

อันตรกิริยาระหว่างสมุนไพรและยาจากการเปลี่ยนแปลงการทำงานของเอนไซม์ไซโตโครมพี 450

นัดดา สุขเกشم¹, กนกวรรณ จารุก้าจาร^{2*}

¹ นักศึกษาหลักสูตรเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชภัณฑ์ กลุ่มวิจัยฤทธิ์ทางยาของผลิตภัณฑ์ธรรมชาติโดยเทคโนโลยีชีวภาพ ทางเภสัชศาสตร์ (PANPB) คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น 40002

² ปร.ด., รองศาสตราจารย์, กลุ่มวิจัยฤทธิ์ทางยาของผลิตภัณฑ์ธรรมชาติโดยเทคโนโลยีชีวภาพทางเภสัชศาสตร์ (PANPB) คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น 40002

*ติดต่อผู้นิพนธ์: คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น สำนักงานอธิการบดี จังหวัดขอนแก่น 40002

โทรศัพท์: 043-202305, โทรสาร: 043-202379, อีเมล: kanok_ja@kku.ac.th

บทคัดย่อ

อันตรกิริยาระหว่างสมุนไพรและยาจากการเปลี่ยนแปลงการทำงานของเอนไซม์ไซโตโครมพี 450

นัดดา สุขเกشم¹, กนกวรรณ จารุก้าจาร^{2*}

ว. เภสัชศาสตร์อีสาน 2559; 12(3) : 1-15

รับบทความ : 11 พฤษภาคม 2559

ตอบรับ : 11 สิงหาคม 2559

ปัจจุบันในขณะที่อาหารเสริมสมุนไพรกำลังเป็นที่นิยมเพิ่มขึ้นกลับพบรายงานการเกิดอันตรกิริยาระหว่างสมุนไพรและยาที่เพิ่มมากขึ้น เช่นกัน กลไกหนึ่งที่สำคัญที่ทำให้เกิดอันตรกิริยาระหว่างสมุนไพรและยาคือการที่สมุนไพรบางชนิดมีความสามารถในการเปลี่ยนแปลงระดับการทำงานของเอนไซม์ไซโตโครมพี 450 ซึ่งเป็นกลุ่มของเอนไซม์ที่มีบทบาทหลักในการเปลี่ยนแปลงสารหรือยาเพื่อการขับออกจากร่างกาย รายงานฉบับนี้กล่าวถึงตัวอย่างสมุนไพรที่ได้รับความนิยมที่พบรายงานความสามารถในการเปลี่ยนแปลงระดับการทำงานของไซโตโครมพี 450 ได้แก่ เชนต์จอห์นเวิร์ต เกรปฟรุต แบปก์วาย พริกไทยดำ และทับทิม โดยเชนต์จอห์นเวิร์ตเป็นสมุนไพรที่นิยมใช้ร่วมกับยาในการรักษาผู้ป่วยที่มีภาวะซึมเศร้าที่มีความสามารถในการเหนี่ยวนำการทำงานของ CYP3A4, CYP2E1 และ CYP2C19 น้ำเกรปฟรุตที่บีโกรโภคอย่างแพร่หลายทั่วโลกเนื่องมาจากรสชาติ คุณค่าทางอาหาร และสรรพคุณทางยาที่จัดเป็นสารที่มีความสามารถในการยับยั้งการทำงานของ CYP3A4 ในขณะที่แบปก์วายซึ่งเป็นหนึ่งในสมุนไพรที่ถูกใช้เป็นยาทางเลือก โดยเฉพาะในผู้สูงอายุและผู้ป่วยที่มีอาการความจำเสื่อม ที่มีรายงานถึงความสามารถในการยับยั้ง CYP3A4 พริกไทยดำเป็นเครื่องเทศที่นิยมใช้ในการปรุงอาหารหลายชนิดเนื่องจากมีกลิ่นและรสชาติเฉพาะ จัดเป็นด้วยบัญชี CYP3A4 ที่แรงและถูกใช้เป็นสารเร่งชีวภาพ (bioenhancer) ทับทิมเป็นผลไม้ที่นิยมรับประทานเนื่องจากรสชาติอร่อยและมีชีวประโยชน์หลากหลาย ที่มีรายงานว่าสามารถยับยั้ง CYP3A4 ได้ใกล้เคียงกับน้ำเกรปฟรุต ดังนั้น ทั้งแพทช์และผู้ป่วยควรตระหนักรและใส่ใจข้อมูลอันตรกิริยาระหว่างสมุนไพรและยา เนื่องจากการเพิกเฉยหรือละเลยอาจนำไปสู่ผลกระทบต่อชีวิตได้ ผู้ป่วยควรรับทราบผลกระทบที่เป็นไปได้จากการบริโภคสมุนไพรควบคู่กับยาแผนปัจจุบัน ในขณะเดียวกันแพทช์ควรให้ความใส่ใจต่ออาหารเสริมสมุนไพรที่ผู้ป่วยบริโภคทั้งโดยตั้งใจหรือไม่ตั้งใจ ซึ่งอาจกระทบต่อสมุนไพรผลในการรักษาหรือก่อให้เกิดพิษหรืออาการที่ไม่พึงประสงค์ได้

คำสำคัญ : อันตรกิริยาระหว่างสมุนไพรและยา, ไซโตโครมพี 450, เชนต์จอห์นเวิร์ต, เกรปฟรุต, แบปก์วาย, พริกไทยดำ, ทับทิม

Herb-drug interactions via modulation of cytochrome P450 enzymes

Nadta Sukkasem¹, Kanokwan Jarukamjorn^{2*}

¹ Graduate student Master of Pharmacy (Pharmaceuticals), Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 Thailand

² Ph.D. (Pharmaceutical Sciences), Associate Professor, Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 Thailand

*Corresponding author: Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 Thailand.

Tel: 043-202305, Fax: 043-202379, Email: kanok_ja@kku.ac.th

Abstract

Herb-drug interactions via modulation of cytochrome P450 enzymes

Nadta Sukkasem¹, Kanokwan Jarukamjorn^{2*}

IJPS, 2016; 12(3) : 1-15

Received : 11 May 2016

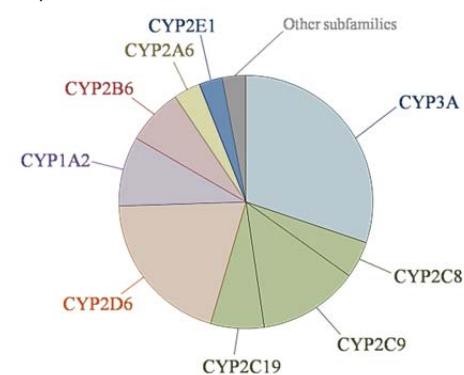
Accepted : 11 August 2016

Nowadays, whereas herbal supplements are becoming increasingly popular worldwide, the incidence of herb-drug interaction is being reported spontaneously. One main mechanism causing herb-drug interactions is the potential of an herb to modulate capacity or ability of drug-metabolizing enzymes, specifically cytochrome P450 (CYP450), a major superfamily of enzymes responsible for biotransformation in order to excrete xenobiotics out of the body. Herewith, cases of famous herbs, e.g., St. John's wort, grapefruit, *Ginkgo biloba*, black pepper, and pomegranate, and their potential in modulating CYP450 activities are reviewed. St. John's wort, a popular remedy for patients with depression, is a potent inducer of CYP3A4, CYP2E1, and CYP2C19. Grapefruit juice, extensively consumed due to its taste, nutritive value, and biological benefits, is a potent CYP3A4 inhibitor. *G. biloba*, one of the most consumed ethnomedicines, especially in senior people and patients suffering from dementia, has been reported to inhibit CYP3A4. Black pepper, well known for its pungent taste and extensively used in numerous dishes, is a potent CYP3A4 inhibitor. Pomegranate, a fruit popularly consumed globally due to its delicious taste and biological benefits, is reported to inhibit CYP3A4 similarly to grapefruit juice. Both health practitioners and patients should be interested and concerned about herb-drug interaction, as ignorance can cause fatal consequences. Patients should acknowledge the impact of coadministered therapies while practitioners should consider how these supplements, either intentionally or unintentionally, may convey an effect on the therapeutic outcome and adverse toxicity.

