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Abstract
Background: The optimal dry body weight (DW) for each patient is crucial to the effectiveness of hemodialysis (HD). 
The traditional assessment of DW using clinical parameters has proven to be inaccurate. Although bioimpedance  
spectroscopy analysis using Body Composition Monitor (BCM) device demonstrated excellent accuracy but the 
availability is limited due to high cost. The present study introduced machine learning (ML), a branch of artificial 
intelligence, in the assessment of DW (ML-DW) using available clinical and laboratory parameters and compared the 
result with the dry weight derived from BCM (BCM-DW) 
Methods: The HD treatment data between 2017 and 2022 from two dialysis centers in Bangkok, Thailand  
including demographic, laboratory, and intradialytic time-varying data were retrieved. The data on BCM-DW were  
collected on the same day as HD treatment. The data were used in the ML model development phase and  
performance assessment phase. There were two groups during the model development phase consisting of a  
training group and a validation group. The final model was externally validated on a testing group at another  
institution.
Results: A total of 1151 dialysis sessions accounting for 56,000 time-varying data were retrieved. The mean BCM-DW 
was 58.8±11.7 kgs and the mean predicted ML-DW from the model was 59.5±10. kgs. The mean difference between 
ML-DW and BCM-DW was -0.78 (-3.7,2.2) kilograms. The latency for running the model was less than 1 minute.
Conclusion: Despite the relatively large difference between ML-DW and BCM-DW, the present study confirmed  
the capability of ML in DW prediction.
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บทคัดย่อ
บทน�ำ: น�้ำหนักแห้งท่ีเหมาะสมท่ีสุดส�ำหรับผู ้ป่วยแต่ละคนมีความส�ำคัญต่อประสิทธิภาพของการฟอกเลือดด้วยเครื่องไตเทียม  
การประเมินน�้ำหนักแห้งแบบดั้งเดิมโดยอาศัยข้อมูลทางคลินิกพบว่าขาดความแม่นย�ำ ในขณะที่การวัดโดยใช้หลักการประเมินจาก 
ความต้านทานของกระแสไฟฟ้า (Bioelectrical Impedance Analysis หรือ BIA) ด้วยเครื่อง Body composition monitor (BCM)  
ช่วยให้ได้น�้ำหนักแห้ง (BCM-DW) ท่ีมีความแม่นย�ำสูง แต่อย่างไรก็ตามเครื่องมือดังกล่าวมีราคาแพงจึงเป็นข้อจ�ำกัดของศูนย์ฟอกเลือด
ขนาดเล็ก จึงเป็นที่มาของความพยายามที่จะใช้ Machine learning (ML) ซึ่งเป็นโปรแกรมหนึ่งทางปัญญาประดิษฐ์ในการท�ำนายน�้ำหนัก
แห้ง (ML-DW) ในผู้ป่วยที่ได้รับการฟอกเลือดด้วยเครื่องไตเทียม
ระเบียบวิธีวิจัย: การศึกษานี้อาศัยข้อมูลย้อนหลังของผู้ป่วยที่ได้รับการฟอกเลือดด้วยเครื่องไตเทียมระหว่างปี 2560 ถึง 2565 จาก 
สองสถาบันในจังหวัดกรุงเทพฯ ได้แก่ ข้อมูลพื้นฐาน ข้อมูลทางห้องปฏิบัติการ ข้อมูลที่เกี่ยวข้องกับการฟอกเลือด และข้อมูล 
ที่มีการเปลี่ยนแปลงในช่วงเวลาท่ีได้รับการฟอกเลือด รวมไปถึงข้อมูลน�้ำหนักแห้งที่วัดจาก BCM ในวันเดียวกับที่ได้รับการฟอกเลือด  
โดยข้อมูลทั้งหมดจะถูกน�ำมาใช้ใน 2 ช่วงของการพัฒนาโมเดล คือ ระยะฝึกฝนและระยะปรับค่าพารามิเตอร์ของโมเดล และโมเดลสุดท้าย 
จะน�ำไปทดสอบกับกลุ่มทดสอบที่อยู่ภายนอกสถาบัน 
ผลการศึกษา: รวบรวมข้อมูลการฟอกเลือดได้ท้ังหมด 1,151 ครั้ง และมีข้อมูลส่วนที่มีการเปลี่ยนแปลงตามเวลาของการฟอกเลือด  
56,000 ข้อมูล ค่าเฉลี่ยของ BCM-DW คือ 58.8±11.7 กก. และค่าเฉลี่ย ML-DW คือ 59.5±10.5 กก. โดยพบความแตกต่างเฉลี่ย 
ของ BCM-DW และ ML-DW ที่อยู่ที่ -0.78 (-3.7,-2.2) กิโลกรัม เวลาที่ใช้ในการประมวลผลทั้งหมดน้อยกว่า 1 นาที
สรุป: ถึงแม้ว่าการศึกษานี้พบว่าค่า ML-DW ยังมีความแตกต่างจาก BCM-DW ค่อนข้างมาก แต่อย่างไรก็ตามการศึกษาน้ีได้แสดง 
ให้เห็นความเป็นไปได้ในการน�ำปัญญาประดิษฐ์เข้ามาใช้ท�ำนายน�้ำหนักแห้งของผู้ป่วยฟอกเลือด
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Introduction
	 The incidence of patients receiving hemodialysis (HD) 
has increased steadily from 3,410 per million patients 
in 2007 to 7,901 per million patients in 20161. Dry body 
weight (DW), which dictates the ultrafiltration volume for 
each HD session, is a crucial parameter for the efficiency 
of HD treatment. However, the determination of the  
optimum DW remains a challenge for most nephrologists. 
The clinical assessment has proved to be inaccurate 
due to the low sensitivity of parameters obtained from 
physical examination including blood pressure, jugular 
venous pulse and the degree of peripheral edema2.  
This traditional clinical-based method not only varies  
between different assessors but also varies within the 
same assessor. As a result, various tools have been 
introduced to assist nephrologists in obtaining more  
objective data in the assessment of DW. One of the most 
reliable tools is the body composition monitor (BCM) 
using the principle of bioelectrical impedance analysis, 
which measures the resistance caused by an electrical 
current passing through living tissues. BCM guided dry 
weight (BCM-DW) assessment is increasingly used in large 
HD centers. However, the availability of BCM is limited in 
smaller centers due to the high cost.
	 Machine learning (ML), a subset of artificial intelligence, 
has potential in assisting nephrologists in the assessment 
of DW. Studies in ML using input data that included  
time-series data during HD treatment and BCM-DW as 
an output for the model prediction are lacking3-6. The 
present study attempted to develop a model for DW 
prediction using ML.

