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Abstract

This research aimed to develop the model to predict vision threatening diabetic retinopathy (VTDR)
condition in diabetic patients so that preventive medical treatments could be started at early stage for prolonging
patients’ good quality of life. Two popular predicting techniques for categorical dependent variable were used in
comparison. These were logistic regression and probabilistic neural network. Data for the last six months of DR
patients at Nakhonpathom hospital were collected based on 18 variables from the literature. Data cleansing were
implemented. Eventually, there was a total of 355 data used with 124 patients without VTDR condition and 231
patients with VTDR condition. These data were also separated into two groups. The first group (in sample test)
with 90% of the total data was used for developing the models. The second group (out of sample test) with 10%
of data was used for checking the models’ accuracy. The research results showed the overall accuracy of logistic
regression model was 69.01% while the overall accuracy of probabilistic neural network model was 96.90%. Both
logistic regression and probabilistic neural network models were more accurate in predicting patients with VTDR
condition than without VTDR condition. The study showed significant risk factors related to VTDR condition were

sex, age, cholesterol, hematocrit, creatinine, HDL-cholesterol, and body mass index.

Keywords : vision threatening diabetic retinopathy, logistic regression, probabilistic neural network, forecasting
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diilamalumsiiaaiz VIDR fxnnaiu dauaesly

MSNDN 2

1999 2 udasanuududlumswennsalas@inuy logistic regression in sample test LLe% out of sample test

MSWENNT0 logistic regression (in sample test)

mzgithe — - ”
Taiily vIDR tlu VITDR ANNYNABI (%)
Taitflu vTDR 39 73 34.80
«flu VTDR 29 184 86.40
I 68.60
- MswennIal logistic regression (out of sample test)
ameziihe — - .
Taitilu vIDR (i VIDR ANNENABY (%)
T3l VIDR 5 7 41.70 5 7 41.70
«{lu VTDR 1 17 94.40 1 17 94.40
U 73.30
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NNANTNN 2 WU ludIuwd in sample test 02

WU logistic regression §INONENNTAINIZYD I’J‘I'J’JEI
d' T v vV =

nlallu VIDR lagndaaiies 34.80% uaznzues

Kthenilu VTDR gnaae 86.40% lagilanuuaiug

2BIMINENNTBILAETIN 68.60% LUdIU out of sample

7 oy Ao og v

test an3Nsawennsainzaaegitheluiu VIDR la

v = Y c{' <
DNABILNEN 41.70% waznizuadiiheniu VIDR

anees 94.40% lasdianuuiudizasmaneinsol
Taas5I) 69.01%
MILUY PNN Wan15 train 1A59%18 PNN
4 v [
waznagaumMIneInsel lanaans lugluuugas
classification matrix BILFNIANNUNUEITUNT
wennsaluee@ILuy PNN lunsdiues in sample test

Wae out of sample test fauanalumsnd 3

A3 3 udasenuudug lumswennsalzasiiwuu PNN lunsdiuas in sample test o out of sample test

MIWeINTal PNN (training)

mzgithe — - »
Taitilu VIDR ti/u VIDR ANNENABY (%)
T3y vTDR 109 0 100.00
«ilu VIDR 0 210 100.00
EPLY 100.00
o 113Wen3al PNN (ftesting)
amziiitha — - ”
Taitily VIDR tu VITDR ANNYNABY (%)
Taidlu VIDR 8 7 53.33
«flu VTDR 4 17 80.95
FPLY 69.44

Nnasit 3 wuhluduwed in sample test
Guuy PNN snansanennsalgtheiilifinng VIDR
Tdgndas 100 % uaztitheiifiane VIDR ¢ 1009
Tagfianuwivdmaamsnennsallagsingada 1009
Tudau out of sample test MuvTANNUNUi lUNS

Swungheiilifianz VIDR lagndas 53.33%

wazgtheiifinnz VIDR 14 80.95% lasfianu
uugzeemswennailasn 69.449% Fedmanm
2 n3didaNalieuuy PNN denuuiudlossinag
l 96.90% MWil 3 LFAIIFUBBIANNFNTLSHBY
dulsdaszdamanuungihediinng vIDR ldlas

@MILUU PNN
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o026 109 20%

12.1542%6
12.0530%

10.8794%6

Chol

sBP 0.2046%
malb 0.2622%
0.2293%
LDL 0.175A4%
DL 0.1554%

HbAlc 0.1475%

Relative Variable lmpacts

20.1504%

Hct 14.9952%:

