

Original Article

Comparison of Microcolumn Agglutination Test for Blood Group Typing and Antibody Screening

Pimpun Kitpoka¹, Panitita Suksomboonvong¹, Viroje Chongkolwatana²
and Pimolparn Ratanasirivanich³

¹Department of Pathology, Faculty of Medicine, Ramathibodi Hospital; ²Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok; ³Blood Bank, Naresuan University Hospital, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand.

Background: The microcolumn agglutination tests (MT) with an automated platform has been recently introduced for pretransfusion tests to replace conventional tube test. **Objective:** The aim of this study was to compare the sensitivity, specificity, operation time (OT) and cost effectiveness of pretransfusion tests performed by 3 commercially available MT: AutoVue® Innova (AVI), Techno TwinStation (TTs), and WaDiana Compact (WDC) with the conventional tube test (CTT) in order to implement automated MT for routine transfusion laboratory service. **Materials and Methods:** Samples from donors and patients from the Blood Bank, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University were tested by all of the 4 methods for pretransfusion tests which include ABO, Rh D typing and antibody screening. The OT for each step of each method were recorded. The direct and labour cost were calculated and compared. **Results:** The sensitivity of CTT and MT for ABO and Rh D typing were not statistically significant ($p > 0.05$). Six out of 1,222 samples showed ABO discrepancies by all of the methods. Detection of two cell populations or mixed field reaction was easily observed in all MT cards, while CTT could not detect it without the use of a microscope. The sensitivity of CTT and MT in detecting clinically significant antibodies (7/2,149 samples) were also not statistically significant ($p > 0.05$). However, 1/7 samples which had anti-E could be detected only by MT. On the contrary, CTT showed higher sensitivity in detecting clinically insignificant antibodies (28/2,149 samples) which reacted only at room temperature. The OT of pretransfusion tests was similar for single samples. However, the OT of MT was faster when a large amount of samples were evaluated in a batch. AVI was the fastest instrument. The direct cost of pretransfusion tests by MT was higher than CTT because of reagent cost, while the labour cost was much cheaper for MT. **Conclusion:** The sensitivity of CTT, AVI, TTs, and WDC for ABO, Rh D typing, and antibody screening for clinically significant antibodies were not statistically significant difference. CTT had a significantly higher sensitivity than MT in detecting clinically insignificant antibodies. AVI showed higher sensitivity and a false positive rate than those of CTT and TTs. However, AVI had the fastest OT. Therefore, implementation of MT with an automated platform was recommended for transfusion service in order to reduce OT and human errors as well as increase standardization of pretransfusion tests.

Keywords : ● ABO grouping ● Rh D typing ● Antibody screening ● Microcolumn agglutination test
● Gel test ● Glass bead

J Hematol Transfus Med 2014;24:7-16.

Received August 7, 2013. Accepted December 2, 2013.

Request for reprints should be addressed to Pimpun Kitpoka, M.D., Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Rama 6 Rd., Bangkok, Thailand 10400 e-mail: pimpun.tar@mahidol.ac.th

Introduction

Pretransfusion test, which include ABO and Rh D typing, antibody screening and compatibility test, has been performed as the standard for transfusion service in order to select compatible blood for recipients¹. The serologic tests will prevent immune-mediated hemolytic transfusion reaction and assure the acceptable survival rate of transfused blood. ABO blood group is one of the major histocompatibility complex which plays an important role in transfusion and transplantation. ABO incompatibility can cause acute severe intravascular hemolysis, renal failure and death²⁻⁵. Antibody screening test is performed to detect non ABO red blood cell (RBC) alloantibodies in recipients' serum. The compatibility test is a method which identical ABO and RhD donor's blood are selected and tested with recipients' blood. Both methods will ensure that no RBC antibodies in recipient serum will react with donor RBC and cause immune reaction during and following blood transfusion. These methods will detect either agglutination or hemolysis of RBC at room temperature (RT), 37 °C and indirect antiglobulin test (IAT) in vitro^{4,6,7}.

