

Sports Biomechanics

(Original article)

ชีวกลศาสตร์ทางการกีฬา

(นิพนธ์ต้นฉบับ)

KINEMATICS ANALYSIS OF THE BARBELL OF YOUTH WEIGHTLIFTERS

DURING MAXIMUM SNATCH

Sirirat HIRUNRAT, Pawadon RAKTAWEE

College of Sports Science and Technology, 73170

ABSTRACT

The majority of the research to date on weightlifting has focused on two senior female 2004 and 2008 Olympic gold medal weightlifters. The performances of 6 women weightlifters were Thai Youth National Team and performing in the final selected for the representative of Thailand national weightlifter in the Youth Olympic Games 2010 competition in Singapore. The kinematics data of the barbell were recorded and analyzed using Peak Motion Analysis. 2-D Motion Analysis system from the snatch lift including barbell resultant trajectory, vertical and horizontal displacement, peak height, velocity, and acceleration. The performance of the athletes competing in 69-kg class and 48-kg class and the average age 15.8 years old the snatch attempts only once performance with the maximum lifting. The results showed that the average of barbell peak height were 1.29 ± 0.1 m, vertical barbell displacement 0.144 ± 0.03 m, horizontal barbell displacement 0.180 ± 0.28 m, maximum vertical barbell velocity 2.84 ± 0.26 m/s at 31 ± 4 time % snatch, and maximum vertical barbell acceleration 23.59 ± 4.34 m/s² at 29 ± 6 time % snatch, respectively. The results of this study suggest that the appearance of the second pull in maximum vertical velocity and acceleration with time % snatch of weightlifters could be used as a criterion of lifting skill and a measure of performance.

(Journal of Sports Science and Technology 2013;13(1): 11 – 18)

KEYWORDS: kinematic, snatch, youth weightlifter

INTRODUCTION

Weightlifting consists of two events, the snatch and the clean and jerk. (IOC www.olympics.org, 2006). Thailand has two women weightlifters received two gold medals from the Olympic Games in 2004 and 2008. Nowadays, there are many youth weightlifters in Thailand. The snatch technique in term of kinematics parameters for the elite youth is very important in weightlifting development.

Weightlifting requires a high power output to pull the bar to maximum height on both legs and bring it overhead with correct posture as specified in competition. Successful lifts may be described as those that maximized pull height after the second pull, and minimized the loss in height of the bar during the squat (Isaka et al., 1996 ; Safrushahar et al., 2002). The snatch involves lifting the bar to arm's length above the head in one movement. The snatch is generally divided into five phases (Safrushahar et al., 2002). It starts at the lift

off position and progresses through the first pull, transition and second pull phase, to the squat, then the finish or hold position (Garret et al., 2000). This is the first time that study Thai youth women weightlifters for the snatch and the first study examine the overhead snatch from start to finish with maximum loading, revealing information that may not be seen from the naked eye of an experienced coach. The results of this study could showed the barbell trajectories of weightlifters, and kinematic variables with two-dimensional analysis. The vertical velocity of the barbell, particular peak velocity, is considered to have the same importance as the trajectory. Garhammer (1985) studied the trajectory pattern of barbell snatch lifts and clean and jerk for five Gold medalists in weightlifting at the 1984 Olympic Games. Therefore, the purpose of this study were to 1) Describe the snatch technique in term of kinematics of the barbell trajectory, and 2) Describe the barbell trajectory of maximum lifting. It was hypothesized that there are no differences between 6 youth women weightlifters in term of the movement pattern of lifting and the barbell trajectory of lifting in the snatch.

MATERIAL AND METHOD

Kinematics data were recorded by a 50 Hz digital video camera. The camera was position 5 m. from the center of the platform and mounted on steel posts and secured at a height of 0.95 meters from the floor to cover a full body view of the tallest subject. Peak 5. 2D Motion Analysis software were used to analyze the snatch lift. Kinematic variables including, barbell trajectory, barbell vertical, and barbell horizontal displacement, barbell peak height, barbell velocity, and barbell acceleration were then obtained.