Keywords: herb-drug interaction, cytochrome P450, St John's wort, grapefruit, *Ginkgo biloba*, black pepper, pomegranate

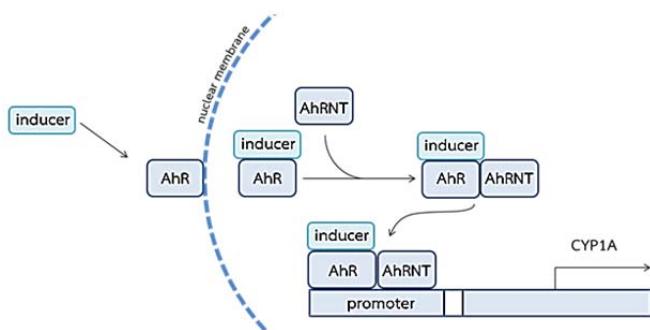
Introduction

To date, the use of herbal medicines as complimentary or alternative medicines has become increasingly common worldwide (Zhou *et al.*, 2003; Foti and Wahlstrom, 2008; Wanwimolruk *et al.*, 2014). Traditional herbal remedies are perceived as harmless owing to the fact that they are natural (Ernst, 1998; Izzo, 2012). As a result, herbal products are being increasingly taken together with or replacing conventional medications (Zhou *et al.*, 2003; Wanwimolruk *et al.*, 2014). A recent study estimated that approximately 20% of the population consumed herbal supplements as alternative medicines (Wu *et al.*, 2014). As a result of the increased consumption of these herbs concomitant with modern drugs, there has been an increased awareness in herb-drug interactions, which can result in unwanted adverse effects (Foti and Wahlstrom, 2008).

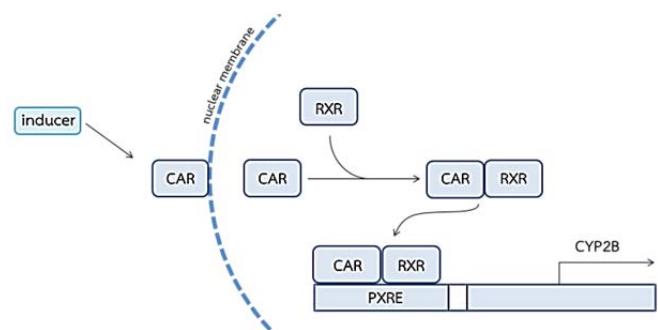

Herb-drug interactions occur through several possible mechanisms. However, the most common mechanism responsible for these interactions involves modulation of the concomitant clinical drug's pharmacokinetics, including absorption, metabolism, or elimination, by the herb (Zhou *et al.*, 2003; Wanwimolruk *et al.*, 2014). In most cases, herbs which cause herb-drug interactions are inducers or inhibitors of the cytochrome P450 (CYP450) enzymes which are responsible for the metabolism of the clinical drug (Zhou *et al.*, 2003; Izzo, 2012).

Cytochrome P450

Cytochrome P450 (CYP450) is a superfamily of heme-proteins which play an important role in metabolism of drugs, toxic chemicals, and xenobiotics by adding an oxygen-containing group, mostly a hydroxyl group, to increase its solubility to be easily excreted (Hasler *et al.*, 1999). The first discovery of this heme-protein was in rat liver microsomes which were found to be catalyzing oxidation reactions (Hasler *et al.*, 1999). Therefore, it was named microsomal monooxygenase system (MMO), in which the so-called oxygenase enzyme was CYP450. CYP450s is highly abundant in the liver (Zangar *et al.*, 2004), followed by intestinal and adrenal tissues (Hasler *et al.*, 1999).


Other tissues that contain CYP450s include lungs, brain, lymphocytes, endothelial smooth muscle, and nasal mucosa (Zangar *et al.*, 2004). Induction of CYP450s can occur through prolonged exposure to their substrates, such as drugs, foods, herbs, and chemicals (Hasler *et al.*, 1999; Wu *et al.*, 2005) which can result in increased metabolism and, thus excretion, of its substrate. Inhibition of CYP450s results in decreased excretion of its substrate and, as a result, prolonged elimination time. Hence, herbs which are CYP450 inducers tend to decrease the concentration of the co-administered drug, reducing its pharmacological effects while herbs with CYP450 inhibitor properties tend to slow down the elimination rate of the co-administered drug which may result in adverse effects or toxicity of the clinical drug (Wanwimolruk *et al.*, 2014).

CYP450s are grouped into different families and subfamilies according to similarity in their gene sequences (Martignoni *et al.*, 2006; Cui *et al.*, 2012). To date, 57 human genes have been discovered to play roles in the expression of CYP450 enzymes, resulting in a total of 57 isoforms, while 102 isoforms have been discovered in mice. These genes can be grouped into subfamilies, namely CYP1A, CYP2B, CYP2C, CYP2D, CYP2E, CYP3A, and CYP4A (Minamiya *et al.*, 2004; Gonzalez, 2005; Eid *et al.*, 2009; Flachsbart *et al.*, 2011; Qi *et al.*, 2013). Each subfamily is further classified into several isoforms in which each individual isoform varies in its contribution to drug metabolism as shown in Fig. 1 (Zanger *et al.*, 2014).


Fig. 1 Individual cytochrome P450 isoforms to major drug metabolism's contribution

CYP1A is a subfamily of CYP450s, consisting of two isoforms, CYP1A1 and CYP1A2. In mouse, rat, dog, monkey, and human, CYP1A1 is mainly expressed in extrahepatic tissues while CYP1A2 is constitutively expressed in the liver (Martignoni *et al.*, 2006). CYP1A is responsible for the metabolism of chemicals, including caffeine, carcinogenic polycyclic aromatic hydrocarbons, nitrosamine, and aflatoxin, and therapeutic drugs such as paracetamol, theophylline, and imipramine (Hasler *et al.*, 1999; Martignoni *et al.*, 2006). The induction of CYP1A occurs via the aryl hydrocarbon receptor (AhR) which is a cytosolic receptor. This involves heterodimerization of AhR and AhR nuclear translocator (AhRNT) along with upstream enhancer elements which transmits induction signals to the promoter, resulting in the transcription and translation processes (Fig. 2) (Martignoni *et al.*, 2006).

Fig. 2 Mechanism of CYP1A induction via AhR

Human CYP2B enzymes consist of 2 isoforms, CYP2B6 and CYP2B7. These two isoforms have almost identical coding sequences. CYP2B6 is involved in the metabolism of 12-25% of clinical drugs while comprising 2-10% of hepatic CYP450 content (Wang and Tompkins, 2008). CYP2B6 is reported to have a large inter-individual variability in both expression and activity (Lamba *et al.*, 2003). CYP2B genes are known to be induced or inhibited by the nuclear constitutive androstane receptor (CAR) in response to various compounds (Negishi and Honkakoski, 2000). Phenobarbital is one of the important CYP2B inducers (Iwata *et al.*, 2002). Recent studies have shown that mechanisms of CYP2B induction occur via the dimerization of CAR with retinoid X receptor (RXR) (Fig. 3) (Iwata *et al.*, 2002).