30% 40% 50%

M 3 uamdauaseNNFNRUSYauYIBaszaamsTuuneNiaIE VIDR Mndikuy

Nnnmwd 3 wuhdudsiiinademsiuun
melaasuamuanudnyloalivan ABC analysis
#70:20:10 lefun naw A Usznaulddaaiuys Age
HCT Cr HDL uaz BMI {uanszny 70.22% ngu B

Usznauluae Sex FBS Trig waz Bun ANansznu

a ¢
32130

av S
MURYU

[

agUszanAiiadnmiladesn 9
PR o W g a OxX
neNuFNNUSHaNMIHANIZ VIDR lTufiheuas
NHNAILUULNBWENNSINIE VTDR lagldinaiia
logistic regression LazNAA PNN nlaylrnuaeg
UWWIUAIENI LuUsenatazaaUssinadnsunsain
dudsmaiiansausuUangy NNMIAANRGINUS
lﬁ'd QI o & Y 3 L
ANNFNRUSHIUNIE VIDR lurthevesns 2 6
wuy UsIngIN@ILuy logistic regression @IS
o e lﬁ' L4 <~ YV . v U
dagngnaadanininliluduuulaun oy e
Y a & L. I3
chol HCT Tagagiiduyszans logistic tuau o

WNNTUFINE 1ML VIDR anas msanwdilva

39U 20.56% wazngn C Usznauludrs DBP HT
Chol SBP mAlb PLT LDL DLD w8z HbAlc HNia
ASENUTIN 9.219% MNAITU 135 NadWEN relative
variable impact 4 laazriauiamerasanuFunus

paeulsdaseaalanmangiheazinng VIDR la

wuiwmq@'ﬂmﬁmnﬁmﬂuﬁﬁaLﬁmm'amil,ﬁﬂ DR
Lwiﬁﬁmuﬁﬁ'ﬂﬁwuiwmqﬁﬂmmemaaﬂizmwm
4 a v @ ag .J Vv u U Y d'
LﬂulﬂiuwﬂwquaUﬂu‘ﬁqmmnmwmnunqu@Jﬂm‘n
= ﬂ‘y = lﬁl J % =1 a o 1 YV
Anwuazludamandeny amadewuhetheeny
' o P ~ a &g
10NN 65 U ANNLFENNILLAA DR anad Uananil
Al a a' Id v
Hihawnvmugiio 2 maGuduunvuluangias
- T -
eHANNLENTINEA DR uazianuguuswedlsnnn
k4 = d‘y 1 Y U a
g lunsdnwiinuengghaiumsiio VIDR
Fanudunuslunamanauny deanaazstduinse
ﬂﬁﬂﬁwmqw%amqf%mﬂuimlumju@'ﬂaﬂﬁﬁnm

o & ad vt = PPN '
BIDYBDYEIN %ﬂu’]‘ﬂzlﬂﬂﬂ’]iﬂﬂwﬂlw&lLﬂNluiZﬂz(ﬂavlﬂ
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LWANRNTAMNLFENAANIIE DR Haanitwdse
Zedaanaasnunuissdiulva nalnitialdag
Tigaau asduunuimzesaasTuuluumane
(sex-hormone-related pathway)
diumulsnaeanasaa (Chol) Ngeuaa
ualvilamatinn1iz VIDR geau madnsinen
nua lzuluidennfiaundtunisidy DR dalaf
ANNFRAAE B9 LUMUFEINUNING BealsAan
Tudagtiuwuhenuiaunduesmsunuaigylady
(lipid metabolism abnormalities) Hunundraaylu
WenBinila DR uaswuszauinmaludangasin
% L L4 = d'Q a o \ =
nuszaulaiuludenniioUndinanansiia DR
wazaaANNTUUILRIlIA Iz ldiiamsaniay
S£AUMILID59 (chronic low-grade inflammation) #
o v @ O a ad
1NenYaenuDR latuiinalnanuiinundnnannvans
12U complex molecular signaling event ANUADGAD
a a . . . o Yt L%
Uy (insulin resistance) Wl wmtglwuu
faundice Tumsaneniiwun chol wae HDL Tlu
tadendeqzas VIDR Faduusadumbaulaiely
anudayiudadeilumsquaring AHCT fia
o a £a = v 1Y) av A
FuUseanolluay JNEpaAaINUMTIABDY 9 uaz
M3 ANMEarierilhgeannnguuswae DR
melagaundguinhaziuamgnniaeade:
= =] ld' o v d‘
Toaase wazanuniinueudannanasilianused
MABLaa NI UEDq (anti-atherogenic functions
of endothelial cells) HUENMIFINEITADAIUNTIN
v A4 & o v &
WNNUNAVDILFULEDN
dnsuanuusudrlunrswernsaiwuin
muvuiianuududrluniswnernsalniznisiiae
VTDR Tugtheldgnedasusudigaurmnu 86.40%
wae 94.40% Iumjmmifﬂga in sample test LLa% out
of sample test MUIAU UAAILUUTMIWENNIOIRA
wnalunsaifithelifiang VIDR 11inne VIDR