RBC serologic tests were firstly performed on glass slides for ABO and Rh D typings. The limitations of this slide method are false negative results, difficulty in interpretation of weak reaction, cell aggregation due to dry reaction mixture and the most important one, inability to perform serum typing, antibody screening and compatibility tests. The development of saline tube test and antiglobulin test replaced the slide method. However, human errors can be commonly observed with the conventional tube test^{4,8}. Enriched media such as albumin⁶ and low ionic strength saline (LISS) has been added to the tests to increase the sensitivity and reduce incubation time of the tests^{1,4,6,9}.

The microcolumn agglutination test (MT) is the latest method for blood group typing, antibody screening and compatibility test¹⁰. The advantages of MT are more sensitive, less sample volume and

less technical variation. The commercially available kit has been developed using either gel or glass bead in the microcolumn cards. Recently, a fully automated instrument has been available to perform pretransfusion tests by MT to reduce human errors^{4,8,9}.

The aim of this study was to compare the sensitivity, specificity, operation time (OT) and cost effectiveness of pretransfusion tests performed by 3 commercially available MT: AutoVue® Innova (AVI), Techno TwinStation (TTs), and WaDiana Compact (WDC) with the conventional tube test (CTT) for ABO, Rh D typing and antibody screening test in order to implement automated MT for routine transfusion laboratory service.

Materials and Methods

Sample

The blood samples tested in this study were specimens of donors and patients at Blood Bank, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University. Blood grouping (ABO, RhD) and antibody screening were performed on 1,222 and 2,149 samples, respectively. Each sample was tested by conventional tube test (CTT), AVI, TTs and WDC within the same day. All of the blood samples were stored at 2 - 6 °C before testing.

Pretransfusion test

ABO and Rh D typing by fully automated AVI (Ortho Clinical Diagnostics, Rarita, NJ, USA.), fully automated TTs (DiaMed, Cressier, Switzerland) and semi-automated WDC (Diagnostic Grifols,S.A., Barcelona, Spain) were performed in comparison with CTT method. BioVue ABO-Rh/Reverse cassettes were used for AVI and ID-Cards ABO/Rh+ Reverse Grouping were used for TTs. Both of them had 6 columns in one card. The DG Gel® ABO/Rh (2D) cards were used for WDC and had 8 columns in 1 card. The volume of plasma sample used for TTs and WDC were 50 uL while the volume of plasma sample used for AVI was

40 uL. The procedure for AVI did not need the step of room temperature incubation while incubation time for TTs and WDC were 10 and 15 minutes, respectively. The centrifugation time of TTs and WDC were 10 minutes while the centrifugation time of AVI was only 5 minutes. Total time for AVI, TTs and WDC were 5, 20 and 25, respectively.

Antibody screening tests by all of the 4 methods were performed at the same time by using screening cells from the National Blood Centre, Thai Red Cross Society (NBC, TRC). They were pooled group O donor cells suspensions that included the most commonly phenotypes of clinically important RBC antigens. They were D, E, C, e, c, M, N, S, s, P₁, Mi^a, Le^a, Le^b, K, k, Jk^a, Jk^b, Fy^a, Fy^b, Di^a and Di^b. BioVue Anti-Human Polyspecific cassettes and BioVue Reverse Diluent cassettes were used for AVI while ID-Card LISS/Coombs, polyspecific anti-human globulin were used for TTs. DG Gel[®] Coombs, polyspecific anti-human globulin card were used for WDC. The volume of plasma sample used for TTs and WDC were 25 uL while the volume of plasma sample used for AVI was 40 uL. The incubation time for TTs and WDC were 15 minutes at 37°C while the incubation time for AVI was only 10 minutes at 37°C. The centrifugation time of TTs and WDC were 10 minutes while the centrifugation time of AVI was only 5 minutes. Total time for AVI, TTs and WDC were 15, 25 and 25 minutes, respectively.