Fig. 3 Mechanism of CYP2B induction via CAR

CYP2C is a subfamily responsible for metabolism of 16% of clinical drugs, and found mostly in the liver, followed by the heart, and cardiac tissue (Martignoni *et al.*, 2006; Flachsbart *et al.*, 2011). Common drugs metabolized by CYP2C are (S)-mephentyoin, omeprazole, tricyclic antidepressants, proguanil, sulfamethoxazole, dapsone, warfarin, some NSAIDs, tolbutamide, nelfinavir, paclitaxel, and carisoprodol (Hasler *et al.*, 1999; Martignoni *et al.*, 2006). Human CYP2C comprises 4 isoforms, namely, CYP2C8, CYP2C9, CYP2C18, and CYP2C19, while mice have as much as 15 isoforms (Nelson *et al.*, 2004; Martignoni *et al.*, 2006). Induction of CYP2C19, which is the main human CYP2C isoform, occurs via the nuclear receptors, namely, CAR and pregnane X receptor (PXR) (Pascassi *et al.*, 2000; Chen *et al.*, 2003). When a substrate is bound to CAR or PXR, CAR or PXR migrates to the nucleus and binds to the nuclear RXR, forming a heterodimer of CAR-RXR or PXR-RXR before binding to the CAR-responsive element (CAR-RE) or PXR responsive element (PXRE) which is a promoter, resulting in gene transcription (Chen *et al.*, 2003). Another induction pathway occurs via substrate binding of glucocorticoid receptor (GR) which activates PXR or CAR to bind RXR as described above (Pascassi *et al.*, 2000; Chen *et al.*, 2003; Molnar *et al.*, 2013).

The CYP2D gene is known for its polymorphism; however, CYP2D6 is the only isoform in humans responsible for drug metabolism (Teh *et al.*, 2012). Even though its proportion of the total CYP450 is low, CYP2D metabolizes as much as 20 to 50 % of clinical drugs (Sundberg, 2005). Substrates of CYP2D are basic lipophilic nitrogen-containing molecules and alkaloids

(Dickmann *et al.*, 2008). CYP2D is classified as a non-inducible gene by xenobiotics (Lee *et al.*, 2008; Teh *et al.*, 2012; Cederbaum, 2015). Therefore, drug interactions due to CYP2D induction do not normally happen. However, epigenetic variations of CYP2D enzymes can occur (Dickmann *et al.*, 2008). It has been found that CYP2D activity is directly related to the amount of hepatocyte nuclear factor-4 alpha (HNF4 α), which is a transcription regulator of genes contributing to glucose and lipid metabolism. The promoter of CYP2D is bound to HNF4 α , hence, without HNF4 α , the promoter cannot function properly, making HNF4 α an important regulator in CYP2D expression (Lee *et al.*, 2008).

CYP2E1 is the most important isoform in the CYP2E subfamily and is the main cause of hepatic oxidative injury. Mice, rats, and rabbits have been reported to have CYP2E1 genes quite similar to humans, meaning *in vivo* studies of CYP2E1 activity in animals reliably represent human CYP2E1 (Freeman *et al.*, 1992; Cui *et al.*, 2012). There is no report of changes to CYP2E1 expression in mice lacking CAR or PXR, confirming that CYP2E1 is not regulated in the same way as CYP2C (Wolf *et al.*, 2005; Yamazaki *et al.*, 2005). CYP2E1 expression is inducible by both ethanol and acetone, and also by diabetes and starvation via post-transcription and post-translation pathways (Ioannides, 2008; Bogacz *et al.*, 2012; Cederbaum, 2015). This can be via stabilization of mRNA and enzyme proteins in order to facilitate the transcription process (Tompkins *et al.*, 2007; Bogacz *et al.*, 2012; Cederbaum, 2015) and inhibition of the ubiquitin degradation pathway, which plays a role in the degradation of proteins required in transcription and translation (Tompkins *et al.*, 2007).

CYP3A is the main subfamily of CYP450 enzymes found in the liver. It is responsible for metabolizing glucocorticoid and anti-glucocorticoid hormones, macrolides, imidazole, phenobarbital, and phenobarbital-like agents. The majority of CYP3A is found in the liver and intestines (Quattrochi and Guzelian, 2001; Wang *et al.*, 2012). The human CYP3A subfamily comprises of 4 isoforms, namely CYP3A4, CYP3A5, CYP3A7, and CYP3A43 (Wang *et al.*, 2012). CYP3A4 is the most

dominant isoform of CYP3A in human. It makes up 30% of all CYP450 proteins in the liver, metabolizing 50% of clinical drugs (Basheer and Kerem, 2015). This makes it necessary to evaluate the metabolism of new drugs via CYP3A4 during development to avoid or minimize drug interactions. CYP3A4 enzyme has low substrate specificity, meaning it can bind to substrates of various sizes, shapes, and chemical properties. This means CYP3A4 metabolizes a wide variety of substrates including drugs, chemicals, and food compounds such as polyphenols, which are commonly found in fruits and vegetables (Basheer and Kerem, 2015). The induction of CYP3A occurs via the heterodimerization of PXR and RXR, before binding to PXRE, which is a promoter, resulting in the gene transcription process (Cheng *et al.*, 2009; Istrate *et al.*, 2010). A classic example of a herb substrate that can induce CYP3A is quercetin found in St. John's wort. (Basheer and Kerem, 2015).

PXR is a nuclear receptor protein responsible for the regulation of mRNA expressions of several CYP450 isoforms, including CYP2C, CYP3A, and CYP4A (Pascassi *et al.*, 2000; Chen *et al.*, 2003; Tompkins *et al.*, 2007; Ioannides, 2008; Cheng *et al.*, 2009; Istrate *et al.*, 2010; Molnar *et al.*, 2013). When a substrate binds to PXR in the cytosol, the PXR-substrate complex migrates into the nucleus and binds with RXR, becoming a PXR-RXR heterodimer. The heterodimer will further activate its responsive elements, PXRE, leading to transcription process of the genes (Chen *et al.*, 2003) as shown in Fig. 4.

The CYP4A subfamily is responsible for physiologically catalyzing the ω - and ω -1-hydroxylation reactions of fatty acids, including arachidonic acid, as well as its epoxidation reactions (Nguyen *et al.*, 1999). One important function of CYP4A is to catalyze the formation of 20-hydroxyeicosatetraenoic acid (20-HETE), an endogenous compound regulating renal vasculature and tubular ion transport (Kroetz *et al.*, 1997). CYP4As in rodent livers and kidneys are induced by peroxisome proliferators (Sharma *et al.*, 1989) and by physiological conditions where fatty acid levels are elevated (Kroetz *et al.*, 1998). Fatty acids and peroxisome proliferators bind

and activate peroxisome proliferator-activated receptor alpha (PPAR α), a member of the steroid hormone receptor superfamily (Wahli *et al.*, 1999). PPAR α heterodimerizes with RXR and activates enhancer elements of the genes, resulting in the activation of gene transcription (Johnson *et al.*, 1996).

Fig. 5 St. John's wort or *Hypericum perforatum* Linn.

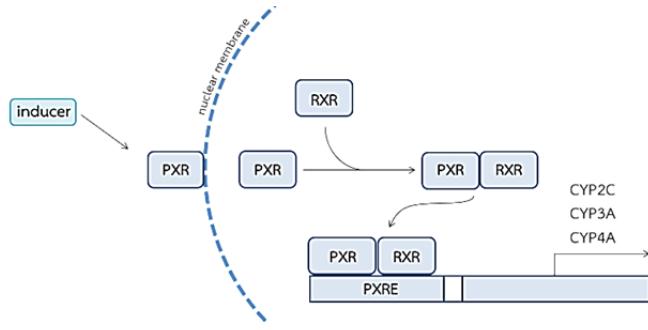


Fig. 4 Mechanism of CYP450 induction via PXR

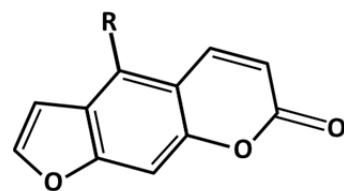
As herbal supplements are increasingly popular and the incidence of herb-drug interactions are being reported spontaneously, the mechanisms/pathways regarding how various herbs affect the activity of CYP450 enzymes have been herewith reviewed, including cases of famous herbs, e. g., St. John's wort, grapefruit, *Ginkgo biloba*, black pepper, and pomegranate.