Subjects

Six Thai Youth Weightlifters from National Weightlifting Team whom complete weightlifting during the Youth Olympic Games 2010, Singapore. They were healthy, and did not have any disorders affecting the lifter before taking part in this study. The performance of the athletes competing in 69-kg class and 48-kg class and the average age 15.8 ± 0.25 years old and average height 161.0 ± 0.3 cm. the snatch attempts only once performance with the maximum lifting.

RESULT & DISCUSSION

The results showed that the average barbell peak height was 1.29 ± 0.1 m, vertical barbell displacement was 0.144 ± 0.03 m, horizontal barbell displacement was 0.180 ± 0.28 m, maximum vertical barbell velocity was 2.37 ± 0.26 m/s at 25 ± 4 time % of total snatch, and maximum vertical barbell acceleration was 17.18 ± 4.34 m/s² at 27 ± 6 % of total snatch. Subject CHI who is the tallest had the maximum peak vertical velocity at 2.84 m/s during 31% of total snatch and the maximum peak vertical acceleration at 23.59 m/sec² during 29% of total snatch. The results showed the athletes who are taller tend to move the body and barbell greater distances and tend to move the barbell at higher speed. This result was similar to Drechsler (1998) (Table 1). The vertical velocity of the barbell, particularly peak velocity is an important component for successful lifting as it is a main factor that contributes to peak bar height. This component has been observed for many years. Ono et al (1969) recognized that excellent lifters pull up the barbell at a higher speed toward the knee level (first pull), but a lower speed above the knee level (Ono et al, 1969). However, the results in this study showed that

the maximum vertical velocity among 6 weightlifters occurred during the pull above the knee area (2nd pull). Garhammer (1985) concluded that the barbell velocity of five gold medallists in weightlifting at the 1984 Olympic Games decelerated at the end of the first pull, due to rebending the knees and shifting of the torso to a more vertical position after the first pull and prior to the second pull. During this transition the vertical force on the barbell decreases, resulting in decreased barbell velocity. On the other hand, a smooth and fast transition results in a smaller decrement in velocity. From Figure 3-8 Acceleration of the barbell can provide interesting information for study and evaluation, such as the timing and direction of the applied force. Figure 8 showed that Subject SOP at the second peak of the vertical acceleration was a little higher value than the first peak. From the study of Isaka et al (1996), there were three peaks in the vertical acceleration that corresponded to the three phases of the pull movement (first pull, transition, and second pull). He concluded that the second peak of the vertical acceleration curve should have a higher value than the first peak. Garhammer (1985) showed that the barbell acceleration dropped just after the plates left the floor but then increased steadily to a maximum value just as hip torque began to decrease.

Perfection of lifting technique is commonly included in the daily routine of Olympic weightlifters. Although a major part of the training consists of submaximal loads, the lifts are also performed with maximum loads or near maximum loads (Hakkinen, 1988). It is important to investigate any alterations in the biomechanics of the snatch technique when loads are increased, and whether or not those changes might differ among female weightlifters of different skill levels.

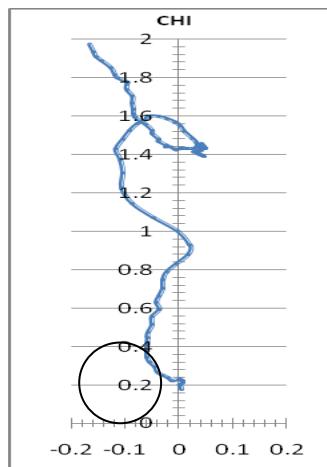


Fig 1. Barbell Trajectory of the Snatch at maximum loading (112 kg) of Subject CHI

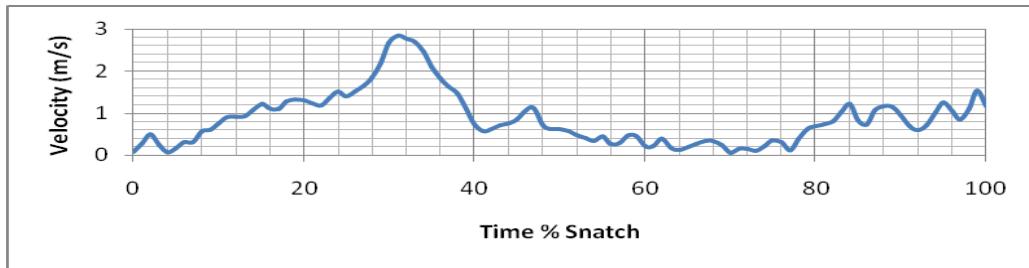


Fig 2. Barbell Velocity of the Snatch of CHI at maximum loading (112 kg).

