

Original article

Pharmacokinetics of recombinant factor VIII among pediatric patients with hemophilia A, a multicenter study in Thailand

Nalita Deepijarn^{1,2}, Pajaree Chariyavilaskul^{3,4}, Pokpong Na Songkhla⁵, Kittima Kanchanakamhaeng⁶ and Darintr Sosothikul^{1,2}

¹Division of Hematology and Oncology, Department of Pediatrics; ²Integrative and Innovative Hematology/Oncology Research Unit; ³Clinical Pharmacokinetics and Pharmacogenomics Research Unit; ⁴Department of Pharmacology, Faculty of Medicine, Chulalongkorn University;

⁵Department of Pediatrics, Sawanpracharak Hospital; ⁶Department of Pediatrics, Prapokkla Hospital

Abstract:

Background: Recombinant FVIII (rFVIII), the synthetic recombinant antihemophilic factor VIII, was developed due to concern of adverse effects of plasma derived products. In Thailand, the number of children with hemophilia A (HA) treated with rFVIII has gradually increased. However, related pharmacokinetic studies on rFVIII are mostly conducted among adults and few studies in a Thai pediatric population. **Objectives:** This study aimed to evaluate the pharmacokinetic parameters of standard half-life (SHL) rFVIII and identify the correlation between pharmacokinetic parameters and baseline characteristics among children with HA. **Methods:** A prospective multicenter cohort study was conducted. Pediatric patients with severe HA treated at King Chulalongkorn Memorial Hospital, Prapokkla and Sawanpracharak Hospitals were enrolled. Factor VIII activity was measured by validated one stage clotting assay before and at 0.25, 0.5, 1, 12 and 24 hours after a single dose of Recombinate[®] infusion (50±5 units per kilogram). **Results:** Thirteen patients with severe HA treated and had regular follow-up were enrolled. Pharmacokinetic parameters revealed mean percentage of maximum FVIII of 84.55 U/dL, volume of distribution of 66.35 mL/kg, half-life of 8.53 hours, clearance of 5.49 mL/hr/kg, AUC_{0-24} of 777.93 U.hr/dL and AUC of 928.01 U.hr/dL. The results showed statistically significant correlation between dose per kilogram and maximum concentration (p -value = 0.002). We also observed the trend of dose per kilogram and AUC_{0-24} correlation (p -value = 0.057). **Conclusion:** Our study reported concerning the pharmacokinetic parameters of recombinant FVIII in a Thai pediatric population and also showed variation among different studies.

Keywords : ● Pharmacokinetic ● Pediatric ● Hemophilia ● Recombinant factor VIII

J Hematol Transfus Med. 2022;32:227-33.

Received 13 March 2022 Corrected 27 April 2022 Accepted 11 September 2022

Correspondence should be addressed to Darintr Sosothikul, M.D., Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Tel/Fax: (+66)2-256-4949; E-mail: dsosothikul@hotmail.com, Darintr.S@chula.ac.th

นิพนธ์ต้นฉบับ

เกล็ชจลนศาสตร์ของแพคเตอร์แปดที่ได้มาจากการสั่งเคราะห์โดยเทคโนโลยีรีคอมบิแนนท์ในผู้ป่วยเด็กที่เป็นโรคชีโมฟีเลีย เอ, การศึกษาแบบulatoryสถาบันในประเทศไทย

นลิตา ดีพิจารย์^{1,2} ปาร์วี จริยวิลาศกุล^{3,4} ปักป่อง ณ สงขลา⁵ กิตติมา กาญจน์กำแหง⁶ และ ดารินทร์ ซอสตถิกุล^{1,2}

