

ທົກສອນ

ການປະຊຸມໃໝ່ວິທະການ ປະຈຳປີ 2542

Theme : Novel Blood Components and Blood Products

ຮະຫວ່າງວັນທີ 18-19 ພຶນາຄນ 2542

ณ ຜ່ອງປະຊຸມກົດ ສຣໂຍຣັບ ຂັ້ນ 4

ຄູນຍົບຮົກການໂລກົດແໜ່ງຫາຕີ ສກາກາຫາດໄກຍ

ຈັດໂດຍ

ຄມ:ອະນຸກຽມການຈັດຫາແລະສ່າງເສົຣນິຟີໃຫ້ໂລກົດແໜ່ງສກາກາຫາດໄກຍ

ແລະ:ຄູນຍົບຮົກການໂລກົດແໜ່ງຫາຕີ ສກາກາຫາດໄກຍ

HLA Class II Polymorphism in Thai Patients with Non-Hodgkin's Lymphoma

Oytip Nathalang, Noriyuki Tatsumi*, Masayuki Hino*, Wichai Prayoonwiwat**,
Takahisa Yamane*, Chamaiporn Suwanasophon and Thip Sripaisal

Department of Pathology, Pramongkutklaor College of Medicine, *Department of Hematology, Osaka City University Medical School, Osaka, Japan, **Department of Medicine, Pramongkutklaor Hospital, Bangkok, Thailand.

The distribution of HLA-DRB1 alleles and -DQB1 alleles in one hundred Thai patients with Non-Hodgkin's Lymphoma (NHL) was analyzed using the polymerase chain reaction with sequence-specific primers (PCR-SSP) method and the association between the disease and the presence of certain HLA class II alleles was investigated. The frequency of HLA-DRB1*1502 and DRB1*09012 was increased while that of DRB1*0404, DRB1*0803 and DRB1*1106 was decreased. On the other hand, the incidence of HLA-DQB1 alleles was similar to the normal population. Interestingly, only the HLA-DRB1*1502 showed significant positive association with NHL especially in patients under 45 years and in male patients.

In conclusion, the DRB1*1502 allele may contribute to susceptibility to NHL in Thai people. However, further study of the functional roles of the HLA class II alleles is necessary to better understand NHL susceptibility.

HLA Alloimmunization in Patients Receiving Multitransfusions of Leucocyte-Reduced Red Blood Cells

Ampaiwan Chuansumrit, Oytip Nathalang*, Phongian Hathirat,

Pimol Chiewsilp** and Partraporn Isarangkura

Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, *Department of Pathology, Pramongkutkla Hospital of Medicine, Bangkok, Thailand, **Pathology, Faculty of Medicine Ramathibodi Hospital.

Objective: HLA alloimmunization was studied in patients receiving multiple transfusions from 1979 to 1997.

Methods: Sixty-two patients were enrolled in the study which included β -thalassemia major, β -thalassemia/Hb E disease, $\beta/\delta\beta$ thalassemia disease, severe Hb H with Constant Spring disease and other chronic hemolytic anemia. The mean age and duration of transfusion were 9 years and 4 months, and 8 years, respectively. The patients were divided into three groups : group I, receiving only LR-RBC prepared by inverted centrifugation (n=35); group II, receiving LR-RBC and subsequent leucocyte-poor red blood cell prepared by the bedside leucocyte filters (filtered-RBC) (n=9); and group III, receiving conventional red blood cells and subsequent LR-RBC and filtered-RBC (n = 18).

Results: The HLA class I antibodies were found in 21 patients accordingly : group I 9 cases (26%), group II 2 cases (22%) and group III 10 cases (56%). Ten patients had one type of antibody while 11 patients had more than one type of antibody against HLA antigen commonly found in Thai population. However, the febrile transfusion reaction (FTR) among patients receiving LR-RBC and filtered-RBC were 0.7% and 0.8%, respectively. The detection of HLA antibodies depended upon the preparation of transfused RBC, duration and volume of RBC transfusion.

Conclusion: The troublesome transfusion reaction of FTR was markedly reduced by the leucocyte-reduction technique but the HLA alloimmunization induced by the residual leucocytes in the LR-RBC continued to develop. Therefore, this will have an impact on the patient's transfusion therapy in the future.