Peak Velocity = 2.84 m/s at Time Percent Snatch = 31%

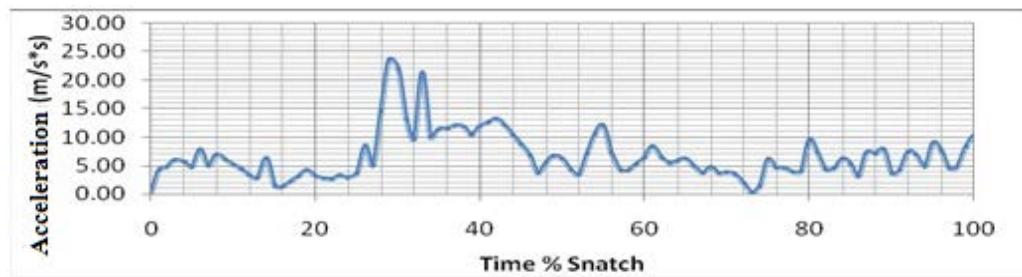


Fig 3. Barbell Acceleration of CHI at maximum loading (112 kg).

Peak Acceleration = 23.59 m/s² at Time Percent Snatch = 29%

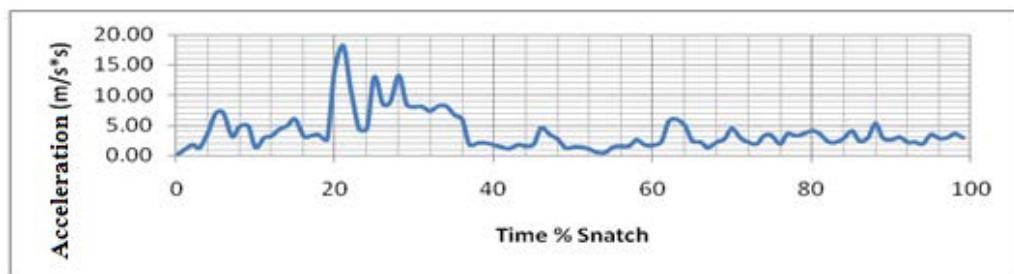


Fig 4. Barbell Acceleration of SHO at maximum loading

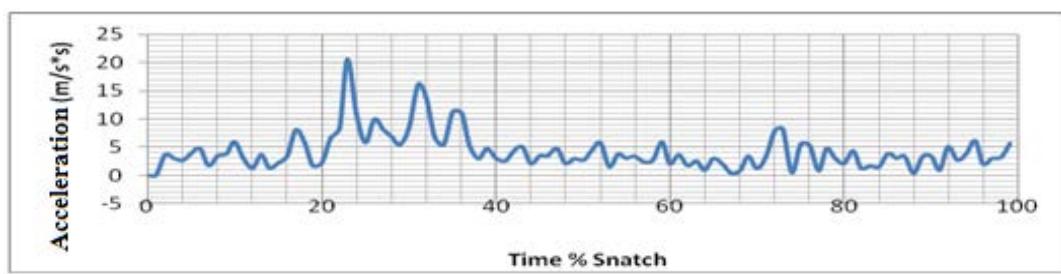


Fig 5. Barbell Acceleration of RAT at maximum loading

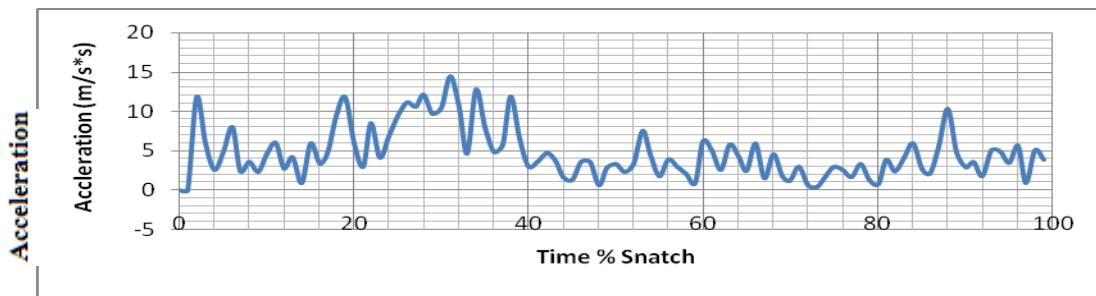


Fig 6. Barbell Acceleration of SI at maximum loading

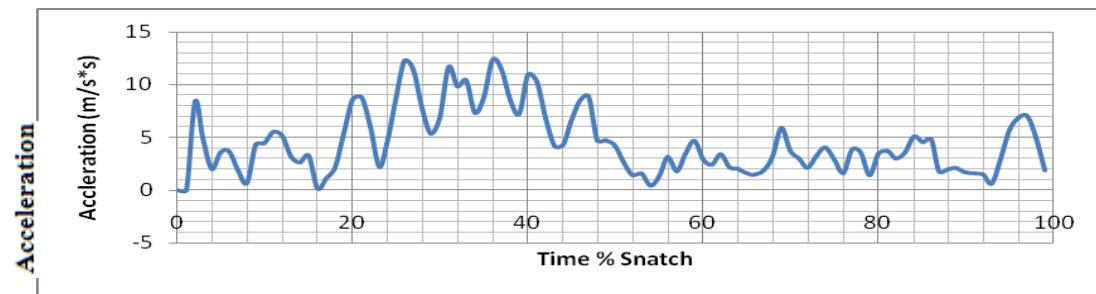


Fig 7. Barbell Acceleration of SUP at maximum loading

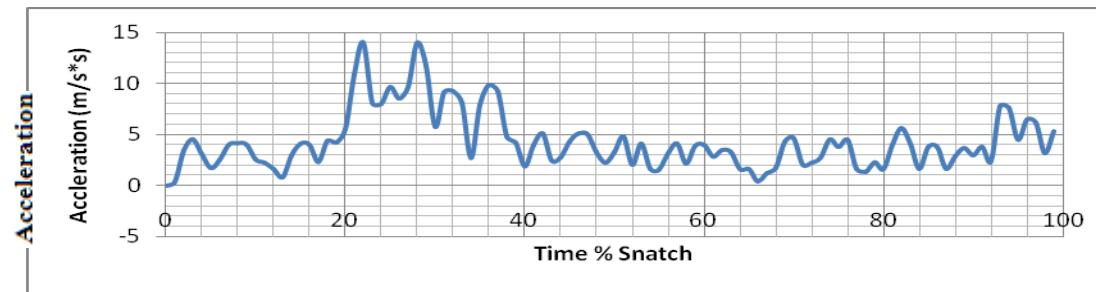


Fig 8. Barbell Acceleration of SOP at maximum loading

Table 1. Body weight, Barbell Peak Height, Vertical and Horizontal Barbell Displacement, Barbell Peak Velocity, and Velocity & Acceleration Time Total Snatch of the Snatch at maximum loading.

Subject	Body Weight (kg)	Barbell Peak Height (cm)	Vertical Barbell Displacement (cm)	Horizontal Barbell Displacement (cm)
CHI	117.00	1.60	0.174	0.071
SHO	49.53	1.24	0.154	0.120
RAT	58.40	1.34	0.152	0.0492
SI	49.55	1.14	0.148	0.063
SUP	50.25	1.26	0.075	0.031
SOP	42.85	1.16	0.161	0.746

Subject	Body Weight (kg)	Barbell Peak Velocity (m/s)	Velocity Time Total snatch (%)	Acceleration Time Total snatch (%)
CHI	117.00	2.84	31	29
SHO	49.53	2.14	23	21
RAT	58.40	2.34	24	23
SI	49.55	2.17	21	31
SUP	50.25	2.44	28	36
SOP	42.85	2.28	23	22