Methods
	 Study design and population
	 The present retrospective study included the data  

of HD treatment from two institutions: King Chulalong-
korn Memorial Hospital between January 1, 2017,  
to December 31, 2021; and Bhumirajanagarindra Kidney  
Institution Hospital between January 1, 2018 to December 
31, 2022. The data were retrieved from each session of 
HD because each session was used separately for model 
learning.
	 The inclusion criteria were: (a) age 18-86 year; (b) 
receiving twice of trice weekly HD treatments; (c) dialysis 
vintage ≥6 months; (d) no recent history of infection, 
heart failure, cardiac arrhythmia, sudden cardiac arrest; 
(e) adequate HD according to KDIGO recommendations 
(weekly standard Kt/V ≥2.1 or single-pool Kt/v ≥ 1.2)7; (f)  
available of BCM-DW data on the same day as HD  
treatment. The exclusion criteria were: (a) active heart 
conditions including ischemic heart disease within 
or congestive heart failure within the past 6 months  
and moderate to severe valvular disease; (b) atrial  
fibrillation; (c) amputated limb; (d) cirrhosis; (e) pregnancy 
or breastfeeding; (f) body mass index <16 kg/m2 or >34 
kg/m2. Dialysis sessions with the infusion of hyperosmotic 
agents, adjustment of dialysate electrolyte concentra-
tions according to profiling, and incomplete data were  
also excluded. The study was approved by the  
institutional review board of King Chulalongkorn  
Memorial Hospital and performed according to the  
principles of the Declaration of Helsinki.
	 Data collection
	 The domain of parameters including the demographic 
data for each patient and the HD prescription, the labo-
ratory and time-series data for each HD treatment were 
collected. The DW obtained by BCM on the same day 
as HD treatment was also collected. The data retrieving 
process is shown in Figure 1.
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Data preprocessing
	 The study first preprocessed the raw data of HD  
sessions by removing null values and normalizing ratio and 
interval data such as height, weight, and dialysate sodium 
using the StandardScaler command in TensorFlow. All 
features were then transformed to fall within the range 
of 0 and 1. Categorical data were marked and encoded 
using LabelEncoder from the ‘sklearn.preprocessing’ 
module and then encoded into binary variables using 
the ‘get_dummies’ function from the pandas module. 
Time-series data was scaled using the same method, and 
zero padding was used to create a matrix of the same size 
without affecting the model’s performance. The output 
was labeled BCM-derived DW.
	 The data was divided into three sets for analysis: a 
training set (80%), a validation set (20%), and a testing 
set. HD sessions from the same patient were grouped 
together in each set to prevent the learning model from 
being biased by input from the same patient. The name 
of the institution was blinded. Two external validation 
configurations were used to test the robustness of the 

