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Abstract

Background: The optimal dry body weight (DW) for each patient is crucial to the effectiveness of hemodialysis (HD).
The traditional assessment of DW using clinical parameters has proven to be inaccurate. Although bioimpedance
spectroscopy analysis using Body Composition Monitor (BCM) device demonstrated excellent accuracy but the
availability is limited due to high cost. The present study introduced machine learning (ML), a branch of artificial
intelligence, in the assessment of DW (ML-DW) using available clinical and laboratory parameters and compared the
result with the dry weight derived from BCM (BCM-DW)

Methods: The HD treatment data between 2017 and 2022 from two dialysis centers in Bangkok, Thailand
including demographic, laboratory, and intradialytic time-varying data were retrieved. The data on BCM-DW were
collected on the same day as HD treatment. The data were used in the ML model development phase and
performance assessment phase. There were two groups during the model development phase consisting of a
training group and a validation group. The final model was externally validated on a testing group at another
institution.

Results: A total of 1151 dialysis sessions accounting for 56,000 time-varying data were retrieved. The mean BCM-DW
was 58.8+11.7 kgs and the mean predicted ML-DW from the model was 59.5+10. kgs. The mean difference between
ML-DW and BCM-DW was -0.78 (-3.7,2.2) kilograms. The latency for running the model was less than 1 minute.
Conclusion: Despite the relatively large difference between ML-DW and BCM-DW, the present study confirmed
the capability of ML in DW prediction.
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Introduction

The incidence of patients receiving hemodialysis (HD)
has increased steadily from 3,410 per million patients
in 2007 to 7,901 per million patients in 2016". Dry body
weight (DW), which dictates the ultrafiltration volume for
each HD session, is a crucial parameter for the efficiency
of HD treatment. However, the determination of the
optimum DW remains a challenge for most nephrologists.
The clinical assessment has proved to be inaccurate
due to the low sensitivity of parameters obtained from
physical examination including blood pressure, jugular
venous pulse and the degree of peripheral edema®.
This traditional clinical-based method not only varies
between different assessors but also varies within the
same assessor. As a result, various tools have been
introduced to assist nephrologists in obtaining more
objective data in the assessment of DW. One of the most
reliable tools is the body composition monitor (BCM)
using the principle of bioelectrical impedance analysis,
which measures the resistance caused by an electrical
current passing through living tissues. BCM guided dry
weight (BCM-DW) assessment is increasingly used in large
HD centers. However, the availability of BCM is limited in
smaller centers due to the high cost.

Machine learning (ML), a subset of artificial intelligence,
has potential in assisting nephrologists in the assessment
of DW. Studies in ML using input data that included
time-series data during HD treatment and BCM-DW as
an output for the model prediction are lacking®®. The
present study attempted to develop a model for DW
prediction using ML.

Methods
Study design and population

The present retrospective study included the data

of HD treatment from two institutions: King Chulalong-
korn Memorial Hospital between January 1, 2017,
to December 31, 2021; and Bhumirajanagarindra Kidney
Institution Hospital between January 1, 2018 to December
31, 2022. The data were retrieved from each session of
HD because each session was used separately for model
learning.

The inclusion criteria were: (a) age 18-86 year; (b)
receiving twice of trice weekly HD treatments; (c) dialysis
vintage =6 months; (d) no recent history of infection,
heart failure, cardiac arrhythmia, sudden cardiac arrest;
(e) adequate HD according to KDIGO recommendations
(weekly standard Kt/V >2.1 or single-pool Kt/v > 1.2)'; (f)
available of BCM-DW data on the same day as HD
treatment. The exclusion criteria were: (a) active heart
conditions including ischemic heart disease within
or congestive heart failure within the past 6 months
and moderate to severe valvular disease; (b) atrial
fibrillation; (c) amputated limb; (d) cirrhosis; (e) pregnancy
or breastfeeding; (f) body mass index <16 kg/m’ or >34
kg/m’. Dialysis sessions with the infusion of hyperosmotic
agents, adjustment of dialysate electrolyte concentra-
tions according to profiling, and incomplete data were
also excluded. The study was approved by the
institutional review board of King Chulalongkorn
Memorial Hospital and performed according to the
principles of the Declaration of Helsinki.

