

Multifunction of Saffron and Its Components in Brain

Nguyen Huu Tung¹, Shinji Soeda², Hiroshi Saito³, Kosuke Aritake⁴, Yukihiko Shoyama^{1*}

Abbreviation: BSO; Buthionine sulfoximine, DMEM; Dulbecco's modified Eagle's medium, ELISA; Enzyme-linked immunosorbent assay, FB1; Fumonisin B1, c-GCS; c-Glutamylcysteinyl synthase, GPx; Glutathione peroxidase, GR; Glutathione reductase, GSH; Glutathione, IL-6; Interleukin-6, JNK; c-Jun kinase, LTP; Long-term potentiation, MAb; Monoclonal antibody, NGF; Nerve growth factor, NMDA; N-methyl-D-aspartate, N-Smase; Neutral sphingomyelinase, PS; Phosphatidylserine, SAPK; Stress-activated protein kinase, SD; Step down, SM; Sphingomyelin, SOD; Superoxide dismutase ST; Step through, TNF-a; Tumor necrosis factor

Keywords: *Crocus sativus*, saffron, crocin, Neuroprotection, learning and memory, LTP, non REM sleeping

¹ Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki, Japan E-mail: shoyama@niu.ac.jp

² Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka, Japan

³ Faculty of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan

⁴ Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka, Japan

Introduction

Crocus sativus L.(Iridaceae) is a perennial herb that is widely cultivated mainly in Iran and the other countries like Greece, Spain and Morocco for its red stigmatic lobes that constitute

saffron (Fig.1, Fig. 2) from 3500 years ago. This plant blooms only once a year and the manual harvest of stigmas should be performed within a very short time [1].

Figure 1 Flowering of *Crocus sativus* L. and saffron (right)

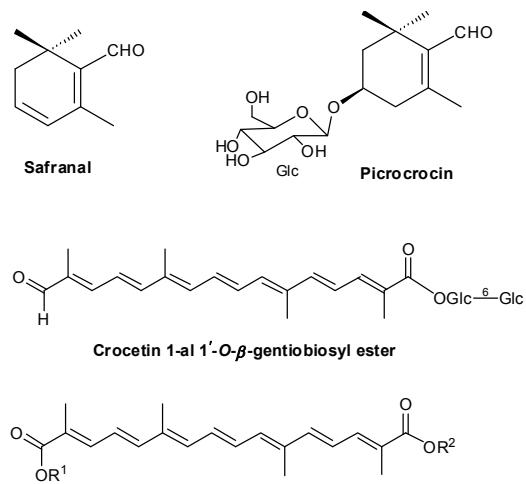

The manual cultivation methods practiced with saffron crocus contribute greatly to its high price. About 90000-100000 flowers give 5000 g of fresh stigmas or about 1000 g of the dried drug. Weather conditions affect the quality of saffron. Therefore, an indoor cultivation system was established in Japan from 100 or more years ago in Oita prefecture in Japan (Fig. 2).

Figure 2 Indoor cultivation of *Crocus sativus* in Japan

The stigmas can be collected from full blooming *C. sativus* in the room. This is the reason why the indoor cultivation method is advantageous for the achievement of a homogenous quality of saffron and for saving time. [2]. Saffron finds use as folk medicines and traditional Chinese medicine as well as a flavoring and a coloring agent. Saffron has three main chemical components. The bright yellow coloring carotenoids, a bitter taste, picrocrocin, and spicy aroma, safranal. The carotenoid pigments consist of crocetin-diglucoside, crocin-2, crocin-3, crocin-4 and crocetin-di-(β -D-digentiobiosyl)-ester (crocin) (Fig. 3). Previously we confirmed that drying is

important because an inner β -glucosidase is still active when moisture contains [2]. Therefore, drying is completed in about 30-45min, after which the drug is cooled and stored under dry condition [2]. More recently we succeeded to isolate a novel crocetin glycoside, trans-crocetin-1-al 1-O- β -gentiobiosyl ester. (Fig. 3) [3].

Figure 3 Components of saffron

Saffron can be used as an antispasmodic, antidiarrheal, and nerve sedative ingredient, and is reported to be useful in treating various human disorders such as heart and blood disorders [4-7]. Crocin has a wide range of activities including antioxidant [5-7], anti-cancer [4,8], hypolipidemic [5,9], anti-atherosclerotic [10-12] and anti-inflammatory effects [13,14]. The neuroprotective activities of crocin have also been demonstrated in various experimental models of brain disorders, such as cerebral ischemia [14],

Alzheimer disease [15], depression [16], and memory impairment [17-19].