model, one using the Institution X patient database for  
training and validation and the Institution Y database 
for testing (configuration A), and the other using the  
Institution Y patient database for training and validation 
and the Institution X database for testing (configuration B).

Model development and Model evaluation
	 Our algorithm was built using Python v3.6.9 (https://
www.python.org/) with Tensorflow backend v1.15.4 
(https://www.tensorflow.org/), an open-source ML library. 
We deployed our application with this deep learning  
library based on the NVIDIA container image of Tensor-
Flow, Release 20.11 (Nvidia Corporate, Santa Clara, CA, 
USA) as a virtual environment. The bidirectional Long  
Short-Term Memory (LSTM) model was used to capture  
dynamic variations in time-series data, and it was  
evaluated in three different approaches: LSTM regression  
(LSTMreg), LSTM classification (LSTMclass), and a com-
bination of last embedding layer from time-series and 
non-time-series data (gtNN). For non-time-series data, 
multiple linear regression (LR), stacked machine learning 

Figure 1 Data Retrieving process 
BCM, Body composition monitor; TSS, Therapy support suite (Fresenius Medical Care, Bad Homburg, Germany);  
BCM-DW, BCM derived dry body weight; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean  
arterial pressure; HR, heart rate; UFR, ultrafiltration rate; Hb, hemoglobin; Na, sodium; Ca, calcium; Alb, albumin; pre/
post BW, pre-dialysis and post-dialysis body weight
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models (STACK), and neural network models (gNN) were 
evaluated. The performance of each regression model 
was evaluated using mean squared error (MSE), while  
classification model was Confusion matrix, accuracy and F1 
score. Bland-Altman plot was also used for determination 
of the performance compared with the gold standard 
(BCM-DW). Folded Empirical Distribution Function Curve 
(Folded EDFC) was plotted to compare the distribution 
of prediction between models. Cross-validation and  
hyperparameter tuning were applied to prevent overfitting.  
Finally, the robustness of each model was evaluated 
using two external validation configurations. The final 
model was chosen based on the smallest mean square 
error (MSE), lowest mean difference, and smallest limit 
of agreement. The final model was evaluated in terms 
of agreement, with upper and lower boundaries of the 
limit of agreement set at 1.96 standard deviation (SD). 
Demographic data for any samples that fell outside this 
range were reviewed. The importance of each feature 
was also assessed using SHapley Additive exPlanations 
(SHAP) values, which showed the contribution of each 
feature to the predicted outcome. Other factors that were 
evaluated included the computerization needs and time 
latency for running the model.
Statistical analysis
	 Data with a normal distribution are presented as  

mean ± SD. Data with a skewed distribution are presented 
as median ± interquartile range (IQR). P-value <0.05 is 
considered statistical significance.