¹สาขาวิชาโลหิตวิทยาและมะเร็งเด็ก ภาควิชาภูมิคุ้มกันและการรักษา คณะแพทยศาสตร์ ทันตแพทย์และนวัตกรรมทางโลหิตวิทยาและมะเร็งเด็ก ²หน่วยปฏิบัติการวิจัยแปลงจลนศาสตร์คลินิก “ฝ่ายเภสัชวิทยา คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย” ³กุ่มงานกุழาระการรัฐ โรงพยาบาลสราษฎร์ประชารักษ์ นครศรีธรรมราช ⁴กลุ่มงานกุழาระการรัฐ โรงพยาบาลสราษฎร์ประชารักษ์ จันทบุรี

บทคัดย่อ

บทนำ แพคเตอร์แปดที่ได้มาจากการสั่งเคราะห์โดยเทคโนโลยีรีคอมบิแนนท์ (*rFVIII*) ถูกสร้างขึ้นมาเพื่อลดผลข้างเคียงที่เกิดจากการให้ผลิตพัฒนาที่ผิดพลาดจากพลาสม่าซึ่งผู้ป่วยเด็กชีโมฟีเลียเองในประเทศไทยมีการใช้ *rFVIII* เพื่อรักษามากขึ้น อย่างไรก็ตามการศึกษาเกี่ยวกับเกล็ชจลนศาสตร์ของ *rFVIII* ส่วนใหญ่เป็นการศึกษาในผู้ใหญ่ และมีการศึกษาห้องทดลองที่ทำในเด็กไทย วัตถุประสงค์ เพื่อศึกษาเกล็ชจลนศาสตร์ของ standard half-life (SHL) *rFVIII* และหาความสัมพันธ์ของค่าทางเกล็ชจลนศาสตร์กับลักษณะพื้นฐานของผู้ป่วยเด็กชีโมฟีเลีย เอ วิธีการศึกษา การศึกษาไปข้างหน้าโดยศึกษาในห้องสถาบัน ผู้ป่วยที่เข้าร่วมการศึกษาคือ เด็กชีโมฟีเลียเอง ชนิดรุนแรงที่เข้ารับรักษาที่โรงพยาบาลจุฬาลงกรณ์ โรงพยาบาลสราษฎร์ประชารักษ์ และโรงพยาบาลสราษฎร์ประชารักษ์ ซึ่งจะได้รับการตรวจระดับแพคเตอร์แปดก่อนและหลังจากการให้ Recombinate[®] (50 ± 5 ยูนิตต่อหนึ่งหนักตัว) ที่ 0.25, 0.5, 1, 12 และ 24 ชั่วโมง ผลการศึกษา เด็กชีโมฟีเลียเองชนิดรุนแรง 13 คนที่เข้าร่วมการศึกษา ซึ่งมีค่าทางเกล็ชจลนศาสตร์ คือ ค่าเฉลี่ยระดับแพคเตอร์แปดสูงสุด 84.55 ยูนิต/เดซิลิตร ปริมาณตราชราจะตัว 66.35 มิลลิลิตร/กิโลกรัม ค่าครึ่งชีวิต 8.53 ชั่วโมง อัตราการกำจัดยา 5.49 มิลลิลิตร/ชั่วโมง/กิโลกรัม AUC₀₋₂₄ 777.93 ยูนิต.ชั่วโมง/เดซิลิตร และ AUC 928.01 ยูนิต.ชั่วโมง/เดซิลิตร จากผลการศึกษาพบว่าปริมาณ *rFVIII* ต่อน้ำหนักมีความล้มเหลวทางสถิติอย่างมีนัยสำคัญกับระดับแพคเตอร์แปดสูงสุด (*p*-value = 0.002) และ AUC₀₋₂₄ (*p*-value = 0.057) สรุป การศึกษานี้เป็นการศึกษาทางเกล็ชจลนศาสตร์ของ *rFVIII* ในเด็กไทย จากผลการศึกษาพบว่ามีความแตกต่างจากการศึกษาก่อนหน้า คำสำคัญ : ● เกล็ชจลนศาสตร์ ● แพคเตอร์แปดเข้มข้นชนิดเตรียมจากพัฒนวิศวกรรม ● ผู้ป่วยเด็ก ● โรคชีโมฟีเลียเอ วารสารโลหิตวิทยาและเวชศาสตร์บริการโลหิต. 2565;32:227-33.