Risk Factors in Blood Donor with Positive Anti-HIV1/2 at Siriraj Hospital

**Parichart Permpikul, Wariya Panchavinnin, Anchalee Imprasert,
Chutamas Chanjamayai, Varaporn Meesamut, Usanee Siriboonrit,
Viroje Chongkolwatana and Sasitorn Bejrachandra**

Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

Background: Thailand has very high prevalence of HIV infection in general population. This fact threatened the safety of blood supply. To prevent transfusion-transmitted HIV infection, Department of Transfusion Medicine started testing for anti-HIV ½ since 1986 and continue to improve donor selection system. The average prevalence of positive anti-HIV ½ in blood donor at this institute is 0.44%. The aims of this study were to determine risk factors in blood donors with positive anti-HIV-½ and to evaluate the current donor selection system.

Method: Blood donors with confirmed positive test for Anti-HIV-½ were interviewed to assess possible risk factors and symptoms that related to HIV infection before giving notification and counselling for their conditions.

Result: Fifty blood donors with confirmed positive test for anti-HIV-½ were included in this study. They were 39 males and 11 females whose ages ranged between 17 to 45 years. The donation varied from 1-30 times. Thirty donors or 60% donated blood for the first time and 19 of them were replacement donors who donated blood to replace blood used by their family or friends. Possible risk factors are : 29 (58%) had sexual contact with prostitute (11 in 29 ever had venereal disease), 3 (6%) ever had sex with people with AIDS' symptoms, 2 (4%) were male homosexuals, 4 (8%) were intravenous drug users, 7 (14%) ever had tattoo, and 5 (10%) of these donors donated blood for HIV testing. In the infected female donors the possible route of infection in 6 cases were heterosexual contact with husbands.

Conclusion: The risk factors for positive anti-HIV ½ in this study is heterosexual contact with prostitute, homosexual male, intravenous drug user and tattoo, some of these risk factors, namely IVDU, homosexual man, and donation for AIDS' test if identified before should be excluded that donor from donated blood. This data suggested that current method of donor selection should be improved to prevent the donor with established risk factors from donated blood.

TAP1 and TAP2 Polymorphism in Thai Rheumatoid Arthritis

Sasijit Vejbaesya, Panpimol Luangtrakool, Lek Parivisutt*,

Dasnayanee Chandanayong and Sasitorn Bejarachandra

Department of Transfusion Medicine, *Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Rheumatoid arthritis (RA) is a chronic inflammatory joint disease. Previous evidences suggested that the susceptibility genes lie in the HLA region. Although rheumatoid arthritis is strongly associated with HLA-DR4, the association is not absolute. The TAP1 and TAP2 genes (Transport Associated with Antigen Processing) are localized in the class II region between HLA-DP and DQ. TAP genes play important roles in antigen processing and presentation. Because of the function and the location of TAP1 and TAP2 genes, it is possible that they may be associated with rheumatoid arthritis and other autoimmune diseases. In this study, we have investigated the association of TAP1 and TAP2 genes in Thai rheumatoid arthritis patients.

Sixty-six Thai patients with rheumatoid arthritis were identified in the Department of Medicine at Siriraj Hospital. One-hundred unrelated ethnic Thai individuals served as ethnical and geographically-matched controls. TAP1 and TAP2 typing were performed by amplification refractory mutation system (ARMS-PCR). In the normal controls, TAP1 locus present 4 alleles which were TAP1A (90%), TAP1B (24%), TAP1C (26%) and TAP1D (3%), TAP2 locus present 5 alleles which were TAP2A (81.7%), TAP2B (52.7%), TAP2C (24.7%), TAP2D (15.1%) and TAP2E (7.5%). In this study the antigen frequencies of TAP1 and TAP2 are similar to those found in other populations. This suggest that TAP genes are relatively ancient in evolutionary terms. No statistically significant difference in the frequencies of TAP1 and TAP2 alleles were observed between the RA patients and controls. Comparing TAP1 and TAP2 dimorphism between the patients and controls also showed no significant difference. In conclusion, this study suggest that TAP1 and TAP2 genes does not confer susceptibility to rheumatoid arthritis.

Acknowledgement

This study was supported by The Thailand Research Fund.