Operation time and direct cost

The direct cost of all materials used to perform ABO, Rh D and antibody screening by CTT, MT were calculated. The labour cost per test was also calculated from the salary and the time that the staff spent on performing the tests.

Statistical analysis

The statistical analyses of all data were calculated using SPSS for windows, version 18.0 (IBM SPSS Inc., Chicago, IL). The McNemar test and Cochran Q test were used to gauge the significance of sensitivity and specificity of the ABO, Rh typing and the antibody screening test by CTT and all of MT.

Ethics

The present study was approved by the Ethical Clearance Committee on Human Rights Related to Researches Involving Human Subjects, Faculty of Medicine, Ramathibodi Hospital, Mahidol University.

Results

ABO grouping

The total of 1,222 samples were tested for ABO grouping. All of the four methods gave the ABO discrepancies results which were 0.33% for CTT, 0.49% for AVI, 0.41% for TTs and 0.33% for WDC as shown in Table 1. The details of ABO discrepancy results were shown in Table 2. All of the methods can detect two cell populations in 4 samples of ABO-incompatible bone marrow transplantation (BMT) patients. In addition, ABO discrepancies were also observed in 2 samples that had alloantibodies (anti-Le^a+anti-Le^b and anti-P₁+anti-Le^b) by AVI and TTs. All of the antibodies reacted only at room temperature phase. However, the results of all the methods were not statistically significant different ($p > 0.05$).

Rh D typing

All of the four methods showed conclusive result. Rh D positive typings were observed in 99.59%, while Rh D negative typings were observed in 0.41% of the samples as shown in Table 3. The results of all the

Table 1 ABO typing results

Result	CTT (%)	AVI (%)	TTs (%)	WDC (%)
Conclusive result	1,218 (99.67)	1,216 (99.51)	1,217 (99.59)	1,218 (99.67)
ABO discrepancies	4 (0.33)	6 (0.49)	5 (0.41)	4 (0.33)
Total	1,222	1,222	1,222	1,222

Table 2 ABO discrepancies results in 6 samples

	Method			
	CTT	AVI	TTs	WDC
ABO - incompatible	4	4	4	4
Allogeneic BMT patients				
Alloantibodies (RT)	0	2	1	0
Anti-Le ^a + Le ^b		1	0	
Anti-P ₁ + Le ^b		1	1	
Total	4	6	5	4

Table 3 Rh D typing results

Result	CTT (%)	AVI (%)	TTs (%)	WDC (%)
Rh D positive	1,217 (99.59)	1,217 (99.59)	1,217 (99.59)	1,217 (99.59)
Rh D negative	5 (0.41)	5 (0.41)	5 (0.41)	5 (0.41)
Total	1,222	1,222	1,222	1,222

Table 4 Antibody screening results

Result	No.	Percent
Conclusive results	2,115	98.42
Inconclusive results	34	1.58
Total number of samples	2,149	

Table 5 Pattern of conclusive results of antibody screening tests (N = 2,115)

CTT	AVI	TTs	WDC	No.	%
-	-	-	-	2,102	97.81
+	+	+	+	13	0.60

methods were not statistically significant different ($p > 0.05$).

Antibody screening test

Conclusive results were observed in 2,115 out of 2,149 samples (98.42%) as shown in Table 4. Inconclusive result were observed in 34 samples (1.58%). All of the four methods showed 97.81% and 0.61% for negative and positive reaction, respectively (Table 5).

The specificity of antibodies that gave conclusive positive results were shown in Table 6. There were anti-D (1 sample), anti-E (1 sample), anti-E + anti-Mi^a (1 sample), anti-D + anti-Le^a + anti-Le^b + warm autoantibody (1 sample), anti-Mi^a (6 samples), warm autoantibody (1 sample) and anti-Le^a (1 sample).

However, we found that the specificity of antibody in one sample cannot be identified. Inconclusive results can be categorized into 7 types as shown in Table 7.