Data collection

The domain of parameters including the demographic
data for each patient and the HD prescription, the labo-
ratory and time-series data for each HD treatment were
collected. The DW obtained by BCM on the same day
as HD treatment was also collected. The data retrieving

process is shown in Figure 1.
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BCM, Body composition monitor; TSS, Therapy support suite (Fresenius Medical Care, Bad Homburg, Germany);
BCM-DW, BCM derived dry body weight; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean

arterial pressure; HR, heart rate; UFR, ultrafiltration rate; Hb, hemoglobin; Na, sodium; Ca, calcium; Alb, albumin; pre/

post BW, pre-dialysis and post-dialysis body weight

Data preprocessing

The study first preprocessed the raw data of HD
sessions by removing null values and normalizing ratio and
interval data such as height, weight, and dialysate sodium
using the StandardScaler command in TensorFlow. All
features were then transformed to fall within the range
of 0 and 1. Categorical data were marked and encoded
using LabelEncoder from the ‘sklearn.preprocessing’
module and then encoded into binary variables using
the ‘get dummies’ function from the pandas module.
Time-series data was scaled using the same method, and
zero padding was used to create a matrix of the same size
without affecting the model’s performance. The output
was labeled BCM-derived DW.

The data was divided into three sets for analysis: a
training set (80%), a validation set (20%), and a testing
set. HD sessions from the same patient were grouped
together in each set to prevent the learning model from
being biased by input from the same patient. The name
of the institution was blinded. Two external validation

configurations were used to test the robustness of the

model, one using the Institution X patient database for
training and validation and the Institution Y database
for testing (configuration A), and the other using the
Institution Y patient database for training and validation

and the Institution X database for testing (configuration B).

Model development and Model evaluation
Our algorithm was built using Python v3.6.9 (https://
www.python.org/) with Tensorflow backend v1.15.4
(https://www.tensorflow.org/), an open-source ML library.
We deployed our application with this deep learning
library based on the NVIDIA container image of Tensor-
Flow, Release 20.11 (Nvidia Corporate, Santa Clara, CA,
USA) as a virtual environment. The bidirectional Long
Short-Term Memory (LSTM) model was used to capture
dynamic variations in time-series data, and it was
evaluated in three different approaches: LSTM regression
(LSTMreg), LSTM classification (LSTMclass), and a com-
bination of last embedding layer from time-series and
non-time-series data (gtNN). For non-time-series data,

multiple linear regression (LR), stacked machine learning
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models (STACK), and neural network models (gNN) were
evaluated. The performance of each regression model
was evaluated using mean squared error (MSE), while
classification model was Confusion matrix, accuracy and F1
score. Bland-Altman plot was also used for determination
of the performance compared with the gold standard
(BCM-DW). Folded Empirical Distribution Function Curve
(Folded EDFC) was plotted to compare the distribution
of prediction between models. Cross-validation and
hyperparameter tuning were applied to prevent overfitting.
Finally, the robustness of each model was evaluated
using two external validation configurations. The final
model was chosen based on the smallest mean square
error (MSE), lowest mean difference, and smallest limit
of agreement. The final model was evaluated in terms
of agreement, with upper and lower boundaries of the
limit of agreement set at 1.96 standard deviation (SD).
Demographic data for any samples that fell outside this
range were reviewed. The importance of each feature
was also assessed using SHapley Additive exPlanations
(SHAP) values, which showed the contribution of each
feature to the predicted outcome. Other factors that were
evaluated included the computerization needs and time
latency for running the model.

Statistical analysis

Data with a normal distribution are presented as

mean + SD. Data with a skewed distribution are presented
as median =+ interquartile range (IQR). P-value <0.05 is

considered statistical significance.

