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ABSTRACT

Purposes: To demonstrate the functional and morphological effects of electrical stimulation (ES) in
preventing muscle atrophy and to examine the relationship between functional and morphological changes.
Design and Methods: Adult male Wistar rats (age 10 weeks) were randomly divided into 3 groups: control
(CON), hindlimb suspension (HS) and hindlimb suspension plus electrical stimulation (HS+ES). The rats in the
HS+ES group were subjected to stimulation at 50 Hz every other day for 2 weeks. A functional testing was
done using up and down stair-climbing, and a morphological analysis (muscle cross-sectional area; MCSA)
was done using immunohistochemistry (IHC) staining methods. Results and Conclusion: ES at 50 Hz could
suppress muscle atrophy as that seen in functional and morphological changes. All groups, except the HS
group, were able to complete the task in both climbing up and down the stairs. Moreover, there was an
observed positive relationship between functional and change in morphology of soleus (SOL) and tibialis
anterior (TA) muscles for 2 weeks of Hindlimb unloaded (HU). For upstairs-climbing, the correlations were
found to be 0.93 in the SOL muscle and 0.54 in the TA muscle. For downstairs-climbing, the correlations were

found to be 0.82 in the SOL muscle and 0.48 in the TA muscle.
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INTRODUCTION

Muscle atrophy occurs in a variety of pathophysiological settings. It results from inactivity, such as
casting, immobilization, or prolonged bed rest,1’13 and as a result of age-related loss of skeletal muscle,m’15 as
antigravity muscles may also experience a reduction in lower limb muscular performance. These can be in
response to physical inactivity and involved in muscle 1‘unction,16 as observed by a decrease in walking, stair-
climbing and standing up *® as a result of altered muscle morphology.%‘g'11 Morphological changes can

1

. . 17 . . 2-5,18 . .
include muscle wasting, a loss or reduction in muscle mass and a decrease in cross-sectional area

(CSA) of muscle.”**""

Methods such as ES have been used to stimulate movement and prevent muscle atrophy during
periods of inactivi‘[y.w'21 However, the progressive knowledge on the prevention or alleviation of muscle
atrophy and maintenance of muscle function is limited because studies investigating both the functional and
morphological changes induced by ES are rare. Further studies are needed to understand the effects of ES
on the functional and morphological changes in muscle and how ES should be applied in various settings in
the prevention or reduction of disused muscle atrophy.

The purposes of this study were 1) to demonstrate the efficacy of ES in preventing muscle atrophy, in

maintaining functional and in inducing morphological changes, and 2) to examine the relationship between

functional and morphological changes.

METHODS
Animal Groups

Fifteen adult male Wistar rats (age 10 weeks) were randomly divided into 3 groups: control (CON, n
= 5), hindlimb suspension (HS, n = 5), and hindlimb suspension plus electrical stimulation (HS+ES, n = 5).
The rats of each group were housed in an isolated and environmentally-controlled room (12-hour light-dark

cycle) with a standard laboratory diet and tap water provided ad libitum.

Hindlimb Suspension

The rats in the HS and the HS+ES groups were treated by HU for 2 weeks according to the method
defined by Morey et al. (1979). The forelimbs were allowed to maintain contact with the floor of the cage, and
the rats were allowed to move freely to food and water while the hindlimbs were suspended to prevent the

hindlimbs from bearing weight on the floor or sides of the cage.

Electrical Stimulation
The rats in the HS+ES group were given stimulation at a frequency of 50 Hz with an intensity of 10
mA for the duration of 15 minutes, twice a day, 3 days a week and every other day for 2 weeks using the

electrical stimulator (SEN-3301, Nihon Kohden Corp., Tokyo, Japan). The stimulus was 10 mA, positive square
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wave with a duration pulse of 0.5 ms. An active electrode was placed on the skin at the closet point to the
sciatic nerve on the gluteal area, and a ground electrode was placed on the foot surface. Each electrode was

sized 12 x 12 mm.

Up and Down Stair-Climbing

The functional of the rats was tested using up and down stair-climbing (10 steps, each step 5-cm
high and 5-cm wide), as adapted from Shaffer et al. (2000) and Ichihara et al. (2002). The time of the
functional testing was recorded using a digital video camera. Each rat climbed up and down of its own
accord. They were timed as they climbed up, were turned around on the top platform and continued the
round-trip climb down. The times were recorded with an accuracy of 0.1 s. During an exploratory test session,
the suspension apparatus were removed from the rats in the HS and HS+ES groups. It was made sure that
the rats could climb up and down the stairs. One week before the experimental period, each rat was
observed during a once-per-day stair-climbing training session, which consisted of exposure to the testing

room and climbing up and down the stairs one time.

Preparation of Muscle Samples

After the 2-week experimental period, the rats were weighed and then anesthetized by intraperitoneal
injection of sodium pentobarbital at a dose of 50 mg/kg. The soleus (SOL) and the tibialis anterior (TA)
muscles were cut from the right hindlimb of each rat, and then fixed in 10% formalin for morphological

analysis.

Morphological Analysis

The SOL and the TA morphological changes were quantitated on immunohistochemical (IHC)24
stained cross-sections (5-um thick). The sections were examined under a light microscope to determine the
CSA of the muscle. The muscle cross-sectional area (MCSA) was calculated using image software (Scion

image, Scion Corp., Maryland, USA).