Introduction

Hemophilia A (HA) is an inherited bleeding disorder resulting from the deficiency of Factor VIII (FVIII).¹ Approximately 400,000 people in the world are reported to have HA.²⁻³ In Thailand, the key elements in treating hemophilia are to prevent and treat bleeding episodes using synthetic clotting factors. Recombinate® is rFVIII, a synthetic form of recombinant DNA-derived FVIII prepared for clinical use. It has been synthesized from a genetically engineered Chinese hamster ovary cell line to solve the problem of blood-borne infection from plasma-derived clotting factors, especially viral infections caused by the hepatitis virus, human immunodeficiency virus and parvovirus.^{1,4-7} Recombinate® has undergone safety studies that have shown no serious side effects and incidence of inhibitor to FVIII development only 11.9% in previously treated patients and 0.123% in previously untreated or minimally treated patients.⁸⁻⁹ Due to this advantage, treating HA with the Recombinate® has been increasingly used among adults and in pediatric populations.

The recognition of FVIII's pharmacokinetics (PK) is the cornerstone in managing HA cases concerning providing sufficient factor replacement to patients. Unfortunately, the PK data of rFVIII remain limited and have been reported in only a few studies. White et al. reported the PK data of rFVIII in two adult patients. The mean half-lives (T1/2) of rFVIII were 16.1 ± 0.1 hours.¹⁰ Lee et al. studied the PK of rFVIII among patients with HA. T1/2 was 13.1 hours; area under the plasma concentration time curve (AUC) was 7.95; volume of distribution at steady state (Vd) was 60.3 mL/kg and recovery was 131 IU/mL.¹¹ The PK data of rFVIII among children was studied by Chen et al. Maximal plasma concentration (Cmax) was 102.66 ± 9.94 U/dL; T1/2 was 10.87 ± 0.65 hours and clearance (CL) of 4.69 ± 0.29 mL/hr/kg. Mostly, recent studies showed the PK parameters of rFVIII only in an adult population. Currently, little information is available regarding pediatric patients with HA.¹² We therefore conducted a prospective cohort study to evaluate the PK of rFVIII among Thai pediatric patients diagnosed

with severe HA. The second aim was to evaluate PK variability by identifying the correlation between PK parameters and baseline characteristics of patients.

Materials and Methods

The study design constituted a multicenter, prospective cohort. The subjects were enrolled from three hospitals in Thailand, i.e., King Chulalongkorn Memorial Hospital (KCMH), Prapokkla Hospital and Sawanpracharak Hospital.

Inclusion criteria included patients with severe HA with ages ranging between 1 and 20 years treated with Recombinate® and regular follow-up at multicenter hospitals.

Exclusion criteria included patients with HA presenting FVIII inhibitor within six months before being enrolled, having a history of hypersensitivity to Recombinate® or mouse/hamster proteins, or developing all types of bleeding within one month before the test or patients receiving a diagnosis with bleeding diathesis from other medical conditions.

Upon approval by the Institutional Review Board, medical records of the patients were retrospectively reviewed. Clinical information was collected including age, weight (kg), height (cm), body surface area (m^2), blood group and dose per kg of the patients.

Specimen collection

Each patient received a single dose of Recombinate® infusion with the dose of 50 ± 5 units per kg of body weight. Three milliliters of blood was collected before infusion and again at 15 minutes, 30 minutes, 1 hour, 12 hours and 24 hours after infusion. The samples were collected in plastic tubes containing 3.2% sodium citrate and immediately mixed. The collected samples were capped, and transported on ice to the laboratory where plasma was separated and stored at -20°C until the FVIII assay was performed. Samples were stored for not more than one week to assay. All plasma samples were analyzed for FVIII activity using validated one-stage clotting assay, performed on the CS-1600 Sysmex (Fully Automated Coagulation Analyzer) at KCMH laboratories.