It is well known that saffron has anti-cancer activities against several cancer cell lines and *in vivo* investigations. We also investigated the anti-cancer activity of saffron and its constituent, crocin. In the first investigation we tested the inhibitory activity for skin tumour promoted by chemicals by using saffron and crocetin- glucosides. When crocin was applied before each 12-O-tetradecanoylphorbol-13-acetate treatment, it delayed the formation of papillomas, only 10 % of mice bore papillomas at 9 weeks of promotion. The effect of crocin was not mimicked by gentio-biose or glucose alone [20].

Furthermore, we investigated *in vitro* anti-cancer active evidences of saffron extract and its constituent, crocin using several cancer cell lines like HTC-116, SW-480 and HT-29. Saffron extract and crocin significantly inhibited the growth of colorectal cancer cells while not affecting normal cell [21]. From these data we started *in vitro* experiments using mice. The development of colonic adenocarcinomas in mice was induced by azoxymethane and dextran sodium sulfate. Crocin significantly inhibited the colonic adenocarcinomas depending on the inhibition of inflammation phenomenon resulting in the prevention of colitis and inflammation-associated colon carcinogenesis [22].

The development of natural products with properties for alleviating the symptoms of learning and memory impairments has been expected by clinicians and researchers in the field. In the brain, the hippocampus is a very important region in the learning and memory processes, and

the LTP induced from the brain tissue is closely related to learning and memory [23]. In earlier publications, we reported the effects of an ethanol extract of *C. sativus* and its purified components on the central nervous system in terms of learning behaviors in mice and LTP in the dentate gyrus of hippocampus in anesthetized rats and in the CA1 region of rat hippocampus slices[24-26]. Neuronal cell death is required for the development of the nervous system. However, recent studies suggest that neurons die from programmed cell death(apoptosis) in brains deprived of oxygen by stroke[27] and trauma [28] and in the brains of Alzheimer's patients [29]. Therefore, prevention of neuronal apoptosis has been considered to be a desirable therapeutic strategy for treating such neurodegenerative diseases, although the value of this approach is not yet evident. This review discusses the value of folk medicines in terms of learning and memory and also in modulating apoptotic cell death, together with our recent data of crocin's effect on neuronal cell death.

Neuroprotection by crocin

1. Inhibitory activity of crocin for PC-12 cell death induced by serum/glucose deprivation

In the first stage of neuronal investigations, we prepared monoclonal antibody (MAb) against crocin [30]. In order to confirm the incorporation of crocin and the localization of crocin into PC-12 cells, we immunostained cells using the anti-crocin MAb prepared. Clear incorporation of crocin into PC-12 cells was confirmed comparing with the control cells [31].

Cells cultured in serum/glucose-containing Dulbecco's modified Eagle's medium [DMEM (+)] had a normal morphology at 24 h, while those cultured in the serum- and glucosefree medium [DMEM (-)] for 24 h were round inshape and showed the characteristic properties of necrotic and/or apoptotic cells. We confirmed that approximately 60% cell death had occurred in the latter culture using the Trypan blue dye exclusion method. The addition of crocin (10 μ M) significantly suppressed both the morphological changes and the PC-12 cell death induced by the DMEM (-) conditions as crocin inhibited TNF- α -induced PC-12 cell death[32], resulting in 85% survival. It is wellknown that serum [33-35] or nerve growth factor(NGF) [36,37] deprivation induces apoptosis in PC-12cells. Colombaioni et al. [38] demonstrated that serum deprivation increased the intracellular ceramide levels in undifferentiated HN9.10e cells, resulting in apoptosis. These findings easily suggest a possibility that ceramide levels increase in PC-12 cells under DMEM(-) conditions. PC-12 cells cultured for 3 h in DMEM (-) showed a significant increase (3.5-fold increase) in the level of ceramide compared to the basal level in cells cultured in DMEM (+) conditions. The suppressive effect of crocin was dose-dependent. We also tested the effect of fumonisin B1 (FB1), which inhibits de novo ceramide synthesis in cells at a concentration of 10–30 μ M [39,40]. However, FB1 had no significant effect on ceramide levels, suggesting that the accumulation of ceramide through an enhancement of de novo synthesis following a 3-h culture in DMEM(-) was in itself not sufficient to explain the increase. It

has been suggested that the sphingomyelin (SM) pathway and SAPK/JNK signaling systems may function together [41] in stress-induced apoptosis of U937cells and BAE cells. Since the environmental stress under DMEM (-) conditions may activate the stress activated protein kinase (SAPK)/JNK cascade in PC-12 cells, we compared the amounts of phosphorylatedJNK in the cells cultured in DMEM (+) and DMEM(-) for 6 h. The DMEM (-) conditions stimulated the phosphorylation of JNK in the cells byapproximately 3.7-fold relative to the control cells.

