

P2-PS-4

การศึกษาลายพิมพ์ดีเอ็นเอและการสกัดโปรตีน

จากใบมันสำปะหลัง

ภาครաรรณ รถเพ็ชร, รนิส์ ปทุมานนท์, นาฏศรี นวลแก้ว*

บทนำ: ใบมันสำปะหลัง (*Manihot esculenta* Crantz, Euphorbiaceae) ประกอบด้วยโปรตีนปริมาณสูง และสารกลุ่มอื่น ได้แก่ ไซโนเจนิกโกลโคไซด์ ฟลาโนออยด์ เทอร์ปินอยด์ และคูมาเรน (Blagbrough et al, 2010) ประเทศไทยโดยเฉพาะ ในภาคตะวันออกเฉียงเหนือเป็นแหล่งที่มีการปลูกมันสำปะหลัง ซึ่งสายพันธุ์ที่นิยมปลูกมากในขณะนี้ ได้แก่ พันธุ์ระยอง 9 หัวยับง 60 และมัน 5 นาที ซึ่งยังไม่มีการก้าวหน้าเดอกั้งกือและ การแยกความแตกต่างระหว่างสายพันธุ์เหล่านี้ในระดับโมเลกุล งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อศึกษาลายพิมพ์ดีเอ็นเอ (DNA fingerprint) และสกัดโปรตีนซึ่งมีปริมาณมากในใบมันสำปะหลัง เพื่อนำมาศึกษาถูกต้องทางเคมีวิทยา วัสดุและวิธีการทดลอง: เก็บใบมันสำปะหลัง 3 สายพันธุ์ จากศูนย์วิจัยพืชไช่ขอนแก่น อ. เมือง จ. ขอนแก่น ทำการสกัด DNA ด้วยน้ำยาสกัด DNA (DNAzol) จากนั้นศึกษาลายพิมพ์ดีเอ็นเอ ด้วยเทคนิค RAPD (random amplification of polymorphic DNA) โดยใช้ไพร์เมอร์ชุด OPA (Operon Technology) ตรวจสอบชิ้น DNA ที่ได้ด้วย agarose gel electrophoresis ในส่วนของการแยกสกัดโปรตีน ใช้ส่วนยอดและใบที่ถัดจากยอดลงมาไม่เกิน 5 มม. มาสกัดใน 50 mM โซเดียมฟอสฟอตบัฟเฟอร์ pH 7.0 และทำปริมาณโปรตีน ด้วยวิธีแบรดฟอร์ด ผลการศึกษา: การใช้ไพร์เมอร์ชุด OPA สามารถให้ลายพิมพ์ดีเอ็นเอ (DNA fingerprint) ได้ และจากการทำปริมาณโปรตีนเบรียบเที่ยง 3 สายพันธุ์ พบว่ามีปริมาณโปรตีนใกล้เคียงกัน สรุปผล: ได้ชุดของไพร์เมอร์ที่จะนำไปก้าวหน้าเดอกั้ง ฟอร์ด ผลการศึกษา: การใช้ไพร์เมอร์ชุด OPA สามารถให้ลายพิมพ์ดีเอ็นเอของใบมันสำปะหลัง 3 สายพันธุ์ เพื่อการแยกความแตกต่างระหว่างสายพันธุ์ที่ได้ จะนำไปศึกษาถูกต้องทางเคมีวิทยา เพื่อเป็นแนวทางในการพัฒนาผลิตภัณฑ์เพื่อสุขภาพต่อไป

คำสำคัญ: มันสำปะหลัง, ลายพิมพ์ดีเอ็นเอ (DNA fingerprint), เทคนิค RAPD, การสกัดโปรตีน

กิตติกรรมประกาศ: งานวิจัยนี้ได้รับการสนับสนุนทุนวิจัยจากสำนักงานคณะกรรมการวิจัยแห่งชาติ และขอขอบคุณศูนย์วิจัยพืชไช่ขอนแก่นที่อนเคราะห์ใบมันสำปะหลัง

คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น อ.เมือง จ.ขอนแก่น 40000

*ติดต่อผู้พิพากษ์: Tel/Fax: 043 362093, E-mail: nnatsa@kku.ac.th

P2-PS-5

Characterization of Ammonio-Methacrylate Copolymer-Clay Composite Dispersions and Films

Thitiphorn Rongthong¹, Srisagal Sungthongjeen², Thanen Pongjanyakul^{1,*}

Introduction: Ammonio-methacrylate copolymer (AM), a cationic polymer, has been used as a tablet film forming agent for controlling drug release. The commercial products in dispersion form are Eudragit[®] RL 30D and Eudragit[®] RS 30D. However, these polymers showed undesirable drug permeability, low mechanical properties, and tacking problem. Magnesium aluminum silicate (MAS), a negatively charge clay, could change permeability and mechanical properties of polymeric films. Consequently, it is interesting to incorporate MAS into AM films for modifying the properties of films. The objective of this preliminary study was to investigate the interaction of AM with MAS in the form of dispersions and films.

Materials and Method: AM-MAS composite dispersions with various ratios were prepared and investigated particle size and zeta potential of flocculates formed. The AM-MAS composite films with 15% plasticizer were prepared using casting method. The matrix and surface morphology and crystallinity of the films were investigated using SEM and PXRD, respectively. Intermolecular interaction of AM and MAS in the composite films was investigated using ATR-FTIR method. **Results:** Incorporation of MAS into AM dispersion caused a flocculation of AM particles. The zeta potential of AM-MAS flocculates was positive and tended to decrease with increasing MAS amount. The smaller flocculate size was formed with increasing MAS content in the dispersions. Eudragit[®] RL-MAS flocculates had greater particle size than Eudragit[®] RS-MAS flocculates due to higher quaternary ammonium group content. The AM-MAS composite films showed an opaqueness and a rough surface morphology. Electrostatic interaction of quaternary ammonium group (-N⁺(CH₃)₃) of AM and silanol group (-SiO⁻) of MAS was found with a shift of ATR-FTIR spectra. The intercalated nanocomposite of AM and MAS was formed in the films with the increasing of interlayer spacing of MAS. **Conclusion:** This finding suggests that quaternary ammonium groups of AM could interact with silanol groups of MAS via electrostatic interaction. This interaction causes a change of zeta potential and particle size of flocculates formed in the composite dispersion, leading to a change of morphology and crystallinity of the composite films.

Keywords: Ammonio-methacrylate copolymer, Magnesium aluminum silicate, Dispersions, Films

Faculty of Pharmaceutical sciences, Khon Kaen University, Khon Kaen 40002, Thailand

²Faculty of Pharmaceutical sciences, Naresuan University, Phitsanulok 65000, Thailand

*Corresponding author: Tel: 085-0113176, E-mail: thanen@kku.ac.th