Herb – drug interaction and cytochrome P450

St. John's wort

St. John's wort or *Hypericum perforatum* Linn. (Fig. 5), is a native herbal plant in Europe. It has been extensively used in several traditional remedies and is known to accelerate wound healing when applied topically and as an antidepressant and anti-insomnia agent when ingested orally (Wentworth *et al.*, 2000). The most common indication of St. John's wort is as an antidepressant, either self-medicated or prescribed. (Wentworth *et al.*, 2000; Wang *et al.*, 2004; Hellum *et al.*, 2009). It has been increasingly consumed as a health supplement in Europe and the United States. According to several studies, the antidepressant potency of St. John's wort is comparable to that of the conventional mild antidepressant drug, fluoxetine (20 mg/d) (Fava *et al.*, 2005).

The main active constituent accounting for the antidepressant activity of St. John's wort is hyperforin, which is an acylphloroglucinol-derivative. Hyperforin inhibits neurotransmitters such as serotonin, dopamine, norepinephrine, and gamma-aminobutyric acid (GABA) from entering the synapse (Wonnemann *et al.*, 2000). Hyperforin activates PXR, which binds to several CYP450 gene-promoters (Wang *et al.*, 2004; Hellum *et al.*, 2009), modulating the gene expression of CYP450 enzymes, and therefore requiring care when used together with drugs metabolized by CYP450s such as warfarin or digoxin. Hyperforin was found to induce the expression of CYP3A4, CYP2C19 and CYP2E1 with no effect on CYP1A2, CYP2C9, and CYP2D6 (Izzo, 2012).


Important CYP450 isoforms that were reported to be induced by hyperforin are CYP3A4 and CYP2C9 (Komoroski *et al.*, 2004). In an *in vitro* study in human hepatocytes, hyperforin induced CYP3A4 to an extent comparable to rifampicin, a typical CYP3A4 inducer (Komoroski *et al.*, 2004). Expression of CYP3A4 was elevated in Sprague-Dawley rats receiving St. John's Wart extraction (Dürr *et al.*, 2000). In addition, hyperforin was reported to induce CYP2C9 in human hepatocytes (Komoroski *et al.*, 2004). Though St. John's Wart's effect on CYP4A is not yet available, it is also possible to induce CYP4A expression via binding to PXR.

Grapefruit

Fig. 6 Grapefruit or *Citrus paradise* Macf.

Grapefruit or *Citrus paradise* Macf. (Fig. 6), a possible hybrid between pomelo (*Citrus grandis*) and sweet orange (*Citrus sinensis*), belongs to the family Rutaceae. Grapefruit is extensively consumed worldwide due to its taste, nutritive value, and biological benefits including preventing cardiovascular disease, improving insulin sensitivity, and weight loss (Owira and Ojewole, 2010). Grapefruit juice is one of the widely studied natural products regarding drug interactions due to its potential to modulate CYP450 enzymes (Foti and Wahlstrom, 2008). Grapefruit juice has been reported as a potent inhibitor of intestinal CYP3A4 but hepatic CYP3A4 was unaffected (Lown et al., 1997; Bailey et al., 1998; Foti and Wahlstrom, 2008; Hanley et al., 2011). Therefore, patients with high intestinal CYP3A4 content or hepatic insufficiency appear to be more susceptible to drug-grapefruit interactions (Zhou et al., 2003). Grapefruit juice contains a variety of phytochemicals, including flavonoids and furanocoumarins (Hanley et al., 2011). Furanocoumarins (Fig. 4) in grapefruit juice, namely bergamottin and 6',7'-dihydroxybergamottin (DHB), are reported to inhibit intestinal CYP3A4, which results in increased levels of drugs metabolized by CYP3A4 enzymes when taken together with grapefruit juice (Zhou et al., 2003; Guo and Yamazoe, 2004; Lin et al., 2005; Hanley et al., 2011). Furanocoumarins are a class of compounds containing three aromatic rings and an aliphatic tail (except for bergaptol and bergapten) (Fig. 7) (Guo and Yamazoe, 2004). The variety in aliphatic tails results in different furanocoumarin molecules with different CYP3A inhibitory potency (Hanley et al., 2011). The most abundant furanocoumarins found in grapefruit juice are bergamottin and DHB (Guo and Yamazoe, 2004; Lin et al., 2005) and these are the most studied regarding their CYP3A inhibition. However, another low abundance furanocoumarin, namely paradisin, which is a dimer of furanocoumarins, showed more potent inhibitory activity (Ohta et al., 2002; Guo and Yamazoe, 2004; Hanley et al., 2011).

Fig. 7 Chemical structure of furanocoumarins

Naringin, the most abundant flavonoid found in grapefruit juice, showed an inhibitory effect on CYP3A4. However, administration of naringin capsules equivalent to the amounts of naringin in grapefruit juice to healthy volunteers did not alter the pharmacokinetics of nisoldipine, a CYP3A4 substrate (Bailey et al., 1993). A similar study was conducted using quercetin, a flavonoid known to inhibit CYP3A *in vitro*. Administering quercetin equivalent to the amounts found in grapefruit juice to healthy volunteers did not affect the pharmacokinetics of nifedipine, another CYP3A4 substrate (Rachid et al., 1993). A more recent *in vitro* study on inhibition of CYP3A4 activity by furanocoumarins (bergapten), and flavonoids (quercetin, narigenin, and naringin) using human liver microsomes has shown that the flavonoids in grapefruit juice exhibited an inhibitory effect on CYP3A4 activity. Interestingly, in the amount actually found in grapefruits, bergapten was responsible for most of the CYP3A4 inhibitory activity (Ho et al., 2001).

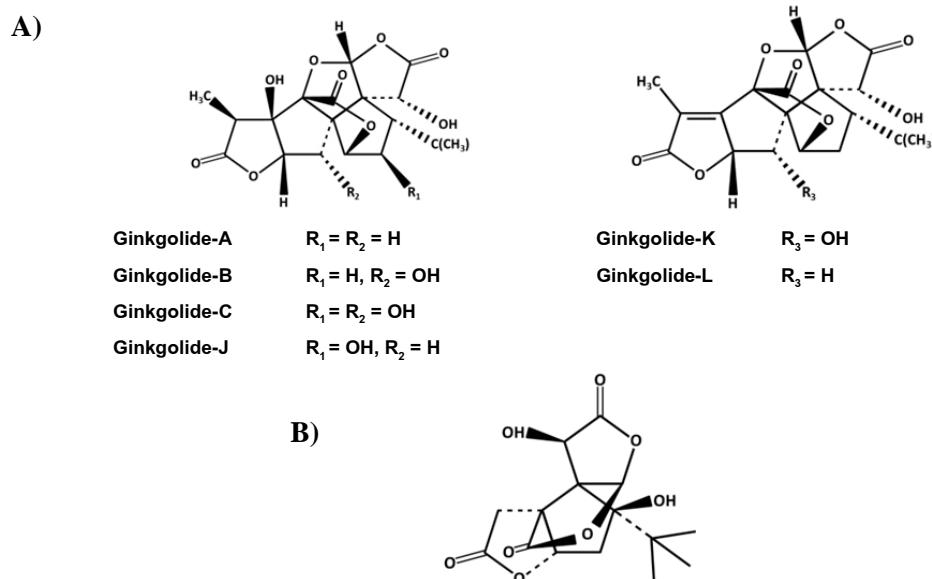
The inhibitory effect of grapefruit juice on CYP3A was observed from clinical evidence showing interactions between drugs and grapefruit juice. This clinical interaction only occurs when an oral drug is significantly first-pass metabolized by enteric CYP3A enzymes, particularly CYP3A4 and CYP3A5 (Soldner et al., 1999; Hanley et al., 2011). These characteristics pinpoint the ability of grapefruit juice to inhibit intestinal CYP3A but not hepatic CYP3A enzymes.