Clinical Uses of Intravenous Immunoglobulin in Adults

Seonyang Park M.D., Ph.D.

Department of Internal Medicine. Seoul National University College of Medicine, Seoul, Korea

Since its first use in 1952 for patients with immunodeficiencies, immunoglobulin preparations have been increasingly utilized as a prophylactic and therapeutic agent in a variety of clinical conditions. For many decades, immunoglobulins could only be given intramuscularly because of anaphylactic reactions mostly due to the anticomplementary activity associated with in-vitro aggregation. However, development of new techniques to separate immunoglobulins that could prevent aggregation provided a cornerstone of immunoglobulin therapy, and, in 1981, the first immunoglobulin for intravenous use was licensed in the United States. Since then, the use of intravenous immunoglobulin has undergone rapid growth in clinical medicine, and, now there are substantial data indicating a useful role for intravenous immunoglobulin in diverse clinical conditions. These include primary immunodeficiencies, HIV infections, hematopoietic stem cell transplantation, chronic lymphocytic leukemia, multiple myeloma, immune thrombocytopenic purpura and Kawasaki disease, recent investigations have also indicated efficacy of intravenous immunoglobulin in several neurologic diseases such as Guillain-Barre syndrome, chronic inflammatory demyelinating polyneuropathy, dermatomyositis, myasthenia gravis, and so forth. In this lecture, the current status of clinical uses of intravenous immunoglobulin in adults will be reviewed with the emphasis at discussing whether its use is a generally-accepted procedure in that clinical condition or, at this time, is regarded as an investigational means of therapy. Proposed mechanisms of action of intravenous immunoglobulin will also be presented together with some comments on appropriate doses of intravenous immunoglobulin in each clinical condition.

Viral Inactivation of Blood Products

Chong E. Chang

Korea Green Cross Corporation, Seoul, Korea

The viral safety of transfused blood products, is significantly improved by the introduction of currently available screening tests and donor selection. However, this method alone does not warrant ultimate safety since the risk caused by seronegative donors during the infectious window period or other viral mutants that are not detected by current tests still remains. Fortunately, the residual risk can be effectively eliminated by introduction of solvent detergent (S/D) treatment, heat treatment and/or nanofiltration to the manufacturing process of plasma products. Albumin is a classical example of the well-documented viral safety. Several contributing factors for albumin safety. Such as virus removal/inactivation by Cohn's cold ethanol fractionation and virus sterilization by pasteurization are discussed. Recently, worldwide usage of intravenous immunoglobulin (IVIG) is steadily growing owing to the proven record of safety and indicated efficacy. Therefore it is timely to present this product particularly in detail in regard to the purification method and current viral inactivation, and also related quality data of clinical importance, including KGCC'S research results. Finally, coagulation factors such as Factor VIII, Prothrombin Complex, Antithrombin III and Fibrin Sealant will be briefly described.

Haploidentical Cord Blood Transplantation in a β^0 -Thalassemia/Hb E Disease Patient

**Suradej Hongeng, Samart Pakakasama, Phongian Hathirat, Sauwakon Ajjimakorn,
Adithep Jaovisidha, Pimpun Tardtong, Saengsuree Jootar**

Department of Pediatrics, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Medicine,
Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.

In Southeast Asia, β -thalassemia, and hemoglobin (Hb) E are common. The frequencies of the traits are as high as 3 to 9% for β^0 thalassemia, up to 13% or higher for Hb E¹. Some of β -thalassemia/Hb E patients can be as severe as homozygous β -thalassemia or Cooley anemia. At present, allogeneic stem cell transplantation is the only rational therapeutic modality for thalassemia. Issaragrisil et al. Reported the first successful related cord blood transplantation (CBT) in a child with β -thalassemia/Hb E disease². In the literature review, all thalassemic patients who underwent CBT received fully matched cord blood (CB)³⁻⁵. Here we report our experience of haploidentical CBT in a child with severe β -thalassemia/Hb E disease.

Three year old female was diagnosed with β -thalassemia/Hb E. Her steady state of hemoglobin level was 7 gm/dl. The result of hemoglobin typing at 4 months of age was Hb F 58.2%, Hb E 41.8%. Her father was a case of β -thalassemia trait and her mother was a case of Hb E trait. β globin gene mutation demonstrated nonsense mutation at nucleotide 17.

