqueous extracts of *C. garrettiana* Craib and *P. reticulatus* were also effective radical scavengers compared to BHT as a positive control.

Another antioxidant activity screening method, ABTS radical cation decolorization assay, revealed results like those of the DPPH reaction. The aqueous extracts were observed as powerful ABTS radical scavengers compared to the ethanolic extracts. *Saban* remedy's

Table 1 Scientific name, extraction yield, total phenolic and total flavonoid contents of plant materials.

Herbal plants	Voucher specimen number	Part of used	Extract	%yield	phenolic content (mg GAE/g)	Total	Total flavonoid content (mg QE/g)
Saban remedy	-	-	95% Ethanol	3.24	147.05 ± 5.44	605.2 ± 63.79	
			Aqueous	7.74	101.74 ± 2.46	168.53 ± 5.34	
<i>Baiospermum montanum</i> (Willd.) Muell. Arg.	SKP 071 02 13 01	Root	95% Ethanol	2.62	24.82 ± 2.45	41.2 ± 2.89	
			Aqueous	7.83	26.12 ± 2.14	82.87 ± 4.62	
<i>Carissa carandas</i> L.	SKP 072 03 03 01	Root	95% Ethanol	1.48	26.31 ± 2.66	141.37 ± 25.96	
			Aqueous	7.78	35.90 ± 6.84	102.92 ± 12.79	
<i>Cassia garrettiana</i> Craib	SKP 034 03 07 01	Wood	95% Ethanol	3.24	656.80 ± 29.81	2451.47 ± 61.35	
			Aqueous	4.78	395.71 ± 15.06	853.4 ± 8.5	
<i>Croton oblongifolius</i> Roxb.	SKP 071 03 15 01	Stem	95% Ethanol	3.34	51.21 ± 3.75	81.87 ± 6.1	
			Aqueous	3.84	61.57 ± 1.37	93.2 ± 7.01	
<i>Harrisonia perforate</i> Merr.	SKP 178 08 16 01	Root	95% Ethanol	2.87	97.76 ± 5.07	197.03 ± 4.67	
			Aqueous	4.97	151.70 ± 2.27	184.37 ± 7.67	
<i>Phyllanthus amarus</i> Schum. & Thonn.	SKP 071 16 01 01	Whole plant	95% Ethanol	3.57	42.29 ± 9.84	94.53 ± 2.33	
			Aqueous	9.94	152.42 ± 4.31	134.48 ± 3.13	
<i>Phyllanthus reticulatus</i>	SKP 071 16 01 01	Root	95% Ethanol	2.02	130.75 ± 5.20	384.03 ± 11.17	
			Aqueous	3.76	193.47 ± 2.92	493.98 ± 14.36	
<i>Timospora crispa</i> Forman.	SKP 114 20 03 01	Stem	95% Ethanol	6.03	29.25 ± 1.96	332.53 ± 2.91	
			Aqueous	14.95	25.28 ± 1.60	48.64 ± 10.4	
<i>Timospora baenigeri</i> L.	SKP 114 20 02 01	Stem	95% Ethanol	3.29	62.09 ± 1.24	259.37 ± 16.74	
			Aqueous	16.40	29.39 ± 1.79	56.7 ± 5.48	
<i>Tiliacora triandra</i> (Colebr.) Diels.	SKP 114 20 20 01	Root	95% Ethanol	5.53	75.73 ± 1.96	206.53 ± 9.94	
			Aqueous	8.09	91.61 ± 7.95	150.31 ± 9.91	

ethanolic and aqueous extract demonstrated nearly identical ABTS scavenging with $EC_{50} = 1.06 \pm 0.20$ and 1.03 ± 0.10 mg/mL, respectively. ABTS radical scavenging activity for both *Saban* remedy extracts was comparable with the Trolox (0.21 ± 0.01 mg/mL). Remarkably, the ethanolic and aqueous extracts of *C. garrettiana* Craib also similarly possessed strong activity as demonstrated by an $EC_{50} = 0.10 \pm 0.02$ and 0.30 ± 0.06 mg/mL, respectively.

