

การทดสอบฤทธิ์กระตุ้นการนำกลูโคสเข้าสู่เซลล์ L6 Myotubes ของสารสกัดผักพื้นบ้านไทย

ภัทร พวงช่อ¹, กุสุมาลย์ น้อยพา², นงพร โตวัฒนะ³, นาฎศรี นวลแก้ว^{4*}

บทคัดย่อ

การทดสอบฤทธิ์กระตุ้นการนำกลูโคสเข้าสู่เซลล์ L6 Myotubes ของสารสกัดผักพื้นบ้านไทย

ภัทร พวงช่อ¹, กุสุมาลย์ น้อยพา², นงพร โตวัฒนะ³, นาฎศรี นวลแก้ว^{4*}

บทนำ: การรับประทานผักพื้นบ้านที่มีฤทธิ์ลดน้ำตาลในเลือด จะช่วยชะลอความรุนแรงของโรคในผู้ป่วยเบาหวาน และป้องกันการเกิดโรคเบาหวานในคนปกติ ปัจจุบันการทดสอบฤทธิ์ในผักพื้นบ้านไทยโดยใช้เซลล์กล้ามเนื้อยังไม่มากนัก วัตถุประสงค์: งานวิจัยนี้เป็นการศึกษาฤทธิ์กระตุ้นการนำกลูโคสเข้าสู่เซลล์กล้ามเนื้อของสารสกัดผักพื้นบ้าน 6 ชนิด ที่มีรายงานเมื่อต้นว่าสามารถลดน้ำตาลในเลือดได้ และทำการทดสอบความเป็นพิษต่อเซลล์ของสารสกัดผักพื้นบ้านที่แสดงฤทธิ์นี้ วัสดุและวิธีการทดลอง: ทำการสกัดผักพื้นบ้านไทยด้วย 80% เอทานอล ทดสอบฤทธิ์กระตุ้นการนำกลูโคสเข้าสู่เซลล์กล้ามเนื้อ (L6 myotubes) ด้วยวิธี glucose oxidase assay และทดสอบความเป็นพิษต่อเซลล์ด้วยวิธี MTT assay ผลการทดลอง: สารสกัดกุ้นนำความเข้มข้น 400 มคก./มล. และสารสกัดผักเบี้ยความเข้มข้น 300 μ g/mL สามารถกระตุ้นการนำกลูโคสเข้าสู่เซลล์ได้ที่เวลา 50 ชั่วโมง เท่ากับ 1.83 และ 2.65 เท่าของ กุ้นนำความเข้มข้น นัยสำคัญทางสถิติ ($p<0.01$) ตามลำดับ และไม่แสดงความเป็นพิษต่อเซลล์ สรุปผลการทดลอง: สารสกัดจากกุ้นนำและผักเบี้ยสามารถกระตุ้นการนำกลูโคสเข้าสู่เซลล์กล้ามเนื้อได้ และไม่แสดงความเป็นพิษต่อเซลล์ในความเข้มข้นที่แสดงฤทธิ์ การศึกษาในขั้นต่อไปจะทดสอบกลไกการออกฤทธิ์ของสารสกัด ผลการวิจัยที่ได้สามารถใช้เป็นแนวทางในการส่งเสริมการรับประทานผักกุ้นนำและผักเบี้ยเพื่อลดระดับน้ำตาลในเลือด

คำสำคัญ: การนำกลูโคสเข้าสู่เซลล์, เซลล์กล้ามเนื้อ, ผักพื้นบ้านไทย, กุ้นนำ, ผักเบี้ย

¹ คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น อ. เมือง จ. ขอนแก่น 40002

² ปร.ด., อาจารย์, คณะวิทยาการสุขภาพและการทึกษา มหาวิทยาลัยทักษิณ อ. เมือง จ. พัทลุง 93110

³ Ph.D., รองศาสตราจารย์, คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อ. หาดใหญ่ จ. สงขลา 90112

⁴ ปร.ด., อาจารย์, คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น อ. เมือง จ. ขอนแก่น 40002

Abstract

Glucose Uptake Stimulation Assay of Thai Local Vegetable Extracts in L6 Myotube Cells

