นิติการ ศรีภัทรภูธิคชัย
dr.bungsom@kkcu.ac.th

1 คณะเภสัชศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ อ.เมือง จ.นครนายก 40002
2 Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002

บทนำ

ขิง (Ginger, Zingiber officinale Roscoe) อยู่ในวงศ์ Zingiberaceae นิยมปลูกทั่วโลกเป็นพืชยาส่งเสริมสุขภาพที่มีอยู่ในช่วงเวลาอย่างยาวนาน โดยเฉพาะในภาคตะวันออกเฉียงเหนือ เอเชียตะวันตกและแอนด์ ประเทศที่ติดกับน้ำทะเล ได้แก่ อินเดีย ออสเตรเลีย สหรัฐ ออสเตรีย จีน และไทย ขิง มีสรรพคุณที่มีประโยชน์ต่อร่างกายไทย ซึ่งถือเป็นราชบัณฑิต โดยซึ่งรับประทาน ได้แก่ ยาเสื่อมท้องท้อง ท้องแพร่ تحتاجมา ราดน้ำมัน โปแตชิวและพบในปลูกขิงในช่วงที่มีฝนตกมาก

2.2 เขารับ ขนาดยาว 5-15 ซม. ยาว 1.5-6 ซม. สีของภาคเหนือมีสีเหลืองส้มหลุดๆ เค็มและมีแต่เย็น ก้าน เนื้อของปลูกท้องท้องมีกลิ่นดีและมีฟิสิกส์ ตามเนื้อตันที่เป็นสีม่วงและสีเขียวอมสีม่วง ปกคลุมก่อกลูกขิง และมีสีไมล์ใน ปลูกขิงในช่วงที่มีฝนตกมาก ซึ่งจะให้กลิ่นตันไป

ลักษณะทางพยาธิศาสตร์

องค์ประกอบทางเคมี

เห็ดเจียงดีในมีเม็ดอีร มีผงทางเคมีเหลือซีแอล
กลิ่นของชีวิตภาษาแอลกอฮอล์ที่มีประมาณ 1-3% สารสังเคราะห์ในน้ำมันแพทย์แห่งชีวิตมีมากกว่า 50 ชนิด ที่พบได้ในกลุ่ม monoterpenoids ได้แก่ β-phellandrene, (+) camphene, cineole, geranial, curcumene, citral, terpineol, borneol และกลุ่ม sesquiterpenoids ได้แก่ α-zingiberene, β-sesquiphellandrene, β-bisabolene, α-farnesene, ar-curcumene, zingiberol เป็นต้น ชื่อเม็ดทำให้ชื่อแม่ สารเหล่านี้กลายเป็นยาสูบไม่มีลิขสิทธิ์ได้ (Langner et al., 1998) กลิ่นลูกค้าจากสารหลักในกลุ่ม gingerols ที่มีมากที่สุดคือ 6-gingerol (สาร 2) และ 7-gingerol ซึ่งเป็นสารหลักในกลุ่ม shogaols ได้แก่ 6-shogaol (สาร 2) (Wohlmuth et al., 2005) การเปลี่ยน จาก 6-gingerol เป็น 6-shogaol ขึ้นกับสัตว์และ pH โดยเปลี่ยนได้อย่างรวดเร็วที่สูญเสีย 100°C และ pH 1 ด้วยที่ pH 4 จะค่อยช้าลงตัว (Bhattarai et al., 2001) สารอื่น ๆ ที่พบในชีวิตได้แก่ 4-, 7-, 8- และ 10- gingerol (สาร 3-6) ; 4-, 6-, 8-, 10- และ 12-shogaol (สาร 2, 7-10) ; methyl-4- gingerol, methyl-8-gingerol ; methyl-4-, methyl-6-, methyl-8-shogaol; 6-paradol (สาร 11 ซึ่งคือ 6-deoxygingerol); 7-, 8-, 9-, 10-, 11- และ 13- paradol และ methyl-6-paradol (Jolad et al., 2004)。

Jolad และ ทีม (2005) ได้ศึกษาสารสังเคราะห์ใน ชีวิตเจียงได้มีน้ำมัน 115 ชนิด และ 89 ชนิด ได้ดีมีทางการ รายงานไว้แล้ว โดยที่ได้กัน 45 ชนิดที่พบในชีวิต และพบ สารสังเคราะห์ในน้ำมัน 31 ชนิด เริ่มเป็น methyl-8-paradol, methyl-6-isogingerol (สาร 12) และ 6-isoshogaol (สาร 13) และสารอื่น ๆ อีก 12 ชนิด นอกจากนี้ยังพบสารกลุ่ม ginderdiones ในชีวิตเจียงถึง 12 ชนิด มีอยู่ในชีวิตเจียงของ ginderdiones ซึ่งเป็น 6-ginderdione (สาร 14), 8-, 10- และ 12-ginderdiones โดยที่ในชีวิตเจียงมี gingerol และกันชีวิต และในทาง สรรพคุณชีวิตมีมีการปรับผ่าน shogaol เพิ่มชีวิต สารก็ ชีวิตเจียงออกสุทธิได้ทำการกลุ่ม diarylheptanoids ซึ่ง ที่สำคัญคือ (3S, 5S)-3, 5-diacetox-1, 7-bis (4-hydroxy-3-methoxyphenyl) heptane (สาร 15) สุริยา โครงสร้างของสารเหล่านี้สรุปได้ใน รูปที่ 3.
สารสกัดจากขิง (Ali et al., 2009)