Antibodies observed in this study were categorized into clinically significant antibody and clinically insignificant antibody according to the type of immunoglobulin and the ability of antibodies that had the potential to cause hemolytic transfusion reactions (HTRs) and/or hemolytic disease of the fetus and new born (HDFN). Table 8 showed antibody specificity and reactivity of clinically significant antibodies, while Table 9 showed antibody specificity and reactivity of clinically insignificant antibodies.

Table 6 The specificity of antibodies from positive conclusive results (N = 13)

Antibody specificity	No. of sample
Anti - D	1
Anti - E	1
Anti - E + anti-Mi ^a	1
Anti - D + anti-Le ^a + anti-Le ^b + warm autoantibody	1
Anti - Mi ^a	6
Autoantibody	1
Anti-Le ^a	1
Unidentified	1
Total	13

Table 7 Type of inconclusive results of antibody screening tests (N = 34)

Type	Method				No. (%)	Antibody Specificity
	CTT	AVI	TTs	WDC		
1	-	+	-	-	1 (0.05)	Unidentified
2	-	+	+	+	1 (0.05)	Anti-E
3	+	-	-	-	18 (0.84)	
					3	Anti-Le ^a
					3	Anti-Le ^a + anti-Le ^b
					6	Anti-P ₁
					1	Anti-N
					1	False positive*
					4	Unidentified
4	+	+	-	-	9 (0.42)	
					1	Anti-E
					2	Anti-Le ^b
					1	Anti-Le ^a + anti-Le ^b
					1	Cold autoantibody
					3	False positive*
					1	Unidentified
5	+	+	+	-	1 (0.05)	Anti-Le ^a + anti-Le ^b
6	+	+	-	-	3 (0.14)	
					1	Anti-Mi ^a
					1	Anti-Le ^a
					1	Anti-M
7	+	-	+	+	1 (0.05)	False positive*

*False positive : positive antibody screening but negative for antibody identification;

Unidentified : positive antibody screening and positive for antibody identification but specificity cannot be interpreted.

Table 8 Reactivity and specificity of clinically significant antibodies

	No.	CTT	AVI	TTs	WDC
Anti - D	1	1	1	1	1
Anti - E	3	2	3	2	2
Anti - E + Mi ^a	1	1	1	1	1
Anti - D + Le ^a + Le ^b + warm autoantibody	1	1	1	1	1
warm autoantibody	1	1	1	1	1
Total	7	6	7	6	6
Sensitivity (%)		85.71	100	85.71	85.71

Table 9 Reactivity and specificity of clinically insignificant antibodies

No	CTT			AVI			TTs	WDC
	RT	IAT	RT&IAT	RT	IAT	RT&IAT		
Anti - Mi ^a	7	0	1	6	0	0	7	6
Anti - P ₁	6	0	6	0	0	0	0	0
Anti - Le ^a	5	1	4	0	0	0	2	1
Anti - Le ^b	2	0	2	0	2	0	0	0
Anti - Le ^a +Le ^b	5	0	4	1	1	1	0	0
Anti - M	1	0	0	1	0	0	1	0
Anti - N	1	1	0	0	0	0	0	0
Cold autoantibody	1	1	0	0	1	0	0	0
Total	28	3	17	8	4	1	10	8
Sensitivity (%)			100			53.57		28.5
								35.71

Table 10 Operation time of ABO, Rh D typing and antibody screening

No. sample(s) per batch.	Method	Time (min)	
		ABO/Rh D	Ab Screening
1	CTT	7.25	28.39
	AVI	7.55	23.00
	TTs	24.27	28.21
	WDC	30.02	29.14
5	CTT	13.40	35.26
	AVI	14.38	25.43
	TTs	32.11	32.04
	WDC	N/A*	32.19
10	CTT	23.51	52.05
	AVI	20.46	28.59
	TTs	52.44	36.51
	WDC	N/A*	35.23

* The instrument was not available

Table 11 Comparison of ABO / Rh D typing direct cost (Baht)

Cost	CTT	AVI	TTs	WDC
Labor cost	6.48	5.76	5.76	5.76
Material cost	56.21	135.75	112.42	183.90
Direct cost	62.69	141.51	118.18	189.66