Statistical Analysis

Group differences were compared with an analysis of variance (ANOVA), with Tukey’s post-hoc
analysis. The relationship between MCSA and stair-climbing time were examined by linear regression and
correlation analysis. All data were expressed as mean + standard deviation (SD). Values were considered

statistically significant at p < 0.05.
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RESULTS
Up and Down Stair-Climbing

All groups, except the HS group, were able to complete the task in both climbing up and down the
stairs. The stair-climbing times were lower (p < 0.05) for the CON than for the HS+ES groups (Table 1). The
relationship between mean MCSA and mean stair-climbing time after the 2-week experimental period and the
Pearson product moment correlations between mean MCSA and mean stair-climbing time are presented in
Table 2. For the upstairs-climbing, the mean MCSA of the SOL and the TA muscles were correlated with mean
stair-climbing time: 0.93 in the SOL muscle and 0.54 in the TA muscle. For the downstairs-climbing, the mean
MCSA of the SOL and the TA muscles were correlated with the mean stair-climbing time: 0.82 in the SOL
muscle and 0.48 in the TA muscle. A comparison of the SOL and the TA muscles data showed that the mean
MCSA of the SOL muscle was highly correlated with mean upstairs-climbing (r = 0.93) and mean downstairs-

climbing (r = 0.82).

TABLE 1 The functional test using up and down stair-climbing

Group
Time (s)

CON (n =5) HS (n = 5) HS+ES (n = 5)
Up stair-climbing 3.95 + 0.03 Non 7.68 + 0.06°
Down stair-climbing 5.59 + 0.06 Non 11.43 + 0.05

Non, non-functional.

“Significant difference from CON, p < 0.05.

TABLE 2 Relationship between mean muscle cross-sectional area and mean stair-climbing time

Time (s)
MCSA

Up stair-climbing Down stair-climbing
SOL (um°) 0.93° 0.82°
TA (um°) 0.54° 0.48°

MCSA, muscle cross-sectional area.

“Correlation is significant at the 0.05 level (1-tailed).

Muscle Cross-Sectional Area

In the SOL muscle, there was a significant decrease in CSA after the 2-week experimental period in
the HS group (54.24%) compared with the CON group (p < 0.05). There was no apparent change (p > 0.05)
in the HS+ES group. In the TA muscle, there was a significant decrease in CSA after the 2-week experimental

period in the HS group (21.71%) compared with the CON group (p < 0.05). There was no apparent change (p
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> 0.05) in the HS+ES groups. For the SOL and the TA muscles, the reduction in CSA was highly expressed in

the SOL muscle (Table 3).

TABLE 3 Muscle cross-sectional area for the SOL and the TA muscles

Group
MCSA

CON (n =5) HS (n =5) HS+ES (n = 5)
SOL (pm2) 4,832.00 + 135.61 2,211.00 + 72.03% 4,723.00 + 130.02
TA (pm2) 4,777.00 + 113.24 3,740.00 + 68.507 4,752.00 + 104.89

MCSA, muscle cross-sectional area.
“Significant difference from CON, p < 0.05.

bSignificant difference from HS+ES, p < 0.05.

DISCUSSION
Effectiveness of Electrical Stimulation to Prevent Muscle Atrophy

The study used parameters for ES at a frequency of 50 Hz, twice a day, 3 days a week, duration 15
minutes and intensity 10 mA. In the SOL muscle, the results of the study showed that HS decreased CSA in
the HS group, while this change was maintained in the HS+ES group (Table 3). In the TA muscle, a similar
pattern was observed in that HS decreased CSA in the HS group, while this change was maintained in the
HS+ES group (Table 3). Remarkable are the morphological characteristic changes associated with muscle

2-4,21,25-28

atrophy of the SOL and the TA muscles, and the results of this study confirm and extend the findings
previously reported. Data also suggest that ES can prevent changes in morphology in the atrophy muscle.
These may be induced muscle hypertrophy. Therefore, the muscle hypertrophy that occurred might be

related to the muscle adaptation in respond to ES.

Relationship Between Functional and Morphological

The results of the study showed that following 2 weeks of HU caused a greater decrease in CSA of
the SOL than of the TA muscles (Table 3). Another similar difference in atrophy between these muscles has
been reported after disuse atrophy induced by inactivity.1’3'9'm The higher atrophic response of the SOL
muscle than that of the TA muscle has been attributed to the SOL muscle's greater function as an antigravity

. 2,9,29-30
muscle, whether it be postural or locomotor.

Whatever the mechanism is, the greater atrophy in the SOL
muscle after mechanical unloading of the muscle appears to be of functional significance.m’31 Another similar
response occurs during prolonged bed rest of effects of physical inactivity in humans; the rate of muscle
atrophy is, in fact, extremely fast in 4 h during periods of bed rest, and the antigravity muscles (extensor
muscles) are more affected than the non-antigravity muscles (flexor mus,cles,).18’32 Importantly, the study found
a relationship between mean MCSA and mean stair-climbing time following 2 weeks of HU of the SOL and the

TA muscles (Table 2). Additionally, the relationship between the mean MCSA of the SOL muscle to find a high
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correlation with mean upstairs-climbing (r = 0.93) and mean downstairs-climbing (r = 0.82). A positive

correlation was observed between morphology (MCSA) and function (up and down stair-climbing), noting that

changes in morphology may influence the functional.

CONCLUSION

The results suggest that muscle atrophy as that seen in functional and morphological changes could

be suppressed by ES. Importantly, the study showed the relationship between functional and morphological

changes of SOL and TA muscles.
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