Pharmacokinetics analysis

The PK parameters were calculated using noncompartmental analysis for each participant using Microsoft excel and expressed in terms described below. Area under the plasma concentration time curve from 0 to 24 hours post infusion (AUC_{0-24}) computed using the linear trapezoidal rule, area under the plasma concentration-time curve from time 0 to the timepoint of the last measured concentration ($AUC_{0-\text{last}}$), computed as C_{last}/β C_{last} is the last measured concentration and β is the slope of the terminal portion of the log concentration-time curve.

Total area under the plasma concentration-time curve from time 0 to infinite time (AUC), computed as follows: Total $AUC = AUC_{0-24} + AUC_{24-\text{last}}$; plasma half-life ($T_{1/2}$) computed as $2.303\log 2/k$, Note: $k = \beta * (-2.303)$; volume of distribution (Vd), computed as Dose/Concentration at time 0; clearance (CL) as determined by $k * Vd$.

Statistical analysis

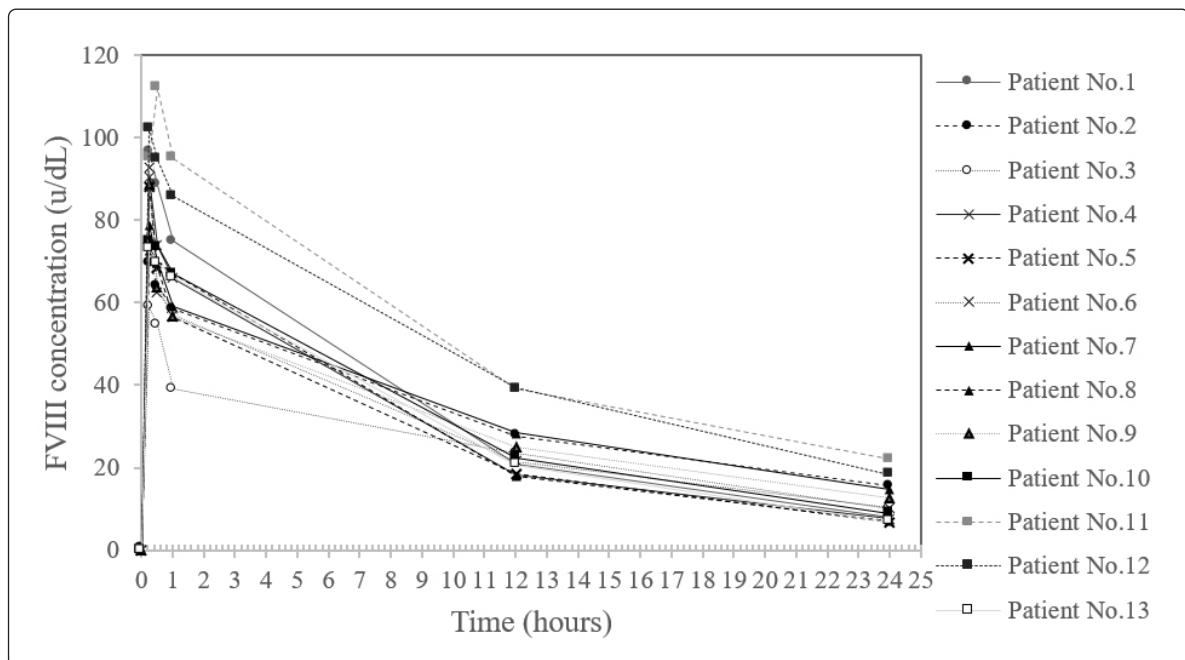
This study employed descriptive analysis. Demographic data (age, body weight, height, BMI, weight for height and dose per kilogram of body weight) and PK

parameters (Cmax, Vd, $T_{1/2}$, CL, AUC_{0-24} and AUC) were statistically calculated using mean and median. The correlation between demographic data and PK parameters was performed using Spearman's rho correlation, and level of significant of p -value was below 0.05.