Results

Atotal of 581 HD sessions from institution X and 570 HD
sessions from institution Y were included. Table 1 shows
baseline data of HD sessions according to the institution.
The two groups showed comparable ages (64.9 vs. 67.7
years). The patients from institution X were more likely
to be female (62.7% vs. 52.6%) with higher proportions
of cerebrovascular disease, gout, and chronic lung
disease. The patients from institution Y showed higher
proportions of hypertension and diabetes (93.3% vs.
91.2% and 41.4% vs. 34.1%, respectively). Hemodiafiltration
was the most prevalent mode of dialysis in institution
X, whereas hemodialysis was the most prevalent mode
in institution Y. The average BCM-DW was slightly lower
in institution X (54.9 kg vs. 58.8 kg). The average net
ultrafiltration volume (2.1 L vs 2.2 L) and ultrafiltration
rate (9.1 ml/kg/hr vs 9.7 L/kg/hr) were comparable
between the two institutions. The average dialysate
electrolyte concentrations and laboratory data were
also comparable between the two institutions. The
relationships between different time-series data are

shown in Figure 2.

Table 1 Baseline parameters from each hemodialysis session

Institution X Institution Y
(n = 581 sessions) (n = 570 sessions)

Number of patients 42 244
Age, years 64.9 + 9.6 67.7+ 123
Female, number (%) 364 (62.7) 300 (52.6)
BCM-DW, kg 54.9 + 10.5 58.8 + 11.7
Pre-dialysis body weight, kg 56.9 + 10.6 615+ 11.7
Post-dialysis body weight, kg 54.7 + 10.3 59.3 + 11.6
Height, cm 159.0 £ 8.5 160.8 + 8.3
Body mass index, kg/m? 21.7 + 3.8 22.7 + 4.0
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Institution X Institution Y
(n = 581 sessions) (n = 570 sessions)
Net ultrafiltration, L 21+£09 22+08
Ultrafiltration rate, mL/kg/hr 9.1+44 9.7 +4.0

Hypertension 530 (91.2) 532(93.3)
Diabetes 198 (34.1) 236 (41.4)
Cerebrovascular disease 67 (11.5) 29 (5.1)
Gout 57(9.8) 47 (8.2)
Chronic lung disease 28 (4.8) 3(0.5)

Hemodialysis 35 (6.0) 570 (100)

Hemodiafiltration 546 (94.0) 0 (0)

Dialysate Sodium, meg/dL 1374+ 1.4 137.7 £ 1.1
Median (£IQR) 138 (136-138) 138 (138-138)
Dialysate bicarbonate, mg/dL 32+1 32.1+£0.38
Median (+IQR) 32 (32-32) 32 (32-32)
Dialysate Potassium, mean (+SD) mg/dL 2.1(0.3) 2.6 (0.5)
Median (xIQR) 2(2-2) 3(2-3)
Dialysate Calcium, mg/dL 3.0 (0.3) 2.8 (0.3)
Median (+IQR) 3.0 (2.5-3) 3.0 (2.5-3)
Dialysate Temperature, Celsius 36.8 (0.5) 36.5 (0.5)
Median (£IQR) 37 (37-37) 36.5 (36.3-36.8)

Hemoglobin, ¢/dL 11+14 10.7 £ 1.5
Calcium, meg/dL 8.7+0.7 8.8 +0.8
Sodium, mmol/L 138.7 = 2.7 136.5 +4.2
Albumin, ¢/dL 38 +0.3 39+04

BCM-DW, Body composition monitor-Dry body weight; IQR, interquartile range
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Figure 2 Scatter plots of the relationship between different time-series data