' v 3 oy Y
ﬂﬂ‘u‘mﬂgjﬁ I@ﬂaTN’]iﬂWﬂ’]ﬂimﬂ’]’)ﬁ“ﬂaqQU'JFJ'V]IN

I v ¥ =
Uy VIDR lagnaaaiieq 34.80% waz 41.70%
Iunzjmaqﬁ'mga in sample test LL@E out of sample
test MNAIGU De9lsN A lunNNDIWBINITNBIES
Yasfiumaitadeethenlifion: VIDR Nia1ns
Mmliyaansmamsunndainsalinnussiaseia
v 4 v 1 % 1] = o a
wazlvimssnlaagranurnd mlilamatnianie
VTDR luainanzatetheanas S1m5uduuy PNN
usdranniinananisiia VIDR a9Usziliuain
relative variable impact Aatlu 70.229% w89 impact
e launargethe @ HCT fcreatinine @ HDL
ae BMI MNEIOU BIHANNMIIATITHIN 2 U
L= v o v % . =~ YV
wunidaedaneseny 2 muds Aeengsthauas
@ HCT
tadaidssiienudanludwuunensol
PNN 8¢ HCT creatinine HDL 4az BMI §80A8890U
M3ANEIBU 9 Acreatinine NG FANNTNNUSAUNS
1A® PDR 18 DME wazm3snanzladantlasnu
) v & & o o ' o
1319 DR ananaann@u BMI (utladededa DR 49
TV d'«v R [ .J 1
lifidasgunganu uaiutadedasdemsgnainees
T5ALUNI¥NY UBAMNUUNMSLANTUYDY BMI HaNy
dunusasliusd Ay HbAlc cholesterol Wag
ANNAUTATRNGINUED Z9UIUBNTI DR NFUUTININ
ld? YV = L lﬁ' vV v 1]
Fude lsaunvnulUadenetasnIenare e
(multi- factorial ) nalnmMstia DR i1 microvascular
complication #sdudau Uadsidasndrnalaun
A HbA1c uanuidasiiliusng HbA e (Wutlada
o Py = P o R ~
@enngaay Benadivanannansuzng ey
= 1 Yy = < dq' Yo dgz'
dnwasihazlaimsAnsuszeuillvganuauly
Tomanall
av o g AR o @
NI HTUT NS UM TINMILUY
WeNnsalnHIglunszuIUMINIRTAIE VIDR 9
szfalugthaialdunutuaaumssnniimanzey
Aae g 1A U nsulsIneIuIauAsUsy GItuIY

[ o w

eI luvaediu lagduusnnnzng
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pangueaag i livajinn meiliilawnangiu
doyavesiheiliasudiuluudasdudsinliife
. . 14 o 1 Yy v v
missing values L“\JummumnmNaiwum'imm'ﬂay‘a
" - v & 4 o
WiaIaanNMITNAIsaN LU aatuian1sIde 1y
lﬂ'd T ﬂl = ld?, = k4
WIAANIANNUNZDABNINIUMITHFIUYTDYAURY
v PP o & a
Hihendienuanysal vannileadimsuenszaue
rasnidelvinsaunaudayavesralugiinig
2y o a o a = ~ A aw
au 9 legeaiimsdelududSeuiisunseively
MNsINYeUsene Tudiuzeeainuuneinsaity
2198Mslgmefiedy 9 NHNTUA UMY
. . o A < ° Y o =
machine learning 988U ) Aoaazvh lilaaauuudl
anNuNug lumMswennsalann ey uananimsn
YU 1) Y o L a
33 lallihdudsdaszannmsnuminssanssy
LATNUIYADUNINUINNNTANNIVNG IDIANMS
) a o A v A a Py P
AU sdasENnedTae alnszaludsnas
NaRBNS5LAA VIDR ladatausnnuiliiiannu
UNUEYBIMILUUNENNSAILaL IiNuIdei N

o S &
aNHimN’]ﬂﬂQﬂu
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