การจัดมาความดับพิษเหลืองของไซโตคีน และอนุธิบายความเป็นพิษต่อเซลล์ (cytotoxicity) และอุทิศหน้าที่ทำให้สิ้นสุด (apoptosis) ฟิสิกซ์ของผลเร่งเม็ดเลือดขาวในเซลล์ชีวิต

1) หลัก acetoxyl ที่ตำแหน่ง 3- และ 5- ของ side chain
2) ความยาวของหน่วยพื้นฐานของ side chain

ๆ (3,5,6) - 3, 5 - diacetoxy - 1, 7 - bis (4-hydroxy-3-methoxy) - heptane 15

n = 4 [9] - gingerol 1
n = 2 [4] - gingerol 3
n = 5 [7] - gingerol 4
n = 6 [8] - gingerol 5
n = 8 [10] - gingerol 6
n = 4 [9] - shogaol 2
n = 2 [4] - shogaol 7
n = 6 [9] - shogaol 8
n = 8 [10] - shogaol 9
n = 10 [12] - shogaol 10

[6] - paradol 11
methyl [6] - isogingerol 12
[6] - gingerdione 14

Denniff และคณะ (1976, 1981) ได้สังเคราะห์การเกิดกิจกรรมและจินตนาการ (Wei et al., 2006) พบว่าส่วนประกอบ gingeroles และ shogaols โดยใช้ปฏิกิริยา aldol condensation จากสารตั้งใจ zingerone และ aldehyde.
รูปที่ 4 ปฏิกิริยาการสังเคราะห์ (R)-gingerol และ (R)-shogaol (Balladin et al., 1998)

การตรวจสอบคุณลักษณะของผงชู

ตามขั้นตอนของลายมือ (USP 28) กำหนดการตรวจสอบดังนี้

1. นำคริสติโคปีนม 1 กรัม มาตัดเป็นผงสีสุ
 ขาว (1:1 ของ glacial acetic acid และน้ำ) จำนวน 5
 มล. เอาไปต่อยกับ 15 มล. กระดาษกรองสีม่วง
 ammonium oxalate TS 2-3 หลอดไป จนกว่าจะค่อยๆ
 เกิดสีสัน

2. นำมาปั่นผกผลาเพื่อตัวแปลกออกจนสูญ
 ออกไป 50 มล. หลอด 25 มล. จากนั้นสกัดด้วยอิทธิพลขาวละ
 15 มล. 2 ครั้ง รวมสกัดอิทธิพลขาวละ
 ไปใช้กับ affinities ออก ผ่านมากรองด้วยสีสัน
 75% จำนวน 15 มล. และ
 vanillin 5 มล. ดังนี้ไว้ประมาณ 16 นาที จากนั้นสกัด
 ปริมาณเป็นก้อนพอจะเห็นสารประกอบเป็นสิ่งสัน

3. การทำ Thin-layer chromatography (TLC)
 ใช้ปิกหลักของ TLC ที่คล้ายคลึงกับ silica gel ที่มีการผสม
 โดยหนักวิธีการ 2 กรัม มาสกัดด้วยเอทานอลจำนวน
 5 มล. น้ำ 15 มล. จากนั้นนำไปในน้ำส้มใสีวิธีการ
 20 มล. นักสกัดแผนแม่ TLC นำไปใส่ในถังที่มี mobile
 phase เป็นส่วนผสมของอิทธิพลขาวละ
 (7:3) เปรียบเทียบกับสารบรรจุ gingerols และ shogaols
 ซึ่งมีต่า Rf ต่ำกว่า 0.2 และ 0.4 ตามลำดับ

4. การในเบียร์ของ total bacterial count ต้อง
 ไม่เกิน 10,000 ต่อ กรัม ไม่เกิน E.coli, Salmonella,
 Escherichia coli และ Staphylococcus aureus

5. เท่าต่าง ๆ ต้อง total ash ไม่เกิน 8%, acid-
 insoluble ชุด ไม่เกิน 2% และ water-soluble ash ไม่
 น้อยกว่า 1.9% และน้ำไม่ได้ไม่เกิน 10%

6. การสกัดแล้วผลักดันสูงได้สารสกัดที่
 เปรียบเทียบกับตัวอย่างที่มีเกิน 90° C ไม่น้อยกว่า 4.5%
 ส่วนที่ดับเบิลน้อยกว่าไม่น้อยกว่า 10%