Table 12 Comparison of antibody screening test direct cost (Baht)

Cost	CTT	AVI	TTs	WDC
Labor cost	7.55	2.00	2.00	2.00
Material cost	21.01	70.96	50.04	63.82
Direct cost	28.56	72.96	52.04	65.82

The reactivity of 7 samples containing clinically significant antibodies (cs-ab) was shown in Table 8. The sensitivity of CTT, AVI, TTs and WDC were not significantly different ($p > 0.05$) in detecting clinically significant antibody. The reactivity of 28 samples of clinically insignificant antibodies (is-ab) were shown in Table 9. The sensitivity of CTT, AVI, TTs and WDC were significantly different ($p < 0.05$) in detecting clinically insignificant antibody. The sensitivity was significantly higher in CTT ($p < 0.00$) but the sensitivity of AVI was also significantly higher than those of TTs and WDC ($p < 0.05$).

Operation time and direct cost

The operation time of ABO, Rh D typing and antibody screening test for 1, 5 and 10 samples as the batch loading were shown in Table 10. The comparison of direct cost for ABO and Rh D typing, antibody screening test which included the cost of labour and material were shown in Table 11-12.

Discussion

It was observed in this study that the sensitivity of ABO and Rh D typing by CTT, AVI, TTs and WDC was not statistically different ($p > 0.05$), which were similar to the study of Langston et al¹¹. All of the 4 methods had the same ability in detecting 4 samples of ABO discrepancy from ABO-mismatched bone marrow transplant (BMT) patients as previously described in the other study¹². Even though WDC can detect two

cell populations in only 2 of 4 samples while AVI, TTs and CTT can detect in all 4 samples, but WDC gave the discrepancy between cell and serum grouping in the other 2 samples which then lead to manual verification.

The advantages of microcolumn agglutination test (MT) over CTT in detecting two cells populations are clear reaction without using a microscope and stable end point. Moreover, the red cell can be easily distinguished between agglutinated red cell on the top and non-agglutinated red cell at the bottom of the column. The red cell agglutination by conventional tube test cannot be seen without the aid of a microscope. The microcolumn agglutination assay is a better method in detecting mixed red blood cell population, particularly in the ABO mismatched BMT and ABO subgroups.

ABO discrepancy was observed in 2 samples with alloantibodies by AVI and TTs. Anti-Le^a and anti-Le^b were identified in one sample while anti-P₁ and anti-Le^b were identified in the other sample. The discrepancy observed in ABO reverse grouping was due to the better sensitivity of MT over CTT.

The sensitivity of antibody screening test by CTT, AVI, TTs and WDC for clinically significant antibodies was not statistically different ($p > 0.05$) as shown in Table 8. However, AVI can detect one more sample of anti-E while the others cannot detect it. Our results showed the same finding as the previous study¹² that

anti-E can be detected in more samples by MT than CTT. This finding was in contrast with the study from Hong Kong¹³ which showed that the gel test can detect less anti-E than CTT. Unfortunately, anti-C, anti-c, anti-Jk^a and anti-K were not included in our study because they are not common antibodies in Thai.

The sensitivity of antibody screening test by CTT, AVI, TTS and WDC for clinically insignificant alloantibody was statistically different ($p < 0.05$) as shown in Table 9. All of anti-P₁ (N = 6) which can be identified by CTT, were not detected by MT. Moreover, among 12 samples, which were positive for anti-Le^a and/or anti-Le^b by CTT, only 3 samples were detected by MT. AVI had a better sensitivity than TTS and WDC. Anti-N was observed in only 1 sample by CTT but cannot be found in any of MT. These findings for clinically insignificant alloantibodies from our study were similar to those of the previous studies which showed that the gel test was less sensitive in detection of cold alloantibodies such as anti-P₁ and antibodies in the Lewis system^{14,15}. However, all of the 4 methods showed the same sensitivity for anti-Mi^a, which is common in Thai.