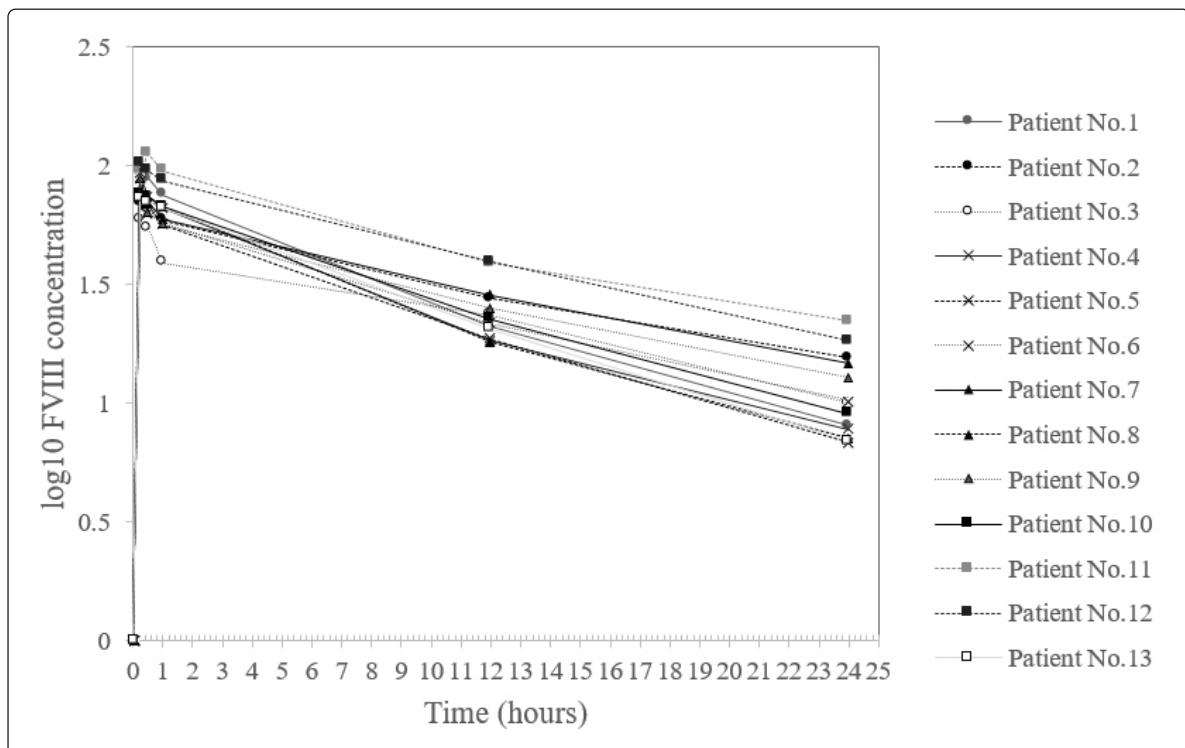
Results

Patient characteristics

In this study, 13 patients with severe HA were enrolled. The median age was 10 years (range between 2 and 20). The mean infusion dose was 49.39 IU/kg (range between 44.11 and 57.69), with no FVIII inhibitor demonstrated among all subjects before rFVIII infusion.


Pharmacokinetic data

The PK results of each patient are shown in Table 1. Our study reported a mean percentage of Cmax of 84.55 U/dL, Vd of 66.35 mL/kg, $T_{1/2}$ of 8.53 hours, CL of 5.49 mL/hr/kg, AUC_{0-24} of 777.93 U.hr/dL and AUC 928.01 U.hr/dL. Graphic data of FVIII concentration and time among all patients are shown in Figure 1. Semi log graph of FVIII concentration and time are shown in Figure 2.