7. สีเปลี่ยนสนิท ไม่เกิน 1%

8. น้ำมันที่มีอยู่ในไม่ต่ำกว่า 0.018 มล.
 ต่อ กรัม และมีผลไม่ต่ำกว่า 42%
9. ปริมาณ shogaols รวมไม่น้อยกว่า 0.18% โดยคำนวณจากสูตร EB/100 โดยที่ E เท่ากับ %ของส่วน
สกัดที่ละลายในแอลกอฮอล์และ B มีค่าไม่เกิน 4% โดย
คำนวณจากสูตรเท่ากับ 1,000(C/W)(r/r0) โดยที่ C =
ความเข้มข้นในหน่วย มก./มล. ของแอลกอฮอล์ในสสาร
มาตรฐาน W คือ น้ำมันกลิ่นที่ละลายของสารที่สกัด
แอลกอฮอล์ r0 เป็นความยาวของ peak response ของ
shogaols และ r เป็น peak response ของแอลกอฮอล์ที่
ได้จากสารละลายมาตรฐานโดยใช้วิธี HPLC และให้ค่า R คือ
ของแอลกอฮอล์เท่ากับ 1 ของ 6-shogaol เท่ากับ 1.86
ของ 8-shogaol เท่ากับ 4.22 และ 10-shogaol เท่ากับ
5.76 โดยใช้ mobile phase เป็นส่วนผสมของ
acetoniitrile : 0.1% phosphoric acid : methanol
(55:44:1) (รูปที่ 5)

ตารางที่ 1 ระบบ HPLC ที่ใช้วิเคราะห์สารสำคัญของชิง

<table>
<thead>
<tr>
<th>ระบบ</th>
<th>column, condition</th>
<th>mobile phase</th>
<th>flow rate, injection volume</th>
<th>detection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>time (min)</td>
<td>%A</td>
<td>%B</td>
</tr>
<tr>
<td>ระบบที่ 1°</td>
<td>YMC-Pack ProC18,</td>
<td>0</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>5 μm., 250×4.6 mm.</td>
<td>8</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>30°C</td>
<td>15</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>ระบบที่ 2°</td>
<td>Water symmetry</td>
<td>0</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>C18, 5 μm., 150×2.1</td>
<td>8</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>mm. 48°C</td>
<td>17</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>ระบบที่ 3°</td>
<td>Ultrasphere OPS</td>
<td>gradient isocratic 70%</td>
<td>1.2 มล./นาที, 20 มкл.</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>C18, 150×4.6 mm.</td>
<td>methanol ในน้ำ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>และ guard column</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ระบบที่ 4°</td>
<td>L1 octadecyl saline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C18, 3-10 μm., 250×4.6 mm.</td>
<td>acetoniitrile : 0.1% phosphoric acid : น้ำ</td>
<td>1.0 มล./นาที, 20 มкл.</td>
<td>280</td>
</tr>
</tbody>
</table>

A = น้ำ, B = acetoniitrile ในระบบที่ 1 และ 2
ฤทธิ์ทางเภสัชภัณฑ์ของขิง

ฤทธิ์ทางเภสัชภัณฑ์ของขิง มีรายงานไว้หลาย
ประการดังนี้

1. ฤทธิ์ต่อระบบทางเดินอาหาร

เป็นที่ทราบกันอย่างกว้างว่า การรับประทาน
เฉพาะเมล๊ดหรือมัน สามารถกระตุ้นการเคลื่อนย้าย
ระบบทางเดินอาหารได้ (Alzal et al., 2001) สารกลิ่
น์ด้วยวิธีวางกลิ่น และสามารถกระตุ้นการเคลื่อนย้ายอาหารใน
ระบบทางการ์ได้ดีในมนุษย์ (Yamahara et al., 1990)

2. ฤทธิ์ต่อระบบทางเดินหายใจ

สารกลิ่นทางเดินหายใจได้ ทั้งในทางที่มีสรรพ
สิทธิ์ของ (Stewart et al., 1991) การใช้ยาระบายที่สำลี (Shama
et al., 1997) และต่อสารคัดลอก (Phillips et al., 1993)
การศึกษาในสัตว์ทดลองพบว่า สารกลิ่นจากขิงมีผลเป็น
ผัง cholinergic agonist ได้โดยตรง post-synaptic M3
receptors และ ผลการยับยั้ง pre-synaptic muscarinic
autoreceptors (Ghayur et al., 2007) การศึกษาในสัตว์
และมนุษย์พบว่า 6-gingerol ป้องกันการ
คลื่นไฟฟ้าในกระเพาะ cyclophosphamide (Yamahara et al.,
1989) และยับยั้งการเคลื่อนย้ายสารกลิ่นใน
鹧鸪子 (Yamahara et al., 1990; Huang et al.
1991) การศึกษาในมนุษย์พบว่าสารกลิ่นจากขิงใน
ฤทธิ์ต่อระบบทางเดินหายใจได้ โดยที่สารกลิ่นดังกล่าว
(Shama et al., 1997; Shama and Gupta, 1998)
การศึกษาประสิทธิภาพทางคลินิกของผงว่ามี 2 ใน 3 การทบทวนทั่วไปได้เห็นว่า การใช้GINGEROL อาจการสืบเรื่องเร็วในผู้ป่วย หลังจากได้รับยา หลอกและถ้าหาก metoprolamide แต่ยังคงไม่ การศึกษาไม่แสดงออกกับการได้รับยาหลอก การศึกษา ประสิทธิภาพในการลดการคลื่นวิงวอนใน มากมาย คลื่นเหงื่อ อายุมอลเนื้อเยื่อและเยื่อป้องกันมีปัญหา พบว่าว่าใบให้คลื่นกว่ายาหลอก (Ernst and Pittler, 2000)
การศึกษาในผู้สูงวัยครึ่งการศึกษาแบบ double-blind แสดงให้เห็นประสิทธิ์ของช่วยในการดับการ คลื่นวิงวอนในยาอเม็ทีลารีค (Breyer, 2005)