Three out of 29 positive antibody screening samples by MT (10.34%) showed negative reaction for antibody identification, while 5/45 (11.11%) positive antibody screening samples by CTT showed negative reaction for antibody identification, as well. Therefore, MT did not give more false positivity than CTT (Table 7).

The OT for ABO grouping and Rh D typing by CTT was almost the same as AVI for single sample, but for the large amount of sample in a batch, the OT of MT were shorter as shown in Table 10. The OT of ABO and Rh D typing by AVI was faster than those of the other two instruments (TTS and WDC). The results of ABO grouping and Rh D typing from all instruments were not statistically different ($p > 0.05$). TTS and WDC needed a minimum of 20 and 25 minutes for incubation and centrifugation while AVI required only

5 minutes for incubation and centrifugation.

The OT of antibody screening test by AVI was the fastest. AVI required 5-7 minutes for set up time and centrifugation, while TTS and WDC needed 10-15 minutes for either one sample or batch test as shown in Table 10. The CTT was time-consuming when compared to MT because of 2 reasons. The first one was the longer incubation in CTT. The second one was the extra time for washing RBC before adding antiglobulin serum.

The direct costs of ABO, Rh D typing and antibody screening test by MT were higher than CTT as shown in Table 11-12. The reagent cost was much more expensive in MT, while the labour cost was cheaper. However, automated microcolumn agglutination systems have the advantage of connecting the result with laboratory information system and hospital information system, resulting in less identification error.

Conclusion

The microcolumn agglutination test on the automation platform has been recently introduced to replace the conventional tube test for pretransfusion tests. The aim of this study was to compare the sensitivity, specificity, turnaround time and cost effectiveness of these technologies in order to implement the MT for routine use in transfusion service. The results of ABO, Rh D typing by all of the methods were not statistically significant. The sensitivity of CTT, AVI, TTS and WDC were also not statistically significant in detecting clinically significant antibodies. However, 1 sample of anti-E which is one of the common antibody in Thai was only detected by MT. On the contrary, CTT showed higher sensitivity in detecting clinically insignificant antibodies which reacted mostly at RT phase such as anti-Le^a, anti-Le^b, anti-P₁ and anti-N. Because of the advantages of MT over CTT in standardization of the method, shorter OT and reduced human error,

in combination with higher sensitivity results shown by our study, therefore, the microcolumn agglutination test on automation platform should be recommended for transfusion service laboratory.

References

1. Cid J, Nogues N, Montero R, Hurtado M, Briega A, Parra R. Comparison of three microtube column agglutination systems for antibody screening; DG Gel, DiaMed-ID and Ortho BioVue. *Transfus Med* 2006;16:131-6.
2. Weisbach V, Ziener A, Zimmermann R, Glaser A, Zingsem J, Eckstein R. Comparison of the performance of four microtube column agglutination systems in the detection of red cell alloantibodies. *Transfusion* 1999;39:1045-50.
3. Delaflor-Weiss EP, Chizhevsky V. Implementation of gel testing for antibody screening and identification in a community hospital, a 3-Year experience. *Labmedicine* 2005;36:489-92.
4. Knight RC, Silva M de. New technologies for red-cell serology. *Blood Rev* 1996;10:101-10.
5. Westhoff CM. The Rh blood group system in review: A new face for the next decade. *Transfusion* 2004;44:1663-73.
6. Downes KA, Shulman IA. Pretransfusion test. In: Roback JD, Combs MR, Grossan BJ, Hillyer CD, editor. Technical manual. 16th ed. American Association of Blood Banks. Bethesda, Maryland, United States 2008;437-63.
7. Birhanaselassie M. *Immunohaematology: Lecture notes for Medical Laboratory Technology Students*. EPHTI, 2004.61-6.
8. Voak D. The status of new methods for the detection of red cell agglutination. *Transfusion* 1999;39:1037-40.
9. Malmgren W, Neumeister B. Recent and future trend in blood group typing. *Anal Bioanal Chem* 2009;393:1443-51.
10. Lapierre Y, Rigal D, Adam J, et al. The gel test: a new way to detect red cell antigen-antibody reaction. *Transfusion* 1990;30:109-13.
11. Langston MM, Procter J.L, Cipolone KM, Stoncek DF. Evaluation of the gel system for ABO grouping and D typing. *Transfusion* 1999;39:300-5.
12. Nathalang O. The gel test: Twelve – Year's experience in Thailand. *J Med Assoc Thai* 2005;88(Suppl 3):S325-9.
13. Cheng G, Chuan A, Chum M, Wong L. Evaluation of the gel test for antibody screening in a tertiary hospital in Hong Kong, insensitivity for some cold antibodies that are reactive at 37 degrees C by conventional indirect antiglobulin tests. *Clin Lab Haematol* 1995;17:81-4.
14. Titlestad K, Georgsen J, Andersen H, Kristensen T. Detection of irregular red cell antibodies: More than 3 years of experience with a gel technique and pooled screening cells. *Vox Sang* 1997;73:246-51.
15. Nathalang O, Chuansumrit A, Prayoonwiwat W, Sriponya P, Sriphaisal T. Comparision between the conventional tube technique and the gel technique in direct antitglobulin tests. *Vox Sang* 1997;72:169-71.