Table 1 Pharmacokinetic data

Subject No.	Age (years)	BW (kg)	Dose/kg	Cmax (u/dL)	Vd (mL/kg)	$T_{1/2}$ (hr)	Clearance (mL/hr/kg)	AUC_{0-24} (U.hr/dL)	AUC (U.hr/dL)
1	2	13	57.69	96.6	65.00	6.63	6.76	775.82	852.44
2	4	18	46.87	69.9	71.93	11.14	3.94	787.81	1,036.98
3	5	17	44.11	58.8	84.11	10.05	5.76	588.85	734
4	5	16	46.87	90.3	60.37	6.85	6.06	685.28	761.42
5	5	20	50.00	88.1	69.00	6.81	7.00	626.67	693.55
6	10	31	53.57	93.0	75.60	8.19	6.39	684.15	804.79
7	10	20	50.00	78.9	70.95	10.27	4.75	800.03	1,017.91
8	14	45	44.44	72.7	62.00	6.92	6.20	677.51	748.41
9	16	45	44.44	88.7	63.68	9.35	4.71	732.91	904.28
10	19	50	50.00	75.0	67.30	7.67	6.06	744.38	844.09
11	19	63	55.55	112.0	54.66	10.35	3.64	1,192.5	1,521.31
12	20	49	51.02	102.4	52.51	9.78	3.71	1,116.21	1,374.73
13	20	42	47.61	72.8	65.45	6.95	6.50	701.02	770.28
Mean	11.46	33	49.39	84.55	66.35	8.53	5.49	777.93	928.01
SEM	1.89	4.61	1.18	4.1	2.33	0.46	0.33	49.48	70.59

BW: body weight; Cmax: maximum concentration; Vd: volume of distribution; $T_{1/2}$: half-life; AUC_{0-24} : area under the plasma concentration time curve from time 0-24 hours; AUC: total area under the plasma concentration time curve from time 0 to infinite time; SEM: standard error of the mean

Figure 1 FVIII concentration and time of all patients

Figure 2 Graphic on semi log graph of FVIII concentration and time of all patients

Pharmacokinetic variability

Interestingly, we observed a correlation between response to rFVIII and some patients' characteristics. Dose per kilogram significantly correlated with Cmax (correlation value 0.765, $p = 0.002$) and tended to correlate with AUC₀₋₂₄ (correlation value 0.540, $p = 0.057$).

Discussion

This study revealed two important findings. First, our study reported the PK data of rFVIII among Thai pediatric patients with HA differing from the adult population. Second, we found a statistically significant correlation between dose per kilogram and Cmax of rFVIII and also observed a trend of dose per kilogram and AUC₀₋₂₄ correlation. Conversely, BMI was not correlated with AUC₀₋₂₄ or Cmax of rFVIII. No studies conducted before our study demonstrated the PK parameters of rFVIII among Thai pediatric patients with HA. The related studies reported PK data among adults and one study reported PK among children. In our study, T1/2 tended to be shorter; in this study T1/2 of rFVIII was 8.53 hr but in related studies of White, et al. among people with severe HA aged 18 and 39 years, mean T1/2 of FVIII was 16.1 hr. The study of Chen, et al., conducted among people with severe HA younger than 18 years, reported that T1/2 of FVIII among patients with pediatric HA was 10.87 hr.).^{10,12} Vd was not associated with age, weight for height or blood group. In this study CL increased (CL was 5.49 mL/hr/kg), but related studies of White, et al. showed the CL of rFVIII was 1.9 mL/hr/kg, and the study of Chen, et al., reported the CL of FVIII among pediatric patients with HA was 4.69 mL/hr/kg.^{10,12} In contrast, the study results of Chen, et al. found age and blood group O were important predictive factors of factor FVIII T1/2.¹² Because this study was conducted in a Thai pediatric population, genetics and patient's age might be contributing factors underlying the difference in results among these studies. The PK of rFVIII was found to correlate with the dose per kilogram constituting the second interesting point.