ในปี ค.ศ. 2003 (Mahady et al., 2003) มี รายงานครั้งแรกเกี่ยวกับ gingerol สำหรับ Helicobacter pylori ซึ่งเป็นเชื้อที่ถูกต้องในการทำให้เป็นโรคมะเร็งใน การระบาดและความโน้มที่จะเกิดภาวะ อาหารและลำไส้ ซึ่งต่อมาในรายงานอีกฉบับหนึ่งนี้ (Mahady et al., 2005; Nouroozi et al., 2006) ต่อมาในปี ค.ศ. 2007 มีรายงานสำหรับการได้รับจากปัญหา เช่น H. pylori และ H, K' ATPase และสามารถป้องกันการเกิด ผิดปกติในระบบอาหารได้ (Siddaraju and Dharmesh, 2007)

2. ฤทธิ์ด้านการย้อมและแก่ปุ๋ย
เป็นที่ทราบมาแล้วว่า ชิว มีฤทธิ์ด้านการ ย้อม (Afzal et al., 2001; Grazzina et al., 2006) โดย รายงานในขณะที่ การทบทวนพบว่าชิวมีฤทธิ์ด้านการ สร้างพรุนตามด้านดิน (Kiuchi et al., 1982) ซึ่งทำา พบว่าสารทดแทนซึ่งมีความร้อนได้กับ gingerdiones และ shogaols มีฤทธิ์ในการย้อมสีต่าง ๆ ในสีซีริยกิจและเกิดการผ่าตัด ตามที่ปรากฏว่า gingerols มีฤทธิ์ในการตัดโรคแลกเนื้อเลือก (leukotrienes) มากกว่าการใช้ยาพรุนตามด้านดิน (Kiuchi et al., 1992) ทุกกลุ่มสัตว์ในสภาวะที่มีน้ำตาลเกิดการย้อมสีและเกิดการผ่าตัด ตามที่ปรากฏว่า gingerols มีฤทธิ์ในการตัดโรคแลกเนื้อเลือก (leukotrienes) มากกว่าการใช้ยาพรุนตามด้านดิน (Kiuchi et al., 1992) ทุกกลุ่มสัตว์ในสภาวะที่มีน้ำตาลเจ็ดละในการย้อมสีและเกิดการผ่าตัด ตามที่ปรากฏว่า gingerols มีฤทธิ์ในการตัดโรคแลกเนื้อเลือก (leukotrienes) มากกว่าการใช้ยาพรุนตามด้านดิน (Kiuchi et al., 1992) ทุกกลุ่มสัตว์ในสภาวะที่มีน้ำตาลเจ็ดละ การใช้ยางในการทำให้ยา แต่เพิ่มผลการลดการกระตุ้นการเจ็ด แรกขึ้นที่ข้ามของทอง (Mascocoli et al., 1989) ซึ่งสาร สิทธิ์นี้ ยืดหยุ่นการผ่าตัดพรุนตามด้านดิน ตามที่ปรากฏว่า แต่ละกลุ่มมีการศึกษาเป็นข้อมูลของสารกั้นแสง złoty ในการลดอาการอักเสบ ลดอาการปวด และลดใช้ (Ojewole, 2006) นอกจากนี้ยังมีรายงานการทบทวนตัวอย่าง สามารถลดระดับของพรุนตามด้านดิน ซึ่ง 2 ในผลนี้โตกลับ (Thomson et al., 2002)

ผลการศึกษาทางกายภาพของฤทธิ์ของผงว่า ทั้ง gingerols และอนุพันธ์หลายชนิดโดยเฉพาะ 8-paradol มีฤทธิ์ต่อกิจซัย cyclooxygenase-1 (COX-1) ได้ ซึ่งถ้าว่ายาไนยาซิมา (Nurtjahja-Tiendraputra et al., 2003) โดยทำาการสำรวจชุดกลุ่มของเกลือเลือก และผลที่ก็ติด ผลการว่าการนำกระดาษธนบัตรใดใน การลดน้ำตาล เกลือเลือกจากของ serotonin และการอักเสบของ เกลือเลือก พบว่า gingerols มีฤทธิ์เร็วกว่าฤทธิ์ของ แอโรซีน (Koo et al., 2001) นอกจากนี้ยังมีรายงานว่า gingerols สามารถสมบูรณ์การสรางในเกลือเลือก โดยมี ผลต่อฤทธิ์ใน inducible nitric oxide synthase (iNOS) ผ่าน NF-Kappa B ในเซลล์หายอน macrophage (Aktan et al., 2006) โดยที่ 6-gingerol เป็นสารส่วนใน การดับการย้อม ผ่านจากนี้ไม่อย่างที่จะราบรื่น ของซึ่งส่วนประกอบต่างๆ หลอก เพื่อให้สามารถใช้ยา ดับการอักเสบที่ไม่ใช่เชื้อถมียุบ ได้ (Goldstein 2004; Konturek et al., 2005)