The FRAP assay measures antioxidants in a sample compared to other assays measuring the inhibition of free radicals. The value expressed from the FRAP assay represents the corresponding concentration of electron-donating antioxidants with the reduction in ferric iron (Fe^{3+}) to ferrous ion (Fe^{2+}). The ethanolic and aqueous extracts of the *Saban* remedy exhibited strong reducing power in the Fe III-TPTZ complex, with FRAP values of 264.86 ± 10.75 and 301.32 ± 0.46 mg Fe^{2+} equivalent per gram of extract, respectively. The aqueous extract showed the highest reducing power, indicating its potential as an electron donor to scavenge free radicals. The ethanolic extract of *Saban* remedy showed FRAP values of 106.33 ± 5.01 mg Trolox equivalent per gram extract while the aqueous extract showed FRAP values of 123.32 ± 0.21 mg Trolox equivalent per gram extract. Remarkably, both extracts of *C. garrettiana* Craib had higher

antioxidant activity than *Saban* remedy extracts with FRAP values in both extractions in mg Fe^{2+} equivalent per gram extract and mg Trolox equivalent per gram extract.

The nitroblue tetrazolium test, often referred to as the NBT reduction assay, quantifies ROS produced by leukocytes and spermatozoa. Free oxygen radicals decrease NBT, resulting in the formation of the blue-black chemical formazan. The test is easily accessible and reasonably priced^[15]. The extracts were shown to have toxicity in different concentrations by the MTT assay. The extract without significant toxicity was chosen for the NBT reduction assay. The result showed that the *Saban* remedy ethanolic extract had higher antioxidant activity by NBT reduction assay than the aqueous extract. The ingredients contained within *C. garrettiana* Craib (CG) in both extracts revealed the highest antioxidant activity compared to other ingredients. The propyl gallate as positive control showed an EC_{50} valued at 5.13 ± 0.88 μ g/mL.

Discussion

Natural phenolic, flavonoid and stilbene chemicals are plant secondary metabolites that have an aromatic ring with at least one hydroxyl group. Because their hydroxyl groups are good electron donors, they can directly contribute to antioxidant activity^[16]. Con-

sequently, plant polyphenols exhibit proper antioxidant activity. The chemical base for antioxidant activities is a direct reaction between the sample and radicals, which are stable and generate free radicals. The antioxidants work by donating electrons to these free radicals, stabilizing them, and preventing them from causing cellular damage. Examples of the chemical-based methodologies are DPPH, ABTS, and the FRAP assay. On the other hand, cell-based antioxidant activity refers to the antioxidant defense systems that cells possess to protect themselves from oxidative stress such as the NBT reduction assay. In our case, the results of antioxidant activities through cell-based antioxidant activity demonstrated that ethanolic extracts had more potent activity than aqueous extracts. In contrast, antioxidant activities through a chemical basis showed that the aqueous extracts were the most promising activity against antioxidant activity as values resulted in a lower EC₅₀ as assessed by the DPPH and ABTS methods. According to previous published research, the ingredients of *Saban* remedy produced antioxidant activity. Sáez *et al.* reported that the stilbene piceatannol from heartwood's *C. garrettiana* had potent antioxidant capacity in the ABTS assay^[17]. Zulkhairi and Ibahim *et al.* revealed that the methanolic and aqueous extracts of *T. crispa* had good antioxidant activity determined by

the DPPH and ABTS assay methodology.^[18-20] The *B. montanum*'s alcoholic extracts revealed a high percentage of antioxidant activity at 100 $\mu\text{g}/\text{ml}$ ^[21]. *P. amarus*'s methanolic extract and phyllanthin also showed antioxidant activities through the DPPH radical scavenging and FRAP assays^[22]. The ethanol extract had an IC₅₀ value greater than the aqueous extract in *H. perforate* roots^[23]. The powder and methanol extract of *P. reticulatus* also had antioxidant activity as measured by the DPPH radical assay^[24-25]. Overall, the various methods of evaluating antioxidant activities demonstrate the ability to oxidize, reduce, and stabilize several oxidant species. The various methodological protocols and different oxidants could affect the measurements of radical scavenging activity. The findings in the current studies of antioxidant activities are comparable to previous research, however, the variety of herbs utilized, which are influenced by factors such as geography of cultivation area, season, and time of harvest can affect the herbs' biological activities. Some extracts with low total phenolic content (TPC) and total flavonoid content (TFC) may still exhibit potent antioxidant activities due to the presence of other bioactive compounds or highly active specific phenolics and flavonoids. Antioxidant activity is influenced not only by the quantity of phenolic and flavonoid compounds but also

Table 2 Anti-oxidation activities of selected bitter-tasting plants.