The inhibition of CYP3A4 by furanocoumarins demonstrates either competitive or mechanism-based

patterns (Guo and Yamazoe *et al.*, 2004). Furanocoumarins rapidly reduced the capacity of CYP3A4 enzymes to metabolize other substrates by competing for and occupying the active site of the enzyme, thereby lowering its ability to metabolize and eliminate other substrates (Muntingh, 2011). This form of inhibition is rapid and reversible. However, grapefruit juice was found to inhibit CYP3A4 catalytic activity in Caco-2 cells (Schmiedlin *et al.*, 1997) through an irreversible inactivation of the CYP3A enzymes (Lin *et al.*, 2005). The inactivation mechanism occurred via both destruction of the CYP450 heme structure and the covalent binding of monooxygenated metabolites of furanocoumarins to the CYP450 apoprotein (Lin *et al.*, 2005). Thus, consuming large amounts of grapefruit juice leads to a rapid competitive inhibition followed by a suicide inactivation of CYP3A4. The irreversible inhibitory effect lasts up to 3 days, until the enterocytes regenerate.

Besides CYP3A4, *in vitro* studies of grapefruit juice have reported its inhibitory potential on CYP1A2, CYP2A6, CYP2C9, and CYP2D6 (Hukkanen *et al.*, 2006; Girennavar *et al.*, 2007). The inhibition of these CYP450 enzymes may occur through similar mechanism as CYP3A4. However, these effects may not be as prominent as those for CYP3A4 due to their lower abundance in enterocytes.

Ginkgo biloba


Ginkgo biloba Linn. (Fig. 8) is an ancient Chinese seed plant belonging to the family Ginkgoaceae that may live up to 1,000 years and can become up to 40 meters tall (Brondino *et al.*, 2013). Even though it originated in China, *G. biloba* is now cultivated globally due to its well-known health benefits (Yan *et al.*, 2007; Brondino *et al.*, 2013). It is known to have antioxidant and vasoactive benefits for patients with ischemia, epilepsy, and peripheral nerve damage. However, its most popularly used benefit is to enhance cognitive ability in patients suffering from neurodegenerative diseases such as Alzheimer's disease (Yan *et al.*, 2007; Brondino *et al.*, 2013; Jiang *et al.*, 2013). Today, *G. biloba* leaf extracts are one of the most

consumed ethnomedicines, especially in senior people and patients suffering from dementia (Brondino *et al.*, 2013).

Fig. 8 *Ginkgo biloba* Linn. leaves

Ginkgolides and bilobalide are terpenetrilactones found in *G. biloba* (Fig. 9) (van Beek and Montoro, 2009; Lau *et al.*, 2012). Ginkgolides can be classified into 6 compounds, namely, ginkgolide-A, -B, -C, -J, -K, and -L, according to their side chains (van Beek and Montoro, 2009). Ginkgolides were reported to have several pharmacological activities, including peripheral vasoregulation, inhibition of platelet-activating factor (PAF), and neuroprotection (Liu *et al.*, 2012; Huang *et al.*, 2014). Ginkgolide-A, -B, and -C are potent antagonists of PAF and, therefore, are promising compounds in the development of drugs to prevent thrombus formation, bronchoconstriction, and allergic reactions (Huang *et al.*, 2014). In addition, ginkgolide-C was also reported to increase lipolysis and inhibit adipogenesis in adipocytes, making it a promising candidate in improving metabolic syndromes such as obesity and insulin resistance (Liou *et al.*, 2015). Bilobalide was reported to have several pharmacological activities that contribute to the biological benefits of *G. biloba*. Its activities include acting as a GABA_A receptor antagonist (Kiewert *et al.*, 2007), decreasing amyloid proteins (Shi *et al.*, 2011), and preventing brain edema induced by ischemia (Mdzinashvili *et al.*, 2007). Hence, bilobalide is a potential candidate for development as a drug beneficial for patients with cerebral ischemia and Alzheimer's disease (Lau *et al.*, 2012).

Fig. 9 Chemical structure of ginkgolides (A) and bilobalide (B)

As described previously, CYP2C and CYP3A genes are regulated by CAR and PXR (Pascassi *et al.*, 2000; Chen *et al.*, 2003; Cheng *et al.*, 2009). *G. biloba* extract was reported to activate PXR and increase the expression of CYP3A4 in cultured human hepatocytes (Deng *et al.*, 2008; Yeung *et al.*, 2008; Lau *et al.*, 2010). However, when the ginkgo terpenetrilactones, namely ginkgolide-A, -B, -C, -J, and bilobalide, were evaluated individually, only ginkgolide-A was found to activate PXR in human HepG2 cells (Lau *et al.*, 2010). In another *in vitro* study, bilobalide was reported to activate CAR in rat hepatocytes, but not in human hepatocytes (Lau *et al.*, 2012), indicating a species-specific induction of CYP450 enzymes. It can be concluded that *G. biloba* induces human CYP3A4 activity via ginkgolide-A by binding to PXR.

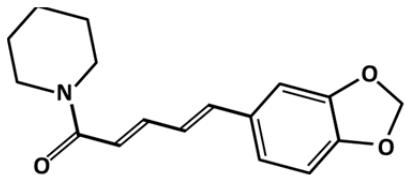

Black pepper

Fig. 10 Black pepper or *Piper nigrum* Linn.

Black pepper or *Piper nigrum* Linn. (Fig. 10), is a member of the family Piperaceae and is well known as the king of spices due to its pungent quality (Ahmad *et al.*, 2012). Its fruit, the peppercorn, is extensively used in

numerous dishes. In addition to its kitchen value, black pepper is also known for its medicinal value. Black pepper is used to relieve digestive disorders, such as diarrhea and indigestion, and respiratory disorders, such as cold, fever, and asthma (Ahmad *et al.*, 2012). Studies have shown that *P. nigrum* exhibits numerous biological activities, including antimicrobial (Arslan *et al.*, 2009; Ahmad *et al.*, 2012), analgesic (Parmar *et al.*, 1997), antidepressant (Li *et al.*, 2007), antidiarrheal (Kumar *et al.*, 2007), anti-inflammatory (Parmar *et al.*, 1997; Fan *et al.*, 2011), antioxidative (Ahmad *et al.*, 2012), and immunomodulatory (Sunila and Kuttan, 2004) activities. Piperine, or (1-[5-(1,3-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]piperidine (Fig. 11), is one of the main components in pepper and gives the pungency of black pepper (Wadhwa *et al.*, 2014). Piperine is classified according to its chemical structure as a cinnamamide alkaloid. It was shown to exhibit antipyretic, analgesic, insecticidal, anti-inflammatory, immunomodulatory, antitumor, and antidepressant activities (Ahmad *et al.*, 2012). In addition to its own biological activity, piperine is also used as a bioavailability enhancer, or bioenhancer. This means it promotes and enhances biological activities or bioavailability of drugs, at doses that do not have their own biological activity, when used in combination (Wadhwa *et al.*, 2014). Studies indicated that piperine at a dose of 10% w/w or at least 15-20 mg/day is an appropriate bioenhancing dose for most drugs (Wadhwa *et al.*, 2014).

Fig. 11 Chemical structure of piperine
([1-[5-(1, 3-benzodioxol-5-yl)-1-oxo-2, 4-pentadienyl] piperidine)

The bioenhancing property of piperine is due to 1) its inhibitory effect on drug-metabolizing enzymes, specifically CYP3A4 (Wadhwa *et al.*, 2014); 2) its ability to increase gastrointestinal blood flow and membrane fluidity, and to enhance enteric absorption (Khajuria *et al.*, 2002); and 3) its ability to enhance drug transport across cell membranes by modulating cell membrane dynamics (Wadhwa *et al.*, 2014).

Piperine is a selective non-competitive inhibitor of CYP3A while having lowering effects on other CYP450 enzymes (Rezaee *et al.*, 2014). A molecular docking study showed the ability of piperine to conjugate with iron in CYP3A4 molecules, leading to inhibition of enzyme activity (Alugolu *et al.*, 2013). The strong binding of piperine with CYP3A4 resulted in reduction or inhibition of the piperine-Fe conjugate metabolizing ability of CYP3A4 (Alugolu *et al.*, 2013).