3. ฤทธิ์ต่อกีฬาต่างๆเนื้อตาและไขมัน

มีรายงานว่าสารสะพัดจากชีวิตกว่ามีผลดี ซึ่งมี 6-gingerol ถูก สามารถลดในกระดูกที่ผ่านดีในเนื้อตาของ สารสกัดของชีวิตกว่าผู้ดูแลสุข ได้จากการสกัดตัว เสริมโดยชิวแลก (Kadur and Goyal, 2005) การศึกษาต่างพบว่า สารสกัดตัวเนื้อตาของชีวิตกว่า 500 ศักราช. สามารถลดระดับน้ำตาลไขมันในเนื้อตาของ สารสกัดของชีวิตกว่าเกิดต่างอย่างใน streptozotocin (STZ) ได้ (Al-Amin et al., 2006) นอกจากนี้ยังมีข้อมูลว่า สามารถลดการตับทำงานและการอักเสบกระชับในเนื้อ บางส่วนซึ่งมีผลดีต่อ

4. ผลกระทบของชีวิตต่อความดันโลหิต

มีรายงานว่า ชีวิตมีผลต่อความดันโลหิตและความดันโลหิต ในองค์รวมของความดันโลหิตในเส้นหัวใจ การศึกษาใน หมู่ japana สารสำคัญจากข้อมูลความดันโลหิต ผลของโรคโรค ในการศึกษาพบว่า สารสำคัญจากข้อมูลความดันโลหิต ผลของโรคโรค ผลิตสำเร็จและเหมาะสมที่สุด สาร สำคัญจากข้อมูลผลผลิตกลับที่ ลดการเส้นและความแรง
ของการมีด้วยของทั้งสิ่งเหล่านี้ในสมองและ ลำไส้ ทำให้สารกัดย้อมจำกัดสามารถลดผลิตและทำลาย ให้คาดหวังจากสภาพของยา phenylephrine ลดลง นอกจากนี้ สารกัดย้อมที่เปลี่ยนอีมีอาการperingคลายของ ผลิตภัณฑ์ของสารกัดย้อม ไม่เก็บเลือดผลิตภัณฑ์ เพราะมีลักษณะบูรณาการ L-NAME (สารยับยั้ง NOS แบบไม่เสียหาย) หรือ อะไรโพรและแสดงผล ความต้านทานของเชื้อราในการยับยั้ง Voltage-dependent calcium channel (Ghayur and Gilani, 2005; Ghayur et al., 2005).

5. ฤทธิ์ด้านจุลชีวิตราย สารกัดย้อม มีฤทธิ์ด้านจุลชีวิตน้อยที่สุด พบ แบคทีเรียและเชื้อรา ได้แก่ Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli และ Candida albicans (Jagetia et al., 2003) นอกจากนี้ยังมี รายงานว่าสารกัดย้อมมีความสามารถในการยับยั้งเจริญเติบโต ผ่านไมโครอเล็กซ์ Rhizopus sp. ที่ไม่กุ้งช้างโดยยาอินฮี goxoneazole หรือ berberine (Ficker et al., 2003b) โดยที่แสดงจากการที่ยับยั้ง แยกตามหมายเหตุการค้น ชีวภาพ (bioassy-guided isolation) พบว่า 6-8,10- gengerol และ 6-gingerol เป็นสารสำคัญที่มีฤทธิ์เจริญเติบโต (Ficker et al., 2003a) โดยที่มีความเข้มข้นที่มีฤทธิ์เจริญเติบโตเกือบ 13 ชั่วโมง ไม่ถึง 1 มก.มล. นอกจากนี้ยังพบว่าเชื้อราหลังปลูกในอิทิมหิน gingerol ได้ขยับพลิกกลับสู่อื่นๆ

สารกัดย้อมมีฤทธิ์ด้านจุลชีวิตราย และเรื่องที่มีฤทธิ์ ชีวภาพต่อสัตว์ nematodes ในมาซ์ที่ประเมิน ขึ้นเกี่ยวกับสถานะทางใจ โดยพบว่าสารกัดย้อมสามารถใช้ ต่อต้านมุขจริยาได้เป็น 66.6 และ 25.6% ตามลำดับ เมื่อ ให้สารกัดย้อมเป็นเวลา 10 วัน (Iqbal et al., 2006).

6. ฤทธิ์ด้านพิษต่อรังสีและสารเคมี สารกัดย้อมมีความสามารถในการต้านพิษ ของรังสีและสารเคมี โดยมีรายงานว่าสารกัดย้อม ผลิตผลและเจริญเติบโตได้ในเวลา 10 มล.มล. ต่อ วัน โดยการสังเกตการณ์ของทั้งหมดไม่เป็นเวลา 5 วัน สามารถยับยั้งการเจริญเติบโตสารเคมีขนาด 6-12 Gy ได้ ซึ่งมากกว่าที่ได้ค้นพบเป็น 1 ใน 50 ของยา LD50 ซึ่งทั่วไป 500 มล.มล. (Jagetia et al., 2003; 2004) นอกจากนี้ ยังพบว่า การให้สารกัดย้อมในเหตุการณ์สมองยับยั้งการ เปลี่ยนแปลงกิจกรรมที่เกิดจากการสัมผัสมีผล ทำให้การ รับข้อมูลปล่อยไปได้ โดยพบว่าการให้สารกัดย้อม 1 ชั่วโมง ก่อนการสัมผัสมีผล สามารถปกป้องการสูญเสียต้อส vertex ของเซลล์ขาวในเลมาน้ำที่เกิดขึ้นมีผล และขณะ ที่ไม่ได้รับสารกัดย้อม (Sharma et al., 2005) และยัง พบว่าสารกัดย้อม สามารถป้องกันการรังสีที่ขับในการรับประสาทต่างแปลง และการทำลายในสมองได้ เหมือนกับยากรดยาเกลื่อน ondasterone และ demamethasone โดยที่สุดในการทำให้เกิดซึมใหม่กันระบบ ทางเดินอาหาร เกิดจากมีจุดต่อต้านทางเชื้อรา 94.23 และ 63.1% วันที่ 60 วันหลังการรับประสาท (Yemitan and Isegbe, 2006). สาร กัดย้อม 50% และออกซอลามิน สามารถป้องกันพิษ ของซึมในสมองดีที่สุด โดยพบว่าให้ยาออกซอลามินต่อ ลำดับ ได้แก่ serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) และ alkaline phosphatase (ALP) ลดลง (Ajith et al., 2007).