2. Inhibitory effect of crocin on the activation of N-SMase induced in serum/glucose-deprivedPC-12 cells

In order to confirm the resource of the accumulated ceramide, we measured the activity of magnesium dependent N-SMase in the PC-12 cell homogenate. N-SMase activity in cells cultured in DMEM (-) reached a maximum at 1 h and decreased to around the level of the control cells at 3 h. However, there was no time dependent change in the N-SMase activity during a 3-h culture in DMEM (-). This assay method can detect N-SMaseactivity in these supernatants by substitution of the reaction medium for 50 mM sodium acetate buffer(pH 5.6). The results demonstrated that the activity ofN-SMase in PC-12 cells was unaffected by serum/glucosedeprivation for at least for 3 h. The addition of crocin in the culture medium suppressed the enzyme activities at 1 and 2 h in a dose-dependent manner. To determine whether or not the inhibition of N-SMase is a direct action of crocin on the enzyme, we added crocin

to the reaction medium, whose cells had been cultured in DMEM (–) for 2 h. The addition of 1 or 10 μ M crocin had no inhibitory effect on N-SMase activity in the reaction medium. However, the addition of GSH at concentrations of 1 and 10 mM inhibited the enzyme activity in a dose-dependent manner. Earlier reports indicate that GSH is a physiological inhibitor of magnesium-dependent N-SMase in plasma membranes[42-44]. N-SMase is inactive in the presence of physiological concentrations (1–20 mM) of GSH. Therefore, these results suggest that the N-SMase activity in the reaction medium is derived from magnesium-dependent N-SMase contained in plasma membranes and that the observed N-SMase inhibition by crocin does not occur through its direct action on the enzyme.

3. Increase of intracellular GSH levels in serum/glucose deprived PC-12 cells through an increase in the activities of GR and c-GCS by crocin

In an investigation aimed at testing the above-mentioned hypothesis, we examined the effect of crocin on intracellular GSH levels in serum/glucose-deprived PC-12 cells. The GSH levels in PC-12 cells exposed for 3 h to serum/glucose-free DMEM decreased to half that found in the control cells, and the reafters remained constant. However, the addition of crocin to the medium increased the intracellular GSH level dose-dependently, maintaining it at the 3-h time-point at a higher level. The most significant effect of crocin occurred at a concentration of 10 μ M. The concentration of GSH was high enough to

inactivate N-SMase. We then investigated the mechanism by which crocin increased the GSH levels. The GR activities in serum/glucose-deprived PC-12 cells decreased in a time-dependent fashion, whereas the co-presence of 10 μ l Mcrocin enhanced GR activity each hour (approximately four-fold elevation at 6 h). This result indicates that crocin has no significant effect on the GPx activity in the cells. GSH synthesis is regulated by the rate-limiting enzyme c-GCS. This enzyme is thought to be regulated by several mechanisms. In mouse endothelial cells, the TNF- α - or IL-1 β -induced increase in c-GCS activity is associated with an increase in mRNA expression [45]. IL-6 also stimulates the expression of c-GCS mRNA and increases the activity of this enzyme, which leads to increased GSH levels in PC-12 cells [46]. In contrast, Nakajima et al. [47] reported that NGF had the ability to increase the activity of c-GCS at the transcription level by extending the half-life of c-GCS mRNA. The addition of crocin (10 μ M) doubled c-GCS mRNA expression in PC-12 cells in serum/glucose-free DMEM, while it had no effect on the mRNA levels of the control PC-12 cells. The crocin-induced increase in c-GCS mRNA expression is reflected in an increase in the activity of this enzyme in the cells. These results suggest that crocin can increase GSH levels by increasing the 1 h DMEM.

4. Antioxidant effect of crocin in preventing neuronal cell death

The effects of crocin on PC-12 cells deprived of serum/glucose in comparison with those of α -tocopherol have been reported [31].

Depriving the PC-12 cells of serum/glucose caused changes in the morphology and peroxidation of their membrane lipids and decreased intracellular superoxide dismutase (SOD) activity. Although phosphatidylserine (PS) residues are normally present in the inner membrane, the oxidative stress transferred these into the outer membrane leaflet. PS externalization is known as an early sign of apoptotic induction. Annexin binds to the negatively charged PS, and the conjugated FITC shows a ring-like stain along the cellular boundary. The cells deprived of serum/glucose show strong ring-like stains compared to the control cells. Crocin kept the cell's morphology more intact than α -tocopherol. In PC-12 cells deprived of serum/glucose for 6 h, the level of peroxidized membrane lipids increased 1.8-fold in comparison to the control cells, and SOD activity decreased to 14% of that in the control cells. However, crocin significantly decreased the formation of peroxidized membrane lipids and restored SOD activity compared to α -tocopherol activity. The restoration of SOD activity suggests that crocin has an important role in modulating antioxidative effects. Crocin also suppressed the activation of caspase-8 caused by serum/glucose deprivation, this activation was suppressed in a concentration-dependent manner (0.1–10 μ M). Crocin did not inhibit caspase-8 activity in the cell lysates and its inhibitory effect may be caused indirectly by the antioxidant activity.