Herbal plants	Solvent	DPPH assay (EC ₅₀ ; $\mu\text{g/mL}$)	ABTS assay (EC ₅₀ ; mg/mL)	Ferric reducing ability of plasma (FRAP) assay (mg Trolox/g extract)	NBT reduction assay (EC ₅₀ ; $\mu\text{g/mL}$)
Sabai remedy	95% Ethanol	27.92 ± 0.89	1.06 ± 0.20	106.33 ± 5.01	264.86 ± 10.75
	Aqueous	7.98 ± 0.98	1.03 ± 0.10	123.32 ± 0.21	301.32 ± 0.46
<i>Balspermum montanum</i> (Willd.) Muell. Arg.	95% Ethanol	> 100	7.00 ± 0.32	15.22 ± 0.3	69.36 ± 0.64
	Aqueous	75.09 ± 9.17	4.49 ± 0.89	30.06 ± 1.03	101.2 ± 2.21
<i>Carissa carandas</i> L.	95% Ethanol	> 100	7.01 ± 1.68	25.82 ± 1.22	92.1 ± 2.63
	Aqueous	65.24 ± 5.62	4.14 ± 0.52	30.52 ± 0.94	102.19 ± 2.02
<i>Cassia garrettiana</i> Craib	95% Ethanol	5.28 ± 0.23	0.10 ± 0.02	838.76 ± 9.27	1913.4 ± 15.61
	Aqueous	6.28 ± 0.64	0.30 ± 0.06	318.59 ± 10.08	787.99 ± 9.68
<i>Croton oblongifolius</i> Roxb.	95% Ethanol	> 100	2.08 ± 0.20	20.31 ± 3.16	80.26 ± 6.77
	Aqueous	29.79 ± 6.38	2.15 ± 0.36	37.78 ± 1.48	117.76 ± 3.18
<i>Harrisonia perforata</i>	95% Ethanol	18.09 ± 1.91	8.87 ± 0.83	97.29 ± 4.29	245.45 ± 9.21
	Aqueous	10.00 ± 1.55	0.71 ± 0.16	194.52 ± 4.38	454.1 ± 9.4
<i>Phyllanthus amarus</i> Schum. & Thonn.	95% Ethanol	18.75 ± 0.57	2.78 ± 0.50	56.57 ± 1.21	158.07 ± 2.59
	Aqueous	5.51 ± 0.28	0.38 ± 0.12	195.33 ± 1.9	455.83 ± 4.08
<i>Phyllanthus reticulatus</i>	95% Ethanol	5.61 ± 0.30	1.10 ± 0.39	175.33 ± 4.06	412.92 ± 8.72
	Aqueous	5.79 ± 0.96	0.55 ± 0.06	259.17 ± 4.82	592.83 ± 10.34
<i>Tinospora crispa</i>	95% Ethanol	> 100	> 10	32.22 ± 1.83	105.82 ± 3.93
	Aqueous	70.60 ± 16.53	6.43 ± 1.31	23.89 ± 1.38	87.95 ± 2.97
<i>Tinospora baenigeri</i>	95% Ethanol	56.60 ± 11.69	1.93 ± 0.55	57.08 ± 4.61	159.17 ± 9.88
	Aqueous	54.95 ± 24.16	5.14 ± 0.78	27.3 ± 1.12	95.26 ± 2.41
<i>Tiliacora triandra</i>	95% Ethanol	26.81 ± 2.53	3.82 ± 0.32	51.12 ± 4.37	146.39 ± 9.38
	Aqueous	13.35 ± 3.28	1.78 ± 0.5	122.56 ± 3.23	299.67 ± 6.93
Butylated hydroxytoluene (BHT)		17.04 ± 0.93	ND	ND	ND
		ND	0.21 ± 0.01	ND	ND
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox)		ND	ND	ND	ND
		ND	ND	ND	ND
Propyl gallate		ND	ND	ND	5.13 ± 0.88