7. ฤทธิ์ด้านอัยการศึกษา พบว่า สารกัดย้อมมีฤทธิ์ด้านอัยการศึกษาที่ แรงจากผลการศึกษาในระบบ in vitro และ in vivo (Kim et al., 2007) ซึ่งทำให้ใช้สารกัดย้อมเป็นพิษต่อ สารเคมี และยา ลดลดการ nier อาหารอัยการศึกษาและสารเคมีใน กระเพาะอาหาร (Jagetia et al., 2003; Amin and Hamza, 2006; Siddaraju and Dharmesh, 2007) การ ได้รับเชิญระหว่างอาหาร ทำให้เจริญเติบโตของมีขนสุ่มที่ได้แก่ superoxide dismutase (SOD), glutathione peroxidase, catalase ในที่สุดเชิญ ขณะเดียวกันทำให้เกิด แก่ lipid peroxidation และ protein oxidation ลดลง (Kola et al., 2008) จึงเป็นการพิจารณาผลเกี่ยวกับข้อ นี้ใช้ในการพบการสัมผัสสารเคมีซึ่งได้แก่ ทำเป็น ผลิตภัณฑ์ความต้องการและมีการศึกษาของที่ก่อกำเนิดความรู้.

8. ฤทธิ์ด้านการรับรู้ของเสียง สารกัดย้อมมีฤทธิ์ด้านการรับรู้ของเสียง thromboxane-B2 (TBX2) และพรอกาปลาเตเดินเนื้อ 2 เม็ดให้ในขนาดที่สูง
ผลการศึกษาในคน ไม่พบอาการข้างเคียงที่รุนแรง โดยมีรายงานการสังเกตการณ์ในอาหารที่กิน 12 คน ที่ได้รับช่วงเวลา 400 มล. ทางปากและ 3 ครั้ง เป็นเวลา 2 สัปดาห์ มีอาการหลั่ง 1 รายมีอาการหอบสันหลังใน 2 วันแรก การรับประทานเชื้อชาทำให้เกิด heartburn และหายได้รับการตรวจสอบสูตรสูงกว่า 6 กรณีอาละวาด เครื่องกระเทียมอาหาร การได้รับผู้ช่วยอาหารทำให้เกิดการแพ้ได้ (Chrubasik et al., 2005)

ผลการศึกษาทางคลินิก

การวิจัยทางคลินิกที่มีตามมาการใช้เชิงสำหรับแก็คลินิคสื่อเชิงที่เกิดจากข้าวสาคูสูงๆ พบว่าได้ตั้งค์

1. ผลต่ออาการทางการเดินทาง

การศึกษาแบบ randomized, double-blind แบบมีกลุ่มควบคุม พบว่าการใช้เชิงพาเลท 2-3 กรัม ไอไซยาซีนที่มีประภาพศาสตร์ สามารถลดอาการ คลื่นไส้และเจ็บได้ (Lien et al., 2003) และบัณฑพเวล่าที่ ได้เกิดขึ้นได้แก่ dimenhydrinate, domperidone, scopolamine, cyclizine และ meclizine (Grontved et al., 1988; Riebenfeld and Borzone, 1999; Caredda, 1999; Mowrey and Clasby, 1982; Schmid et al., 1994) แต่มีบางกรณีที่ไม่พบการใช้เชิงผลดีแก่ scopolamine และ amphetamine หรือยาคลอส (Wood et al., 1988)

2. ผลต่ออาการคลื่นไส้และอาการในผู้หญิงมีครรภ์

ผลจากการศึกษาแบบ double-blind และมีกลุ่มควบคุมในผู้หญิงมีครรภ์ยัง 3 เดือนแรก จำนวน 26 คน พบการใช้เชิงพาเลทที่มีกลุ่มตัวอย่าง 66.7% ในวันที่ 6 ของการทดลองในขณะที่กลุ่มที่ได้ใช้ยาคลอส ให้แก่จำนวน 16.7% และมีอาการสูง การคลื่นไส้และอาการในผู้หญิงมีครรภ์ 77% โดยกลุ่มยาคลอส ให้แก่ 20% (Blumenthal, 2003) นอกจากนี้ผลการศึกษาทางยาเชิงสังเคราะห์ 250 มก. สามารถลดอาการคลื่นไส้และอาการในผู้หญิงมีครรภ์ได้ดีกว่ายาคลอส (Vuyyanich et al., 2001)
3. ผลต่อการคลื่นไฟหลังการดัดการคลื่นไฟในผู้ป่วยหญิงที่ได้รับการตัดพัง
การให้ซึ่งป้องกัน metaiodobamate กล่าวถึงว่า 1 ชม.
สามารถลดผลการคลื่นไฟหลังการดัดการคลื่นไฟได้สิ้นไปบางส่วน (Bone et al., 1990; Phillips et al., 1993) แต่ไม่มีรายงานว่า ซึ่งให้เม็ดหลังจากยาที่มีอยู่ หลังการ
ดัดการคลื่นไฟได้ขึ้นช่วงเวลา 100-200 มม. (Eberhart et al.,
2003)