Her mother became pregnant again and it was on purpose to collect cord blood for future trial of CBT. The male fetus was heterozygous for Hb E, and no β -thalassemia mutation was found. The volume of collected cord blood was 150 ml. Total number of nucleated cell and CD 34 were 6.1×10^7 cells/kg and 1.58×10^5 cells/kg respectively. The patient's HLA typing was : A2, 10, B 62, 46. Cw 1.6, Bw 6-, DRB1* 1502, 1401, DR 51, 52; DQA1* 0101, 0104, DQB1* 0501, 0502. The CB's typing was : A 10, 11, B62, 48; Cw 6,8; Bw 6-; DRB1*1502, 1401, DR 51, 52; DQA1*0101, 0104 DQB1* ; DR 51, 52; DQA1*0101, 0104, DQB1*0501, 0503 (HLA class I by serology, and class II by high resolution sequence specific primer DNA typing) Due to inability to access to the international registries in Thailand. We decided to perform CBT instead of matched unrelated BMT in this patient.

The preparative regimen consisted of busulfan (BU) 5 mg/kg/day day-11 to day-8) cyclophosphamide 50 mg/kg/day (day-7 to day-4), and antithymocyte globulin (ATG) 20 mg/kg/day (day-3 to day-2). The viability of CB at the time of infusion was 86%. GVHD prophylaxis were with cyclosporin

A started at day-1 at a dose 3 mg/kg/ Ivq 12 h until day+30 and orally later and methylprednisolone (1 mg/kg/day) started at day-1 for 30 days.

Neutrophil engraftment (ANC>0.5x10⁹/L) was day +25. And platelet engraftment (>20.0x10⁹/L) day+60. Her course of CBT was complicated with acute GVHD grade III. However, it was resolved by ATG and methylprednisolone administration. Chimerism of recipient hematopoietic cells was completely changed to donor cells. This was detected on day+150 by PCR for DNA polymorphism analysis for Amelogenin gene on X and Y chromosomes as shown in Fig.1. There was also a switch in blood type from AB+ pre-transplant to B+ post transplant. The serial hemoglobin level and hemoglobin typing were followed as shown in table 1. Currently (day+230), she is healthy with a Karnofsky score of >90% and does not develop chronic GVHD.

Table 1 Serial hemoglobin level and hemoglobin typing pre and post cord blood transplantation (CBT)

	pre CBT	Day+62	Day=130	Day+170
		post CBT*	post CBT*	post CBT*
Hb ¹ (gm/dL)	7.0	11.5	10.0	
Hb A (%)	-	53.2	48.6	
Hb A ₂ (%)	-	1.7	-	
Hb E (%)	41.8	-	25.0	
Hb F (%)	58.2	42.2	23.3	

* Last day of packed red blood cell transfusion was day +42 post CBT

* Hb = hemoglobin

We believe that increasing dosage of BU, adding ATG, early performing transplantation in order to prevent too frequent blood transfusion, and using GVHD prophylaxis without methotrexate made haploidentical CBT in thalassemia success. An identical HLA-DR locus between donor and recipient may also probably contribute a major factor of successful CBT in this case. To our knowledge, this report is the first to report an unmanipulated haploidentical CBT in thalassemia. Because thalassemia remains a National problem in Southeast Asia region, this result will help us to increase a possibility of the cure for thalassemia when there is no matched sibling available. A trial of haploidentical and mismatched related CBT in thalassemia is our subject of ongoing study.

Acknowledgement

We thank Ms Tasanee Mongkolsuk and Ms Kanchana Sujirachato for the excellent HLA laboratory and Ms Watana Chaisiripoomkere for cord blood collection and processing.