Pattra Poungcho, Kusumarn Noipha, Nongporn Towatana, Natsajee Nualkaew*

Introduction: Consumption of vegetables which possess blood sugar lowering effect might retard the progressive of diabetes mellitus (DM) and prevent DM disease in healthy people. To date, the glucose uptake enhancement stimulated by Thai local vegetables in muscle cell cultures have not been many reports. **Objectives:** The aims of this research were to study glucose uptake effects of 6 Thai local vegetables and the toxicity of those active plants to L6 myotube cells. **Materials and Methods:** Thai local vegetables extracts were prepared by maceration in 80% ethanol. The glucose uptake stimulation effect

of plant extracts was investigated by glucose oxidase assay in L6 myotubes. The cytotoxic of the active extracts was assessed by MTT assay. **Results:** *Crateva magna* extract (400 µg/mL) and *Portulaca oleracea* extract (300 µg/mL) significantly increased glucose uptake into L6 myotubes in dose and time dependent after 50 hr incubation (1.83 and 2.65 fold over basal; $p<0.01$, respectively) without cytotoxic effect. **Conclusion:** *C. magna* and *P. oleracea* extracts exhibited glucose uptake stimulation activities into L6 myotubes without cytotoxic in the effective doses. The mechanisms of action will be further investigated. This results suggest the possibly promoted of *C. magna* and *P. oleracea* consumption as vegetables for reducing of blood sugar level.

Keywords : Glucose uptake, L6 myotubes, Thai local vegetables, *Crateva magna*, *Portulaca oleracea*

¹ Faculty of Pharmaceutical Sciences, Khon-Kaen University, Khon-Kaen 40002, Thailand.

² Ph.D., Lecturer, Faculty of, Health and Sport Sciences, Thaksin University, Phatthalung 93110, Thailand

³ Ph.D., Associate Professor, Faculty of Sciences, Prince of Songkla University, Songkla 90112, Thailand

⁴ Ph.D., Lecturer, Faculty of Pharmaceutical Sciences, Khon-Kaen University, Khon-Kaen 40002, Thailand.

*corresponding author: E-mail : nnatsa@kku.ac.th, telephone : 66 43 362093, Fax : 66 43 362093

Introduction

Diabetes mellitus (DM) is a chronic metabolic disease resulting from defects in both insulin action and secretion (Kamtchouing *et al.*, 2006). DM is the most common disease of the endocrine disorders and a major global health problem today (Cummings *et al.*, 2004). Most patients with DM exhibit hyperglycemia and peripheral insulin resistance (Yang *et al.*, 2003). Insulin stimulates glucose transport into muscle cells leading to a reduction in blood glucose levels (Khan and Pessin, 2002). Many Thai local vegetables are known to possess hypoglycemic activities. In this study, stimulations of glucose uptake by 80% ethanolic extract of *Citrullus lanatus* (Thunb.) Mastsum&Nakai, *Ipomoea aquatica* Forsk., *Nelumbo nucifera* Gaertn., *Ficus racemosa* Linn., *Portulaca oleracea* L. and *Crateva magna* (Lour.) DC. were investigated by using L6 myotubes as cell model. After that, the bioactive extracts were tested for cytotoxicity.

Materials and Methods

The rat L6 myoblast cell line (CRL-1458) was purchased from ATCC (USA). α -Minimum essential medium (α -MEM), fetal bovine serum (FBS), horse serum (HS), and antibiotics were obtained from Gibco (Burlington, Canada). (3,4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT), and glucose oxidase assay kit (Gago-20) were

obtained from Sigma-Aldrich Chemical Co. (St. Louis, MO).

Preparation of Thai vegetable extracts

Fresh selected Thai local vegetables were purchased from the local market in Khon Kaen, Thailand. They were washed, dried, and ground. Crude extracts were prepared by maceration in 80% ethanol, concentrated by using rotary evaporator, freeze dried, and kept at -20 °C until use.

Cell culture

The rat skeletal muscle (L6) cell line was maintained in α -MEM containing 10% FBS and 1% antibiotic solution (penicillin-streptomycin) in an atmosphere of 5% CO₂ at 37 °C. L6 myoblasts were differentiated into myotubes by changing medium into α -MEM containing 2%HS (Noiphap *et al.*, 2011).