4. ผลต่อการคลื่นไฟหลังจากยา
เดมีบัม
การให้ซึ่งในผู้ป่วยโรคเรื้อรังของจิตใจ ที่ได้ รับยาเดมีบัมมีจำนวน 41 คน สามารถลดผลการคลื่นไฟได้
สิ้นไปบางส่วน (Pace, 1987)

5. ผลต่อปัจจัยโรคระเหยของกอสม
การศึกษาในผู้ป่วยโรคกระรอกที่ดับสม พบว่า
การใช้ยาจาก 170 มก. หรือยา ibuprofen 40 มก. วันละ 3 ครั้ง เป็นเวลา 3 สัปดาห์ สามารถลดผลการดัดการ
คลื่นไฟได้บางส่วน แต่เมื่อสังเกตุกันพบว่าความสัมพันธ์ระหว่างกักกลุ่มที่ได้รับยามี หรือยาเหล็ก (Biiddal et al., 2000)

เกล้าสิ่งเหลาะสตรี ของข้อ
การศึกษาเกี่ยวกับการคลื่นไฟ 6-gingerol โดย
การใช้ยาแผน 3 มก./กก. เล็กสิ่งหลอดเลือดดำ พบว่า
ระดับในเฉพาะน่าจะเป็นสัดส่วนที่ two-compartment open
model โดย 6-gingerol ถูกนำออกจากหลอดเลือดดำ รวดเร็วให้ขึ้นเร็วขึ้น (half –life) ที่ 7.23 นาที และการ
กักชัดต่อก้านกราดที่หมายถึงมากกว่า 16.8 มล./ไมลิกราม.
ในการใช้ 6-gingerol ขึ้นกับปริมาณเกิน 92.4% (Ding et al., 1991)
การศึกษาในหนูที่ตีมีการย้ายและไม่ได้ กลับพันธุ์
ไม่ว่าหลักทางเกล้าสิ่งเหลาะสตรีต่างๆ
เปลี่ยนแปลงไป ซึ่งครัวว่าการกักชัด 6-gingerol ออกจากราด
เฉพาะน่าจะเป็นที่ให้ความยืดทอง
การให้ เม็ดหลังจากยาที่มีอยู่ หลังการ
ดัดการคลื่นไฟได้ผลร้อยละ 6-gingerol ที่เป็นสารให้กลับกลุ่มนี้ พบว่าปฏิกิริยาตัวชี้มี
ความสัมพันธ์ เช่นเดียวกับ 6-shogaol ที่เป็นสารให้กลับกลุ่มนี้ เช่นกัน กิจกรรมดีจับต้องได้ใน alpah, beta-unsaturated
ketone ซึ่งใส่เม็ดไปในกลุ่มที่มีรักษา 2 ตัว คือ 1-(4-
hydroxy-3-methoxyphenyl)-decan-3-one (6-paradol) และ 1-(4-hydroxy-3-methoxy)-decan-3-ol (reduced 6-
paradol) ขณะเดียวกันก็เกิดเป็น 1-(4-hydroxy-3-
methoxyphenyl)-deca-1-ene-3-one (dehydroparadol) ซึ่งเป็นอนุพันธ์ของ shogaol ที่ไม่มีกลิ่น

นอกจากนี้ยังพบว่าใกล้ hydroxylation ได้จากย
aromatic ring และที่
side chain ของ 6-gingerol และ
หากมี uridine diphosphate glucuronic acid (UDPGA)
จะเกิดเป็น glucuronide ของ 6-gingerol ได้ดังนั้น ซึ่ง
การศึกษาในหนูที่มีสารที่มีอยู่เป็น 6-gingerol-4-O-
β- glucuronide และที่พบออกมาในเรือสภาพในความเลือดเยื่อ
ได้แก่ vanillic acid, ferulic acid, S-(+)-4-hydroxy-6-
oxo-8(4-hydroxy-3-methoxyphenyl)-octanoic acid, 4-
(4-hydroxy-3-methoxyphenyl) butanoic acid, 9-
hydroxy(6)-gingerol และ (S)-(+)6-gingerol ซึ่งหาก
ทดสอบในกลุ่มที่ทำให้ทำให้เกิดอาการไม่มีเอฟเฟคเชิง
พบว่า สารเหล่านี้ยังช่วยทำให้การดัดการคลื่นไฟลดลง ดังนั้น
หลักเรียกได้ว่าและองค์ประกอบที่เรียกในทางเลือดอาจมี ความสัมพันธ์ต่อการเปลี่ยนแปลง 6-gingerol (Nakazawa
และ Ohsawa, 2002)