Regarding its strengths, this constitutes the first

study reporting the PK parameters of rFVIII in a Thai pediatric population. In addition, no patient was lost to follow-up. However, our study encountered limitations due to the small number of participants enrolled. This might explain the statistically insignificant correlation between most of the PK parameters and baseline characteristics. For further studies, we suggest enrolling a larger group of subjects and comparing other rFVIII data. Another limitation was the vWF:Ag was not taken to determine the correlation to the PK of rFVIII. The vWF level may have had an interesting correlation with the PK of rFVIII. In summary, our study reported PK data of rFVIII in a Thai pediatric population and revealed PK variability. We found that the body weight might be a factor contributing to the variation of PK. For clinical application, because of the variable PK of rFVIII, factor level monitoring remains an important tool to evaluate the clinical effects of treatment especially in pediatric populations. The core of treatment should be individualized and tailor-made.¹

Acknowledgements

This research work was supported by the Ratchadapi-seksompoj Fund (STF 6300430003-1), Faculty of Medicine, Chulalongkorn University, Thailand.

References

1. Srivastava A, Santagostino E, Dougall A, Kitchen S, Sutherland M, Pipe SW, et al. *WFH Guidelines for the Management of Hemophilia*, 3rd edition. *Haemophilia*. 2020;26:1-158.
2. Llinás A. *Haemophilic arthropathy*. *Haemophilia*. 2010;16:121.
3. Chuansumrit A, Mahasandana C, Chinthammitr Y, Pongtanakul B, Laossombat V, Nawarawong W, et al. *National survey of patients with hemophilia and other congenital bleeding disorders in Thailand*. *Southeast Asian J Trop Med Public Health*. 2004;35:445-9.
4. Kaufman RJ, Wasley LC, Dorner AJ. *Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells*. *J Biol Chem*. 1988;263:6352-62.
5. Gomperts E, Lundblad R, Adamson R. *The manufacturing process of recombinant factor VIII, recombinate*. *Transfus Med Rev*. 1992;6:247-51.
6. Kaufman RJ, Wasley LC, Davies MV, Wise RJ, Israel DI, Dorner

AJ. Effect of von Willebrand factor coexpression on the synthesis and secretion of factor VIII in Chinese hamster ovary cells. *Mol Cell Biol*. 1989;9:1233-42.

7. The United States Food and Drug Administration. RECOMBINATE [Antihemophilic Factor (Recombinant)] [Internet]. 2022 [cited 2022 Sep 9]. Available from: <https://www.fda.gov/media/78282/download>

8. Bray GL, Gomperts ED, Courter S, Gruppo R, Gordon EM, Manco-Johnson M, et al. A multicenter study of recombinant factor VIII (Recombinate®): safety, efficacy, and inhibitor risk in previously untreated patients with hemophilia A. *The Recombinate Study Group*. *Blood*. 1994;83:2428-35.

9. Ewenstein BM, Gomperts ED, Pearson S, O'Banion ME. Inhibitor development in patients receiving recombinant factor VIII (Recombinate rAHF/Bioclate): a prospective pharmacovigilance study. *Haemophilia*. 2004;10:491-8.

10. White GC 2nd, McMillan CW, Kingdon HS, Shoemaker CB. Use of recombinant antihemophilic factor in the treatment of two patients with classic hemophilia. *N Engl J Med*. 1989;320:166-70.

11. Lee CA, Owens D, Bray G, Giangrande P, Collins P, Hay C, et al. Pharmacokinetics of recombinant factor VIII (recombinate) using one-stage clotting and chromogenic factor VIII assay. *Thromb Haemost*. 1999;82:1644-7.

12. Chen ZP, Li PJ, Li G, Tang L, Zhen YZ, Wu XY, et al. Pharmacokinetic Studies of Factor VIII in Chinese Boys with Severe Hemophilia A: A Single-Center Study. *Chin Med J*. 2018;131:1780-5