การตรวจหาเชื้อโนมของไวรัสตับอักเสบ บี โดยวิธีเพิ่มปริมาณยีน ในผู้ป่วยโรคโลหิตที่มีผลลบต่อเอชบีเอสแอนติเจน

สมชาย จตุรจาริญชัย, พิศมัย โพธิผล*, พิมล เชี่ยวศิลป์***, ประสงค์ พฤกษาณานนท์**,
และ บุษบา ฤกษ์อำนวยโชค*

ภาควิชากุรุตงประชารักษ์, *ภาควิชาพยาธิวิทยา รพ.รามาธิบดี, **ภาควิชาภารเวชศาสตร์ รพ.สมมิตร, ***ศูนย์บริการโลหิต
แห่งชาติ สถาบันชั้นนำแห่งประเทศไทย

บทคัดย่อ: เมื่อเร็วๆ นี้ได้มีรายงานการตรวจพัฒนาระบบของไวรัสตับอักเสบ บี (HBV DNA) ในเลือดผู้ป่วยโรค
โลหิตที่ผ่านการตรวจการของทางซีโรโลยีแล้ว ด้วยวิธีปฏิกริยาลูกโซ-โพลีเมอร์ส (PCR) ในประเทศไทยได้หันและญี่ปุ่น ซึ่ง
เป็นประเทศในเอเชียตะวันออกเฉียงใต้ที่มีปริมาณประชากรไทย การศึกษาที่ได้ใช้วิธี Nested-PCR เพื่อตรวจหาสารพัฒน
กรรมของไวรัสตับอักเสบบี โดยใช้ primer ที่จำเพาะต่อยีน ซึ่งในการขยายพันธุกรรมของไวรัสตับอักเสบ บี ในพลาสma
ของผู้ป่วยโรคโลหิตจำนวน 200 ราย จำกัดลังเลือดโรงพยาบาลรามาธิบดี ที่มีผลลบต่อเอชบีเอสแอนติเจน ผลผลิตของ
PCR สามารถตรวจวัดโดยวิธี Gel electrophoresis แล้วย้อมด้วย Ethidium bitomide ผลการศึกษาพบว่า 3.5%
ของเลือดที่มีเอชบีเอสแอนติเจนเป็นลบ อาจมีไวรัสในเลือด แสดงให้เห็นว่าเลือดที่แม้จะผ่านการตรวจการของโดยวิธีทาง
ซีโรโลยีก็ยังคงเป็นวิธีที่เหมาะสมที่สุดในปัจจุบัน จนกว่าจะมีการพัฒนาเทคนิคใหม่ เช่น อัลซ่าวิธีใหม่ หรือ PCR ที่ดีและ
เหมาะสมกว่านี้ นอกจากนี้เพื่อเพิ่มความปลอดภัยในการให้เลือด ควรคำนึงถึงความเสี่ยงและความจำเป็นของผู้ป่วย
ที่จะให้เลือด ตลอดจนการคัดเลือกผู้ป่วยโรคโลหิตที่ดีและมีคุณภาพด้วย

ภาวะแทรกซ้อนจากการรับเลือดในผู้ป่วยเด็กชาลัสซีเมีย

กั้orth พธ อิศร่างกูร ณ อยุธยา, ชิพาจันทร์ อริยะ, พิมพ์รรณ ตาดทอง*, สำราญพิรรณ จวนลัมฤทธิ์,
สามารถ ภาคกชมา และ พงษ์จันทร์ หัตถีรัตน์
ภาควิชาภารมีเวชศาสตร์ คณะแพทยศาสตร์โรงพยาบาลรามาธิบดี มหาวิทยาลัยมหิดล, *หน่วยคลังเลือด คณะแพทยศาสตร์โรงพยาบาลรามาธิบดี มหาวิทยาลัยมหิดล

ผู้ป่วยที่รับเลือดบ่อยต่อเนื่องเป็นวันนาน เช่น โรคชาลัสซีเมียจะมีโอกาสเกิดภาวะแทรกซ้อนจากการรับเลือดได้มาก รายงานนี้มีวัตถุประสงค์เพื่อศึกษาภาวะแทรกซ้อนจากการรับเลือดในผู้ป่วยเด็กโรคชาลัสซีเมียที่มารับการรักษาที่โรงพยาบาลรามาธิบดี เพื่อเป็นแนวทางในการดูแลรักษาและป้องกันภาวะแทรกซ้อนดังกล่าว