Glucose uptake assay

Glucose uptake assay was performed by using the glucose oxidase assay kit according to the manufacturer's protocol. L6 myotube cells were incubated with Thai local vegetables extract for 50 hr. The amount of glucose remaining in the incubation medium was measured and recalculated as the amount of glucose uptake by cells.

$$\% \text{ stimulation} = \frac{(\text{medium glucose} - \text{medium glucose remained})}{\text{medium glucose}} * 100$$

Cytotoxicity

Cytotoxicity test was performed by the MTT assay according to Mosmann (1983). Cells were seeded in 96-well plates and incubated with the extracts for 50 hr. MTT was added and incubated for 4 hr at 37 °C. The formazone crystals were dissolved in DMSO and measured for the absorbance at 570 nm.

Statistical analysis

The results were expressed as the mean values and standard deviations (S.D.). Statistical comparisons were tested using Student's t-test and the differences were considered significant at the level of $p<0.05$.

Result and Discussion

The screening of 6 local vegetable extracts clearly indicated that *C. magna* and *P. oleracea* extracts significantly increase the glucose uptake into the L6

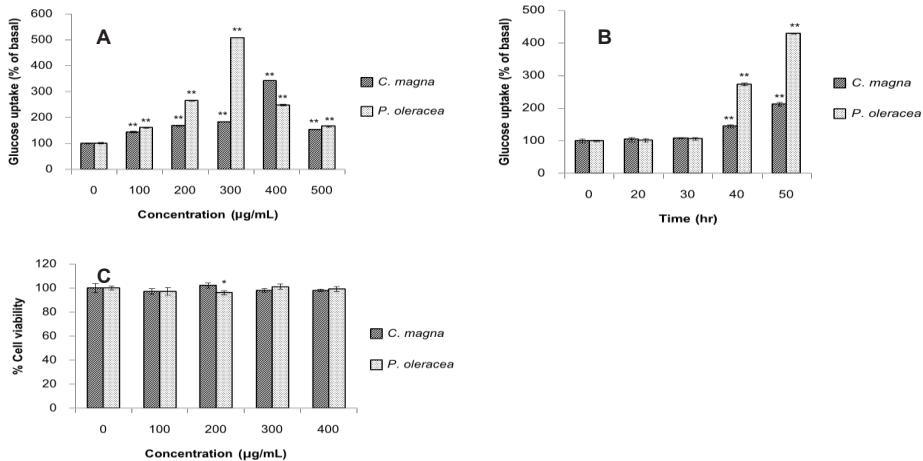

myotubes ($p<0.01$) as shown in Table 1. From the results, the negative values of %stimulation were obtained from *C. lanatus*, *F. racemosa*, and *N. nucifera* extracted which caused L6 myotubes cells broken, thus might release the intracellular glucose into medium. The increasing of glucose uptake of *C. magna* and *P. oleracea* extracts were appeared from the concentration of 100 μ g/mL (Fig. 1A), and reached to the highest effect at 400 μ g/mL and 300 μ g/mL, respectively (Fig. 1A). Therefore, these concentrations were used for the investigation of the optimal incubation time which were at 50 hr incubation ($P<0.01$) as shown in Fig. 1B. For the cytotoxicity test by MTT assay, the viability of L6 myotubes still remained more than 95% in the presence of the extracts from 100 to 400 μ g/mL at the incubation time of 50 hr (Fig. 1C) indicated no toxic effect to cells.

Table 1 Glucose uptake effect of 6 selected Thai local vegetables in L6 myotubes.