Pomegranate

Pomegranate or *Punica granatum* Linn. (Fig. 12), of the family Punicaceae, is a seeded or granular apple popularly consumed worldwide. Pomegranate is native to Afghanistan, Iran, China and the Indian sub-continent (Ismail *et al.*, 2012). Its delicious fruit has been extensively used in traditional remedies for treatments of acidosis, dysentery, microbial infections, diarrhea, helminth infection, hemorrhage, and respiratory disorders (Rahimi *et al.*, 2012). Other parts of pomegranate were also shown to possess several biological activities. Its seeds exhibited estrogenic activity via estrogenic compounds contained in the seeds (Kim and Choi, 2009). Dried pericarp and fruit juice have been known to treat colic, colitis, headache, as a diuretic, menorrhagia, oxyuriasis, acne, piles, some oral diseases, and allergic dermatitis (Ricci *et al.*, 2006). Further scientific studies revealed the biological activities of pomegranate as antioxidative, anti-inflammatory, anticancer, and antimutagenic (Hidaka *et al.*, 2005; Faria *et al.*, 2007; Rahimi *et al.*, 2012).

Fig. 12 Pomegranate or *Punica granatum* Linn.

Besides its biological activities, pomegranate fruit juice was reported to inhibit CYP3A activity similarly to grapefruit juice (Hidaka *et al.*, 2005; Adukondalu *et al.*, 2010). However, despite the well documented mechanism of grapefruit juice to inhibit CYP3A activities via furanocoumarins, the data of pomegranate CYP3A inhibition is still limited. It is possible that the main constituents responsible for CYP3A inhibition in pomegranate are furanocoumarins, as in grapefruit, or similar compounds. However, a recent study found that consumption of pomegranate juice decreased hepatic CYP3A expression in mice (Faria *et al.*, 2007) which indicated a different inhibitory mechanism to that of grapefruit juice.

Conclusion

While alternative medicines are becoming increasingly popular people, including both physicians and patients, are increasingly interested and concerned about drug-herb interactions. One main mechanism causing drug-herb interactions is modulation of drug-metabolizing enzymes, specifically CYP450, a major superfamily of enzymes responsible for biotransformations in order to excrete xenobiotics out of the body. Increased activity of these enzymes results in an increased rate of drug metabolism and a shorter half-life, thereby decreasing therapeutic potency. Decreased activity of these enzymes results in a decreased rate of drug metabolism, prolonging the drug's half-life and resulting in an increased potential of drug toxicity.

Herewith, some CYP450 modulatory herbs are reviewed. St. John's wort is a potential inducer of CYP3A4, CYP2E1, and CYP2C19 while, at the same time, being widely used as a combination therapy in patients with depression. Grapefruit juice, extensively consumed worldwide due to its taste, nutritive value, and biological

benefits, is a potent CYP3A4 inhibitor. *G. biloba*, one of the most widely consumed ethnomedicines in senior people and patients suffering from dementia, has been reported to inhibit CYP3A4. Black pepper, well known for its pungent taste and extensively used in numerous dishes, is a potent CYP3A4 inhibitor and therefore known and used as a bioenhancer. Pomegranate, a fruit popularly consumed worldwide due to its delicious taste and biological benefits, is reported to inhibit CYP3A4 similarly to grapefruit juice. These are only a few examples of CYP450 modulatory herbs which are numerous and extensively consumed worldwide. This information should provide a warning to health practitioners, patients and consumers as ignorance can cause fatal consequences. Patients should acknowledge the impact of taking co-administered therapies while practitioners should be aware of how these co-administered remedies can affect therapeutic outcome or cause adverse toxicity. Further studies of herb-drug or food-drug interactions are of great importance as the increasing trend of ethnomedicine usage is increasing case reports of these interactions.

References

Adukondalu D, Kumar SY, Vishnu VY, Kumar SR, Rao MY. Effect of pomegranate juice pre-treatment on the transport of carbamazepine across rat intestine. DARU J Pharm Sci 2010; 18(4): 254-259.

Ahmad N, Fazal H, Abbasi BH, Farooq S, Ali M, Khan MA. Biological role of *Piper nigrum* L. (Black pepper): A review. Asian Pac J Trop Biomed 2012; 2(3): S1945-S1953.

Alugolu V, Rentala S, Komarraju AL, Parimi UD. Docking studies of piperine - iron conjugate with human CYP450 3A4. Bioinformation 2013; 9(7): 334-338.

Arslan U, İlhan K, Karabulut OA. Antifungal activity of aqueous extracts of spices against bean rust (*Uromyces appendiculatus*). Allelopath J 2009; 24(1):207-213.

Bailey DG, Arnold JMO, Strong HA, Munoz C, Spence JD. Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics. Clin Pharmacol Ther 1993; 54(6): 589-594.

Basheer L, Kerem Z. Interactions between CYP3A4 and dietary polyphenols. Oxid Med Cell Longev 2015; 2015: 1-15.

Bogacz A, Karasiewicz A, Kujaw R, et al. Molecular mechanisms of regulation of CYP enzymes of phase I metabolism of xenobiotics - synthetic drugs and herbal preparations. Herba Pol 2012; 58(3): 46-59.

Brondino N, Silvestri AD, Re S, Lanati N, Thiemann P, Verna A, Emanuele E, Politi P. A systematic review and meta-analysis of *Ginkgo biloba* in neuropsychiatric disorders: from ancient tradition to modern-day medicine. Evid Based Complement Alternat Med 2013; 2013: 1-11.

Cederbaum I. Molecular mechanisms of the microsomal mixed function oxidases and biological and pathological implications. Redox Biol 2015; 4: 60-73.

Chen Y, Ferguson SS, Negishi M, Goldstein JA. Identification of constitutive androstane receptor and glucocorticoid receptor binding sites in the CYP2C19 promoter. Mol Pharmacol 2003; 63: 316-324.

Cheng J, Ma X, Krausz KW, Idle JR, Gonzalez FJ. Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity. Drug Metab Dispos 2009; 37: 1611-1621.

Cui JY, Renaud HJ, Klaassen CD. Ontogeny of novel cytochrome P450 gene isoforms during postnatal liver maturation in mice. Drug Metab Dispos 2012; 40(6): 1226-1237.

Deng Y, Bi HC, Zhao LZ, et al. Induction of cytochrome P450s by terpenetrilactones and flavonoids of the *Ginkgo biloba* extract EGb 761 in rats. Xenobiotica 2008; 38(5): 465-481.

Dickmann LJ, Tay S, Senn TD, et al. Changes in maternal liver Cyp2c and Cyp2d expression and activity during rat pregnancy. Biochem Pharmacol 2008; 75(8): 1677-1687.

Dürr D, Stieger B, Kullak-Ublick GA, et al. St John's Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000; 68(6): 598-604.

Eid AA, Gorin Y, Fag BM, et al. Mechanisms of podocyte Injury in diabetes role of cytochrome P450 and NADPH oxidases. *Diabetes* 2009; 58: 1201-1211.

Ernst E. Harmless herbs? A review of the recent literature. *Am J Med* 1998; 104: 170-178.

Fan LS, Muhamad R, Omar D, Rahmani M. Insecticidal properties of *Piper nigrum* fruit extracts and essential oils against *Spodoptera litura*. *Int J Agr Biol* 2011; 13(4): 517-522.

Faria A, Monteiro R, Azevedo I, Calhau C. Pomegranate juice effects on cytochrome P450S expression: *in vivo* studies. *J Med Food* 2007; 10(4): 643-649.

Fava M, Alpert J, Nierenberg AA, et al. A Double-blind, randomized trial of St John's wort, fluoxetine, and placebo in major depressive disorder. *J Clin Psychopharmacol* 2005; 25(5): 441-447.

Flachsbart F, Ufer M, Kleindorp R, Nikolaus S, Schreiber S, Nebel A. Genetic variation in the CYP2C monooxygenase enzyme subfamily shows no association with longevity in a German population. *J Gerontol Ser A-Biol Sci Med Sci* 2011; 66A(11): 1186-1191.