การศึกษาที่เรียกเกิดอาการต่างๆ พบว่า
ขี้ไม่มีผลต่อกลุ่มการต่างๆ ของเม็ด warfarin (Jiang et al., 2005) แต่ซึ่งเพื่อศึกษาเครื่องยา nifedipineในการ
การศึกษาที่มีการคลื่นไฟ (Young et al., 2006)
กลับกันกับที่จะมีผลเสียไขมัน และมีผลให้เกิดประสิทธิ์ 1
กลับกับ nifedipine 10 มก. เป็นผลเพื่อทำให้การลด
ผลต่อก้านกลับหลอดเลือดไปยังกลุ่มของดุลยานี
เรื่องจาก
ปริมาณการจับกลุ่มของกลับหลอดเลือดได้

ผลิตภัณฑ์อาหาร
ปัจจุบันผลิตภัณฑ์อาหารซึ่งมีอยู่มากมาย โดยแก่
อาหารเช้า, ==> ข้อความ 2 และผลิตภัณฑ์การมีชีวิต (รูปที่ 2) การ
การเตรียมกร้าวเท่านั้น การเตรียมกร้าวสามารถทำได้ต่อเนื่อง
และแยกเป็นกลุ่มที่มีอยู่ 45 ของชุดของฉีด, กีฬาฟุตบอล,
น้ำ, ลมนำลมต่อ, และกีฬาที่ต้องการให้กล้าหลอก
ไปทำได้วิธี freeze drying ซึ่งมีสารสำคัญกลุ่ม
gingerols และ shogaols หลายชนิด (รูปที่ 5 ชน) ใน
จำพวก 0.18, 0.08, 0.34% และ 0.06, 0.05 และ 0.08% สัตว์แม่ชีและแม่สุนัข สารสกัดวนก้น และ ทักษะของผู้เสียชีวิต
ส่วนนี้มีผลต่อการผลิตสิ่งมีสีสีกลูม gingerols และ
shogaols เท่ากับ 2.64 และ 0.84% ตามลำดับ
นอกจากนี้ สารสกัดชีวิตที่ไม่มีกุหลาบกลูมพืชผู้
เมื่อทดลองได้ใช้ชื่อ Salmonella typhimurium ทดลอง
(Sripandikulchai et al., 2006) รูปแบบผลิตภัณฑ์ที่เป็น
แพร่คลื่นยังบรรจุอยู่ 250 หรือ 500 มก. กรณีเป็นแบ่ง
สำหรับผู้ใช้ละ 1 กล่อง

ขนำดใจ

การใช้ชื่อสำหรับอาการก่อตัว แล้วขับลงให้
รับประทาน 2-4 ครั้งต่อวัน (WHO, 1999: American
Botanical Council, 1998) ส่วนสำหรับแก๊สผิดกลิ่น
อาการเด็กทางนี้ใช้เป็นยา 1-4 ครั้งต่อวัน และควร
ใช้ก่อนอาหารเล็กที่ 1-2 ขวด (Pharmacopoeia of the
People’s Republic of China, 2000; Newall et al.,
1996) และหากรองการป้องกันอาการก่อตัวให้ราขึ้นหลัง
การพลังให้รับประทาน 1 กล่อง ท่านมารับยาตั้ง 1 ขวด.
(Chaiyakunanapruk et al., 2006)

บทสรุป

ข้อเสนอแนะเพื่อที่มีการใช้ยาเป็นเวลาเวลานาน
ที่เป็นอาการและข้างทางโรค มีสารสำคัญที่เป็น
ทั้งนี้สิ่งที่ช่วยให้ได้ผลลัพธ์
มีการนำไปใช้ในรูปแบบ
ผลิตภัณฑ์มีการใช้เป็นยา
อาการก่อตัวไม่ว่าจะเป็น
อาการก่อตัวหรือการตัวการ
หรือผู้ป่วยที่มีโรคมะเร็งที่ใช้ยา
มะเร็ง ซึ่งมีคุณสมบัติเป็น double blind เป็นไปได้ยาก
เนื่องจากมีกลุ่มสูงและต่ำๆ

References

ethnomedical, chemical and pharmacological
review. Drug Metab Drug Interact 18:
159–190.

metabolite and a synthetic analogue
capsarol inhibit macrophage NF-kappa B-
mediated iNOS gene expression and

Anti-diabetic and hypolipidaemic properties
of ginger (Zingiber officinale) in
streptozotocin-induced diabetic rats. Br J

phytochemical, pharmacological and
toxicological properties of ginger (Zingiber
officinale Rosc): A review of recent

German Commission E Monographs
Therapeutic Guide to Herbal Medicines.
Integrative Medicine Communications.
Austin, Texas.

Amin A, Hamza AA. 2006. Effects of roselie and
ginger on cisplatin-induced reproductive

Asnani V, Verma RJ. 2006. Aqueous ginger extract
ameliorates paraben induced cytotoxicity.

High pressure liquid chromatographic
analysis of the main pungent principles of
solar dried West Indian ginger (Zingiber
officinale Rosc.). Renewable Energy 13(4):
531-536.

of gingerol and shogaoel in aqueous solution.

randomized, placebo-controlled, cross-over
study of ginger extracts and ibuprofen in