การเปรียบเทียบการตรวจหมู่โลหิต และการทดสอบหาแอนติบอดีต่อหมู่โลหิต โดยวิธี Microcolumn Agglutination Test

พิมพ์รรณ กิจพ่อค้า¹ ปณิชตา สุขสมบูรณ์วงศ์¹ วิโรจน์ จกกลวัฒนา² และ พิมพ์รรณ รัตนคิริวนิช³

¹ สาขาวิชาพยาธิวิทยาคลินิก ภาควิชาพยาธิวิทยา คณะแพทยศาสตร์โรงพยาบาลรามาธิบดี ² ภาควิชาเวชศาสตร์การชนาการ เอื้อด คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล กรุงเทพฯ ³ ภาครถเลือด โรงพยาบาลมหาวิทยาลัยแม่ริม คณะแพทยศาสตร์ มหาวิทยาลัยแม่ริม จังหวัดเชียงใหม่

บทคัดย่อ การใช้เทคนิค *microcolumn agglutination test (MT)* โดยเครื่องตรวจอัตโนมัติได้ถูกนำมาใช้ทดสอบ *pretransfusion test* เพื่อแทนเทคนิค *conventional tube test* วัตถุประสงค์ เพื่อเปรียบเทียบการใช้ชุดทดสอบสำเร็จรูป *MT* ด้วยเครื่องมือ อัตโนมัติ 3 เครื่องได้แก่ *AutoVue® Innova (AVI)*, *Techno TwinStation (TTs)* และ *WaDiana Compact (WDC)* กับวิธี *conventional tube test (CTT)* โดยศึกษาเปรียบเทียบความไว ความจำเพาะ เวลาที่ใช้ในการทดสอบ ต้นทุน และประสิทธิผลของ การทดสอบ เพื่อนำเทคนิคการตรวจ *MT* โดยเครื่องอัตโนมัติมาใช้งานในห้องปฏิบัติการคลังเลือด วัสดุและวิธีการ ด้วยวิธี *MT* ตัวอย่างทดสอบ ได้จากการใช้ในห้องปฏิบัติการตรวจหมู่โลหิต *ABO Rh D* และการทดสอบหาแอนติบอดีต่อหมู่โลหิต มีการบันทึกเวลาทุกขั้นตอนที่ใช้ในการทดสอบทั้ง 4 วิธี และมีการคำนวณเปรียบเทียบทันทุนทางตรง และต้นทุนค่า แรงของการทดสอบ ผลการศึกษา ผลการเปรียบเทียบความไวในการทดสอบหาหมู่โลหิต *ABO* และ *Rh D* ด้วยวิธี *MT* และ *CTT* พบร่วมกันไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p > 0.05$) และพบผลการตรวจที่ไม่สอดคล้องกันของหมู่โลหิต *ABO* โดยมีจำนวน เท่ากันคือ 6 ใน 1,222 ตัวอย่างในทุกวิธีทดสอบ การตรวจพบปฏิกิริยาของเซลล์สองกลุ่มอยู่ปั่นกันหรือ *mixed field reaction* สามารถสังเกตเห็นได้อย่างชัดเจนจาก *card* โดยวิธี *MT* ในขณะที่วิธี *CTT* ไม่สามารถเห็นได้ด้วยตาเปล่า จำเป็นต้องดูจากกล้อง จุลทรรศน์ ผลการเปรียบเทียบความไวในการตรวจหาแอนติบอดีที่มีความสำคัญทางคลินิกโดยวิธี *MT* และ *CTT* พบร่วมกันไม่มีความ แตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p > 0.05$) โดยตรวจพบ 7 ใน 2,149 ตัวอย่าง อย่างไรก็ตามพบว่า 1 ใน 7 ตัวอย่างซึ่งมี *anti-E* สามารถตรวจพบได้โดยวิธี *MT* เท่านั้น ในทางตรงกันข้ามพบว่าวิธี *CTT* มีความไวสูงกว่าวิธี *MT* ในการตรวจหาแอนติบอดีที่ไม่มี ความสำคัญทางคลินิก ซึ่งเกิดปฏิกิริยาที่อุณหภูมิห้อง โดยพบ 28 ใน 2,149 ตัวอย่าง เมื่อเปรียบเทียบเวลาที่ใช้ในการทดสอบพบว่า หากเป็นการทดสอบเพียง 1 ตัวอย่างทั้ง *MT* และ *CTT* ใช้เวลาใกล้เคียงกัน แต่ถ้าเป็นการทดสอบตัวอย่างที่มีจำนวนมากหรือทดสอบ เป็นกลุ่มตัวอย่างพบว่า *MT* ใช้เวลาห้องกว่า และพบว่า *AVI* เป็นเครื่องตรวจอัตโนมัติที่ตรวจได้เร็วที่สุด สำหรับต้นทุนทางตรงของ การทดสอบพบว่าวิธี *MT* มีต้นทุนสูงกว่า *CTT* จากค่าที่สูงกว่าของชุดน้ำยาสำเร็จรูป ในขณะที่ต้นทุนค่าแรงของวิธี *MT* นั้นต่ำกว่า *CTT* สูง ความไวในการทดสอบหมู่โลหิต *ABO Rh D* และการทดสอบหาแอนติบอดีที่มีความสำคัญทางคลินิกโดยวิธี *CTT*, *AVI*, *TTs* และ *WDC* ไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ แต่พบว่าวิธี *CTT* มีความไวมากกว่าวิธี *MT* ในการทดสอบ หาแอนติบอดีกลุ่มที่ไม่มีความสำคัญทางคลินิก *AVI* เป็นเครื่องอัตโนมัติที่ให้ผลการทดสอบที่มีความไวสูงกว่าและให้ผลลัพธ์ล้อม มากกว่าวิธี *CTT* และ *TTs* แต่ใช้เวลาในการทดสอบเร็วที่สุด ดังนั้นจึงควรเลือกเครื่องมืออัตโนมัติที่ตรวจโดยเทคนิค *MT* มาใช้ใน งานห้องปฏิบัติการเวชศาสตร์การบริการโลหิต เพื่อให้ได้ความไวของ การทดสอบที่สูงขึ้น ลดเวลาการทดสอบ และลดความผิดพลาด ที่เกิดจากขั้นตอนการทำงาน รวมทั้งเป็นการเพิ่มมาตรฐานของการทดสอบ *pretransfusion tests*

Keywords : ● *ABO grouping* ● *Rh D typing* ● *Antibody screening* ● *Microcolumn agglutination test*
 ● *Gel test* ● *Glass bead*

วารสารโลหิตวิทยาและเวชศาสตร์บริการโลหิต 2557;24:7-16.