Foti RS, Wahlstrom JL. The role of dietary supplements in cytochrome P450-mediated drug interactions. *B Latinoam Caribe PL* 2008; 7(2): 66-84.

Freeman JE, Stirling D, Russel AL, Wolf CR. cDNA sequence, deduced amino acid sequence, predicted gene structure and chemical regulation of mouse *Cyp2e1*. *Biochem J* 1992; 281: 689-695.

Girennavar B, Jayaprakasha GK, Patil BS. Potent inhibition of human cytochrome P450 3A4, 2D6, and 2C9 isoenzymes by grapefruit juice and its furanocoumarins. *J Food Sci* 2007; 72(8): C417-C421.

Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. *Mutat Res* 2005; 569: 101-110.

Guo LQ, Yamazoe Y. Inhibition of cytochrome P450 by furanocoumarins in grapefruit juice and herbal medicines. *Acta Pharmacol Sin* 2004; 25(2): 129-136.

Hanley MJ, Cancalon P, Widmer WW, Greenblatt DJ. The effect of grapefruit juice on drug disposition. *Expert Opin Drug Metab Toxicol* 2011; 7(3): 267-286.

Hasler JA, Estabrook R, Murray M, et al. Human cytochromes P450. *Mol Aspects Med* 1999; 20: 1-137.

Hellum BH, Hu Z, Nilsen OG. Trade herbal products and induction of CYP2C19 and CYP2E1 in cultured human hepatocytes. *Basic Clin Pharmacol Toxicol* 2009; 105: 58-63.

Hidaka M, Okumura M, Fujita K, et al. Effects of pomegranate juice on human cytochrome P450 3A (CYP3A) and carbamazepine pharmacokinetics in rats. *J Pharmacol Exp Ther* 2005; 33(5): 644-648.

Ho PC, Saville DJ, Wanwimolruk S. Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds. *J Pharm Pharm Sci* 2001; 4(3): 217-227.

Huang P, Zhang L, Chai C, et al. Effects of food and gender on the pharmacokinetics of ginkgolides A, B, C and bilobalide in rats after oral dosing with ginkgo terpene lactones extract. *J Pharm Biomed Anal* 2014; 100: 138-144.

Hukkanen J, Jacob P, Benowitz NL. Effect of grapefruit juice on cytochrome P450 2A6 and nicotine renal clearance. *Clin Pharmacol Ther* 2006; 80(5): 522-30.

Ioannides C. Cytochromes P450: Role in the metabolism and toxicity of drugs and other xenobiotics (Issues in Toxicology). Cambridge, UK, RSC Publishing, 2008.

Ismail T, Sestili P, Akhtar S. Pomegranate peel and fruit extracts: A review of potential anti-inflammatory and anti-infective effects. *J Ethnopharmacol* 2012; 143: 397-405.

Istrate MA, Nussler AK, Eichelbaum M, Burk O. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding. *Biochem Biophys Res Commun* 2010; 393: 688-693.

Iwata H, Yoshinari K, Negishi M, Stegeman JJ. Species-specific responses of constitutively active receptor (CAR)-CYP2B coupling: lack of CYP2B inducer-responsive nuclear translocation of CAR in marine teleost, scup (*Stenotomus chrysops*). *Comp Biochem Physiol C* 2002; 13: 501-510.

Izzo AA. Interactions between herbs and conventional drugs: Overview of the clinical data. *Med Princ Pract* 2012; 21: 404-428.

Jiang L, Su L, Cui H, Ren J, Li C. *Ginkgo biloba* extract for dementia: a systematic review. *Shanghai Arch Psychiatry* 2013; 25(1): 10-21.

Johnson EF, Palmer CNA, Griffin KJ, Hsu MH. Role of the peroxisome proliferator activated receptor in cytochrome P450 4A gene regulation. *FASEB J* 1996; 10:1241-1248.

Khajuria A, Thusu N, Zutshi U. Piperine modulates permeability characteristics of intestine by inducing alterations in membrane dynamics: Influence on brush border membrane fluidity, ultrastructure and enzyme kinetics. *Phytomedicine* 2002; 9: 224-231.

Kiewert C, Kumar V, Hildmann O, et al. Role of GABAergic antagonism in the neuroprotective effects of bilobalide. *Brain Res* 2007; 1128(1):70-78.

Kim YH, Choi EM. Stimulation of osteoblastic differentiation and inhibition of interleukin-6 and nitric oxide in MC3T3-E1 cells by pomegranate ethanol extract. *Phytother Res* 2009; 23: 737-739.

Komoroski BJ, Zhang S, Cai H, et al. Induction and inhibition of cytochromes P450 by the St. John's wort constituent hyperforin in human hepatocyte cultures. *J Pharmacol Exp Ther* 2004; 32(5): 512-518.

Kroetz DL, Huse LM, Thuresson A, Grillo MP. Developmentally regulated expression of the CYP4A genes in the spontaneously hypertensive rat kidney. *Mol Pharmacol* 1997; 52: 362-372.

Kroetz DL, Yook P, Costet P, Bianchi P, Pineau T. Peroxisome proliferator-activated receptor α controls the hepatic CYP4A induction adaptive response to starvation and diabetes. *J Biol Chem* 1998; 273:31581-31589.

Kumar S, Singhal V, Roshan R, Sharma A, Rembhotkar GW, Ghosh B. Piperine inhibits TNF-alpha induced adhesion of neutrophils to endothelial monolayer through suppression of NF-kappa B and kappa B kinase activation. *Eur J Pharmacol* 2007; 575(1-3): 177-186.

Lamba V, Lamba J, Yasuda K, et al. Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. *J Pharm Exp Ther* 2003; 307(3): 906-922.

Lau AJ, Yang G, Rajaraman G, Baucom CC, Chang TK. Human pregnane X receptor agonism by *Ginkgo biloba* extract: assessment of the role of individual ginkgolides. *J Pharmacol Exp Ther* 2010; 335(3): 771-780.

Lau AJ, Yang G, Rajaraman G, Baucom CC, Chang TKH. Species-dependent and receptor-selective action of bilobalide on the function of constitutive androstane receptor and pregnane X receptor. *Drug Metab Dispos* 2012; 40(1): 178-186.

Lee SS, Cha EY, Jung HJ, et al. Genetic polymorphism of hepatocyte nuclear factor-4 α influences human cytochrome P450 2D6 activity. *Hepatology* 2008; 48(2): 635-645.

Li S, Wang C, Li W, Koike K, Nikaido T, Wang MW. Antidepressant-like effects of piperine and its derivative, antiepilepsirine. *J Asian Nat Prod Res* 2007; 9(5):421-430.

Lin HL, Kent UM, Hollenberg PF. The grapefruit juice effect is not limited to cytochrome P450 (P450) 3A4: evidence for bergamottin-dependent inactivation, heme destruction, and covalent binding to protein in P450s 2B6 and 3A5. *J Pharm Exp Ther* 2005; 313(1): 154-164.

Liou CJ, Lai XY, Chen YL, Wang CL, Wei CH, Huang WC. Ginkgolide C suppresses adipogenesis in 3T3-L1 adipocytes via the AMPK signaling pathway. *Evid Based Complement Alternat Med* 2015; 2015: 1-10.

Liu X, Zhao G, Yan Y, Bao L, Chen B, Qi R. Ginkgolide b reduces atherogenesis and vascular inflammation in Apoe $^{-/-}$ mice. *PLoS ONE* 2012; 7(5): 1-10.

Lown KS, Bailey DG, Fontana RJ, et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. *J Clin Invest* 1997; 99(10): 2545-2553.

Martignoni M, Groothuis GM, Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. *Expert Opin Drug Metab Toxicol* 2006; 2(6): 875-894.

Mdzinarishvili A, Kiewert C, Kumar V, Hillert M, Klein J. Bilobalide prevents ischemia-induced edema formation *in vitro* and *in vivo*. *Neuroscience* 2007; 144(1): 217-222.