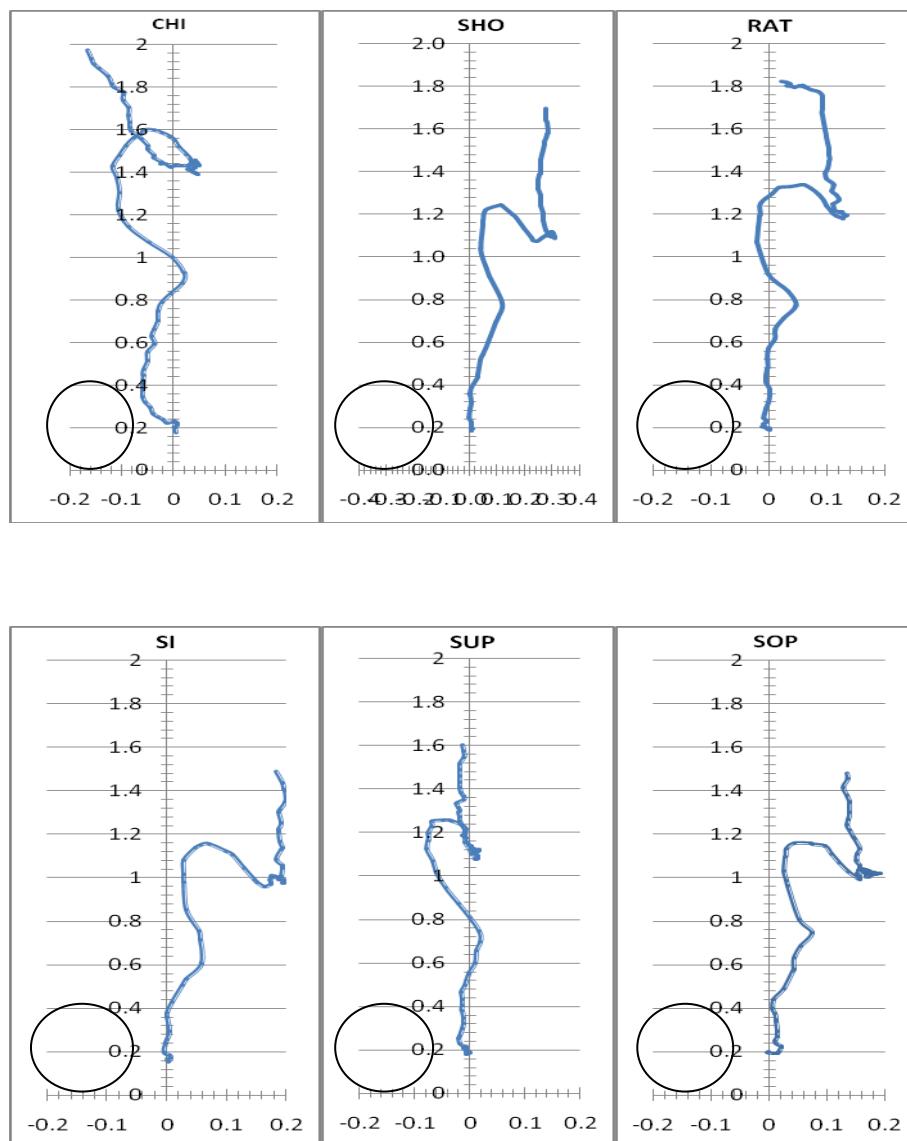


Fig 9. Barbell Trajectories of the Snatch at maximum loading of 6

Thai Youth Weightlifters

REFERENCES

1. Drechsler, Arthur. J. (1998). *The Weightlifting Encyclopedia a Guide to World Class Performance* A is A Communication, Flushing, NY.
2. Garhammer, J. (1985). Biomechanical profiles of Olympic weightlifters. *International Journal of Sport Biomechanics*, 1, 122-130.
3. Garret, W.E. and Kirkendall, D.T. (2000). *Exercise and Sport Science*, Lippincott Williams & Wilkins, Philadelphia, 585-613.
4. Hakkinnen, K. (1988). A biomechanical analysis of various combinations of the snatchpull exercise. *Journal of Human Movement Studies*, 15, 229-243.
5. Isaka, T., Okada, J. and Funato, K. (1996). Kinematic analysis of the barbell during the snatch movement in elite Asian weightlifters. *J. Applied Biomechanics*, 12, 508-516.
6. Ono, M., Kubota, M., & Kato, K. (1969). The analysis of weight-lifting movement at three kinds of events for weight-lifting participants of the Tokyo Olympic Games. *J Sports Med Phys Fitness*, Dec; 9(4):263-81.
7. Safrushahar, Y., Norhaslinda, H., and B. Wilson. (2002). *Biomechanical analysis of the snatch during weightlifting competition*, Caceres, Extremadura, Spain.