Learning and memory by saffron and crocin

1. Effects of saffron extract on memory registration

There were no differences between control and saffron extract treated groups in either ST or SD test, suggesting that saffron extract had no effect on memory registration in normal mice (data not shown).

Saffron extract improved the shortening of latency induced by ethanol significantly, but had no effect in increasing the number of successful mice decreased by ethanol in ST test. It also ameliorated the increase of errors induced by ethanol significantly, but had no effect on the decrease of the learned mice induced by ethanol in SD test. Saffron extract ameliorated the ethanol-induced memory registration impairment in both ST and SD test. The ameliorating effects were dose-dependent [49].

Saffron extract significantly ameliorated the ethanol-induced impairment of memory retrieval on SD test, but not in ST test. The increase of errors and the decrease in number of learned mice were significantly ameliorated by saffron extract in SD test. The improving effects were dose-dependent.

The crude extract of saffron prevents the ethanol-induced impairment of memory acquisition in step-through (ST) and step down (SD) tests [49]. On the basis of these results it is relatively easy to suggest that some components of saffron are capable of antagonizing the blocking effect of ethanol for memory acquisition. Fractionation of the crude extract based on activity

revealed that crocin is actual active component in saffron.

Single oral administration of crocin had no effect on mice in passive avoidance tasks. Oral administration of 30% ethanol induced an impairment in memory acquisition in ST and SD tests. However, the subsequent oral administration of crocin (50 mg/kg) improved the impairment of memory acquisition in both tests in a dose-dependent manner [48].

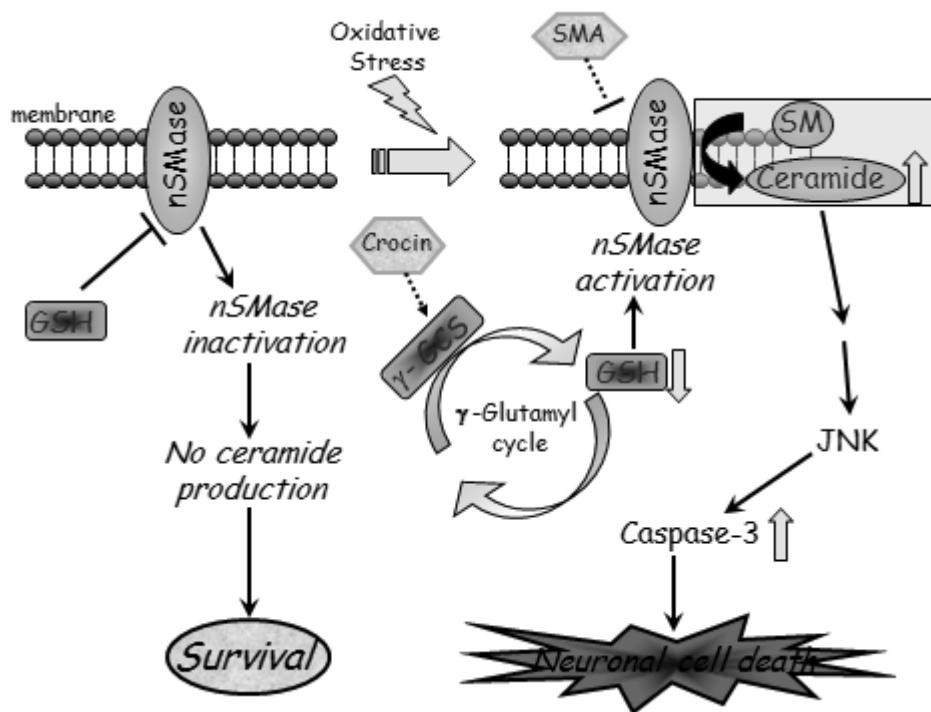
2. Effect of saffron and crocin on LTP

We previously confirmed that the saffron crude extract can improve the blocking effect of ethanol on the LTP in a dose-dependent manner. However, since the active component had not yet been isolated at that stage, we discuss our search for the active compound in this review. The saffron extract were injected intracerebroventricularly, and the blocking effect of ethanol on the LTP decreased dose-dependently. These results led us to hypothesize that crocin might antagonize the blocking effect of ethanol on the induction of LTP, as already discussed in the context of the improvement of impairments in memory acquisition [18, 19]. Following the activity-guided separation from the crude extract, we confirmed that crocin is the actual active component in saffron. When a 50 mg/kg dose of crocin was injected 5 min before the administration of ethanol, LTP was induced at 84% of that of control, suggesting that the LTP blocking effect of ethanol was improved dose dependently with the administration of crocin. The activities of the crocetin gentiobiose glucose ester and crocetin