การศึกษานี้เป็นการศึกษาข้อมูลในผู้ป่วยเด็กโรคชาลัสซีเมีย ที่รับการรักษาที่ภาควิชาภารมีเวชศาสตร์ โรงพยาบาลรามาธิบดี ระหว่างวันที่ 1 กรกฎาคม 2539-31 ธันวาคม 2540 จำนวนผู้ป่วยทั้งหมด 100 ราย อายุระหว่าง 1-18 ปี โดยมีอายุเฉลี่ย 8 ปี เป็นชาย 42 ราย และหญิง 58 ราย เป็น β -thalassemia major 18, β -thalassemia/Hb E 77, HbH/CS disease 4 และ AE Bart's disease 1 ราย ทุกรายได้รับ leukocyte-depleted pack red cell (LPB) ซึ่งเตรียมโดยวิธีปั่น 64, Filter 30 และทั้งสองวิธี 6 ราย

ภาวะแทรกซ้อนจากการรับเลือดที่เป็น non infectious complication ได้แก่ urticaria 1% ซึ่งเกิดจาก transient IgA deficiency เมื่ออายุน้อย ต่อมากลับหายไปพร้อมกับมี IgA เพิ่มขึ้น febrile nonhemolytic reaction 1%, autoimmune hemolytic anemia 2% และ rbc alloimmunization 10% ซึ่งทดสอบด้วยวิธี cross matching และ antibody screening test คุ้กัน โดยพบ anti-Mi^a2, anti-E 2, anti-Mi^a + anti-E, anti-Le^{a+b}, anti-Le^a, non specific Ab อย่างละ 1 ราย และ unidentify Ab 2 ราย

สำหรับ Infectious complication ได้ตรวจ anti HIV ทุก 6-12 เดือน ไม่พบว่ามีผู้ติดเชื้อ HIV จากการรับเลือด สำหรับตับอักเสบบี ในรายที่ไม่มีภูมิต้านทานจะได้รับวัคซีนทุกราย จึงไม่สามารถศึกษาการติดเชื้อ HBV จากการรับเลือดได้

การให้ LPB แก่ผู้ป่วยชาลัสซีเมีย จะลดภาวะแทรกซ้อนทั้ง infectious และ non infectious complications ได้โดยเฉลี่ยอย่างมีนัยยะลด risk ของการเกิด febrile nonhemolytic reaction ลงได้ จึงควรให้ LPB แก่ผู้ป่วยโรคชาลัสซีเมียทุกครั้ง ทั้งนี้สามารถเตรียมได้โดยการปั่น ซึ่งไม่ต้องเลือกค่าใช้จ่ายเพิ่มขึ้น หมายเหตุ ภาระค่าใช้จ่ายของประเทศไทยในปัจจุบัน

Rh positive with D specific autoantibody : A case report

จริยา สายพิณ, ศศิธร เพชรจันทร์, กุสุมา เหรียญทอง

ภาควิชาเวชศาสตร์การธนาคารเลือด คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

รายงานผู้ป่วย 1 ราย ชายไทย อายุ 70 ปี ได้รับการวินิจฉัยว่าเป็นโรค Lymphoma ประวัติไม่เคยได้รับเลือดมาก่อน แพทย์ได้ขอเลือดจำนวน 2 ยูนิต จากการที่ pre-transfusion testing ตรวจพบว่าผู้ป่วยมีหมู่เลือด B Rh (D) positive การตรวจกรองหาแอนติบอดี้ ให้ผลบวกกับ screen cells โดยวิธี saline indirect antiglobulin test (Sal IAT) และวิธี two-stage papain เมื่อ拿出เลือดหมู่ B Rh (D) positive จำนวน 2 ยูนิต มาทำ crossmatch พบว่าให้ผลบวก (3+) โดยวิธี Sal IAT ทั้ง 2 ยูนิต จึงได้ทำการตรวจหาชนิดของแอนติบอดี้ในชีรัมของผู้ป่วย พบว่ามี anti-D และ ผล direct antiglobulin tet ของผู้ป่วย = 4+ ได้ตรวจ Rh (D) แอนติเจนของผู้ป่วยซ้ำ โดยใช้ anti-D จาก หลายนบริษัท ได้แก่ Novasera (Ortho Diagnostic System USA) BioClone (Ortho Diagnostic Systems USA), Totem (Diagast France) และ Seraclone (Biotest Germany) พร้อมกับทำ Rh reagent control (Biotest Germany) ควบคู่ไปด้วย ได้ผลดังนี้