(a) Institution X; (b) Institution Y
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The MSE varied with each model ranging from 1.68
to 151.39. The stacked machine learning model showed
the lowest MSE and was selected as the final model.
Folded EDFC is shown in Figure 3. The x-axis of the
graph represented the mean difference between the ML
predicted DW and the BCM-DW. The y-axis defined the
probability of the samples with those values. The center
of the graph featured a vertical line that represented the
reference line of zero difference. The distance from this
line and the peak indicated the estimated bias of each
model. The shape of the graph is typically mountain-like,

with the base representing the entire possible range of

difference between the prediction from the new model
and the BCM-DW bordered by the limits of agreement
for that model. The stacked machine learning model
(blue) showed a steep rise in the graph indicating a
higher probability of the folded variable being small with
acceptable distance from the peak to the zero line. The
agreement between the new model and the BCM-DW is
shown in the Bland-Altman plots in Figure 4. SHAP values
for the parameters in the model are shown in Figure 5.
The time latency for running the model was less than
1 minute and the size of the code was approximately 1

megabyte.
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Figure 3 Folded Empirical Distribution Function Curves

Configuration A (upper); Configuration B (lower).

STACK, stacked machine learning models; LR, multiple linear regression; gNN, non-time-series data in neural network models;

LSTMreg, LSTM regression; gtNN, combination of last embedding layer from time-series and non-time-series data
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Figure 4 Bland-Altman plots showing the limits of the agreement between the dry body weight obtained from the

stacked machine learning model and the body composition monitor

Configuration A (left) and configuration B (right).

BCM-DW, body composition derived dry body weight; ML-DW, machine learning derived dry body weight
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Figure 5 SHAP values of the parameters in the stacked machine learning model
PREBW, pre-dialysis body weight; POSTBW, post-dialysis body weight; BMI-POST, post-dialysis body mass index;
HDF, hemodiafiltration; UFRH, ultrafiltration rate per hour; NUF, net ultrafiltration; HB, hemoglobin; NA, sodium

Discussion

The present study attempted to use various
approaches including LSTMreg and LSTMclass in the
prediction of DW using time-series data alone, but the
results were unsatisfactory. Combining the time-series
data with the non-time-series data also failed to yield
positive outcomes. However, the time-series data had
the potential in classifying HD sessions based on the gap
between the pre-HD body weight and the post-HD body
weight, but the model failed to do so possibly due to

the interference by other factors such as reduced heart
rate variation by the use of beta blockers or sinus node
dysfunction commonly observed in older patients. The
study also found that non-time-series data were able
to predict BCM-DW as shown by several models such
as eNN, LR, and STACK. Finally, the STACK model was
selected because of its best performance.

The agreement between the STACK model (ML-DW)
and the BCM-DW was acceptable with only a small bias.

The mean differences of -0.78 kg in configuration A and
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0.02 kg in configuration B indicated that the ML-DW was
higher than that obtained by BCM in configuration A
and lower in configuration B. Gradual probing of DW has
been shown to have favorable impact on both blood
pressure and left ventricular mass index, both of which
are linked to better outcomes and reduced mortality in
HD patients®”. The randomized clinical trials have shown
the benefit in the group of patients that was able to
reach lower post-dialysis body weight up to 1.0 kes
(95% confidence interval (1.6, -0.5 kg), p<0.001).
Thus, STACK could become a useful tool for DW
assessment.

The present study showed that the limits of the
agreement between the ML-DW and BCM-DW were
quite wide. The maximum discrepancy was estimated at
approximately 3.5 kgs, therefore, the ML-DW may not yet
replace the estimated DW derived from BCM. However,
when compared with the estimated DW obtained
clinical assessment, the limits of the agreement were
even wider ranging between 3.79 kg up to 7.21 kg"'°.
Therefore, ML derived DW may be a better option for
DW estimation compared with clinical assessment.
The ML model likely offered greater objectivity, accuracy,
affordability, repeatability, and generalizability compared
with clinical assessment.

The present study is the first study that employed ML
in the prediction of BCM-DW and used time-series data as
input variables. External validation was also performed
in HD patients from other centers. The present study
has several limitations. The input data was collected
retrospectively; therefore, it was not possible to identify
all incidences and interventions that occurred during HD
session that could interfere with the model prediction.
The model did not incorporate cardiac parameters that
could influence the blood pressure and the heart rate
variability during ultrafiltration.

In conclusion, the present study served as a proof
of concept study that ML could be a useful tool in DW

prediction.
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