di-glucose ester, which are analogs of crocin, on the LTP blocking effect of ethanol was investigated at the same dose scale. These activities were found to be distinctly lower than that of crocin. The active improvement effect against blocking was clearly proportional to the number of glucoses because crocin, which possesses four glucoses in a molecule, showed the highest improvement effect while the activity of crocetin di-glucose ester was almost the same as the control. From this result we concluded that crocin is the actual active component in saffron related to learning and memory phenomenon.

Non rem sleeping effect of crocin

It is known that saffron with traditional Chinese medicines promotes the sleep activity in the field of therapy of mental disorders and is used for sleep promotion as a folk medicine in Japan. From these evidences we started to search the activity of saffron and its component, saffron. We examined the sleep-promoting effect of crocin and crocetin on mice after an intraperitoneal administration at 20:00 during the wake period. Fig 2A shows time-courses of the hourly amounts of non-REM and REM sleep and wakefulness after the administration of vehicle or crocin (100 mg/kg). During the period of 20:00 to 01:00, mice with vehicle-treatment spent more time in wake than in sleep. When 100 mg/kg of crocin was injected on the experimental day, the amount of non-REM sleep was increased immediately after the injection, and the effect was statistically significant from 2 to 4 hr after the administration. Crocin did not change the REM sleep after the administration.


This augmentation effect on non-REM sleep time was accompanied by reduction in wakefulness. The increase in non-REM sleep and decrease in wake lasted more than 4 hr after the injection. There was no further disruption of the sleep architecture during the subsequent period (8:00 to 20:00). These data indicated that crocin induces non-REM sleep without occurrence of adverse effects, such as rebound insomnia after the sleep induction. Similar time-course profiles were observed with a low dose of 30 mg/kg, but the effect on sleep was small and lasted only about 1–2 hr after the injection (data not shown).

We calculated the total time spent in non-REM and REM sleep and wakefulness for 4 hr after the crocin or crocetin injection (Fig. 2B). Crocin at 10 mg/kg did not affect the cumulative amounts of non-REM and REM sleep and wakefulness for 4 hr after injection. Crocin given at 30 and 100 mg/kg statistically significantly increased the total amount of non-REM sleep by 160 % and 270 %, respectively, and decreased the total amount of wakefulness by 20 % and 50%, respectively, without changing the amount of REM sleep during a 4 hr period as compared with the vehicle control. The increase in non-REM sleep and the decrease in wakefulness were statisti-

cally significantly between two doses of 10 and 100 mg/kg. Crocetin at a dose of 100 mg/kg significantly increased the total amounts of non-REM sleep by 160% and decreased the total amount of wakefulness by 25% without changing the REM sleep amount during a 4-hr period as compared with the vehicle control [50].

Conclusion

It is well known that saffron is very safety food because oral administration of saffron extract at concentrations of up to 5 g/kg is still nontoxic in mice [51]. Crocin increases the intracellular glutathione leverl and prevents cell death in serum-deprived and hypoxic PC-12 cells, a cell culture model for brain ischemia, by its antioxidant property. The antioxidant capacities of crocin have been reported in association with a variety of neuroprotective potentials. In PC-12 cells, the generation of ROS activates neutral SMase to generate ceramide, which induces cell death. Glutathione directly inhibits the activation of the SMase. Therefore, we hypothesized that crocin might prevent the activation of N-SMase in serum/glucose-deprived PC-12 cells by a GSH-dependent inhibition mechanism.

Figure 4 Summary of occurrence of apoptosis in terms of GSH biosynthesis

Ceramide release and activate the caspase family as discussed already. Although we have not discussed in this review, we found the effect of crocin on an infarcted area caused by MCA occlusion of the middle cerebral artery in mice. This evidence also helps the brain healthcare by saffron and/or crocin.

In the early stage of our investigation on the pharmacological activity of crocin, we reported that crocin is the actual active component involved both in the improvement of learning and memory and with the preventive effect of LTP blocked by ethanol *in vivo* although oral administrations of saffron and/or crocin had no effect on memory acquisition in normal mice. Recently Naghibi et al. investigated the effect of saffron extract on morphine-induced memory impairment

and concluded that the saffron extract attenuated morphine-induced memory impairment [51]. We further demonstrated for the first time that crocin selectively antagonizes the inhibitory effect of ethanol on N-methyl-D-aspartate (NMDA)-receptor-mediated responses in hippocampal neurons [17]. The sugar numbers in crocetin glycosides reflected the LTP blocking activity by ethanol like that crocin having 4 glucoses in a molecule attenuated strongest compared to the other smaller molecule. This tendency is a good agreement with the previous reports that the sugar residues are important for the activities of some drugs like cardiac steroids [52], streptozotocin [53], ginsenosides [54] and so on.