Minamiyama Y, Takemura S, Toyokuni S, et al. CYP3A induction aggravates endotoxemic liver injury via reactive oxygen species in male rats. *Free Radic Biol Med* 2004; 37(5): 703-712.

Molnár F, Küblbeck J, Jyrkkälinne J, Prantner V, Honkakoski P. An update on the constitutive androstane receptor (CAR). *Drug Metabol Personal Ther* 2013; 28(2): 79-93.

Muntingh G. An overview of interactions between grapefruit juice and drugs. *S Afr Pharm J* 2011; 78(8): 409-45.

Negishi M, Honkakoski P. Induction of drug metabolism by nuclear receptor CAR: molecular mechanisms and implications for drug research. *Eur J Pharm Sci* 2000; 11: 259-264.

Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Waine HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. *Pharmacogenetics* 2004; 14: 1-18.

Nguyen X, Wang MH, Reddy KM, Falck JR, Schwartzman ML. Kinetic profile of the rat CYP4A isoforms: Arachidonic acid metabolism and isoform-specific inhibitors. *Am J Physiol* 1999; 276: R1691-R1700.

Ohta T, Maruyama T, Nagahashi M, et al. Paradisin C: a new CYP3A4 inhibitor from grapefruit juice. *Tetrahedron* 2002; 58: 6631-6635.

Owira PM, Ojewole JA. The grapefruit: an old wine in a new glass? Metabolic and cardiovascular perspectives. *Cardiovasc J Afr* 2010; 21(5): 280-285.

Parmar VS, Jain SC, Bisht KS, et al. Phytochemistry of the genus *Piper*. *Phytochemistry* 1997; 46(4): 591-673.

Pascussi JM, Chaloin SG, Fabre JM, Maurel P, Vilarem MJ. Dexamethasone enhances constitutive androstane receptor expression in human hepatocytes: consequences on cytochrome P450 gene regulation. *Mol Pharmacol* 2000; 58: 1441-1450.

Qi XM, Miao LL, Cai Y, Gong LK, Ren J. ROS generated by CYP450, especially CYP2E1, mediate mitochondrial dysfunction induced by tetrandrine in rat hepatocytes. *Acta Pharmacol Sin* 2013; 34: 1229-1236.

Quattrochi LC, Guzelian PS. CYP3A regulation: From pharmacology to nuclear receptors. *Drug Metab Dispos* 2001; 29(5): 615-622.

Rahimi HR, Arastoo M, Ostad SN. A comprehensive review of *Punica granatum* (Pomegranate) properties in toxicological, pharmacological, cellular and molecular biology researches. *Iran J Pharm Res* 2012; 11(2): 385-400.

Rashid J, McKinstry C, Renwick AG, Dirnhuber M, Waller DG, George CF. Quercetin, an *in vitro* inhibitor of CYP3A, does not contribute to the interaction between nifedipine and grapefruit juice. *Br J Clin Pharmacol* 1993; 36(5): 460-463.

Rezaee MM, Kazemi S, Kazemi MT, et al. The effect of piperine on midazolam plasma concentration in healthy volunteers, a research on the CYP3A-involving metabolism. *DARU J Pharm Sci* 2014; 22: 8.

Ricci D, Giampieri L, Buccini A, Fraternale D. Antioxidant activity of *Punica granatum* fruits. *Fitoterapia* 2006; 77(4): 310-312.

Schmiedlin RP, Edwards DJ, Fitzsimmons ME, et al. Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. *Drug Metab Dispos* 1997; 25(11): 1228-1233.

Sharma RK, Lake BG, Makowski R, et al. Differential induction of peroxisomal and microsomal fatty-acid-oxidising enzymes by peroxisome proliferators in rat liver and kidney. Characterisation of a renal cytochrome P-450 and implications for peroxisome proliferation. *Eur J Biochem* 184:69-78, 1989.

Shi C, Wu F, Xu J, Zou J. Bilobalide regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. *Neurochem Int* 2011; 59(1): 59-64.

Sundberg MJ. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary

aspects and functional diversity. *Pharmacogenomics J* 2005; 5: 6-13.

Sunila ES, Kuttan G. Immunomodulatory and antitumor activity of *Piper longum* Linn. and piperine. *J Ethnopharmacol* 2004; 90(2-3):339-346.

Teh K, Bertilsson L. Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. *Drug Metab Pharmacokinet* 2012; 27(1): 55-67.

Tompkins LM, Wallace AD. Mechanisms of cytochrome P450 induction. *J Biochem Mol Toxicol*. 2007; 21(4): 171-181.

vanBeek TA, Montoro P. Chemical analysis and quality control of *Ginkgo biloba* leaves, extracts, and phytopharmaceuticals. *J Chromatogr A* 2009; 1216: 2002-2032.

Wadhwa S, Singhal S, Rawat S. Bioavailability Enhancement by Piperine: a review. *AJBPS* 2014; 4(36): 1-8.

Wahli W, Devchand PR, Ijpenberg A, Desvergne B. Fatty acids, eicosanoids, and hypolipidemic agents regulate gene expression through direct binding to peroxisome proliferator-activated receptors. *Adv Exp Med Biol* 1999; 447:199-209.

Wang D, Sadee W. The making of a CYP3A biomarker panel for guiding drug therapy. *J Pers Med* 2012; 2(4): 175-191.

Wang H, Tompkins LM. CYP2B6: New insights into a historically overlooked cytochrome P450 isozyme. *Curr Drug Metab* 2008; 9(7): 598-610.

Wang LS, Zhou G, Zhu B, et al. St John's wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. *Clin Pharmacol Ther* 2004; 75(3):191-197.

Wanwimolruk S, Phopin K, Prachayositkul V. Review article: Cytochrome P450 enzyme mediated herbal drug interactions (part 2). *EXCLI J* 2014; 13: 869-896.

Wentworth JM, Agostini M, Love J, Schwabe JW, Chatterjee VKK. St John's wort, a herbal antidepressant, activates the steroid X receptor. *J Endocrinol* 2000; 166: R11-R16.

Wolf KK, Wood SG, Hunt JA, et al. Role of the nuclear receptor pregnane X receptor in acetaminophen hepatotoxicity. *Drug Metab Dispos* 2005; 33(12): 1827-1836.

Wonnemann M, Singer A, Müller WE. Inhibition of synaptosomal uptake of 3H-L-glutamate and 3H-GABA by hyperforin, a major constituent of St. John's Wort: the role of amiloride sensitive sodium conductive pathways. *Neuropsychopharmacology* 2000; 23(2):188-197.

Wu CH, Wang CC, Tsai MT, Huang WT, Kennedy J. Trend and pattern of herb and supplement use in the United States: results from the 2002, 2007, and 2012 National Health Interview Surveys. *Evid Based Complement Alternat Med* 2014; 2014: 1-7.

Wu D, Cederbaum AI. Oxidative stress mediated toxicity exerted by ethanol-inducible CYP2E1. *J Toxicol Appl Pharmacol* 2005; 207: S70-S76.

Yamazaki Y, Kakizaki S, Horiguchi N, Takagi H, Mori M, Negishi M. Role of nuclear receptor CAR in carbon tetrachloride-induced hepatotoxicity. *World J Gastroenterol* 2005; 11(38): 5966-5972.

Yan H, Li L, Tang XC. Treating senile dementia with traditional Chinese medicine. *Clin Interv Aging* 2007; 2(2): 201-208.

Yeung EY, Sueyoshi T, Negishi M, Chang TK. Identification of *Ginkgo biloba* as a novel activator of pregnane X receptor. *Drug Metab Dispos* 2008; 36(11):2270-2276.

Zangar RC, Davydov DR, Verma S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. *Toxicol Appl Pharmacol* 2004; 199: 316-331.

Zhou S, Gao Y, Jiang W, Huang M, Xu A, Paxton JW. Interactions of herbs with cytochrome 450. *Drug Metab Rev* 2003; 35(1): 35-98.