Results
	 A total of 581 HD sessions from institution X and 570 HD 
sessions from institution Y were included. Table 1 shows 
baseline data of HD sessions according to the institution. 
The two groups showed comparable ages (64.9 vs. 67.7 
years). The patients from institution X were more likely  
to be female (62.7% vs. 52.6%) with higher proportions  
of cerebrovascular disease, gout, and chronic lung  
disease. The patients from institution Y showed higher 
proportions of hypertension and diabetes (93.3% vs.  
91.2% and 41.4% vs. 34.1%, respectively). Hemodiafiltration  
was the most prevalent mode of dialysis in institution 
X, whereas hemodialysis was the most prevalent mode 
in institution Y. The average BCM-DW was slightly lower 
in institution X (54.9 kg vs. 58.8 kg). The average net 
ultrafiltration volume (2.1 L vs 2.2 L) and ultrafiltration  
rate (9.1 mL/kg/hr vs 9.7 L/kg/hr) were comparable  
between the two institutions. The average dialysate  
electrolyte concentrations and laboratory data were  
also comparable between the two institutions. The  
relationships between different time-series data are  
shown in Figure 2.

Institution X  
(n = 581 sessions)

Institution Y 
(n = 570 sessions)

Number of patients 42 244

Age, years 64.9 ± 9.6 67.7 ± 12.3

Female, number (%) 364 (62.7) 300 (52.6)

BCM-DW, kg 54.9 ± 10.5 58.8 ± 11.7

Pre-dialysis body weight, kg 56.9 ± 10.6 61.5 ± 11.7

Post-dialysis body weight, kg 54.7 ± 10.3 59.3 ± 11.6

Height, cm 159.0 ± 8.5 160.8 ± 8.3

Body mass index, kg/m2 21.7 ± 3.8 22.7 ± 4.0

Table 1 Baseline parameters from each hemodialysis session
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BCM-DW, Body composition monitor-Dry body weight; IQR, interquartile range

Institution X  
(n = 581 sessions)

Institution Y 
(n = 570 sessions)

Net ultrafiltration, L 2.1 ± 0.9 2.2 ± 0.8

Ultrafiltration rate, mL/kg/hr 9.1 ± 4.4 9.7 ± 4.0

Comorbidities, number (%)

	 Hypertension 530 (91.2) 532 (93.3)

	 Diabetes 198 (34.1) 236 (41.4)

	 Cerebrovascular disease 67 (11.5) 29 (5.1)

	 Gout 57 (9.8) 47 (8.2)

	 Chronic lung disease 28 (4.8) 3 (0.5)

Mode of dialysis, number (%)

	 Hemodialysis 35 (6.0) 570 (100)

	 Hemodiafiltration 546 (94.0) 0 (0)

Dialysate electrolyte concentrations

	 Dialysate Sodium, mg/dL
 	 Median (±IQR)

137.4 ± 1.4 
138 (136-138)

137.7 ± 1.1
138 (138-138)

 	 Dialysate bicarbonate, mg/dL
 	 Median (±IQR)

32 ± 1
32 (32-32)

32.1 ± 0.8 
32 (32-32)

 	 Dialysate Potassium, mean (±SD) mg/dL
 	 Median (±IQR)

2.1 (0.3)
2 (2-2)

2.6 (0.5)
3 (2-3)

 	 Dialysate Calcium, mg/dL
	 Median (±IQR)

3.0 (0.3)
3.0 (2.5-3)

2.8 (0.3)
3.0 (2.5-3)

	 Dialysate Temperature, Celsius
 	 Median (±IQR)

36.8 (0.5)
37 (37-37)

36.5 (0.5)
36.5 (36.3-36.8)

Laboratory data

 	 Hemoglobin, g/dL 11 ± 1.4 10.7 ± 1.5

 	 Calcium, mg/dL 8.7 ± 0.7 8.8 ± 0.8

 	 Sodium, mmol/L 138.7 ± 2.7 136.5 ± 4.2

 	 Albumin, g/dL 3.8 ± 0.3 3.9 ± 0.4
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Figure 2 Scatter plots of the relationship between different time-series data
(a) Institution X; (b) Institution Y
SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; HR, heart rate; UFR,  
ultrafiltration rate
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	 The MSE varied with each model ranging from 1.68 
to 151.39. The stacked machine learning model showed 
the lowest MSE and was selected as the final model. 
Folded EDFC is shown in Figure 3. The x-axis of the 
graph represented the mean difference between the ML 
predicted DW and the BCM-DW. The y-axis defined the 
probability of the samples with those values. The center 
of the graph featured a vertical line that represented the 
reference line of zero difference. The distance from this 
line and the peak indicated the estimated bias of each 
model. The shape of the graph is typically mountain-like, 
with the base representing the entire possible range of 

difference between the prediction from the new model  
and the BCM-DW bordered by the limits of agreement  
for that model. The stacked machine learning model 
(blue) showed a steep rise in the graph indicating a 
higher probability of the folded variable being small with  
acceptable distance from the peak to the zero line. The 
agreement between the new model and the BCM-DW is 
shown in the Bland-Altman plots in Figure 4. SHAP values 
for the parameters in the model are shown in Figure 5. 
The time latency for running the model was less than 
1 minute and the size of the code was approximately 1 
megabyte.