Patient related to sleeping problem are increasing in Japan, and now 25% of population

have some sleeping problems. Safron can be prescribed with TCM for mental disordering patient having sleeping problem in Japan. Therefore, crocin was tested for sleep promotion and we found crocin increased the total time of non-REM sleeping. This finding promotes the clinical use of saffron since saffron has been used as safety food from thousands ago. Moreover, crocin was approved by State Food and Drug Administration for the clinical trial in 2006 and now a drug for angina in China. From various kind of phenomena described in this review saffron and/or crocin have a multifunctional natural product in brain.

References

Pharmacognosy, edt. Trease GE., Evans WC, p. 626, Williams and Wikins Company, Baltimore.

Morimoto S., Umezaki Y., Shoyama Y., Saito H., Nishi K., Irino N., Post-harvest degradation of carotenoid glucose esters in saffron. *Planta Med.*, 60: 438–440, 1994.

Tung NH., Shoyama Y., New minor glycoside component from saffron, *J. Nat. Med.*, 67: 672-676, 2013.

Aung HH., Wang CZ., NiM., Fishbein A., Mehendale SR., Xie JT., Shoyama Y., SC., Yuan, Crocin from *Crocus sativus* possesses significant anti-proliferation effects on human colorectal cancer cells. *Exp Oncol* 29:175-180, 2007.

Lee IA., Lee JH., Baek NI., Kim DH., Antihyperlipidemic effect of crocin isolated from the fructus of *Gardenia jasminoides* and its metabolite Crocetin. *Biol. Pharm. Bull.*, 28: 2106-2110, 2005.

Ochiai T., Ohno S., Soeda S., Tanaka H., Shoyama Y., Shimeno H., Crocin prevents the death of rat pheochromocytoma (PC-12) cells by its antioxidant effects stronger than those of alpha-tocopherol. *Neurosci Lett*, 362: 61-64, 2004.

Rigobello MP., Scutari G., Boscolo R., Bindoli A., Inhibition of lipid peroxidation by S-nitroso-glutathione and copper. *Free Radic. Res.*, 36: 1071-1077, 202.

Chryssanthi DG., Lamari FN., Iatrou G., Pylara A., Karamanos NK., Inhibition of breast cancer cell proliferation by style constituents of different *Crocus* species. *Anticancer Res.*, 27: 357-362, 2007.

Sheng L., Qian Z., Zheng S., Xi L., Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. *Eur. J. Pharmacol.*, 543: 116-122, 2006.

Xu GL., Qian ZY., Yu SQ., Gong ZN., Shen XC., Evidence of crocin against endothelial injury induced by hydrogen peroxide in vitro. *J. Asian Nat. Prod. Res.* 8: 79-85, 2006.

Xu GL., Yu SQ., Gong ZN., Zhang SQ., Study of the effect of crocin on rat experimental hyperlipemia and the underlying mechanisms, *Zhongguo Zhong Yao Za Zhi*, 30 : 369-372, 2005.

Xu GL., Li G., Ma HP., Zhong H., Liu F., Preventive effect of crocin in inflamed animals and in LPS-challenged RAW 264.7 cells. *J. Agric. Food Chem.*, 57: 8325-8330, 2009.

Naghizadeh B., Boroushaki MT., Vahdati MN., Mansouri MT., Protective effects of crocin against cisplatin-induced acute renal failure and oxidative stress in rats. *Iran Biomed. J.*, 12: 93-100, 2008.

Ochiai T., Shimeno H., Mishima K., Iwasaki K., Fujiwara M., Tanaka H., Shoyama Y., Toda A., Eyanagi E., Soeda S., Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. *Biochim., Biophys., Acta*, 1770 : 578-584, 2007.

Papandreou MA., Kanakis CD., Polissiou MG., Efthimiopoulos S., Cordopatis P., Inhibitory activity on amyloid-beta aggregation and antioxidant properties of *Crocus sativus* stigmas extract and its crocin constituents. *J. Agric. Food Chem.*, 54: 8762-8768, 2006.

Lechtenberg M., Schepmann D., Niehues M., Hellenbrand N., Wunsch B., Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma1 (sigma-1) receptors. *Planta Med.*, 74: 764-772, 2008.