Sports Biomechanics

(Original article)

วิชาลศาสตร์ทางกีฬา

(นิพนธ์ต้นฉบับ)

การวิเคราะห์คิโนเมติกของบาร์เบลในการยกน้ำหนักท่าสแนทซึ่งสูงสุดของนักกีฬาเยาวชน

ศิริรัตน์ หรรษรัตน์¹ ภาณุ รักทวี²

วิทยาลัยวิทยาศาสตร์และเทคโนโลยีกีฬา มหาวิทยาลัยมหิดล, 73170

บทคัดย่อ

กีฬายกน้ำหนักในประเทศไทยได้มีผู้ทำการศึกษาเฉพาะนักกีฬาในรุ่นประชาชน โดยเฉพาะในนักกีฬาหญิงไทยรุ่นประชาชน 2 คน ที่ได้รับเหรียญทองในกีฬาโอลิมปิก 2004 และ 2008 การศึกษาครั้งนี้จึงเลือกศึกษาในนักกีฬาเยาวชนหญิงจำนวน 6 คน ในรุ่นน้ำหนักตัว 69 กก. และ 48 กก. ที่เข้าร่วมคัดเลือกเพื่อเป็นตัวแทนประเทศไทยในการแข่งขันกีฬาโอลิมปิกเยาวชน 2010 ณ ประเทศสิงคโปร์ โดยศึกษาทางด้านคิโนเมติกของการเคลื่อนไหวของบาร์เบลในการยกท่าสแนทซึ่งสูงสุด 1 ครั้ง โดยใช้กล้องความเร็วสูง และโปรแกรมซอฟแวร์ วิเคราะห์ แบบ 2 มิติ ซึ่งประกอบด้วยเส้นทางการเดินทางของบาร์เบล การเปลี่ยนตำแหน่งของบาร์เบลในแนวตั้ง และแนวขวาง ระยะทางสูงสุด อัตราความเร็วและอัตราความเร่งเชิงเส้นของบาร์เบล ผลการศึกษาพบว่า นักกีฬามีอายุเฉลี่ย 15.8 ปี ในรายการครั้งที่ได้น้ำหนักมากที่สุดของท่าสแนทซึ่งนักกีฬายกบาร์เบลที่จุดสูงสุดก่อนเคลื่อนตัวเข้าให้บาร์เบลที่ความสูง 1.29 ± 0.1 เมตร มีการเคลื่อนที่ของบาร์ในแนวตั้งและแนวขวางบนอุกกาภานigan ลำตัว 0.144 ± 0.03 และ 0.180 ± 0.28 เมตร ตามลำดับ อัตราความเร็วและความเร่งสูงสุดของบาร์เบลในแนวตั้ง 2.84 ± 0.26 เมตร/วินาที ที่ 31 ± 4 %ของสแนท และ 23.59 ± 4.34 เมตร/วินาที² ที่ 29 ± 6 %ของสแนท ตามลำดับผลการศึกษาสรุปได้ว่า การดึงบาร์เบลขึ้นในแนวตั้งในช่วงการดึงครั้งที่ 2 จะเป็นการดึงที่ทำให้มีอัตราความเร็วและความเร่งสูงสุด ซึ่งนักกีฬายกน้ำหนักเยาวชนควรได้ศึกษาและใช้ข้อมูลเหล่านี้มาเป็นแบบอย่างเพื่อวิเคราะห์ท่าทางการยกท่าสแนท

(Journal of Sports Science and Technology 2013;13(1):11 – 18)

คำสำคัญ: คิโนเมติก สแนท นักยกน้ำหนักเยาวชน