by their structural characteristics, such as the number and position of hydroxyl groups, which enhance free radical scavenging ability. Additionally, non-phenolic antioxidants, such as alkaloids, terpenoids, and certain vitamins, may contribute to the overall antioxidant activity. Synergistic interactions among various compounds in the extract can also amplify antioxidant effects, even when individual compound concentrations are low. This highlights the complexity of antioxidant mechanisms and suggests that the potency of an extract is not solely dependent on its TPC or TFC but also on the composition and interactions of its diverse bioactive constituents. Regardless, the antioxidant activity data supports the traditional use of the *Saban* remedy for cancer treatment by providing evidence of its potential role in mitigating oxidative stress, a key factor in cancer development and progression. By demonstrating strong antioxidant activity, the extracts of the *Saban* remedy suggest their ability to neutralize free radicals and reduce oxidative damage, which could indirectly contribute to cancer prevention or management. This aligns with its traditional use as a supportive treatment for cancer patients, as reducing oxidative stress can enhance the body's natural defense mechanisms, protect healthy cells during conventional treatments,

and improve overall well-being.

Conclusion

In conclusion, the *Saban* remedy antioxidant activities as assessed through DPPH, ABTS, FRAP, and NBT reduction assays was evident. The *Saban* remedy aqueous extract exhibited greater antioxidant activity compared to the ethanolic extract on DPPH and ABTS assays with EC₅₀ values of 7.98 ± 0.98 µg/ml and 1.03 ± 0.10 mg/ml, respectively. The aqueous extract of *Saban* remedy demonstrated superior antioxidant activity in the DPPH assay compared to BHT (butylated hydroxytoluene), which was used as the positive control. The FRAP values of SBW also demonstrated a higher value than SBE. Its ingredients exhibited the highest amounts in the FRAP assay in both extracts of *C. garrettiana* Craib. The *Saban* remedy ethanolic extract also showed greater antioxidant activity as measured by the NBT reduction assay than the aqueous extract. Overall, the study finding support the use of *Saban* remedy aqueous extract in folk medicine by evidence based scientific methodologies that it possesses antioxidant properties suitable for health supplements.

Acknowledgements

The authors are grateful to the Thailand

Research Fund (TRF), the National Research Council of Thailand (NRCT), the Thailand Science Research and Innovation (TSRI) through the Royal Golden Jubilee PhD Program (RGJ-PhD) (Grant No. PHD/0209/2560), the research group in Thai herbs and traditional remedy for cancer patients from Faculty of Medicine, Thammasat University, and Bualuang ASEAN Chair Professor for facilities and assistance. We would like to thank the Center of Excellence in Applied Thai Traditional Medicine Research, Faculty of Medicine, Thammasat University and Faculty of Medicine, Chiang Mai University for support and providing laboratory facilities.

Conflict of interest

The authors declare no conflict of interest

Funding

The authors are grateful to the Thailand Research Fund (TRF), the National Research Council of Thailand (NRCT), and the Thailand Science Research and Innovation (TSRI) through the Royal Golden Jubilee PhD Program (RGJ-PhD) (Grant No. PHD/0209/2560) for funding. This work is also supported by the research group in cancer group research from Faculty of Medicine, Thammasat University and Bualuang ASEAN Chair Professor Fund.

References

1. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? *Free Radical Biology and Medicine*. 2010;49(11):1603-16.
2. Gupta RK, Singh N. *Morinda citrifolia* (Noni) alters oxidative stress marker and antioxidant activity in cervical cancer cell lines. *Asian Pacific Journal of Cancer Prevention*. 2013;14(8):4603-6.
3. Gupta RK, Patel AK, Shah N, Choudhary AK, Jha UK, Yadav UC, Gupta PK, Pakuwal U. Oxidative stress and antioxidants in disease and cancer: a review. *Asian Pacific journal of cancer prevention*. 2014;15(11):4405-9.
4. Bors W, Michel C. Chemistry of the antioxidant effect of polyphenols. *Annals of the New York Academy of Sciences*. 2002;957(1):57-69.
5. Poonthananiwatkul B, Howard RL, Williamson EM, Lim RH. Cancer patients taking herbal medicines: A review of clinical purposes, associated factors, and perceptions of benefit or harm. *Journal of ethnopharmacology*. 2015 Dec 4;175:58-66.
6. Miliauskas G, Venskutonis PR, Van Beek TA. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. *Food Chemistry*. 2004; 85(2): 231-7.
7. Zhu H, Wang Y, Liu Y, Xia Y, Tang T. Analysis of flavonoids in *Portulaca oleracea* L. by UV-vis spectrophotometry with comparative study on different extraction technologies. *Food Analytical Methods*. 2010;3(2):90-7.
8. Yamasaki K, Hashimoto A, Kokusenya Y, Miyamoto T, Sato T. Electrochemical method for estimating the antioxidative effects of methanol extracts of crude drugs. *Chemical and pharmaceutical bulletin*. 1994 Aug 15;42(8):1663-5.
9. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. *Free Radical Biology and Medicine*. 1999;26(9-10):1231-7.
10. Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of "Antioxidant Power": The FRAP Assay. *Analytical Biochemistry*. 1996;239(1):70-6.
11. Pulido R, Bravo L, Saura-Calixto F. Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. *Journal of Agricultural and Food Chemistry*. 2000;48(8):3396-402.

12. Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L. Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. *Biochimica et Biophysica Acta (BBA) - General Subjects*. 2005;1721(1-3):174-84.
13. Srisawat U, Panunto W, Kaendee N, Tanuchit S, Itharat A, Lerdvuthisopon N, Hansakul P. Determination of phenolic compounds, flavonoids, and antioxidant activities in water extracts of Thai red and white rice cultivars. *Journal of the Medical Association of Thailand= Chotmaihet thangphaet*. 2010;93:S83-91.
14. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. *Journal of Immunological Methods*. 1983;65(1-2):55-63.
15. Agarwal A, Cho CL, Sharma R. Laboratory Evaluation of Reactive Oxygen Species. In: Encyclopedia of Reproduction [Internet]. Elsevier; 2018 [cited 2024 May 31]. p. 78-84. Available from: <https://linkinghub.elsevier.com/retrieve/pii/B9780128012383648419>
16. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. *Plants*. 2019 Apr;11(8):96.
17. Sáez V, Pastene E, Vergara C, Mardones C, Hermosín-Gutiérrez I, Gómez-Alonso S, Gómez M, Theoduloz C, Riquelme S, von Baer D. Oligostilbenoids in *Vitis vinifera* L. Pinot Noir grape cane extract: Isolation, characterization, in vitro antioxidant capacity and anti-proliferative effect on cancer cells. *Food Chemistry*. 2018;265:101-10.
18. Zulkhairi A, Abdah MA, Kamal NHM, Nursakinah I, Moklas MA, Hasnah B, Fazali, F, Khairunnur FA, Kamilah KAK, Zamree MS, Shahidan MMA. *Biological Properties of Tinospora crispa (Akar Patawali) and Its Antiproliferative Activities on Selected Human Cancer Cell Lines*. *Malays J Nutr*. 2008;14(2):173-87.
19. Zulkefli H, Mohamad J, Zainal Abidin N. Antioxidant Activity of Methanol Extract of *Tinospora crispa* and *Tabernaemontana corymbosa*. *Sains Malaysiana*. 2013;42:697-706.
20. Ihabim M, Wan-Nor I, Hasani N, Zainurdin N, Nur S S, Froemming G. Anti-proliferative and antioxidant effects of *Tinospora crispa* (Batawali). *Biomedical Research*. 2011;22:57-62.
21. Nandagaon VS, Kulkarni AR. In vitro antioxidant and cytotoxicity activity of *bacopa monnieri* and *baliospermum montanum* muell arg. *International Journal of Pharmaceutical Application*. 2013;4(3):63-7.
22. Nguyen V, Sakoff J, Scarlett C. Physicochemical Properties, Antioxidant and cytotoxic activities of arude extracts and fractions from *Phyllanthus amarus*. *Medicines*. 2017;18;4(2):42.
23. Singharachai C, Palanuvej C, Kiyohara H, Yamada H, Ruangrungsi N. Safety Evaluation of Thai Traditional Medicine Remedy: Ben-Cha-Lo-Ka-Wi-Chian. *Journal of Health Research*. 2017;25(2):83-90.
24. Maruthappan V, Shree KS. A report on the antioxidant activity of the powder of the entire plant of *Phyllanthus reticulatus* Poir. *International Journal of Green Pharmacy (IJGP)*. 2010;4(4):265-9.
25. Eldeen IMS, Seow EM, Abdullah R, Sulaiman SF. In vitro antibacterial, antioxidant, total phenolic contents and anti-HIV-1 reverse transcriptase activities of extracts of seven *Phyllanthus* sp. *South African Journal of Botany*. 2011;77(1):75-9.