Immediate spin

Rh reagent control	anti-D Novasera	anti-D Bioclone	anti-D Totem	anti-D Seraclone
negative	3+	4+	4+	4+

แต่จากการนำ eluate ซึ่งทำโดยวิธี acid elution (DiaCidel DiaMed Switzerland) มาตรวจหาชนิดของ แอนติบอดี้พบว่าเป็น anti-D ด้วยเช่นกัน จึงสรุปว่าผู้ป่วยเป็น Rh positive และมี anti-D ในการให้เลือดได้ crossmatch เลือดหมู่ B Rh (D) negative ให้ผู้ป่วยจำนวน 2 ยูนิต ผู้ป่วยจึงถึงแก่กรรม ภายในหลังอุบัติในโรงพยาบาล ได้ 2 วัน

Detection of Red Cells Antibodies by Enzyme Technique

กาญจนा เอื้อตระกูลพูนสุข, ศศิธร เพชรจันทร์, จริยา สายพิณ, วิภาณี ลีห์ไพบูลย์สกุล
และ วรารณ์ สุรัตนรังสรรค์
ภาควิชาเวชศาสตร์การธนาคารเลือด คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

บทคัดย่อ: จากผลการตรวจกรองหาแอนติบอดีในชีรัมของผู้ป่วยที่ขอเลือดในโรงพยาบาลศิริราช ระหว่าง 1 ตุลาคม 2540-30 กันยายน 2541 จำนวน 28,708 ราย พบร่วมกัน 1,044 ราย (ร้อยละ 3.6) แยกเป็นให้ผลบวกโดยวิธี saline room temperature 89 ราย (ร้อยละ 8.6) วิธี saline indirect antiglobulin test 74 ราย (ร้อยละ 7.0) วิธีเอ็นไซม์อย่างเดียว 373 ราย (ร้อยละ 35.7) และให้ผลบวกโดยหลักวิธีรวมกัน 508 ราย (ร้อยละ 48.7) ในกลุ่ม แอนติบอดีที่พบโดยวิธีเอ็นไซม์อย่างเดียวแยกได้เป็นแอนติบอดีที่มีความสำคัญทางคลินิก 287 ราย (ร้อยละ 76.9) แอนติบอดีชนิด non-specific 36 ราย (ร้อยละ 9.7) autoantibodies 29 ราย (ร้อยละ 7.8) และ unidentified 21 ราย (ร้อยละ 5.6) การตรวจหาชนิดของแอนติบอดีโดยใช้วิธีเอ็นไซม์ร่วมด้วย ทำให้ผลการตรวจแอนติบอดีในระบบ Lewis, Rh และ P1 ชัดเจนขึ้น นอกเหนือไปยังพบร่วมกัน 69.5 ของแอนติบอดีในระบบ Lewis และร้อยละ 13.6 ของแอนติบอดีในระบบ Rh ตรวจกรองพบโดยวิธีเอ็นไซม์อย่างเดียวเท่านั้น ดังนั้นการใช้วิธีเอ็นไซม์จึงเป็นการทดสอบที่ควรนำมาใช้ในการตรวจกรองและตรวจหาชนิดของแอนติบอดีในงานธนาคารเลือด ทั้งนี้เพื่อเป็นการเพิ่มความปลอดภัย สำหรับผู้ป่วยที่ได้รับการรักษาด้วยเลือดให้มากยิ่งขึ้น

ZAVEDOS®

IDARUBICIN HCl

ZAVEDOS® OFFERS CLINICAL ADVANTAGES OVER DAUNORUBICIN IN AML PATIENTS

- **Higher CR rates**
- **Greater CR after the 1st induction course**
- **Longer duration of remission**
- **Comparable safety profile**

References

1. Berman, E., et al, *Blood*, 77(8), 1991; 1666-1674
2. Wiernik, P.H., et al, *Blood*, 79(2), 1992;pp. 313-319
3. Vogler, W.R., et al, *Journal of Clinical Oncology*, 10(7), 1992;pp. 1103-1111

For Medical Profession only.

Further information available on request.

Dispense in hospital only.

ใบอนุญาตเลขที่ นศ. 19/2542

Pharmacia & Upjohn