Figure 3 Folded Empirical Distribution Function Curves
Configuration A (upper); Configuration B (lower). 
STACK, stacked machine learning models; LR, multiple linear regression; gNN, non-time-series data in neural network models;  
LSTMreg, LSTM regression; gtNN, combination of last embedding layer from time-series and non-time-series data
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Figure 4 Bland-Altman plots showing the limits of the agreement between the dry body weight obtained from the 
stacked machine learning model and the body composition monitor 
Configuration A (left) and configuration B (right).
BCM-DW, body composition derived dry body weight; ML-DW, machine learning derived dry body weight

Figure 5 SHAP values of the parameters in the stacked machine learning model
PREBW, pre-dialysis body weight; POSTBW, post-dialysis body weight; BMI-POST, post-dialysis body mass index;  
HDF, hemodiafiltration; UFRH, ultrafiltration rate per hour; NUF, net ultrafiltration; HB, hemoglobin; NA, sodium

Discussion
	 The present study attempted to use various  
approaches including LSTMreg and LSTMclass in the 
prediction of DW using time-series data alone, but the 
results were unsatisfactory. Combining the time-series 
data with the non-time-series data also failed to yield 
positive outcomes. However, the time-series data had 
the potential in classifying HD sessions based on the gap 
between the pre-HD body weight and the post-HD body 
weight, but the model failed to do so possibly due to 

the interference by other factors such as reduced heart 
rate variation by the use of beta blockers or sinus node 
dysfunction commonly observed in older patients. The  
study also found that non-time-series data were able  
to predict BCM-DW as shown by several models such 
as gNN, LR, and STACK. Finally, the STACK model was 
selected because of its best performance. 
	 The agreement between the STACK model (ML-DW) 
and the BCM-DW was acceptable with only a small bias. 
The mean differences of -0.78 kg in configuration A and 
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0.02 kg in configuration B indicated that the ML-DW was 
higher than that obtained by BCM in configuration A 
and lower in configuration B. Gradual probing of DW has 
been shown to have favorable impact on both blood 
pressure and left ventricular mass index, both of which 
are linked to better outcomes and reduced mortality in 
HD patients8,9. The randomized clinical trials have shown 
the benefit in the group of patients that was able to  
reach lower post-dialysis body weight up to 1.0 kgs  
(95% confidence interval (1.6, -0.5 kg), p<0.001).  
Thus, STACK could become a useful tool for DW  
assessment.
	 The present study showed that the limits of the 
agreement between the ML-DW and BCM-DW were 
quite wide. The maximum discrepancy was estimated at  
approximately 3.5 kgs, therefore, the ML-DW may not yet 
replace the estimated DW derived from BCM. However,  
when compared with the estimated DW obtained  
clinical assessment, the limits of the agreement were 
even wider ranging between 3.79 kg up to 7.21 kg4,10. 
Therefore, ML derived DW may be a better option for 
DW estimation compared with clinical assessment.  
The ML model likely offered greater objectivity, accuracy, 
affordability, repeatability, and generalizability compared 
with clinical assessment.
	 The present study is the first study that employed ML 
in the prediction of BCM-DW and used time-series data as 
input variables. External validation was also performed 
in HD patients from other centers. The present study 
has several limitations. The input data was collected 
retrospectively; therefore, it was not possible to identify 
all incidences and interventions that occurred during HD 
session that could interfere with the model prediction. 
The model did not incorporate cardiac parameters that 
could influence the blood pressure and the heart rate 
variability during ultrafiltration.
	 In conclusion, the present study served as a proof 
of concept study that ML could be a useful tool in DW 
prediction.
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