Abe K., Sugiura M., Shoyama Y., Saito H., Crocin antagonizes ethanol inhibition of NMDA receptor-mediated responses in rat hippocampal neurons. *Brain Res.*, 787: 132-138, 1998.

Sugiura M., Shoyama Y., Saito H., Abe K., The effects of ethanol and crocin on the induction of long-term potentiation in the CA1 region of rat hippocampal slices. *Jpn. J. Pharmacol.*, 67: 395-397, 1995.

Sugiura M., Shoyama Y., Saito H., Abe K., Crocin (crocin di-gentiobiose ester) prevents the inhibitory effect of ethanol on long-term potentiation in the dentate gyrus in vivo. *J. Pharmacol. Exp. Ther.*, 271: 703-707, 1994.

Konoshima T., Takasaki M., Tokuda H., Morimoto S., Tanaka H., Kawata E., Xuan LJ., Saito H., Sugiura M., Molnar J., Shoyama Y., Crocin and crocetin derivatives inhibit skin tumour promotion in mice, *Phytoth. Res.*, 12 : 400-404, 1998.

Aung1HH., Wang1CZ., Ni M., Fishbein A., Mendenhall SR., Xie JT., Shoyama Y., Yuan CS., Crocin from *Crocus sativus* possesses significant antiproliferation effects on human colorectal cancer cells, *Exp. Oncol.*, 29: 175-180, 2007.

Kawabata K., Tung NH., Shoyama Y., Sugie S., Mori T., Tanaka T., Dietary crocin inhibits colitis and colitis-associated colorectal carcinogenesis in male ICR mice, *Evid.-Based Compl. Alter. Med.*, ID 820415, 2012.

Ishiyama J., Saito H., Abe K., Epidermal growth factor and basic fibroblast growth factor promote the generation of long-term potentiation in the dentate gyrus of anesthetized rats. *Neurosci. Lett.*, 12:403-411, 1991.

Abe K., Xie F., Saito H., (1991) Epidermal growth factor enhances short-time potentiation and facilitates induction of long-term potentiation of evoked potential in rat hippocampal slices. *Brain Res.*, 547:171-174, 1991.

Zhang XY., Shoyama Y., Sugiura M., Saito H., Acute effects of *Crocus sativus* L. on passive avoidance performance in mice. *Biol. Pharm. Bull.*, 17:217–221, 1994.

Sugiura M., Shoyama Y., Saito H., Abe K., Ethanol extract of *Crocus sativus* L. antagonizes the inhibitory action of ethanol on hippocampal long-term potentiation in vivo. *Phytother. Res.*, 9:100–104, 1995.

27. Crowe MJ., Bresnahan JC., Shumann SL., Masters JN., Beattie MS., Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. *Nat. Med.*, 3:73–76, 1997.

Hill IE., MacManus JP., Rasquinho I., Tuor UI., DNA fragmentation indicative of apoptosis following unilateral cerebral hypoxia-ischemia in the neonatal rat. *Brain Res.*, 676:398–403, 1995.

Pettmann B., Henderson CE., Neuronal cell death. *Neuron*, 20:633–647, 1998.

Xuan L., Tanaka H., Xu Y., Shoyama Y., Preparation of monoclonal antibody against crocin and its characterization, *Cytotechnology*, 29: 65-70, 1999.

Ochiai T., Ohno S., Soeda S., Tanaka H., Shoyama Y., Shimeno H., Crocin prevents the death of rat pheochromocytoma (PC-12) cells by its antioxidant effects stronger than those of α -tocopherol, *Neurosci. Letters*, 362: 61-64, 2004.

Soeda S., Ochiai T., Paopong L., Tanaka H., Shoyama Y., Shimeno H., Crocin suppresses tumor necrosis factor- α induced cell death of neuronally differentiated PC-12 cells. *Life Sci.*, 69: 2887–2898, 2001.

Oppenheim RW., Cell death during development of the nervous system. *Ann. Rev. Neurosci.*, 14:453–501, 1991.

Batistatou A., Green LA., Aurintricarboxylic acid-rescues PC-12 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation: correlation with suppression of endonuclease activity. *J. Cell Biol.*, 115:461–471, 1991.

Rukenstein A., Rydel RE., Green LA., Multiple agents rescue PC-12 cells from serum-free cell death by translation and transcription-independent mechanisms. *J. Neurosci.*, 11:2552–2563, 1991.

Mesner PW., Winters TR., Green SH., Nerve growth factor withdrawal-induced cell death in neuronal PC-12 cells resembles that in sympathetic neurons. *J. Cell Biol.*, 119:1669–1680, 1992.

Pittman RN., Wang S., DiBenedetto AJ., Mills JC., A system for characterizing cellular and molecular events in programmed neuronal cell death. *J. Neurosci.*, 13:3669–3680, 1993.