Plant	Part of used	Concentration (μ g/mL)	% Stimulation
<i>Citrullus lanatus</i> . (<i>Cucurbitaceae</i>)	Fruit rind	125	1.44
		250	-4.09
		500	-11.43
<i>Crateva magna</i> (Lour.) DC. (<i>Capparidaceae</i>)	Leaves	125	18.03
		250	56.38
		500	98.93
<i>Ficus racemosa</i> L. (<i>Moraceae</i>)	Fruits	125	-15.96
		250	-18.75
		500	-27.34
<i>Ipomoea aquatica</i> (<i>Convolvulaceae</i>)	Arial part	125	13.04
		250	7.89
		500	10.02
<i>Nelumbo nucifera</i> (<i>Nelumbonaceae</i>)	Rhizome	125	-2.65
		250	-7.06
		500	-10.84
<i>Portulaca oleracea</i> L. (<i>Portulacaceae</i>)	Arial part	125	33.50
		250	93.61
		500	101.42

The glucose lowering effect of *C. magna* leaf extract by inhibition of α -glucosidase was also reported with IC_{50} 143.5±14.2 μ g/mL (Loganayaki and Manian, 2012). The oral administration of *P. oleracea* aqueous extract 300 mg/kg/day in diabetic db/db mice could reduce blood glucose and prevented diabetic (Lee *et al.*, 2012).

These previous reports indicated that the reduction of glucose level obtained from different test models and extraction methods might resulted from the different mechanisms of action and bioactive compounds which should be further investigated.

Fig. 1 Dose and time dependent stimulation of glucose uptake by *C. magna* and *P. oleracea* in L6 myotubes.

(A) Cells were co-incubated with various concentrations of extracts for 50 hr.

(B) Glucose uptake stimulation effects by 400 μ g/mL *C. magna* extract and 300 μ g/mL *P. oleracea* extract at various time-intervals.

(C) MTT assay of *C. magna* extract and *P. oleracea* extract. * $p < 0.05$ and ** $p < 0.001$ compared to basal value.

Conclusion

C. magna and *P. oleracea* extracts in the concentration of 400 μ g/mL and 300 μ g/mL, respectively exhibited the glucose uptake stimulation effect in L6 myotubes when incubated for 50 hr. At the concentration up to 400 μ g/mL, both extracts were not toxic to L6 myotubes. The glucose uptake effect of *C. magna* and *P. oleracea* extracts indicated the potential use as local vegetables for lowering blood glucose. The mechanisms of glucose uptake by cells will be further investigated.

Acknowledgement

This work was supported by The Thailand Research Fund.

References

Kamchoung P, Kahpui SM, Dzeufiet PDD, Tedong L, Asongalem EA, Dimoa T. Anti-diabetic activity of methanol/methylene chloride stem bark extracts of *Terminalia superba* and *Canarium schweinfurthii* on streptozotocin-induced diabetic rats. *J Ethnopharmacol* 2006; 104: 306-9.

Khan AH, Pessin JE. Insulin regulation of glucose uptake: a complex interplay of intracellular signaling pathways. *Diabetologia* 2002; 45: 1475-1483.

Lee AS, Lee YJ, Lee SM, Yoon JJ, Kim JS, Kang DG, Lee HS. *Portulaca oleracea* ameliorates diabetic vascular inflammation and endothelial dysfunction in db/db mice. *Evid Based Complement Alternat Med* 2012; 2012. Doi:10.1155/2012/741824.

Loganayaki N, Manian S. Evaluation of Indian sacred tree *Crataeva magna* (Lour.) DC. for antioxidant activity and inhibition of key enzymes relevant to hyperglycemia. *J Biosci Bioeng* 2012; 113: 378-380.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. *J Immunol methods* 1983; 65: 55-63.

Noipha K, Ratanachaiyavong S, Purintrapiban J, Herunsalee A, Ninla-aesong P. Effect of *Tinospora crispa* on glucose uptake in skeletal muscle: role of glucose transporter 1 expression and extracellular signal-regulated kinase1/2 activation. *Asian Biomed* 2011; 5(3): 361-369.

Roffey BW, Atwal AS, Johns T, Kubow S. Water extracts from *Momordica charantia* increase glucose uptake and adiponectin secretion in 3T3-L1 adipose cells. *J Ethnopharmacol* 2007; 112: 77-84.

Yang YC, Hsu HK, Hwang JH, Hong SJ. Enhancement of glucose uptake in 3T3-L1 adipocytes by *Toona sinensis* leaf extract. *Kaohsiung J Med Sci* 2003; 19: 327-33.