Colombai L., Frago LM., Varela-Nieto I., Pesi R., Garcia-Gil M., Serum deprivation increases ceramide levels and induces apoptosis in undifferentiated HN9.10e cells. *Neurochem. Int.*, 40:327–336, 2002.

Wang E., Norred WP., Bacon CW., Riley RT., Merrill AH., Inhibition of sphingolipid biosynthesis by fumonisins: implications for

diseases associated with *Fusarium moniforme*. *J. Biol. Chem.*, 266:14486–14490, 1991.

Merrill AH Jr., van Echten G., Wang E., Sandhoff K., Fumonisins B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons *in situ*. *J. Biol. Chem.*, 268:27299–27306, 1993.

Verheij M., Bose R., Lin XH., Yao B., Jarvis WD., Grant S., Birrer MJ., Szabo E., Zon LI., Kyriakis JM., Haimovitz-Friedman A., Fuks Z., Kolesnick RN., Requirement for ceramide-initiated SAPK/JNK signaling in stress-induced apoptosis. *Nature* 380:75–79, 1996.

Yoshimura S., Banno Y., Nakashima S., Hayashi K., Yamakawa H., Sawada M., Sakai N., Nozawa Y., Inhibition of neutral sphingomyelinase activation and ceramide formation by glutathione in hypoxic PC-12 cell death. *J. Neurochem.* 73:675–683, 1999.

Yoshimura S., Banno Y., Nakashima S., Takeuchi K., Sakai H., Nishimura Y., Sakai N., Shimizu S., Eguchi Y., Tsujimoto Y., Nozawa Y., Ceramide formation leads to caspase-3 activation during hypoxic PC-12 cell death. *J. Biol. Chem.*, 273:6921–6927, 1998.

Liu B., Hannun YA., Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. *J. Biol. Chem.*, 272:16381–16287, 1997.

Urata Y., Yamamoto H., Goto S., Tsushima H., Akazawa S., Yamashita S., Nagataki S., Kondo T., Long exposure to high glucose concentration impairs the responsive expression of c-glutamylcysteine synthetase by interleukin-1 β and tumor necrosis factor- α in mouse endothelial cells. *J. Biol. Chem.*, 271:15146–15152, 1996.

Nakajima A., Yamada K., Zou LB., Yan Y., Mizuno M., Nabeshima T., Interleukin-6 protects PC12 cells from 4-hydroxynonenal-induced cytotoxicity by increasing intracellular glutathione levels. *Free Radic. Biol. Med.*, 32:1324–1332, 2002.

Sugiura M., Shoyama Y., Saito H., Nishiyama N., Crocin improves the ethanol-induced impairment of learning behaviors of mice in passive avoidance tasks, *Proc. Jap. Acad.* 71: 319–324, 1995.

Sugiura M., Shoyama Y., Zhang YX., Saito H., Abe K., Effects of ethanol extract of *Crocus sativus* L. and its purified chemicals on learning behavior and long-term potentiation, *Int. Acad. Biomed. Drug Res.*, 11: 270–276, 1996.

Masaki M., Aritake K., Tanaka H., Shoyama Y., ZL. Huang, Urade Y., Mol. Nut. Food Res. 56: 304–308, 2012.

Abdullaev FI., Cancer chemopreventive and tumoricidal properties of saffron (*Crocus sativus* L.). *Exp. Biol. Med.*, 227:20–25, 2002.

Naghibi SM., Hosseini M., Khani F., Rahimi M., Vafaee F., Rakhshandeh H., Aghaie A., Effect of Aqueous Extract of *Crocus*

sativus L. on Morphine-Induced Memory Impairment. *Adv Pharmacol Sci.*, 2012: 494367. doi: 10.1155/2012/494367.

Shimada K., Ishii N., Ohishi K., Ro JS, Nambara T., Structure-activity relationship of cardiac steroids having a double linked sugar and related compounds for the inhibition of Na^+ , K^+ -adenosine triphosphatase, *J. Pharmacobio-Dyn.*, 9: 755-759, 1986.

Gunnarsson R., Berne C., Hellerstrom C., Cytotoxic effects of streptozotocin and N-nitrosomethylurea on the pancreatic b-cell with special regards to the role of nicotinamide-adenine dinucleotide, *Biochem. J.*, 140: 487-494, 1974.

Takemoto Y., Ueyama T., Saito H., Horio S., Shoji J., Yahara S., Tanaka O., Shibata S., Potentiation of nerve growth factor-mediated nerve fiber production in organ cultures of chicken embryonic ganglia by ginseng saponins: structure-activity relationship, *Chem. Pharmacol. Bull.*, 32: 3128-3133.